1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM		6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE		20000000UL
36
37#define STM32_ADC_CH_MAX		20	/* max number of channels */
38#define STM32_ADC_CH_SZ			10	/* max channel name size */
39#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US		100000
42#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43#define STM32_ADC_HW_STOP_DELAY_MS	100
44
45#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49	STM32_EXTEN_SWTRIG,
50	STM32_EXTEN_HWTRIG_RISING_EDGE,
51	STM32_EXTEN_HWTRIG_FALLING_EDGE,
52	STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57	STM32_EXT0,
58	STM32_EXT1,
59	STM32_EXT2,
60	STM32_EXT3,
61	STM32_EXT4,
62	STM32_EXT5,
63	STM32_EXT6,
64	STM32_EXT7,
65	STM32_EXT8,
66	STM32_EXT9,
67	STM32_EXT10,
68	STM32_EXT11,
69	STM32_EXT12,
70	STM32_EXT13,
71	STM32_EXT14,
72	STM32_EXT15,
73	STM32_EXT16,
74	STM32_EXT17,
75	STM32_EXT18,
76	STM32_EXT19,
77	STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name:		name of the trigger, corresponding to its source
83 * @extsel:		trigger selection
84 */
85struct stm32_adc_trig_info {
86	const char *name;
87	enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
96 */
97struct stm32_adc_calib {
98	u32			calfact_s;
99	u32			calfact_d;
100	u32			lincalfact[STM32H7_LINCALFACT_NUM];
101	bool			calibrated;
102};
103
104/**
105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg:		register offset
107 * @mask:		bitfield mask
108 * @shift:		left shift
109 */
110struct stm32_adc_regs {
111	int reg;
112	int mask;
113	int shift;
114};
115
116/**
117 * struct stm32_adc_regspec - stm32 registers definition
118 * @dr:			data register offset
119 * @ier_eoc:		interrupt enable register & eocie bitfield
120 * @ier_ovr:		interrupt enable register & overrun bitfield
121 * @isr_eoc:		interrupt status register & eoc bitfield
122 * @isr_ovr:		interrupt status register & overrun bitfield
123 * @sqr:		reference to sequence registers array
124 * @exten:		trigger control register & bitfield
125 * @extsel:		trigger selection register & bitfield
126 * @res:		resolution selection register & bitfield
127 * @smpr:		smpr1 & smpr2 registers offset array
128 * @smp_bits:		smpr1 & smpr2 index and bitfields
129 */
130struct stm32_adc_regspec {
131	const u32 dr;
132	const struct stm32_adc_regs ier_eoc;
133	const struct stm32_adc_regs ier_ovr;
134	const struct stm32_adc_regs isr_eoc;
135	const struct stm32_adc_regs isr_ovr;
136	const struct stm32_adc_regs *sqr;
137	const struct stm32_adc_regs exten;
138	const struct stm32_adc_regs extsel;
139	const struct stm32_adc_regs res;
140	const u32 smpr[2];
141	const struct stm32_adc_regs *smp_bits;
142};
143
144struct stm32_adc;
145
146/**
147 * struct stm32_adc_cfg - stm32 compatible configuration data
148 * @regs:		registers descriptions
149 * @adc_info:		per instance input channels definitions
150 * @trigs:		external trigger sources
151 * @clk_required:	clock is required
152 * @has_vregready:	vregready status flag presence
153 * @prepare:		optional prepare routine (power-up, enable)
154 * @start_conv:		routine to start conversions
155 * @stop_conv:		routine to stop conversions
156 * @unprepare:		optional unprepare routine (disable, power-down)
157 * @irq_clear:		routine to clear irqs
158 * @smp_cycles:		programmable sampling time (ADC clock cycles)
159 */
160struct stm32_adc_cfg {
161	const struct stm32_adc_regspec	*regs;
162	const struct stm32_adc_info	*adc_info;
163	struct stm32_adc_trig_info	*trigs;
164	bool clk_required;
165	bool has_vregready;
166	int (*prepare)(struct iio_dev *);
167	void (*start_conv)(struct iio_dev *, bool dma);
168	void (*stop_conv)(struct iio_dev *);
169	void (*unprepare)(struct iio_dev *);
170	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
171	const unsigned int *smp_cycles;
172};
173
174/**
175 * struct stm32_adc - private data of each ADC IIO instance
176 * @common:		reference to ADC block common data
177 * @offset:		ADC instance register offset in ADC block
178 * @cfg:		compatible configuration data
179 * @completion:		end of single conversion completion
180 * @buffer:		data buffer
181 * @clk:		clock for this adc instance
182 * @irq:		interrupt for this adc instance
183 * @lock:		spinlock
184 * @bufi:		data buffer index
185 * @num_conv:		expected number of scan conversions
186 * @res:		data resolution (e.g. RES bitfield value)
187 * @trigger_polarity:	external trigger polarity (e.g. exten)
188 * @dma_chan:		dma channel
189 * @rx_buf:		dma rx buffer cpu address
190 * @rx_dma_buf:		dma rx buffer bus address
191 * @rx_buf_sz:		dma rx buffer size
192 * @difsel:		bitmask to set single-ended/differential channel
193 * @pcsel:		bitmask to preselect channels on some devices
194 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
195 * @cal:		optional calibration data on some devices
196 * @chan_name:		channel name array
197 */
198struct stm32_adc {
199	struct stm32_adc_common	*common;
200	u32			offset;
201	const struct stm32_adc_cfg	*cfg;
202	struct completion	completion;
203	u16			buffer[STM32_ADC_MAX_SQ];
204	struct clk		*clk;
205	int			irq;
206	spinlock_t		lock;		/* interrupt lock */
207	unsigned int		bufi;
208	unsigned int		num_conv;
209	u32			res;
210	u32			trigger_polarity;
211	struct dma_chan		*dma_chan;
212	u8			*rx_buf;
213	dma_addr_t		rx_dma_buf;
214	unsigned int		rx_buf_sz;
215	u32			difsel;
216	u32			pcsel;
217	u32			smpr_val[2];
218	struct stm32_adc_calib	cal;
219	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
220};
221
222struct stm32_adc_diff_channel {
223	u32 vinp;
224	u32 vinn;
225};
226
227/**
228 * struct stm32_adc_info - stm32 ADC, per instance config data
229 * @max_channels:	Number of channels
230 * @resolutions:	available resolutions
231 * @num_res:		number of available resolutions
232 */
233struct stm32_adc_info {
234	int max_channels;
235	const unsigned int *resolutions;
236	const unsigned int num_res;
237};
238
239static const unsigned int stm32f4_adc_resolutions[] = {
240	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
241	12, 10, 8, 6,
242};
243
244/* stm32f4 can have up to 16 channels */
245static const struct stm32_adc_info stm32f4_adc_info = {
246	.max_channels = 16,
247	.resolutions = stm32f4_adc_resolutions,
248	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
249};
250
251static const unsigned int stm32h7_adc_resolutions[] = {
252	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
253	16, 14, 12, 10, 8,
254};
255
256/* stm32h7 can have up to 20 channels */
257static const struct stm32_adc_info stm32h7_adc_info = {
258	.max_channels = STM32_ADC_CH_MAX,
259	.resolutions = stm32h7_adc_resolutions,
260	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
261};
262
263/*
264 * stm32f4_sq - describe regular sequence registers
265 * - L: sequence len (register & bit field)
266 * - SQ1..SQ16: sequence entries (register & bit field)
267 */
268static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
269	/* L: len bit field description to be kept as first element */
270	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
271	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
272	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
273	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
274	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
275	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
276	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
277	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
278	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
279	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
280	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
281	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
282	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
283	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
284	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
285	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
286	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
287	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
288};
289
290/* STM32F4 external trigger sources for all instances */
291static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
292	{ TIM1_CH1, STM32_EXT0 },
293	{ TIM1_CH2, STM32_EXT1 },
294	{ TIM1_CH3, STM32_EXT2 },
295	{ TIM2_CH2, STM32_EXT3 },
296	{ TIM2_CH3, STM32_EXT4 },
297	{ TIM2_CH4, STM32_EXT5 },
298	{ TIM2_TRGO, STM32_EXT6 },
299	{ TIM3_CH1, STM32_EXT7 },
300	{ TIM3_TRGO, STM32_EXT8 },
301	{ TIM4_CH4, STM32_EXT9 },
302	{ TIM5_CH1, STM32_EXT10 },
303	{ TIM5_CH2, STM32_EXT11 },
304	{ TIM5_CH3, STM32_EXT12 },
305	{ TIM8_CH1, STM32_EXT13 },
306	{ TIM8_TRGO, STM32_EXT14 },
307	{}, /* sentinel */
308};
309
310/*
311 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
312 * Sorted so it can be indexed by channel number.
