1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx XADC driver
4 *
5 * Copyright 2013-2014 Analog Devices Inc.
6 *  Author: Lars-Peter Clausen <lars@metafoo.de>
7 *
8 * Documentation for the parts can be found at:
9 *  - XADC hardmacro: Xilinx UG480
10 *  - ZYNQ XADC interface: Xilinx UG585
11 *  - AXI XADC interface: Xilinx PG019
12 */
13
14#include <linux/clk.h>
15#include <linux/device.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/overflow.h>
23#include <linux/platform_device.h>
24#include <linux/slab.h>
25#include <linux/sysfs.h>
26
27#include <linux/iio/buffer.h>
28#include <linux/iio/events.h>
29#include <linux/iio/iio.h>
30#include <linux/iio/sysfs.h>
31#include <linux/iio/trigger.h>
32#include <linux/iio/trigger_consumer.h>
33#include <linux/iio/triggered_buffer.h>
34
35#include "xilinx-xadc.h"
36
37static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38
39/* ZYNQ register definitions */
40#define XADC_ZYNQ_REG_CFG	0x00
41#define XADC_ZYNQ_REG_INTSTS	0x04
42#define XADC_ZYNQ_REG_INTMSK	0x08
43#define XADC_ZYNQ_REG_STATUS	0x0c
44#define XADC_ZYNQ_REG_CFIFO	0x10
45#define XADC_ZYNQ_REG_DFIFO	0x14
46#define XADC_ZYNQ_REG_CTL		0x18
47
48#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54#define XADC_ZYNQ_CFG_REDGE		BIT(12)
55#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61#define XADC_ZYNQ_CFG_IGAP(x)		(x)
62
63#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65#define XADC_ZYNQ_INT_ALARM_MASK	0xff
66#define XADC_ZYNQ_INT_ALARM_OFFSET	0
67
68#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76#define XADC_ZYNQ_STATUS_OT		BIT(7)
77#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78
79#define XADC_ZYNQ_CTL_RESET		BIT(4)
80
81#define XADC_ZYNQ_CMD_NOP		0x00
82#define XADC_ZYNQ_CMD_READ		0x01
83#define XADC_ZYNQ_CMD_WRITE		0x02
84
85#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86
87/* AXI register definitions */
88#define XADC_AXI_REG_RESET		0x00
89#define XADC_AXI_REG_STATUS		0x04
90#define XADC_AXI_REG_ALARM_STATUS	0x08
91#define XADC_AXI_REG_CONVST		0x0c
92#define XADC_AXI_REG_XADC_RESET		0x10
93#define XADC_AXI_REG_GIER		0x5c
94#define XADC_AXI_REG_IPISR		0x60
95#define XADC_AXI_REG_IPIER		0x68
96#define XADC_AXI_ADC_REG_OFFSET		0x200
97
98#define XADC_AXI_RESET_MAGIC		0xa
99#define XADC_AXI_GIER_ENABLE		BIT(31)
100
101#define XADC_AXI_INT_EOS		BIT(4)
102#define XADC_AXI_INT_ALARM_MASK		0x3c0f
103
104#define XADC_FLAGS_BUFFERED BIT(0)
105
106/*
107 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
108 * not have a hardware FIFO. Which means an interrupt is generated for each
109 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
110 * overloaded by the interrupts that it soft-lockups. For this reason the driver
111 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
112 * but still responsive.
113 */
114#define XADC_MAX_SAMPLERATE 150000
115
116static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
117	uint32_t val)
118{
119	writel(val, xadc->base + reg);
120}
121
122static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
123	uint32_t *val)
124{
125	*val = readl(xadc->base + reg);
126}
127
128/*
129 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
130 * XADC. Reads and writes to the XADC register are performed by submitting a
131 * request to the command FIFO (CFIFO), once the request has been completed the
132 * result can be read from the data FIFO (DFIFO). The method currently used in
133 * this driver is to submit the request for a read/write operation, then go to
134 * sleep and wait for an interrupt that signals that a response is available in
135 * the data FIFO.
