1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4 *
5 *  8 ~ 10 channel, 10/12-bit ADC
6 *
7 *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8 */
9
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/interrupt.h>
13#include <linux/delay.h>
14#include <linux/errno.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/io.h>
18#include <linux/clk.h>
19#include <linux/completion.h>
20#include <linux/of.h>
21#include <linux/of_irq.h>
22#include <linux/regulator/consumer.h>
23#include <linux/of_platform.h>
24#include <linux/err.h>
25#include <linux/input.h>
26
27#include <linux/iio/iio.h>
28#include <linux/iio/machine.h>
29#include <linux/iio/driver.h>
30#include <linux/mfd/syscon.h>
31#include <linux/regmap.h>
32
33#include <linux/platform_data/touchscreen-s3c2410.h>
34
35/* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36#define ADC_V1_CON(x)		((x) + 0x00)
37#define ADC_V1_TSC(x)		((x) + 0x04)
38#define ADC_V1_DLY(x)		((x) + 0x08)
39#define ADC_V1_DATX(x)		((x) + 0x0C)
40#define ADC_V1_DATY(x)		((x) + 0x10)
41#define ADC_V1_UPDN(x)		((x) + 0x14)
42#define ADC_V1_INTCLR(x)	((x) + 0x18)
43#define ADC_V1_MUX(x)		((x) + 0x1c)
44#define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
45
46/* S3C2410 ADC registers definitions */
47#define ADC_S3C2410_MUX(x)	((x) + 0x18)
48
49/* Future ADC_V2 registers definitions */
50#define ADC_V2_CON1(x)		((x) + 0x00)
51#define ADC_V2_CON2(x)		((x) + 0x04)
52#define ADC_V2_STAT(x)		((x) + 0x08)
53#define ADC_V2_INT_EN(x)	((x) + 0x10)
54#define ADC_V2_INT_ST(x)	((x) + 0x14)
55#define ADC_V2_VER(x)		((x) + 0x20)
56
57/* Bit definitions for ADC_V1 */
58#define ADC_V1_CON_RES		(1u << 16)
59#define ADC_V1_CON_PRSCEN	(1u << 14)
60#define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
61#define ADC_V1_CON_STANDBY	(1u << 2)
62
63/* Bit definitions for S3C2410 ADC */
64#define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65#define ADC_S3C2410_DATX_MASK	0x3FF
66#define ADC_S3C2416_CON_RES_SEL	(1u << 3)
67
68/* touch screen always uses channel 0 */
69#define ADC_S3C2410_MUX_TS	0
70
71/* ADCTSC Register Bits */
72#define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
73#define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
74#define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
75#define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
76#define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
77#define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
78#define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
79#define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
80
81#define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82			 ADC_S3C2410_TSC_YP_SEN | \
83			 ADC_S3C2410_TSC_XP_SEN | \
84			 ADC_S3C2410_TSC_XY_PST(3))
85
86#define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
87			 ADC_S3C2410_TSC_YP_SEN | \
88			 ADC_S3C2410_TSC_XP_SEN | \
89			 ADC_S3C2410_TSC_AUTO_PST | \
90			 ADC_S3C2410_TSC_XY_PST(0))
91
92/* Bit definitions for ADC_V2 */
93#define ADC_V2_CON1_SOFT_RESET	(1u << 2)
94
95#define ADC_V2_CON2_OSEL	(1u << 10)
96#define ADC_V2_CON2_ESEL	(1u << 9)
97#define ADC_V2_CON2_HIGHF	(1u << 8)
98#define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
99#define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
100#define ADC_V2_CON2_ACH_MASK	0xF
101
102#define MAX_ADC_V2_CHANNELS		10
103#define MAX_ADC_V1_CHANNELS		8
104#define MAX_EXYNOS3250_ADC_CHANNELS	2
105#define MAX_EXYNOS4212_ADC_CHANNELS	4
106#define MAX_S5PV210_ADC_CHANNELS	10
107
108/* Bit definitions common for ADC_V1 and ADC_V2 */
109#define ADC_CON_EN_START	(1u << 0)
110#define ADC_CON_EN_START_MASK	(0x3 << 0)
111#define ADC_DATX_PRESSED	(1u << 15)
112#define ADC_DATX_MASK		0xFFF
113#define ADC_DATY_MASK		0xFFF
114
115#define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
116
117#define EXYNOS_ADCV1_PHY_OFFSET	0x0718
118#define EXYNOS_ADCV2_PHY_OFFSET	0x0720
119
120struct exynos_adc {
121	struct exynos_adc_data	*data;
122	struct device		*dev;
123	struct input_dev	*input;
124	void __iomem		*regs;
125	struct regmap		*pmu_map;
126	struct clk		*clk;
127	struct clk		*sclk;
128	unsigned int		irq;
129	unsigned int		tsirq;
130	unsigned int		delay;
131	struct regulator	*vdd;
132
133	struct completion	completion;
134
135	u32			value;
136	unsigned int            version;
137
138	bool			read_ts;
139	u32			ts_x;
140	u32			ts_y;
141
142	/*
143	 * Lock to protect from potential concurrent access to the
144	 * completion callback during a manual conversion. For this driver
145	 * a wait-callback is used to wait for the conversion result,
146	 * so in the meantime no other read request (or conversion start)
147	 * must be performed, otherwise it would interfere with the
148	 * current conversion result.