313 */
314static const struct stm32_adc_regs stm32f4_smp_bits[] = {
315	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
316	{ 1, GENMASK(2, 0), 0 },
317	{ 1, GENMASK(5, 3), 3 },
318	{ 1, GENMASK(8, 6), 6 },
319	{ 1, GENMASK(11, 9), 9 },
320	{ 1, GENMASK(14, 12), 12 },
321	{ 1, GENMASK(17, 15), 15 },
322	{ 1, GENMASK(20, 18), 18 },
323	{ 1, GENMASK(23, 21), 21 },
324	{ 1, GENMASK(26, 24), 24 },
325	{ 1, GENMASK(29, 27), 27 },
326	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
327	{ 0, GENMASK(2, 0), 0 },
328	{ 0, GENMASK(5, 3), 3 },
329	{ 0, GENMASK(8, 6), 6 },
330	{ 0, GENMASK(11, 9), 9 },
331	{ 0, GENMASK(14, 12), 12 },
332	{ 0, GENMASK(17, 15), 15 },
333	{ 0, GENMASK(20, 18), 18 },
334	{ 0, GENMASK(23, 21), 21 },
335	{ 0, GENMASK(26, 24), 24 },
336};
337
338/* STM32F4 programmable sampling time (ADC clock cycles) */
339static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
340	3, 15, 28, 56, 84, 112, 144, 480,
341};
342
343static const struct stm32_adc_regspec stm32f4_adc_regspec = {
344	.dr = STM32F4_ADC_DR,
345	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
346	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
347	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
348	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
349	.sqr = stm32f4_sq,
350	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
351	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
352		    STM32F4_EXTSEL_SHIFT },
353	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
354	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
355	.smp_bits = stm32f4_smp_bits,
356};
357
358static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
359	/* L: len bit field description to be kept as first element */
360	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
361	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
362	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
363	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
364	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
365	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
366	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
367	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
368	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
369	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
370	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
371	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
372	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
373	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
374	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
375	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
376	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
377	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
378};
379
380/* STM32H7 external trigger sources for all instances */
381static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
382	{ TIM1_CH1, STM32_EXT0 },
383	{ TIM1_CH2, STM32_EXT1 },
384	{ TIM1_CH3, STM32_EXT2 },
385	{ TIM2_CH2, STM32_EXT3 },
386	{ TIM3_TRGO, STM32_EXT4 },
387	{ TIM4_CH4, STM32_EXT5 },
388	{ TIM8_TRGO, STM32_EXT7 },
389	{ TIM8_TRGO2, STM32_EXT8 },
390	{ TIM1_TRGO, STM32_EXT9 },
391	{ TIM1_TRGO2, STM32_EXT10 },
392	{ TIM2_TRGO, STM32_EXT11 },
393	{ TIM4_TRGO, STM32_EXT12 },
394	{ TIM6_TRGO, STM32_EXT13 },
395	{ TIM15_TRGO, STM32_EXT14 },
396	{ TIM3_CH4, STM32_EXT15 },
397	{ LPTIM1_OUT, STM32_EXT18 },
398	{ LPTIM2_OUT, STM32_EXT19 },
399	{ LPTIM3_OUT, STM32_EXT20 },
400	{},
401};
402
403/*
404 * stm32h7_smp_bits - describe sampling time register index & bit fields
405 * Sorted so it can be indexed by channel number.
406 */
407static const struct stm32_adc_regs stm32h7_smp_bits[] = {
408	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
409	{ 0, GENMASK(2, 0), 0 },
410	{ 0, GENMASK(5, 3), 3 },
411	{ 0, GENMASK(8, 6), 6 },
412	{ 0, GENMASK(11, 9), 9 },
413	{ 0, GENMASK(14, 12), 12 },
414	{ 0, GENMASK(17, 15), 15 },
415	{ 0, GENMASK(20, 18), 18 },
416	{ 0, GENMASK(23, 21), 21 },
417	{ 0, GENMASK(26, 24), 24 },
418	{ 0, GENMASK(29, 27), 27 },
419	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
420	{ 1, GENMASK(2, 0), 0 },
421	{ 1, GENMASK(5, 3), 3 },
422	{ 1, GENMASK(8, 6), 6 },
423	{ 1, GENMASK(11, 9), 9 },
424	{ 1, GENMASK(14, 12), 12 },
425	{ 1, GENMASK(17, 15), 15 },
426	{ 1, GENMASK(20, 18), 18 },
427	{ 1, GENMASK(23, 21), 21 },
428	{ 1, GENMASK(26, 24), 24 },
429	{ 1, GENMASK(29, 27), 27 },
430};
431
432/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
433static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
434	1, 2, 8, 16, 32, 64, 387, 810,
435};
436
437static const struct stm32_adc_regspec stm32h7_adc_regspec = {
438	.dr = STM32H7_ADC_DR,
439	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
440	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
441	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
442	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
443	.sqr = stm32h7_sq,
444	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
445	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
446		    STM32H7_EXTSEL_SHIFT },
447	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
448	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
449	.smp_bits = stm32h7_smp_bits,
450};
451
452/**
453 * STM32 ADC registers access routines
454 * @adc: stm32 adc instance
455 * @reg: reg offset in adc instance
456 *
457 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
458 * for adc1, adc2 and adc3.
459 */
460static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
461{
462	return readl_relaxed(adc->common->base + adc->offset + reg);
463}
464
465#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
466
467#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
468	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
469			   cond, sleep_us, timeout_us)
470
471static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
472{
473	return readw_relaxed(adc->common->base + adc->offset + reg);
474}
475
476static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
477{
478	writel_relaxed(val, adc->common->base + adc->offset + reg);
479}
480
481static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
482{
483	unsigned long flags;
484
485	spin_lock_irqsave(&adc->lock, flags);
486	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
487	spin_unlock_irqrestore(&adc->lock, flags);
488}
489
490static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
491{
492	unsigned long flags;
493
494	spin_lock_irqsave(&adc->lock, flags);
495	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
496	spin_unlock_irqrestore(&adc->lock, flags);
497}
498
499/**
500 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
501 * @adc: stm32 adc instance
502 */
503static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
504{
505	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
506			   adc->cfg->regs->ier_eoc.mask);
507};
508
509/**
510 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
511 * @adc: stm32 adc instance
512 */
513static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
514{
515	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
516			   adc->cfg->regs->ier_eoc.mask);
517}
518
519static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
520{
521	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
522			   adc->cfg->regs->ier_ovr.mask);
523}
524
525static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
526{
527	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
528			   adc->cfg->regs->ier_ovr.mask);
529}
530
531static void stm32_adc_set_res(struct stm32_adc *adc)
532{
533	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
534	u32 val;
535
536	val = stm32_adc_readl(adc, res->reg);
537	val = (val & ~res->mask) | (adc->res << res->shift);
538	stm32_adc_writel(adc, res->reg, val);
539}
540
541static int stm32_adc_hw_stop(struct device *dev)
542{
543	struct iio_dev *indio_dev = dev_get_drvdata(dev);
544	struct stm32_adc *adc = iio_priv(indio_dev);
545
546	if (adc->cfg->unprepare)
547		adc->cfg->unprepare(indio_dev);
548
549	if (adc->clk)
550		clk_disable_unprepare(adc->clk);
551
552	return 0;
553}
554
555static int stm32_adc_hw_start(struct device *dev)
556{
557	struct iio_dev *indio_dev = dev_get_drvdata(dev);
558	struct stm32_adc *adc = iio_priv(indio_dev);
559	int ret;
560
561	if (adc->clk) {
562		ret = clk_prepare_enable(adc->clk);
563		if (ret)
564			return ret;
565	}
566
567	stm32_adc_set_res(adc);
568
569	if (adc->cfg->prepare) {
570		ret = adc->cfg->prepare(indio_dev);
571		if (ret)
572			goto err_clk_dis;
573	}
574
575	return 0;
576
577err_clk_dis:
578	if (adc->clk)
579		clk_disable_unprepare(adc->clk);
580
581	return ret;
582}
583
584/**
585 * stm32f4_adc_start_conv() - Start conversions for regular channels.