136 */
137
138static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
139	unsigned int n)
140{
141	unsigned int i;
142
143	for (i = 0; i < n; i++)
144		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
145}
146
147static void xadc_zynq_drain_fifo(struct xadc *xadc)
148{
149	uint32_t status, tmp;
150
151	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
152
153	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
154		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
155		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
156	}
157}
158
159static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
160	unsigned int val)
161{
162	xadc->zynq_intmask &= ~mask;
163	xadc->zynq_intmask |= val;
164
165	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
166		xadc->zynq_intmask | xadc->zynq_masked_alarm);
167}
168
169static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
170	uint16_t val)
171{
172	uint32_t cmd[1];
173	uint32_t tmp;
174	int ret;
175
176	spin_lock_irq(&xadc->lock);
177	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
178			XADC_ZYNQ_INT_DFIFO_GTH);
179
180	reinit_completion(&xadc->completion);
181
182	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
183	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
184	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
185	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
186	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
187	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
188
189	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
190	spin_unlock_irq(&xadc->lock);
191
192	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
193	if (ret == 0)
194		ret = -EIO;
195	else
196		ret = 0;
197
198	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
199
200	return ret;
201}
202
203static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
204	uint16_t *val)
205{
206	uint32_t cmd[2];
207	uint32_t resp, tmp;
208	int ret;
209
210	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
211	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
212
213	spin_lock_irq(&xadc->lock);
214	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
215			XADC_ZYNQ_INT_DFIFO_GTH);
216	xadc_zynq_drain_fifo(xadc);
217	reinit_completion(&xadc->completion);
218
219	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
220	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
221	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
222	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
223	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
224
225	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
226	spin_unlock_irq(&xadc->lock);
227	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
228	if (ret == 0)
229		ret = -EIO;
230	if (ret < 0)
231		return ret;
232
233	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
234	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
235
236	*val = resp & 0xffff;
237
238	return 0;
239}
240
241static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
242{
243	return ((alarm & 0x80) >> 4) |
244		((alarm & 0x78) << 1) |
245		(alarm & 0x07);
246}
247
248/*
249 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
250 * threshold condition go way from within the interrupt handler, this means as
251 * soon as a threshold condition is present we would enter the interrupt handler
252 * again and again. To work around this we mask all active thresholds interrupts
253 * in the interrupt handler and start a timer. In this timer we poll the
254 * interrupt status and only if the interrupt is inactive we unmask it again.
255 */
256static void xadc_zynq_unmask_worker(struct work_struct *work)
257{
258	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
259	unsigned int misc_sts, unmask;
260
261	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
262
263	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
264
265	spin_lock_irq(&xadc->lock);
266
267	/* Clear those bits which are not active anymore */
268	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
269	xadc->zynq_masked_alarm &= misc_sts;
270
271	/* Also clear those which are masked out anyway */
272	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
273
274	/* Clear the interrupts before we unmask them */
275	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
276
277	xadc_zynq_update_intmsk(xadc, 0, 0);
278
279	spin_unlock_irq(&xadc->lock);
280
281	/* if still pending some alarm re-trigger the timer */
282	if (xadc->zynq_masked_alarm) {
283		schedule_delayed_work(&xadc->zynq_unmask_work,
284				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
285	}
286
287}
288
289static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
290{
291	struct iio_dev *indio_dev = devid;
292	struct xadc *xadc = iio_priv(indio_dev);
293	uint32_t status;
294
295	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
296
297	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
298
299	if (!status)
300		return IRQ_NONE;
301
302	spin_lock(&xadc->lock);
303
304	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
305
306	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
307		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
308			XADC_ZYNQ_INT_DFIFO_GTH);
309		complete(&xadc->completion);
310	}
311
312	status &= XADC_ZYNQ_INT_ALARM_MASK;
313	if (status) {
314		xadc->zynq_masked_alarm |= status;
315		/*
316		 * mask the current event interrupt,
317		 * unmask it when the interrupt is no more active.