149	 */
150	struct mutex		lock;
151};
152
153struct exynos_adc_data {
154	int num_channels;
155	bool needs_sclk;
156	bool needs_adc_phy;
157	int phy_offset;
158	u32 mask;
159
160	void (*init_hw)(struct exynos_adc *info);
161	void (*exit_hw)(struct exynos_adc *info);
162	void (*clear_irq)(struct exynos_adc *info);
163	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
164};
165
166static void exynos_adc_unprepare_clk(struct exynos_adc *info)
167{
168	if (info->data->needs_sclk)
169		clk_unprepare(info->sclk);
170	clk_unprepare(info->clk);
171}
172
173static int exynos_adc_prepare_clk(struct exynos_adc *info)
174{
175	int ret;
176
177	ret = clk_prepare(info->clk);
178	if (ret) {
179		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
180		return ret;
181	}
182
183	if (info->data->needs_sclk) {
184		ret = clk_prepare(info->sclk);
185		if (ret) {
186			clk_unprepare(info->clk);
187			dev_err(info->dev,
188				"failed preparing sclk_adc clock: %d\n", ret);
189			return ret;
190		}
191	}
192
193	return 0;
194}
195
196static void exynos_adc_disable_clk(struct exynos_adc *info)
197{
198	if (info->data->needs_sclk)
199		clk_disable(info->sclk);
200	clk_disable(info->clk);
201}
202
203static int exynos_adc_enable_clk(struct exynos_adc *info)
204{
205	int ret;
206
207	ret = clk_enable(info->clk);
208	if (ret) {
209		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
210		return ret;
211	}
212
213	if (info->data->needs_sclk) {
214		ret = clk_enable(info->sclk);
215		if (ret) {
216			clk_disable(info->clk);
217			dev_err(info->dev,
218				"failed enabling sclk_adc clock: %d\n", ret);
219			return ret;
220		}
221	}
222
223	return 0;
224}
225
226static void exynos_adc_v1_init_hw(struct exynos_adc *info)
227{
228	u32 con1;
229
230	if (info->data->needs_adc_phy)
231		regmap_write(info->pmu_map, info->data->phy_offset, 1);
232
233	/* set default prescaler values and Enable prescaler */
234	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
235
236	/* Enable 12-bit ADC resolution */
237	con1 |= ADC_V1_CON_RES;
238	writel(con1, ADC_V1_CON(info->regs));
239
240	/* set touchscreen delay */
241	writel(info->delay, ADC_V1_DLY(info->regs));
242}
243
244static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
245{
246	u32 con;
247
248	if (info->data->needs_adc_phy)
249		regmap_write(info->pmu_map, info->data->phy_offset, 0);
250
251	con = readl(ADC_V1_CON(info->regs));
252	con |= ADC_V1_CON_STANDBY;
253	writel(con, ADC_V1_CON(info->regs));
254}
255
256static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
257{
258	writel(1, ADC_V1_INTCLR(info->regs));
259}
260
261static void exynos_adc_v1_start_conv(struct exynos_adc *info,
262				     unsigned long addr)
263{
264	u32 con1;
265
266	writel(addr, ADC_V1_MUX(info->regs));
267
268	con1 = readl(ADC_V1_CON(info->regs));
269	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
270}
271
272/* Exynos4212 and 4412 is like ADCv1 but with four channels only */
273static const struct exynos_adc_data exynos4212_adc_data = {
274	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
275	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
276	.needs_adc_phy	= true,
277	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
278
279	.init_hw	= exynos_adc_v1_init_hw,
280	.exit_hw	= exynos_adc_v1_exit_hw,
281	.clear_irq	= exynos_adc_v1_clear_irq,
282	.start_conv	= exynos_adc_v1_start_conv,
283};
284
285static const struct exynos_adc_data exynos_adc_v1_data = {
286	.num_channels	= MAX_ADC_V1_CHANNELS,
287	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