586 * @indio_dev: IIO device instance
587 * @dma: use dma to transfer conversion result
588 *
589 * Start conversions for regular channels.
590 * Also take care of normal or DMA mode. Circular DMA may be used for regular
591 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
592 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
593 */
594static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
595{
596	struct stm32_adc *adc = iio_priv(indio_dev);
597
598	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
599
600	if (dma)
601		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
602				   STM32F4_DMA | STM32F4_DDS);
603
604	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
605
606	/* Wait for Power-up time (tSTAB from datasheet) */
607	usleep_range(2, 3);
608
609	/* Software start ? (e.g. trigger detection disabled ?) */
610	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
611		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
612}
613
614static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
615{
616	struct stm32_adc *adc = iio_priv(indio_dev);
617
618	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
619	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
620
621	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
622	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
623			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
624}
625
626static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
627{
628	struct stm32_adc *adc = iio_priv(indio_dev);
629
630	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
631}
632
633static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
634{
635	struct stm32_adc *adc = iio_priv(indio_dev);
636	enum stm32h7_adc_dmngt dmngt;
637	unsigned long flags;
638	u32 val;
639
640	if (dma)
641		dmngt = STM32H7_DMNGT_DMA_CIRC;
642	else
643		dmngt = STM32H7_DMNGT_DR_ONLY;
644
645	spin_lock_irqsave(&adc->lock, flags);
646	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
647	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
648	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
649	spin_unlock_irqrestore(&adc->lock, flags);
650
651	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
652}
653
654static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
655{
656	struct stm32_adc *adc = iio_priv(indio_dev);
657	int ret;
658	u32 val;
659
660	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
661
662	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
663					   !(val & (STM32H7_ADSTART)),
664					   100, STM32_ADC_TIMEOUT_US);
665	if (ret)
666		dev_warn(&indio_dev->dev, "stop failed\n");
667
668	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
669}
670
671static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
672{
673	struct stm32_adc *adc = iio_priv(indio_dev);
674	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
675	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
676}
677
678static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
679{
680	struct stm32_adc *adc = iio_priv(indio_dev);
681	int ret;
682	u32 val;
683
684	/* Exit deep power down, then enable ADC voltage regulator */
685	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
686	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
687
688	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
689		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
690
691	/* Wait for startup time */
692	if (!adc->cfg->has_vregready) {
693		usleep_range(10, 20);
694		return 0;
695	}
696
697	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
698					   val & STM32MP1_VREGREADY, 100,
699					   STM32_ADC_TIMEOUT_US);
700	if (ret) {
701		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
702		dev_err(&indio_dev->dev, "Failed to exit power down\n");
703	}
704
705	return ret;
706}
707
708static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
709{
710	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
711
712	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
713	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
714}
715
716static int stm32h7_adc_enable(struct iio_dev *indio_dev)
717{
718	struct stm32_adc *adc = iio_priv(indio_dev);
719	int ret;
720	u32 val;
721
722	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
723
724	/* Poll for ADRDY to be set (after adc startup time) */
725	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
726					   val & STM32H7_ADRDY,
727					   100, STM32_ADC_TIMEOUT_US);
728	if (ret) {
729		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
730		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
731	} else {
732		/* Clear ADRDY by writing one */
733		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
734	}
735
736	return ret;
737}
738
739static void stm32h7_adc_disable(struct iio_dev *indio_dev)
740{
741	struct stm32_adc *adc = iio_priv(indio_dev);
742	int ret;
743	u32 val;
744
745	/* Disable ADC and wait until it's effectively disabled */
746	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
747	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
748					   !(val & STM32H7_ADEN), 100,
749					   STM32_ADC_TIMEOUT_US);
750	if (ret)
751		dev_warn(&indio_dev->dev, "Failed to disable\n");
752}
753
754/**
755 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
756 * @indio_dev: IIO device instance
757 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
758 */
759static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
760{
761	struct stm32_adc *adc = iio_priv(indio_dev);
762	int i, ret;
763	u32 lincalrdyw_mask, val;
764
765	/* Read linearity calibration */
766	lincalrdyw_mask = STM32H7_LINCALRDYW6;
767	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
768		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
769		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
770
771		/* Poll: wait calib data to be ready in CALFACT2 register */
772		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
773						   !(val & lincalrdyw_mask),
774						   100, STM32_ADC_TIMEOUT_US);
775		if (ret) {
776			dev_err(&indio_dev->dev, "Failed to read calfact\n");
777			return ret;
778		}
779
780		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
781		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
782		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
783
784		lincalrdyw_mask >>= 1;
785	}
786
787	/* Read offset calibration */
788	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
789	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
790	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
791	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
792	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
793	adc->cal.calibrated = true;
794
795	return 0;
796}
797
798/**
799 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
800 * @indio_dev: IIO device instance
801 * Note: ADC must be enabled, with no on-going conversions.
802 */
803static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
804{
805	struct stm32_adc *adc = iio_priv(indio_dev);
806	int i, ret;
807	u32 lincalrdyw_mask, val;
808
809	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
810		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
811	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
812
813	lincalrdyw_mask = STM32H7_LINCALRDYW6;
814	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
815		/*
816		 * Write saved calibration data to shadow registers:
817		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
818		 * data write. Then poll to wait for complete transfer.
819		 */
820		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
821		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
822		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
823		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
824						   val & lincalrdyw_mask,
825						   100, STM32_ADC_TIMEOUT_US);
826		if (ret) {
827			dev_err(&indio_dev->dev, "Failed to write calfact\n");
828			return ret;
829		}
830
831		/*
832		 * Read back calibration data, has two effects:
833		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
834		 *   for next time calibration needs to be restored.
835		 * - BTW, bit clear triggers a read, then check data has been
836		 *   correctly written.
837		 */
838		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
839		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
840						   !(val & lincalrdyw_mask),
841						   100, STM32_ADC_TIMEOUT_US);
842		if (ret) {
843			dev_err(&indio_dev->dev, "Failed to read calfact\n");
844			return ret;
845		}
846		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
847		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
848			dev_err(&indio_dev->dev, "calfact not consistent\n");
849			return -EIO;
850		}
851
852		lincalrdyw_mask >>= 1;
853	}
854
855	return 0;
856}
857
858/**
859 * Fixed timeout value for ADC calibration.