318		 */
319		xadc_zynq_update_intmsk(xadc, 0, 0);
320
321		xadc_handle_events(indio_dev,
322				xadc_zynq_transform_alarm(status));
323
324		/* unmask the required interrupts in timer. */
325		schedule_delayed_work(&xadc->zynq_unmask_work,
326				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
327	}
328	spin_unlock(&xadc->lock);
329
330	return IRQ_HANDLED;
331}
332
333#define XADC_ZYNQ_TCK_RATE_MAX 50000000
334#define XADC_ZYNQ_IGAP_DEFAULT 20
335#define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336
337static int xadc_zynq_setup(struct platform_device *pdev,
338	struct iio_dev *indio_dev, int irq)
339{
340	struct xadc *xadc = iio_priv(indio_dev);
341	unsigned long pcap_rate;
342	unsigned int tck_div;
343	unsigned int div;
344	unsigned int igap;
345	unsigned int tck_rate;
346	int ret;
347
348	/* TODO: Figure out how to make igap and tck_rate configurable */
349	igap = XADC_ZYNQ_IGAP_DEFAULT;
350	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
351
352	xadc->zynq_intmask = ~0;
353
354	pcap_rate = clk_get_rate(xadc->clk);
355	if (!pcap_rate)
356		return -EINVAL;
357
358	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
359		ret = clk_set_rate(xadc->clk,
360				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
361		if (ret)
362			return ret;
363	}
364
365	if (tck_rate > pcap_rate / 2) {
366		div = 2;
367	} else {
368		div = pcap_rate / tck_rate;
369		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
370			div++;
371	}
372
373	if (div <= 3)
374		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
375	else if (div <= 7)
376		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
377	else if (div <= 15)
378		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
379	else
380		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
381
382	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
383	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
384	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
385	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
386	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
387			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
388			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
389
390	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
391		ret = clk_set_rate(xadc->clk, pcap_rate);
392		if (ret)
393			return ret;
394	}
395
396	return 0;
397}
398
399static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
400{
401	unsigned int div;
402	uint32_t val;
403
404	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
405
406	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
407	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
408		div = 4;
409		break;
410	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
411		div = 8;
412		break;
413	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
414		div = 16;
415		break;
416	default:
417		div = 2;
418		break;
419	}
420
421	return clk_get_rate(xadc->clk) / div;
422}
423
424static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
425{
426	unsigned long flags;
427	uint32_t status;
428
429	/* Move OT to bit 7 */
430	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
431
432	spin_lock_irqsave(&xadc->lock, flags);
433
434	/* Clear previous interrupts if any. */
435	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
436	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
437
438	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
439		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
440
441	spin_unlock_irqrestore(&xadc->lock, flags);
442}
443
444static const struct xadc_ops xadc_zynq_ops = {
445	.read = xadc_zynq_read_adc_reg,
446	.write = xadc_zynq_write_adc_reg,
447	.setup = xadc_zynq_setup,
448	.get_dclk_rate = xadc_zynq_get_dclk_rate,
449	.interrupt_handler = xadc_zynq_interrupt_handler,
450	.update_alarm = xadc_zynq_update_alarm,
451};
452
453static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
454	uint16_t *val)
455{
456	uint32_t val32;
457
458	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
459	*val = val32 & 0xffff;
460
461	return 0;
462}
463
464static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
465	uint16_t val)
466{
467	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
468
469	return 0;
470}
471
472static int xadc_axi_setup(struct platform_device *pdev,
473	struct iio_dev *indio_dev, int irq)
474{
475	struct xadc *xadc = iio_priv(indio_dev);
476
477	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
478	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
479
480	return 0;
481}
482
483static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
484{
485	struct iio_dev *indio_dev = devid;
486	struct xadc *xadc = iio_priv(indio_dev);
487	uint32_t status, mask;
488	unsigned int events;
489
490	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
491	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
492	status &= mask;
493
494	if (!status)
495		return IRQ_NONE;
496
497	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
498		iio_trigger_poll(xadc->trigger);
499
500	if (status & XADC_AXI_INT_ALARM_MASK) {
501		/*
502		 * The order of the bits in the AXI-XADC status register does
503		 * not match the order of the bits in the XADC alarm enable
504		 * register. xadc_handle_events() expects the events to be in
505		 * the same order as the XADC alarm enable register.
506		 */
507		events = (status & 0x000e) >> 1;
508		events |= (status & 0x0001) << 3;
509		events |= (status & 0x3c00) >> 6;
510		xadc_handle_events(indio_dev, events);
511	}
512
513	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
514
515	return IRQ_HANDLED;
516}
517
518static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
519{
520	uint32_t val;
521	unsigned long flags;
522
523	/*
524	 * The order of the bits in the AXI-XADC status register does not match
525	 * the order of the bits in the XADC alarm enable register. We get
526	 * passed the alarm mask in the same order as in the XADC alarm enable
527	 * register.