288	.needs_adc_phy	= true,
289	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
290
291	.init_hw	= exynos_adc_v1_init_hw,
292	.exit_hw	= exynos_adc_v1_exit_hw,
293	.clear_irq	= exynos_adc_v1_clear_irq,
294	.start_conv	= exynos_adc_v1_start_conv,
295};
296
297static const struct exynos_adc_data exynos_adc_s5pv210_data = {
298	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
299	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
300
301	.init_hw	= exynos_adc_v1_init_hw,
302	.exit_hw	= exynos_adc_v1_exit_hw,
303	.clear_irq	= exynos_adc_v1_clear_irq,
304	.start_conv	= exynos_adc_v1_start_conv,
305};
306
307static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
308					  unsigned long addr)
309{
310	u32 con1;
311
312	/* Enable 12 bit ADC resolution */
313	con1 = readl(ADC_V1_CON(info->regs));
314	con1 |= ADC_S3C2416_CON_RES_SEL;
315	writel(con1, ADC_V1_CON(info->regs));
316
317	/* Select channel for S3C2416 */
318	writel(addr, ADC_S3C2410_MUX(info->regs));
319
320	con1 = readl(ADC_V1_CON(info->regs));
321	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
322}
323
324static struct exynos_adc_data const exynos_adc_s3c2416_data = {
325	.num_channels	= MAX_ADC_V1_CHANNELS,
326	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
327
328	.init_hw	= exynos_adc_v1_init_hw,
329	.exit_hw	= exynos_adc_v1_exit_hw,
330	.start_conv	= exynos_adc_s3c2416_start_conv,
331};
332
333static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
334					  unsigned long addr)
335{
336	u32 con1;
337
338	/* Select channel for S3C2433 */
339	writel(addr, ADC_S3C2410_MUX(info->regs));
340
341	con1 = readl(ADC_V1_CON(info->regs));
342	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
343}
344
345static struct exynos_adc_data const exynos_adc_s3c2443_data = {
346	.num_channels	= MAX_ADC_V1_CHANNELS,
347	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
348
349	.init_hw	= exynos_adc_v1_init_hw,
350	.exit_hw	= exynos_adc_v1_exit_hw,
351	.start_conv	= exynos_adc_s3c2443_start_conv,
352};
353
354static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
355					  unsigned long addr)
356{
357	u32 con1;
358
359	con1 = readl(ADC_V1_CON(info->regs));
360	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
361	con1 |= ADC_S3C2410_CON_SELMUX(addr);
362	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
363}
364
365static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
366	.num_channels	= MAX_ADC_V1_CHANNELS,
367	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
368
369	.init_hw	= exynos_adc_v1_init_hw,
370	.exit_hw	= exynos_adc_v1_exit_hw,
371	.start_conv	= exynos_adc_s3c64xx_start_conv,
372};
373
374static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
375	.num_channels	= MAX_ADC_V1_CHANNELS,
376	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
377
378	.init_hw	= exynos_adc_v1_init_hw,
379	.exit_hw	= exynos_adc_v1_exit_hw,
380	.clear_irq	= exynos_adc_v1_clear_irq,
381	.start_conv	= exynos_adc_s3c64xx_start_conv,
382};
383
384static void exynos_adc_v2_init_hw(struct exynos_adc *info)
385{
386	u32 con1, con2;
387
388	if (info->data->needs_adc_phy)
389		regmap_write(info->pmu_map, info->data->phy_offset, 1);
390
391	con1 = ADC_V2_CON1_SOFT_RESET;
392	writel(con1, ADC_V2_CON1(info->regs));
393
394	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
395		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
396	writel(con2, ADC_V2_CON2(info->regs));
397
398	/* Enable interrupts */
399	writel(1, ADC_V2_INT_EN(info->regs));