860 * worst cases:
861 * - low clock frequency
862 * - maximum prescalers
863 * Calibration requires:
864 * - 131,072 ADC clock cycle for the linear calibration
865 * - 20 ADC clock cycle for the offset calibration
866 *
867 * Set to 100ms for now
868 */
869#define STM32H7_ADC_CALIB_TIMEOUT_US		100000
870
871/**
872 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
873 * @indio_dev: IIO device instance
874 * Note: Must be called once ADC is out of power down.
875 */
876static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
877{
878	struct stm32_adc *adc = iio_priv(indio_dev);
879	int ret;
880	u32 val;
881
882	if (adc->cal.calibrated)
883		return true;
884
885	/*
886	 * Select calibration mode:
887	 * - Offset calibration for single ended inputs
888	 * - No linearity calibration (do it later, before reading it)
889	 */
890	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
891	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
892
893	/* Start calibration, then wait for completion */
894	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
895	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
896					   !(val & STM32H7_ADCAL), 100,
897					   STM32H7_ADC_CALIB_TIMEOUT_US);
898	if (ret) {
899		dev_err(&indio_dev->dev, "calibration failed\n");
900		goto out;
901	}
902
903	/*
904	 * Select calibration mode, then start calibration:
905	 * - Offset calibration for differential input
906	 * - Linearity calibration (needs to be done only once for single/diff)
907	 *   will run simultaneously with offset calibration.
908	 */
909	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
910			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
911	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
912	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
913					   !(val & STM32H7_ADCAL), 100,
914					   STM32H7_ADC_CALIB_TIMEOUT_US);
915	if (ret) {
916		dev_err(&indio_dev->dev, "calibration failed\n");
917		goto out;
918	}
919
920out:
921	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
922			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
923
924	return ret;
925}
926
927/**
928 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
929 * @indio_dev: IIO device instance
930 * Leave power down mode.
931 * Configure channels as single ended or differential before enabling ADC.
932 * Enable ADC.
933 * Restore calibration data.
934 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
935 * - Only one input is selected for single ended (e.g. 'vinp')
936 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
937 */
938static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
939{
940	struct stm32_adc *adc = iio_priv(indio_dev);
941	int calib, ret;
942
943	ret = stm32h7_adc_exit_pwr_down(indio_dev);
944	if (ret)
945		return ret;
946
947	ret = stm32h7_adc_selfcalib(indio_dev);
948	if (ret < 0)
949		goto pwr_dwn;
950	calib = ret;
951
952	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
953
954	ret = stm32h7_adc_enable(indio_dev);
955	if (ret)
956		goto pwr_dwn;
957
958	/* Either restore or read calibration result for future reference */
959	if (calib)
960		ret = stm32h7_adc_restore_selfcalib(indio_dev);
961	else
962		ret = stm32h7_adc_read_selfcalib(indio_dev);
963	if (ret)
964		goto disable;
965
966	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
967
968	return 0;
969
970disable:
971	stm32h7_adc_disable(indio_dev);
972pwr_dwn:
973	stm32h7_adc_enter_pwr_down(adc);
974
975	return ret;
976}
977
978static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
979{
980	struct stm32_adc *adc = iio_priv(indio_dev);
981
982	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
983	stm32h7_adc_disable(indio_dev);
984	stm32h7_adc_enter_pwr_down(adc);
985}
986
987/**
988 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
989 * @indio_dev: IIO device
990 * @scan_mask: channels to be converted
991 *
992 * Conversion sequence :
993 * Apply sampling time settings for all channels.
994 * Configure ADC scan sequence based on selected channels in scan_mask.
995 * Add channels to SQR registers, from scan_mask LSB to MSB, then
996 * program sequence len.
997 */
998static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
999				   const unsigned long *scan_mask)
1000{
1001	struct stm32_adc *adc = iio_priv(indio_dev);
1002	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1003	const struct iio_chan_spec *chan;
1004	u32 val, bit;
1005	int i = 0;
1006
1007	/* Apply sampling time settings */
1008	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1009	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1010
1011	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1012		chan = indio_dev->channels + bit;
1013		/*
1014		 * Assign one channel per SQ entry in regular
1015		 * sequence, starting with SQ1.
1016		 */
1017		i++;
1018		if (i > STM32_ADC_MAX_SQ)
1019			return -EINVAL;
1020
1021		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1022			__func__, chan->channel, i);
1023
1024		val = stm32_adc_readl(adc, sqr[i].reg);
1025		val &= ~sqr[i].mask;
1026		val |= chan->channel << sqr[i].shift;
1027		stm32_adc_writel(adc, sqr[i].reg, val);
1028	}
1029
1030	if (!i)
1031		return -EINVAL;
1032
1033	/* Sequence len */
1034	val = stm32_adc_readl(adc, sqr[0].reg);
1035	val &= ~sqr[0].mask;
1036	val |= ((i - 1) << sqr[0].shift);
1037	stm32_adc_writel(adc, sqr[0].reg, val);
1038
1039	return 0;
1040}
1041
1042/**
1043 * stm32_adc_get_trig_extsel() - Get external trigger selection
1044 * @indio_dev: IIO device structure
1045 * @trig: trigger
1046 *
1047 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1048 */
1049static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1050				     struct iio_trigger *trig)
1051{
1052	struct stm32_adc *adc = iio_priv(indio_dev);
1053	int i;
1054
1055	/* lookup triggers registered by stm32 timer trigger driver */
1056	for (i = 0; adc->cfg->trigs[i].name; i++) {
1057		/**
1058		 * Checking both stm32 timer trigger type and trig name
1059		 * should be safe against arbitrary trigger names.
1060		 */
1061		if ((is_stm32_timer_trigger(trig) ||
1062		     is_stm32_lptim_trigger(trig)) &&
1063		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1064			return adc->cfg->trigs[i].extsel;
1065		}
1066	}
1067
1068	return -EINVAL;
1069}
1070
1071/**
1072 * stm32_adc_set_trig() - Set a regular trigger
1073 * @indio_dev: IIO device
1074 * @trig: IIO trigger
1075 *
1076 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1077 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1078 * - if HW trigger enabled, set source & polarity
1079 */
1080static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1081			      struct iio_trigger *trig)
1082{
1083	struct stm32_adc *adc = iio_priv(indio_dev);
1084	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1085	unsigned long flags;
1086	int ret;
1087
1088	if (trig) {
1089		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1090		if (ret < 0)
1091			return ret;
1092
1093		/* set trigger source and polarity (default to rising edge) */
1094		extsel = ret;
1095		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1096	}
1097
1098	spin_lock_irqsave(&adc->lock, flags);
1099	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1100	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1101	val |= exten << adc->cfg->regs->exten.shift;
1102	val |= extsel << adc->cfg->regs->extsel.shift;
1103	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1104	spin_unlock_irqrestore(&adc->lock, flags);
1105
1106	return 0;
1107}
1108
1109static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1110				  const struct iio_chan_spec *chan,
1111				  unsigned int type)
1112{
1113	struct stm32_adc *adc = iio_priv(indio_dev);
1114
1115	adc->trigger_polarity = type;
1116
1117	return 0;
1118}
1119
1120static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1121				  const struct iio_chan_spec *chan)
1122{
1123	struct stm32_adc *adc = iio_priv(indio_dev);
1124
1125	return adc->trigger_polarity;
1126}
1127
1128static const char * const stm32_trig_pol_items[] = {
1129	"rising-edge", "falling-edge", "both-edges",
1130};
1131
1132static const struct iio_enum stm32_adc_trig_pol = {
1133	.items = stm32_trig_pol_items,
1134	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1135	.get = stm32_adc_get_trig_pol,
1136	.set = stm32_adc_set_trig_pol,
1137};
1138
1139/**
1140 * stm32_adc_single_conv() - Performs a single conversion
1141 * @indio_dev: IIO device
1142 * @chan: IIO channel
1143 * @res: conversion result
1144 *
1145 * The function performs a single conversion on a given channel:
1146 * - Apply sampling time settings
1147 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1148 * - Use SW trigger
1149 * - Start conversion, then wait for interrupt completion.