528	 */
529	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
530			((alarm & 0xf0) << 6);
531
532	spin_lock_irqsave(&xadc->lock, flags);
533	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
534	val &= ~XADC_AXI_INT_ALARM_MASK;
535	val |= alarm;
536	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
537	spin_unlock_irqrestore(&xadc->lock, flags);
538}
539
540static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
541{
542	return clk_get_rate(xadc->clk);
543}
544
545static const struct xadc_ops xadc_axi_ops = {
546	.read = xadc_axi_read_adc_reg,
547	.write = xadc_axi_write_adc_reg,
548	.setup = xadc_axi_setup,
549	.get_dclk_rate = xadc_axi_get_dclk,
550	.update_alarm = xadc_axi_update_alarm,
551	.interrupt_handler = xadc_axi_interrupt_handler,
552	.flags = XADC_FLAGS_BUFFERED,
553};
554
555static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
556	uint16_t mask, uint16_t val)
557{
558	uint16_t tmp;
559	int ret;
560
561	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
562	if (ret)
563		return ret;
564
565	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
566}
567
568static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
569	uint16_t mask, uint16_t val)
570{
571	int ret;
572
573	mutex_lock(&xadc->mutex);
574	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
575	mutex_unlock(&xadc->mutex);
576
577	return ret;
578}
579
580static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
581{
582	return xadc->ops->get_dclk_rate(xadc);
583}
584
585static int xadc_update_scan_mode(struct iio_dev *indio_dev,
586	const unsigned long *mask)
587{
588	struct xadc *xadc = iio_priv(indio_dev);
589	size_t new_size, n;
590	void *data;
591
592	n = bitmap_weight(mask, indio_dev->masklength);
593
594	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
595		return -ENOMEM;
596
597	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
598			     new_size, GFP_KERNEL);
599	if (!data)
600		return -ENOMEM;
601
602	memset(data, 0, new_size);
603	xadc->data = data;
604
605	return 0;
606}
607
608static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
609{
610	switch (scan_index) {
611	case 5:
612		return XADC_REG_VCCPINT;
613	case 6:
614		return XADC_REG_VCCPAUX;
615	case 7:
616		return XADC_REG_VCCO_DDR;
617	case 8:
618		return XADC_REG_TEMP;
619	case 9:
620		return XADC_REG_VCCINT;
621	case 10:
622		return XADC_REG_VCCAUX;
623	case 11:
624		return XADC_REG_VPVN;
625	case 12:
626		return XADC_REG_VREFP;
627	case 13:
628		return XADC_REG_VREFN;
629	case 14:
630		return XADC_REG_VCCBRAM;
631	default:
632		return XADC_REG_VAUX(scan_index - 16);
633	}
634}
635
636static irqreturn_t xadc_trigger_handler(int irq, void *p)
637{
638	struct iio_poll_func *pf = p;
639	struct iio_dev *indio_dev = pf->indio_dev;
640	struct xadc *xadc = iio_priv(indio_dev);
641	unsigned int chan;
642	int i, j;
643
644	if (!xadc->data)
645		goto out;
646
647	j = 0;
648	for_each_set_bit(i, indio_dev->active_scan_mask,
649		indio_dev->masklength) {
650		chan = xadc_scan_index_to_channel(i);
651		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
652		j++;
653	}
654
655	iio_push_to_buffers(indio_dev, xadc->data);
656
657out:
658	iio_trigger_notify_done(indio_dev->trig);
659
660	return IRQ_HANDLED;
661}
662
663static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
664{
665	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
666	unsigned long flags;
667	unsigned int convst;
668	unsigned int val;
669	int ret = 0;
670
671	mutex_lock(&xadc->mutex);
672
673	if (state) {
674		/* Only one of the two triggers can be active at a time. */
675		if (xadc->trigger != NULL) {
676			ret = -EBUSY;
677			goto err_out;
678		} else {
679			xadc->trigger = trigger;
680			if (trigger == xadc->convst_trigger)
681				convst = XADC_CONF0_EC;
682			else
683				convst = 0;
684		}
685		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
686					convst);
687		if (ret)
688			goto err_out;
689	} else {
690		xadc->trigger = NULL;
691	}
692
693	spin_lock_irqsave(&xadc->lock, flags);
694	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
695	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
696	if (state)
697		val |= XADC_AXI_INT_EOS;
698	else
699		val &= ~XADC_AXI_INT_EOS;
700	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
701	spin_unlock_irqrestore(&xadc->lock, flags);
702
703err_out:
704	mutex_unlock(&xadc->mutex);
705
706	return ret;
707}
708
709static const struct iio_trigger_ops xadc_trigger_ops = {
710	.set_trigger_state = &xadc_trigger_set_state,
711};
712
713static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