400}
401
402static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
403{
404	u32 con;
405
406	if (info->data->needs_adc_phy)
407		regmap_write(info->pmu_map, info->data->phy_offset, 0);
408
409	con = readl(ADC_V2_CON1(info->regs));
410	con &= ~ADC_CON_EN_START;
411	writel(con, ADC_V2_CON1(info->regs));
412}
413
414static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
415{
416	writel(1, ADC_V2_INT_ST(info->regs));
417}
418
419static void exynos_adc_v2_start_conv(struct exynos_adc *info,
420				     unsigned long addr)
421{
422	u32 con1, con2;
423
424	con2 = readl(ADC_V2_CON2(info->regs));
425	con2 &= ~ADC_V2_CON2_ACH_MASK;
426	con2 |= ADC_V2_CON2_ACH_SEL(addr);
427	writel(con2, ADC_V2_CON2(info->regs));
428
429	con1 = readl(ADC_V2_CON1(info->regs));
430	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
431}
432
433static const struct exynos_adc_data exynos_adc_v2_data = {
434	.num_channels	= MAX_ADC_V2_CHANNELS,
435	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
436	.needs_adc_phy	= true,
437	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
438
439	.init_hw	= exynos_adc_v2_init_hw,
440	.exit_hw	= exynos_adc_v2_exit_hw,
441	.clear_irq	= exynos_adc_v2_clear_irq,
442	.start_conv	= exynos_adc_v2_start_conv,
443};
444
445static const struct exynos_adc_data exynos3250_adc_data = {
446	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
447	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
448	.needs_sclk	= true,
449	.needs_adc_phy	= true,
450	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
451
452	.init_hw	= exynos_adc_v2_init_hw,
453	.exit_hw	= exynos_adc_v2_exit_hw,
454	.clear_irq	= exynos_adc_v2_clear_irq,
455	.start_conv	= exynos_adc_v2_start_conv,
456};
457
458static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
459{
460	u32 con1, con2;
461
462	con1 = ADC_V2_CON1_SOFT_RESET;
463	writel(con1, ADC_V2_CON1(info->regs));
464
465	con2 = readl(ADC_V2_CON2(info->regs));
466	con2 &= ~ADC_V2_CON2_C_TIME(7);
467	con2 |= ADC_V2_CON2_C_TIME(0);
468	writel(con2, ADC_V2_CON2(info->regs));
469
470	/* Enable interrupts */
471	writel(1, ADC_V2_INT_EN(info->regs));
472}
473
474static const struct exynos_adc_data exynos7_adc_data = {
475	.num_channels	= MAX_ADC_V1_CHANNELS,
476	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
477
478	.init_hw	= exynos_adc_exynos7_init_hw,
479	.exit_hw	= exynos_adc_v2_exit_hw,
480	.clear_irq	= exynos_adc_v2_clear_irq,
481	.start_conv	= exynos_adc_v2_start_conv,
482};
483
484static const struct of_device_id exynos_adc_match[] = {
485	{
486		.compatible = "samsung,s3c2410-adc",
487		.data = &exynos_adc_s3c24xx_data,
488	}, {
489		.compatible = "samsung,s3c2416-adc",
490		.data = &exynos_adc_s3c2416_data,
491	}, {
492		.compatible = "samsung,s3c2440-adc",
493		.data = &exynos_adc_s3c24xx_data,
494	}, {
495		.compatible = "samsung,s3c2443-adc",
496		.data = &exynos_adc_s3c2443_data,
497	}, {
498		.compatible = "samsung,s3c6410-adc",
499		.data = &exynos_adc_s3c64xx_data,
500	}, {
501		.compatible = "samsung,s5pv210-adc",
502		.data = &exynos_adc_s5pv210_data,
503	}, {
504		.compatible = "samsung,exynos4212-adc",
505		.data = &exynos4212_adc_data,
506	}, {
507		.compatible = "samsung,exynos-adc-v1",
508		.data = &exynos_adc_v1_data,
509	}, {
510		.compatible = "samsung,exynos-adc-v2",
511		.data = &exynos_adc_v2_data,
512	}, {
513		.compatible = "samsung,exynos3250-adc",
514		.data = &exynos3250_adc_data,
515	}, {
516		.compatible = "samsung,exynos7-adc",
517		.data = &exynos7_adc_data,
518	},
519	{},