1150 */
1151static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1152				 const struct iio_chan_spec *chan,
1153				 int *res)
1154{
1155	struct stm32_adc *adc = iio_priv(indio_dev);
1156	struct device *dev = indio_dev->dev.parent;
1157	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1158	long timeout;
1159	u32 val;
1160	int ret;
1161
1162	reinit_completion(&adc->completion);
1163
1164	adc->bufi = 0;
1165
1166	ret = pm_runtime_get_sync(dev);
1167	if (ret < 0) {
1168		pm_runtime_put_noidle(dev);
1169		return ret;
1170	}
1171
1172	/* Apply sampling time settings */
1173	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1174	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1175
1176	/* Program chan number in regular sequence (SQ1) */
1177	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1178	val &= ~regs->sqr[1].mask;
1179	val |= chan->channel << regs->sqr[1].shift;
1180	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1181
1182	/* Set regular sequence len (0 for 1 conversion) */
1183	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1184
1185	/* Trigger detection disabled (conversion can be launched in SW) */
1186	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1187
1188	stm32_adc_conv_irq_enable(adc);
1189
1190	adc->cfg->start_conv(indio_dev, false);
1191
1192	timeout = wait_for_completion_interruptible_timeout(
1193					&adc->completion, STM32_ADC_TIMEOUT);
1194	if (timeout == 0) {
1195		ret = -ETIMEDOUT;
1196	} else if (timeout < 0) {
1197		ret = timeout;
1198	} else {
1199		*res = adc->buffer[0];
1200		ret = IIO_VAL_INT;
1201	}
1202
1203	adc->cfg->stop_conv(indio_dev);
1204
1205	stm32_adc_conv_irq_disable(adc);
1206
1207	pm_runtime_mark_last_busy(dev);
1208	pm_runtime_put_autosuspend(dev);
1209
1210	return ret;
1211}
1212
1213static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1214			      struct iio_chan_spec const *chan,
1215			      int *val, int *val2, long mask)
1216{
1217	struct stm32_adc *adc = iio_priv(indio_dev);
1218	int ret;
1219
1220	switch (mask) {
1221	case IIO_CHAN_INFO_RAW:
1222		ret = iio_device_claim_direct_mode(indio_dev);
1223		if (ret)
1224			return ret;
1225		if (chan->type == IIO_VOLTAGE)
1226			ret = stm32_adc_single_conv(indio_dev, chan, val);
1227		else
1228			ret = -EINVAL;
1229		iio_device_release_direct_mode(indio_dev);
1230		return ret;
1231
1232	case IIO_CHAN_INFO_SCALE:
1233		if (chan->differential) {
1234			*val = adc->common->vref_mv * 2;
1235			*val2 = chan->scan_type.realbits;
1236		} else {
1237			*val = adc->common->vref_mv;
1238			*val2 = chan->scan_type.realbits;
1239		}
1240		return IIO_VAL_FRACTIONAL_LOG2;
1241
1242	case IIO_CHAN_INFO_OFFSET:
1243		if (chan->differential)
1244			/* ADC_full_scale / 2 */
1245			*val = -((1 << chan->scan_type.realbits) / 2);
1246		else
1247			*val = 0;
1248		return IIO_VAL_INT;
1249
1250	default:
1251		return -EINVAL;
1252	}
1253}
1254
1255static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1256{
1257	struct stm32_adc *adc = iio_priv(indio_dev);
1258
1259	adc->cfg->irq_clear(indio_dev, msk);
1260}
1261
1262static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1263{
1264	struct iio_dev *indio_dev = data;
1265	struct stm32_adc *adc = iio_priv(indio_dev);
1266	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1267	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1268
1269	/* Check ovr status right now, as ovr mask should be already disabled */
1270	if (status & regs->isr_ovr.mask) {
1271		/*
1272		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1273		 * This requires to stop ADC first. OVR bit state in ISR,
1274		 * is propaged to CSR register by hardware.
1275		 */
1276		adc->cfg->stop_conv(indio_dev);
1277		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1278		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1279		return IRQ_HANDLED;
1280	}
1281
1282	return IRQ_NONE;
1283}
1284
1285static irqreturn_t stm32_adc_isr(int irq, void *data)
1286{
1287	struct iio_dev *indio_dev = data;
1288	struct stm32_adc *adc = iio_priv(indio_dev);
1289	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1290	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1291
1292	if (status & regs->isr_ovr.mask) {
1293		/*
1294		 * Overrun occurred on regular conversions: data for wrong
1295		 * channel may be read. Unconditionally disable interrupts
1296		 * to stop processing data and print error message.
1297		 * Restarting the capture can be done by disabling, then
1298		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1299		 */
1300		stm32_adc_ovr_irq_disable(adc);
1301		stm32_adc_conv_irq_disable(adc);
1302		return IRQ_WAKE_THREAD;
1303	}
1304
1305	if (status & regs->isr_eoc.mask) {
1306		/* Reading DR also clears EOC status flag */
1307		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1308		if (iio_buffer_enabled(indio_dev)) {
1309			adc->bufi++;
1310			if (adc->bufi >= adc->num_conv) {
1311				stm32_adc_conv_irq_disable(adc);
1312				iio_trigger_poll(indio_dev->trig);
1313			}
1314		} else {
1315			complete(&adc->completion);
1316		}
1317		return IRQ_HANDLED;
1318	}
1319
1320	return IRQ_NONE;
1321}
1322
1323/**
1324 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1325 * @indio_dev: IIO device
1326 * @trig: new trigger
1327 *
1328 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1329 * driver, -EINVAL otherwise.
1330 */
1331static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1332				      struct iio_trigger *trig)
1333{
1334	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1335}
1336
1337static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1338{
1339	struct stm32_adc *adc = iio_priv(indio_dev);
1340	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1341	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1342
1343	/*
1344	 * dma cyclic transfers are used, buffer is split into two periods.
1345	 * There should be :
1346	 * - always one buffer (period) dma is working on
1347	 * - one buffer (period) driver can push with iio_trigger_poll().