714	const char *name)
715{
716	struct device *dev = indio_dev->dev.parent;
717	struct iio_trigger *trig;
718	int ret;
719
720	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
721				      indio_dev->id, name);
722	if (trig == NULL)
723		return ERR_PTR(-ENOMEM);
724
725	trig->dev.parent = indio_dev->dev.parent;
726	trig->ops = &xadc_trigger_ops;
727	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
728
729	ret = devm_iio_trigger_register(dev, trig);
730	if (ret)
731		return ERR_PTR(ret);
732
733	return trig;
734}
735
736static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
737{
738	uint16_t val;
739
740	/* Powerdown the ADC-B when it is not needed. */
741	switch (seq_mode) {
742	case XADC_CONF1_SEQ_SIMULTANEOUS:
743	case XADC_CONF1_SEQ_INDEPENDENT:
744		val = 0;
745		break;
746	default:
747		val = XADC_CONF2_PD_ADC_B;
748		break;
749	}
750
751	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
752		val);
753}
754
755static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
756{
757	unsigned int aux_scan_mode = scan_mode >> 16;
758
759	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
760		return XADC_CONF1_SEQ_SIMULTANEOUS;
761
762	if ((aux_scan_mode & 0xff00) == 0 ||
763		(aux_scan_mode & 0x00ff) == 0)
764		return XADC_CONF1_SEQ_CONTINUOUS;
765
766	return XADC_CONF1_SEQ_SIMULTANEOUS;
767}
768
769static int xadc_postdisable(struct iio_dev *indio_dev)
770{
771	struct xadc *xadc = iio_priv(indio_dev);
772	unsigned long scan_mask;
773	int ret;
774	int i;
775
776	scan_mask = 1; /* Run calibration as part of the sequence */
777	for (i = 0; i < indio_dev->num_channels; i++)
778		scan_mask |= BIT(indio_dev->channels[i].scan_index);
779
780	/* Enable all channels and calibration */
781	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
782	if (ret)
783		return ret;
784
785	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
786	if (ret)
787		return ret;
788
789	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
790		XADC_CONF1_SEQ_CONTINUOUS);
791	if (ret)
792		return ret;
793
794	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
795}
796
797static int xadc_preenable(struct iio_dev *indio_dev)
798{
799	struct xadc *xadc = iio_priv(indio_dev);
800	unsigned long scan_mask;
801	int seq_mode;
802	int ret;
803
804	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
805		XADC_CONF1_SEQ_DEFAULT);
806	if (ret)
807		goto err;
808
809	scan_mask = *indio_dev->active_scan_mask;
810	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
811
812	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
813	if (ret)
814		goto err;
815
816	/*
817	 * In simultaneous mode the upper and lower aux channels are samples at
818	 * the same time. In this mode the upper 8 bits in the sequencer
819	 * register are don't care and the lower 8 bits control two channels
820	 * each. As such we must set the bit if either the channel in the lower
821	 * group or the upper group is enabled.
822	 */
823	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
824		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
825
826	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
827	if (ret)
828		goto err;
829
830	ret = xadc_power_adc_b(xadc, seq_mode);
831	if (ret)
832		goto err;
833
834	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
835		seq_mode);
836	if (ret)
837		goto err;
838
839	return 0;
840err:
841	xadc_postdisable(indio_dev);
842	return ret;
843}
844
845static const struct iio_buffer_setup_ops xadc_buffer_ops = {
846	.preenable = &xadc_preenable,
847	.postdisable = &xadc_postdisable,
848};
849
850static int xadc_read_samplerate(struct xadc *xadc)
851{
852	unsigned int div;
853	uint16_t val16;
854	int ret;
855
856	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
857	if (ret)
858		return ret;
859
860	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
861	if (div < 2)
862		div = 2;
863
864	return xadc_get_dclk_rate(xadc) / div / 26;
865}
866
867static int xadc_read_raw(struct iio_dev *indio_dev,
868	struct iio_chan_spec const *chan, int *val, int *val2, long info)
869{
870	struct xadc *xadc = iio_priv(indio_dev);
871	uint16_t val16;
872	int ret;
873
874	switch (info) {
875	case IIO_CHAN_INFO_RAW:
876		if (iio_buffer_enabled(indio_dev))
877			return -EBUSY;
878		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
879		if (ret < 0)
880			return ret;
881
882		val16 >>= 4;
883		if (chan->scan_type.sign == 'u')
884			*val = val16;
885		else
886			*val = sign_extend32(val16, 11);
887
888		return IIO_VAL_INT;
889	case IIO_CHAN_INFO_SCALE:
890		switch (chan->type) {
891		case IIO_VOLTAGE:
892			/* V = (val * 3.0) / 4096 */
893			switch (chan->address) {
894			case XADC_REG_VCCINT:
895			case XADC_REG_VCCAUX:
896			case XADC_REG_VREFP:
897			case XADC_REG_VREFN:
898			case XADC_REG_VCCBRAM:
899			case XADC_REG_VCCPINT:
900			case XADC_REG_VCCPAUX:
901			case XADC_REG_VCCO_DDR:
902				*val = 3000;
903				break;
904			default:
905				*val = 1000;
906				break;
907			}
908			*val2 = 12;
909			return IIO_VAL_FRACTIONAL_LOG2;
910		case IIO_TEMP:
911			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
912			*val = 503975;
913			*val2 = 12;
914			return IIO_VAL_FRACTIONAL_LOG2;
915		default:
916			return -EINVAL;
917		}
918	case IIO_CHAN_INFO_OFFSET:
919		/* Only the temperature channel has an offset */
920		*val = -((273150 << 12) / 503975);
921		return IIO_VAL_INT;
922	case IIO_CHAN_INFO_SAMP_FREQ:
923		ret = xadc_read_samplerate(xadc);
924		if (ret < 0)
925			return ret;
926
927		*val = ret;
928		return IIO_VAL_INT;
929	default:
930		return -EINVAL;
931	}
932}
933
934static int xadc_write_samplerate(struct xadc *xadc, int val)
935{
936	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
937	unsigned int div;
938
939	if (!clk_rate)
940		return -EINVAL;
941
942	if (val <= 0)
943		return -EINVAL;
944
945	/* Max. 150 kSPS */
946	if (val > XADC_MAX_SAMPLERATE)
947		val = XADC_MAX_SAMPLERATE;
948
949	val *= 26;
950
951	/* Min 1MHz */
952	if (val < 1000000)
953		val = 1000000;
954
955	/*
956	 * We want to round down, but only if we do not exceed the 150 kSPS
957	 * limit.
958	 */
959	div = clk_rate / val;
960	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
961		div++;
962	if (div < 2)
963		div = 2;
964	else if (div > 0xff)
965		div = 0xff;
966
967	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
968		div << XADC_CONF2_DIV_OFFSET);
969}
970
971static int xadc_write_raw(struct iio_dev *indio_dev,
972	struct iio_chan_spec const *chan, int val, int val2, long info)
973{
974	struct xadc *xadc = iio_priv(indio_dev);
975
976	if (info != IIO_CHAN_INFO_SAMP_FREQ)
977		return -EINVAL;
978
979	return xadc_write_samplerate(xadc, val);
980}
981
982static const struct iio_event_spec xadc_temp_events[] = {
983	{
984		.type = IIO_EV_TYPE_THRESH,
985		.dir = IIO_EV_DIR_RISING,
986		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
987				BIT(IIO_EV_INFO_VALUE) |
988				BIT(IIO_EV_INFO_HYSTERESIS),
989	},
990};
991
992/* Separate values for upper and lower thresholds, but only a shared enabled */
993static const struct iio_event_spec xadc_voltage_events[] = {
994	{
995		.type = IIO_EV_TYPE_THRESH,
996		.dir = IIO_EV_DIR_RISING,
997		.mask_separate = BIT(IIO_EV_INFO_VALUE),
998	}, {
999		.type = IIO_EV_TYPE_THRESH,
1000		.dir = IIO_EV_DIR_FALLING,
1001		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1002	}, {
1003		.type = IIO_EV_TYPE_THRESH,
1004		.dir = IIO_EV_DIR_EITHER,
1005		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1006	},
1007};
1008
1009#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1010	.type = IIO_TEMP, \
1011	.indexed = 1, \
1012	.channel = (_chan), \
1013	.address = (_addr), \
1014	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1015		BIT(IIO_CHAN_INFO_SCALE) | \
1016		BIT(IIO_CHAN_INFO_OFFSET), \
1017	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1018	.event_spec = xadc_temp_events, \
1019	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1020	.scan_index = (_scan_index), \
1021	.scan_type = { \
1022		.sign = 'u', \
1023		.realbits = 12, \
1024		.storagebits = 16, \
1025		.shift = 4, \
1026		.endianness = IIO_CPU, \
1027	}, \
1028}
1029
1030#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1031	.type = IIO_VOLTAGE, \
1032	.indexed = 1, \
1033	.channel = (_chan), \
1034	.address = (_addr), \
1035	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1036		BIT(IIO_CHAN_INFO_SCALE), \
1037	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1038	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1039	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1040	.scan_index = (_scan_index), \
1041	.scan_type = { \
1042		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1043		.realbits = 12, \
1044		.storagebits = 16, \
1045		.shift = 4, \
1046		.endianness = IIO_CPU, \
1047	}, \
1048	.extend_name = _ext, \
1049}
1050
1051static const struct iio_chan_spec xadc_channels[] = {