1348	 */
1349	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1350	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1351
1352	return 0;
1353}
1354
1355static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1356				      const unsigned long *scan_mask)
1357{
1358	struct stm32_adc *adc = iio_priv(indio_dev);
1359	struct device *dev = indio_dev->dev.parent;
1360	int ret;
1361
1362	ret = pm_runtime_get_sync(dev);
1363	if (ret < 0) {
1364		pm_runtime_put_noidle(dev);
1365		return ret;
1366	}
1367
1368	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1369
1370	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1371	pm_runtime_mark_last_busy(dev);
1372	pm_runtime_put_autosuspend(dev);
1373
1374	return ret;
1375}
1376
1377static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1378			      const struct of_phandle_args *iiospec)
1379{
1380	int i;
1381
1382	for (i = 0; i < indio_dev->num_channels; i++)
1383		if (indio_dev->channels[i].channel == iiospec->args[0])
1384			return i;
1385
1386	return -EINVAL;
1387}
1388
1389/**
1390 * stm32_adc_debugfs_reg_access - read or write register value
1391 * @indio_dev: IIO device structure
1392 * @reg: register offset
1393 * @writeval: value to write
1394 * @readval: value to read
1395 *
1396 * To read a value from an ADC register:
1397 *   echo [ADC reg offset] > direct_reg_access
1398 *   cat direct_reg_access
1399 *
1400 * To write a value in a ADC register:
1401 *   echo [ADC_reg_offset] [value] > direct_reg_access
1402 */
1403static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1404					unsigned reg, unsigned writeval,
1405					unsigned *readval)
1406{
1407	struct stm32_adc *adc = iio_priv(indio_dev);
1408	struct device *dev = indio_dev->dev.parent;
1409	int ret;
1410
1411	ret = pm_runtime_get_sync(dev);
1412	if (ret < 0) {
1413		pm_runtime_put_noidle(dev);
1414		return ret;
1415	}
1416
1417	if (!readval)
1418		stm32_adc_writel(adc, reg, writeval);
1419	else
1420		*readval = stm32_adc_readl(adc, reg);
1421
1422	pm_runtime_mark_last_busy(dev);
1423	pm_runtime_put_autosuspend(dev);
1424
1425	return 0;
1426}
1427
1428static const struct iio_info stm32_adc_iio_info = {
1429	.read_raw = stm32_adc_read_raw,
1430	.validate_trigger = stm32_adc_validate_trigger,
1431	.hwfifo_set_watermark = stm32_adc_set_watermark,
1432	.update_scan_mode = stm32_adc_update_scan_mode,
1433	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1434	.of_xlate = stm32_adc_of_xlate,
1435};
1436
1437static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1438{
1439	struct dma_tx_state state;
1440	enum dma_status status;
1441
1442	status = dmaengine_tx_status(adc->dma_chan,
1443				     adc->dma_chan->cookie,
1444				     &state);
1445	if (status == DMA_IN_PROGRESS) {
1446		/* Residue is size in bytes from end of buffer */
1447		unsigned int i = adc->rx_buf_sz - state.residue;
1448		unsigned int size;
1449
1450		/* Return available bytes */
1451		if (i >= adc->bufi)
1452			size = i - adc->bufi;
1453		else
1454			size = adc->rx_buf_sz + i - adc->bufi;
1455
1456		return size;
1457	}
1458
1459	return 0;
1460}
1461
1462static void stm32_adc_dma_buffer_done(void *data)
1463{
1464	struct iio_dev *indio_dev = data;
1465	struct stm32_adc *adc = iio_priv(indio_dev);
1466	int residue = stm32_adc_dma_residue(adc);
1467
1468	/*
1469	 * In DMA mode the trigger services of IIO are not used
1470	 * (e.g. no call to iio_trigger_poll).
1471	 * Calling irq handler associated to the hardware trigger is not
1472	 * relevant as the conversions have already been done. Data
1473	 * transfers are performed directly in DMA callback instead.
1474	 * This implementation avoids to call trigger irq handler that
1475	 * may sleep, in an atomic context (DMA irq handler context).
1476	 */
1477	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1478
1479	while (residue >= indio_dev->scan_bytes) {
1480		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1481
1482		iio_push_to_buffers(indio_dev, buffer);
1483
1484		residue -= indio_dev->scan_bytes;
1485		adc->bufi += indio_dev->scan_bytes;
1486		if (adc->bufi >= adc->rx_buf_sz)
1487			adc->bufi = 0;
1488	}
1489}
1490
1491static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1492{
1493	struct stm32_adc *adc = iio_priv(indio_dev);
1494	struct dma_async_tx_descriptor *desc;
1495	dma_cookie_t cookie;
1496	int ret;
1497
1498	if (!adc->dma_chan)
1499		return 0;
1500
1501	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1502		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1503
1504	/* Prepare a DMA cyclic transaction */
1505	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1506					 adc->rx_dma_buf,
1507					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1508					 DMA_DEV_TO_MEM,
1509					 DMA_PREP_INTERRUPT);
1510	if (!desc)
1511		return -EBUSY;
1512
1513	desc->callback = stm32_adc_dma_buffer_done;
1514	desc->callback_param = indio_dev;
1515
1516	cookie = dmaengine_submit(desc);
1517	ret = dma_submit_error(cookie);
1518	if (ret) {
1519		dmaengine_terminate_sync(adc->dma_chan);
1520		return ret;
1521	}
1522
1523	/* Issue pending DMA requests */
1524	dma_async_issue_pending(adc->dma_chan);
1525
1526	return 0;
1527}
1528
1529static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1530{
1531	struct stm32_adc *adc = iio_priv(indio_dev);
1532	struct device *dev = indio_dev->dev.parent;
1533	int ret;
1534
1535	ret = pm_runtime_get_sync(dev);
1536	if (ret < 0) {
1537		pm_runtime_put_noidle(dev);
1538		return ret;
1539	}
1540
1541	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1542	if (ret) {
1543		dev_err(&indio_dev->dev, "Can't set trigger\n");
1544		goto err_pm_put;
1545	}
1546
1547	ret = stm32_adc_dma_start(indio_dev);
1548	if (ret) {
1549		dev_err(&indio_dev->dev, "Can't start dma\n");
1550		goto err_clr_trig;
1551	}
1552
1553	/* Reset adc buffer index */
1554	adc->bufi = 0;
1555
1556	stm32_adc_ovr_irq_enable(adc);
1557
1558	if (!adc->dma_chan)
1559		stm32_adc_conv_irq_enable(adc);
1560
1561	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1562
1563	return 0;
1564
1565err_clr_trig:
1566	stm32_adc_set_trig(indio_dev, NULL);
1567err_pm_put:
1568	pm_runtime_mark_last_busy(dev);
1569	pm_runtime_put_autosuspend(dev);
1570
1571	return ret;
1572}
1573
1574static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1575{
1576	struct stm32_adc *adc = iio_priv(indio_dev);
1577	struct device *dev = indio_dev->dev.parent;
1578
1579	adc->cfg->stop_conv(indio_dev);
1580	if (!adc->dma_chan)
1581		stm32_adc_conv_irq_disable(adc);
1582
1583	stm32_adc_ovr_irq_disable(adc);
1584
1585	if (adc->dma_chan)
1586		dmaengine_terminate_sync(adc->dma_chan);
1587
1588	if (stm32_adc_set_trig(indio_dev, NULL))
1589		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1590
1591	pm_runtime_mark_last_busy(dev);
1592	pm_runtime_put_autosuspend(dev);
1593
1594	return 0;
1595}
1596
1597static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1598	.postenable = &stm32_adc_buffer_postenable,
1599	.predisable = &stm32_adc_buffer_predisable,
1600};
1601
1602static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1603{
1604	struct iio_poll_func *pf = p;
1605	struct iio_dev *indio_dev = pf->indio_dev;
1606	struct stm32_adc *adc = iio_priv(indio_dev);
1607
1608	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1609
1610	if (!adc->dma_chan) {
1611		/* reset buffer index */
1612		adc->bufi = 0;
1613		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1614						   pf->timestamp);
1615	} else {
1616		int residue = stm32_adc_dma_residue(adc);
1617
1618		while (residue >= indio_dev->scan_bytes) {
1619			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1620
1621			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1622							   pf->timestamp);