1052	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1053	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1054	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1055	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1056	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1057	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1058	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1059	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1060	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1061	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1062	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1063	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1064	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1065	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1066	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1067	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1068	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1069	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1070	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1071	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1072	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1073	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1074	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1075	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1076	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1077	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1078};
1079
1080static const struct iio_info xadc_info = {
1081	.read_raw = &xadc_read_raw,
1082	.write_raw = &xadc_write_raw,
1083	.read_event_config = &xadc_read_event_config,
1084	.write_event_config = &xadc_write_event_config,
1085	.read_event_value = &xadc_read_event_value,
1086	.write_event_value = &xadc_write_event_value,
1087	.update_scan_mode = &xadc_update_scan_mode,
1088};
1089
1090static const struct of_device_id xadc_of_match_table[] = {
1091	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1092	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1093	{ },
1094};
1095MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1096
1097static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1098	unsigned int *conf)
1099{
1100	struct device *dev = indio_dev->dev.parent;
1101	struct xadc *xadc = iio_priv(indio_dev);
1102	struct iio_chan_spec *channels, *chan;
1103	struct device_node *chan_node, *child;
1104	unsigned int num_channels;
1105	const char *external_mux;
1106	u32 ext_mux_chan;
1107	u32 reg;
1108	int ret;
1109
1110	*conf = 0;
1111
1112	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1113	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1114		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1115	else if (strcasecmp(external_mux, "single") == 0)
1116		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1117	else if (strcasecmp(external_mux, "dual") == 0)
1118		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1119	else
1120		return -EINVAL;
1121
1122	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1123		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1124					&ext_mux_chan);
1125		if (ret < 0)
1126			return ret;
1127
1128		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1129			if (ext_mux_chan == 0)
1130				ext_mux_chan = XADC_REG_VPVN;
1131			else if (ext_mux_chan <= 16)
1132				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1133			else
1134				return -EINVAL;
1135		} else {
1136			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1137				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1138			else
1139				return -EINVAL;
1140		}
1141
1142		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1143	}
1144
1145	channels = devm_kmemdup(dev, xadc_channels,
1146				sizeof(xadc_channels), GFP_KERNEL);
1147	if (!channels)
1148		return -ENOMEM;
1149
1150	num_channels = 9;
1151	chan = &channels[9];
1152
1153	chan_node = of_get_child_by_name(np, "xlnx,channels");
1154	if (chan_node) {
1155		for_each_child_of_node(chan_node, child) {
1156			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1157				of_node_put(child);
1158				break;
1159			}
1160
1161			ret = of_property_read_u32(child, "reg", &reg);
1162			if (ret || reg > 16)
1163				continue;
1164
1165			if (of_property_read_bool(child, "xlnx,bipolar"))
1166				chan->scan_type.sign = 's';
1167
1168			if (reg == 0) {
1169				chan->scan_index = 11;
1170				chan->address = XADC_REG_VPVN;
1171			} else {
1172				chan->scan_index = 15 + reg;
1173				chan->address = XADC_REG_VAUX(reg - 1);
1174			}
1175			num_channels++;
1176			chan++;
1177		}
1178	}
1179	of_node_put(chan_node);
1180
1181	indio_dev->num_channels = num_channels;
1182	indio_dev->channels = devm_krealloc(dev, channels,
1183					    sizeof(*channels) * num_channels,
1184					    GFP_KERNEL);
1185	/* If we can't resize the channels array, just use the original */
1186	if (!indio_dev->channels)
1187		indio_dev->channels = channels;
1188
1189	return 0;
1190}
1191
1192static void xadc_clk_disable_unprepare(void *data)
1193{
1194	struct clk *clk = data;
1195
1196	clk_disable_unprepare(clk);
1197}
1198
1199static void xadc_cancel_delayed_work(void *data)
1200{
1201	struct delayed_work *work = data;
1202
1203	cancel_delayed_work_sync(work);
1204}
1205
1206static int xadc_probe(struct platform_device *pdev)
1207{
1208	struct device *dev = &pdev->dev;
1209	const struct of_device_id *id;
1210	struct iio_dev *indio_dev;
1211	unsigned int bipolar_mask;
1212	unsigned int conf0;
1213	struct xadc *xadc;
1214	int ret;
1215	int irq;
1216	int i;
1217
1218	if (!dev->of_node)
1219		return -ENODEV;
1220
1221	id = of_match_node(xadc_of_match_table, dev->of_node);
1222	if (!id)
1223		return -EINVAL;
1224
1225	irq = platform_get_irq(pdev, 0);
1226	if (irq <= 0)
1227		return -ENXIO;
1228
1229	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1230	if (!indio_dev)
1231		return -ENOMEM;
1232
1233	xadc = iio_priv(indio_dev);
1234	xadc->ops = id->data;
1235	xadc->irq = irq;
1236	init_completion(&xadc->completion);
1237	mutex_init(&xadc->mutex);
1238	spin_lock_init(&xadc->lock);
1239	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1240
1241	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1242	if (IS_ERR(xadc->base))
1243		return PTR_ERR(xadc->base);
1244
1245	indio_dev->name = "xadc";
1246	indio_dev->modes = INDIO_DIRECT_MODE;
1247	indio_dev->info = &xadc_info;
1248
1249	ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0);
1250	if (ret)
1251		return ret;
1252
1253	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1254		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1255						      &iio_pollfunc_store_time,
1256						      &xadc_trigger_handler,
1257						      &xadc_buffer_ops);
1258		if (ret)
1259			return ret;
1260
1261		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1262		if (IS_ERR(xadc->convst_trigger))
1263			return PTR_ERR(xadc->convst_trigger);
1264
1265		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1266			"samplerate");
1267		if (IS_ERR(xadc->samplerate_trigger))
1268			return PTR_ERR(xadc->samplerate_trigger);
1269	}
1270
1271	xadc->clk = devm_clk_get(dev, NULL);
1272	if (IS_ERR(xadc->clk))
1273		return PTR_ERR(xadc->clk);
1274
1275	ret = clk_prepare_enable(xadc->clk);
1276	if (ret)
1277		return ret;
1278
1279	ret = devm_add_action_or_reset(dev,
1280				       xadc_clk_disable_unprepare, xadc->clk);
1281	if (ret)
1282		return ret;
1283
1284	/*
1285	 * Make sure not to exceed the maximum samplerate since otherwise the
1286	 * resulting interrupt storm will soft-lock the system.
1287	 */
1288	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1289		ret = xadc_read_samplerate(xadc);
1290		if (ret < 0)
1291			return ret;
1292
1293		if (ret > XADC_MAX_SAMPLERATE) {
1294			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1295			if (ret < 0)
1296				return ret;
1297		}
1298	}
1299
1300	ret = devm_request_irq(dev, xadc->irq, xadc->ops->interrupt_handler, 0,
1301			       dev_name(dev), indio_dev);
1302	if (ret)
1303		return ret;
1304
1305	ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1306				       &xadc->zynq_unmask_work);
1307	if (ret)
1308		return ret;
1309
1310	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1311	if (ret)
1312		return ret;
1313
1314	for (i = 0; i < 16; i++)
1315		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1316			&xadc->threshold[i]);
1317
1318	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1319	if (ret)
1320		return ret;
1321
1322	bipolar_mask = 0;
1323	for (i = 0; i < indio_dev->num_channels; i++) {
1324		if (indio_dev->channels[i].scan_type.sign == 's')
1325			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1326	}
1327
1328	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1329	if (ret)
1330		return ret;
1331
1332	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1333		bipolar_mask >> 16);
1334	if (ret)
1335		return ret;
1336
1337	/* Go to non-buffered mode */
1338	xadc_postdisable(indio_dev);
1339
1340	return devm_iio_device_register(dev, indio_dev);
1341}
1342
1343static struct platform_driver xadc_driver = {
1344	.probe = xadc_probe,
1345	.driver = {
1346		.name = "xadc",
1347		.of_match_table = xadc_of_match_table,
1348	},
1349};
1350module_platform_driver(xadc_driver);
1351
1352MODULE_LICENSE("GPL v2");
1353MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1354MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1355