1623			residue -= indio_dev->scan_bytes;
1624			adc->bufi += indio_dev->scan_bytes;
1625			if (adc->bufi >= adc->rx_buf_sz)
1626				adc->bufi = 0;
1627		}
1628	}
1629
1630	iio_trigger_notify_done(indio_dev->trig);
1631
1632	/* re-enable eoc irq */
1633	if (!adc->dma_chan)
1634		stm32_adc_conv_irq_enable(adc);
1635
1636	return IRQ_HANDLED;
1637}
1638
1639static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1640	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1641	{
1642		.name = "trigger_polarity_available",
1643		.shared = IIO_SHARED_BY_ALL,
1644		.read = iio_enum_available_read,
1645		.private = (uintptr_t)&stm32_adc_trig_pol,
1646	},
1647	{},
1648};
1649
1650static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1651{
1652	struct device_node *node = indio_dev->dev.of_node;
1653	struct stm32_adc *adc = iio_priv(indio_dev);
1654	unsigned int i;
1655	u32 res;
1656
1657	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1658		res = adc->cfg->adc_info->resolutions[0];
1659
1660	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1661		if (res == adc->cfg->adc_info->resolutions[i])
1662			break;
1663	if (i >= adc->cfg->adc_info->num_res) {
1664		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1665		return -EINVAL;
1666	}
1667
1668	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1669	adc->res = i;
1670
1671	return 0;
1672}
1673
1674static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1675{
1676	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1677	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1678	unsigned int smp, r = smpr->reg;
1679
1680	/* Determine sampling time (ADC clock cycles) */
1681	period_ns = NSEC_PER_SEC / adc->common->rate;
1682	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1683		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1684			break;
1685	if (smp > STM32_ADC_MAX_SMP)
1686		smp = STM32_ADC_MAX_SMP;
1687
1688	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1689	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1690}
1691
1692static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1693				    struct iio_chan_spec *chan, u32 vinp,
1694				    u32 vinn, int scan_index, bool differential)
1695{
1696	struct stm32_adc *adc = iio_priv(indio_dev);
1697	char *name = adc->chan_name[vinp];
1698
1699	chan->type = IIO_VOLTAGE;
1700	chan->channel = vinp;
1701	if (differential) {
1702		chan->differential = 1;
1703		chan->channel2 = vinn;
1704		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1705	} else {
1706		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1707	}
1708	chan->datasheet_name = name;
1709	chan->scan_index = scan_index;
1710	chan->indexed = 1;
1711	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1712	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1713					 BIT(IIO_CHAN_INFO_OFFSET);
1714	chan->scan_type.sign = 'u';
1715	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1716	chan->scan_type.storagebits = 16;
1717	chan->ext_info = stm32_adc_ext_info;
1718
1719	/* pre-build selected channels mask */
1720	adc->pcsel |= BIT(chan->channel);
1721	if (differential) {
1722		/* pre-build diff channels mask */
1723		adc->difsel |= BIT(chan->channel);
1724		/* Also add negative input to pre-selected channels */
1725		adc->pcsel |= BIT(chan->channel2);
1726	}
1727}
1728
1729static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1730{
1731	struct device_node *node = indio_dev->dev.of_node;
1732	struct stm32_adc *adc = iio_priv(indio_dev);
1733	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1734	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1735	struct property *prop;
1736	const __be32 *cur;
1737	struct iio_chan_spec *channels;
1738	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1739	u32 val, smp = 0;
1740
1741	ret = of_property_count_u32_elems(node, "st,adc-channels");
1742	if (ret > adc_info->max_channels) {
1743		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1744		return -EINVAL;
1745	} else if (ret > 0) {
1746		num_channels += ret;
1747	}
1748
1749	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1750					      sizeof(*diff));
1751	if (ret > adc_info->max_channels) {
1752		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1753		return -EINVAL;
1754	} else if (ret > 0) {
1755		int size = ret * sizeof(*diff) / sizeof(u32);
1756
1757		num_diff = ret;
1758		num_channels += ret;
1759		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1760						 (u32 *)diff, size);
1761		if (ret)
1762			return ret;
1763	}
1764
1765	if (!num_channels) {
1766		dev_err(&indio_dev->dev, "No channels configured\n");
1767		return -ENODATA;
1768	}
1769
1770	/* Optional sample time is provided either for each, or all channels */
1771	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1772	if (ret > 1 && ret != num_channels) {
1773		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1774		return -EINVAL;
1775	}
1776
1777	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1778				sizeof(struct iio_chan_spec), GFP_KERNEL);
1779	if (!channels)
1780		return -ENOMEM;
1781
1782	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1783		if (val >= adc_info->max_channels) {
1784			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1785			return -EINVAL;
1786		}
1787
1788		/* Channel can't be configured both as single-ended & diff */
1789		for (i = 0; i < num_diff; i++) {
1790			if (val == diff[i].vinp) {
1791				dev_err(&indio_dev->dev,
1792					"channel %d miss-configured\n",	val);
1793				return -EINVAL;
1794			}
1795		}
1796		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1797					0, scan_index, false);
1798		scan_index++;
1799	}
1800
1801	for (i = 0; i < num_diff; i++) {
1802		if (diff[i].vinp >= adc_info->max_channels ||
1803		    diff[i].vinn >= adc_info->max_channels) {
1804			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1805				diff[i].vinp, diff[i].vinn);
1806			return -EINVAL;
1807		}
1808		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1809					diff[i].vinp, diff[i].vinn, scan_index,
1810					true);
1811		scan_index++;
1812	}
1813
1814	for (i = 0; i < scan_index; i++) {
1815		/*
1816		 * Using of_property_read_u32_index(), smp value will only be
1817		 * modified if valid u32 value can be decoded. This allows to
1818		 * get either no value, 1 shared value for all indexes, or one
1819		 * value per channel.
1820		 */
1821		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1822					   i, &smp);
1823		/* Prepare sampling time settings */
1824		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1825	}
1826
1827	indio_dev->num_channels = scan_index;
1828	indio_dev->channels = channels;
1829
1830	return 0;
1831}
1832
1833static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1834{
1835	struct stm32_adc *adc = iio_priv(indio_dev);
1836	struct dma_slave_config config;
1837	int ret;
1838
1839	adc->dma_chan = dma_request_chan(dev, "rx");
1840	if (IS_ERR(adc->dma_chan)) {
1841		ret = PTR_ERR(adc->dma_chan);
1842		if (ret != -ENODEV)
1843			return dev_err_probe(dev, ret,
1844					     "DMA channel request failed with\n");
1845
1846		/* DMA is optional: fall back to IRQ mode */
1847		adc->dma_chan = NULL;
1848		return 0;
1849	}
1850
1851	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1852					 STM32_DMA_BUFFER_SIZE,
1853					 &adc->rx_dma_buf, GFP_KERNEL);
1854	if (!adc->rx_buf) {
1855		ret = -ENOMEM;
1856		goto err_release;
1857	}
1858
1859	/* Configure DMA channel to read data register */
1860	memset(&config, 0, sizeof(config));
1861	config.src_addr = (dma_addr_t)adc->common->phys_base;
1862	config.src_addr += adc->offset + adc->cfg->regs->dr;
1863	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1864
1865	ret = dmaengine_slave_config(adc->dma_chan, &config);
1866	if (ret)
1867		goto err_free;
1868
1869	return 0;
1870
1871err_free:
1872	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1873			  adc->rx_buf, adc->rx_dma_buf);
1874err_release:
1875	dma_release_channel(adc->dma_chan);
1876
1877	return ret;
1878}
1879
1880static int stm32_adc_probe(struct platform_device *pdev)
1881{
1882	struct iio_dev *indio_dev;
1883	struct device *dev = &pdev->dev;
1884	irqreturn_t (*handler)(int irq, void *p) = NULL;
1885	struct stm32_adc *adc;
1886	int ret;
1887
1888	if (!pdev->dev.of_node)
1889		return -ENODEV;
1890
1891	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1892	if (!indio_dev)
1893		return -ENOMEM;
1894
1895	adc = iio_priv(indio_dev);
1896	adc->common = dev_get_drvdata(pdev->dev.parent);
1897	spin_lock_init(&adc->lock);
1898	init_completion(&adc->completion);
1899	adc->cfg = (const struct stm32_adc_cfg *)
1900		of_match_device(dev->driver->of_match_table, dev)->data;
1901
1902	indio_dev->name = dev_name(&pdev->dev);
1903	indio_dev->dev.of_node = pdev->dev.of_node;
1904	indio_dev->info = &stm32_adc_iio_info;
1905	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1906
1907	platform_set_drvdata(pdev, indio_dev);
1908
1909	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1910	if (ret != 0) {
1911		dev_err(&pdev->dev, "missing reg property\n");
1912		return -EINVAL;
1913	}
1914
1915	adc->irq = platform_get_irq(pdev, 0);
1916	if (adc->irq < 0)
1917		return adc->irq;
1918
1919	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1920					stm32_adc_threaded_isr,
1921					0, pdev->name, indio_dev);
1922	if (ret) {
1923		dev_err(&pdev->dev, "failed to request IRQ\n");
1924		return ret;
1925	}
1926
1927	adc->clk = devm_clk_get(&pdev->dev, NULL);
1928	if (IS_ERR(adc->clk)) {
1929		ret = PTR_ERR(adc->clk);
1930		if (ret == -ENOENT && !adc->cfg->clk_required) {
1931			adc->clk = NULL;
1932		} else {
1933			dev_err(&pdev->dev, "Can't get clock\n");
1934			return ret;
1935		}
1936	}
1937
1938	ret = stm32_adc_of_get_resolution(indio_dev);
1939	if (ret < 0)
1940		return ret;
1941
1942	ret = stm32_adc_chan_of_init(indio_dev);
1943	if (ret < 0)
1944		return ret;
1945
1946	ret = stm32_adc_dma_request(dev, indio_dev);
1947	if (ret < 0)
1948		return ret;
1949
1950	if (!adc->dma_chan)
1951		handler = &stm32_adc_trigger_handler;
1952
1953	ret = iio_triggered_buffer_setup(indio_dev,
1954					 &iio_pollfunc_store_time, handler,
1955					 &stm32_adc_buffer_setup_ops);
1956	if (ret) {
1957		dev_err(&pdev->dev, "buffer setup failed\n");
1958		goto err_dma_disable;
1959	}
1960
1961	/* Get stm32-adc-core PM online */
1962	pm_runtime_get_noresume(dev);
1963	pm_runtime_set_active(dev);
1964	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1965	pm_runtime_use_autosuspend(dev);
1966	pm_runtime_enable(dev);
1967
1968	ret = stm32_adc_hw_start(dev);
1969	if (ret)
1970		goto err_buffer_cleanup;
1971
1972	ret = iio_device_register(indio_dev);
1973	if (ret) {
1974		dev_err(&pdev->dev, "iio dev register failed\n");
1975		goto err_hw_stop;
1976	}
1977
1978	pm_runtime_mark_last_busy(dev);
1979	pm_runtime_put_autosuspend(dev);
1980
1981	return 0;
1982
1983err_hw_stop:
1984	stm32_adc_hw_stop(dev);
1985
1986err_buffer_cleanup:
1987	pm_runtime_disable(dev);
1988	pm_runtime_set_suspended(dev);
1989	pm_runtime_put_noidle(dev);
1990	iio_triggered_buffer_cleanup(indio_dev);
1991
1992err_dma_disable:
1993	if (adc->dma_chan) {
1994		dma_free_coherent(adc->dma_chan->device->dev,
1995				  STM32_DMA_BUFFER_SIZE,
1996				  adc->rx_buf, adc->rx_dma_buf);
1997		dma_release_channel(adc->dma_chan);
1998	}
1999
2000	return ret;
2001}
2002
2003static int stm32_adc_remove(struct platform_device *pdev)
2004{
2005	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2006	struct stm32_adc *adc = iio_priv(indio_dev);
2007
2008	pm_runtime_get_sync(&pdev->dev);
2009	iio_device_unregister(indio_dev);
2010	stm32_adc_hw_stop(&pdev->dev);
2011	pm_runtime_disable(&pdev->dev);
2012	pm_runtime_set_suspended(&pdev->dev);
2013	pm_runtime_put_noidle(&pdev->dev);
2014	iio_triggered_buffer_cleanup(indio_dev);
2015	if (adc->dma_chan) {
2016		dma_free_coherent(adc->dma_chan->device->dev,
2017				  STM32_DMA_BUFFER_SIZE,
2018				  adc->rx_buf, adc->rx_dma_buf);
2019		dma_release_channel(adc->dma_chan);
2020	}
2021
2022	return 0;
2023}
2024
2025#if defined(CONFIG_PM_SLEEP)
2026static int stm32_adc_suspend(struct device *dev)
2027{
2028	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2029
2030	if (iio_buffer_enabled(indio_dev))
2031		stm32_adc_buffer_predisable(indio_dev);
2032
2033	return pm_runtime_force_suspend(dev);
2034}
2035
2036static int stm32_adc_resume(struct device *dev)
2037{
2038	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2039	int ret;
2040
2041	ret = pm_runtime_force_resume(dev);
2042	if (ret < 0)
2043		return ret;
2044
2045	if (!iio_buffer_enabled(indio_dev))
2046		return 0;
2047
2048	ret = stm32_adc_update_scan_mode(indio_dev,
2049					 indio_dev->active_scan_mask);
2050	if (ret < 0)
2051		return ret;
2052
2053	return stm32_adc_buffer_postenable(indio_dev);
2054}
2055#endif
2056
2057#if defined(CONFIG_PM)
2058static int stm32_adc_runtime_suspend(struct device *dev)
2059{
2060	return stm32_adc_hw_stop(dev);
2061}
2062
2063static int stm32_adc_runtime_resume(struct device *dev)
2064{
2065	return stm32_adc_hw_start(dev);
2066}
2067#endif
2068
2069static const struct dev_pm_ops stm32_adc_pm_ops = {
2070	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2071	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2072			   NULL)
2073};
2074
2075static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2076	.regs = &stm32f4_adc_regspec,
2077	.adc_info = &stm32f4_adc_info,
2078	.trigs = stm32f4_adc_trigs,
2079	.clk_required = true,
2080	.start_conv = stm32f4_adc_start_conv,
2081	.stop_conv = stm32f4_adc_stop_conv,
2082	.smp_cycles = stm32f4_adc_smp_cycles,
2083	.irq_clear = stm32f4_adc_irq_clear,
2084};
2085
2086static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2087	.regs = &stm32h7_adc_regspec,
2088	.adc_info = &stm32h7_adc_info,
2089	.trigs = stm32h7_adc_trigs,
2090	.start_conv = stm32h7_adc_start_conv,
2091	.stop_conv = stm32h7_adc_stop_conv,
2092	.prepare = stm32h7_adc_prepare,
2093	.unprepare = stm32h7_adc_unprepare,
2094	.smp_cycles = stm32h7_adc_smp_cycles,
2095	.irq_clear = stm32h7_adc_irq_clear,
2096};
2097
2098static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2099	.regs = &stm32h7_adc_regspec,
2100	.adc_info = &stm32h7_adc_info,
2101	.trigs = stm32h7_adc_trigs,
2102	.has_vregready = true,
2103	.start_conv = stm32h7_adc_start_conv,
2104	.stop_conv = stm32h7_adc_stop_conv,
2105	.prepare = stm32h7_adc_prepare,
2106	.unprepare = stm32h7_adc_unprepare,
2107	.smp_cycles = stm32h7_adc_smp_cycles,
2108	.irq_clear = stm32h7_adc_irq_clear,
2109};
2110
2111static const struct of_device_id stm32_adc_of_match[] = {
2112	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2113	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2114	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2115	{},
2116};
2117MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2118
2119static struct platform_driver stm32_adc_driver = {
2120	.probe = stm32_adc_probe,
2121	.remove = stm32_adc_remove,
2122	.driver = {
2123		.name = "stm32-adc",
2124		.of_match_table = stm32_adc_of_match,
2125		.pm = &stm32_adc_pm_ops,
2126	},
2127};
2128module_platform_driver(stm32_adc_driver);
2129
2130MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2131MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2132MODULE_LICENSE("GPL v2");
2133MODULE_ALIAS("platform:stm32-adc");
2134