520};
521MODULE_DEVICE_TABLE(of, exynos_adc_match);
522
523static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
524{
525	const struct of_device_id *match;
526
527	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
528	return (struct exynos_adc_data *)match->data;
529}
530
531static int exynos_read_raw(struct iio_dev *indio_dev,
532				struct iio_chan_spec const *chan,
533				int *val,
534				int *val2,
535				long mask)
536{
537	struct exynos_adc *info = iio_priv(indio_dev);
538	unsigned long timeout;
539	int ret;
540
541	if (mask == IIO_CHAN_INFO_SCALE) {
542		ret = regulator_get_voltage(info->vdd);
543		if (ret < 0)
544			return ret;
545
546		/* Regulator voltage is in uV, but need mV */
547		*val = ret / 1000;
548		*val2 = info->data->mask;
549
550		return IIO_VAL_FRACTIONAL;
551	} else if (mask != IIO_CHAN_INFO_RAW) {
552		return -EINVAL;
553	}
554
555	mutex_lock(&info->lock);
556	reinit_completion(&info->completion);
557
558	/* Select the channel to be used and Trigger conversion */
559	if (info->data->start_conv)
560		info->data->start_conv(info, chan->address);
561
562	timeout = wait_for_completion_timeout(&info->completion,
563					      EXYNOS_ADC_TIMEOUT);
564	if (timeout == 0) {
565		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
566		if (info->data->init_hw)
567			info->data->init_hw(info);
568		ret = -ETIMEDOUT;
569	} else {
570		*val = info->value;
571		*val2 = 0;
572		ret = IIO_VAL_INT;
573	}
574
575	mutex_unlock(&info->lock);
576
577	return ret;
578}
579
580static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
581{
582	struct exynos_adc *info = iio_priv(indio_dev);
583	unsigned long timeout;
584	int ret;
585
586	mutex_lock(&info->lock);
587	info->read_ts = true;
588
589	reinit_completion(&info->completion);
590
591	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
592	       ADC_V1_TSC(info->regs));
593
594	/* Select the ts channel to be used and Trigger conversion */
595	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
596
597	timeout = wait_for_completion_timeout(&info->completion,
598					      EXYNOS_ADC_TIMEOUT);
599	if (timeout == 0) {
600		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
601		if (info->data->init_hw)
602			info->data->init_hw(info);
603		ret = -ETIMEDOUT;
604	} else {
605		*x = info->ts_x;
606		*y = info->ts_y;
607		ret = 0;
608	}
609
610	info->read_ts = false;
611	mutex_unlock(&info->lock);
612
613	return ret;
614}
615
616static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
617{
618	struct exynos_adc *info = dev_id;
619	u32 mask = info->data->mask;
620
621	/* Read value */
622	if (info->read_ts) {
623		info->ts_x = readl(ADC_V1_DATX(info->regs));
624		info->ts_y = readl(ADC_V1_DATY(info->regs));
625		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
626	} else {
627		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
628	}
629
630	/* clear irq */
631	if (info->data->clear_irq)
632		info->data->clear_irq(info);
633
634	complete(&info->completion);
635
636	return IRQ_HANDLED;
637}
638
639/*
640 * Here we (ab)use a threaded interrupt handler to stay running
641 * for as long as the touchscreen remains pressed, we report
642 * a new event with the latest data and then sleep until the
643 * next timer tick. This mirrors the behavior of the old
644 * driver, with much less code.
645 */
646static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
647{
648	struct exynos_adc *info = dev_id;
649	struct iio_dev *dev = dev_get_drvdata(info->dev);
650	u32 x, y;
651	bool pressed;
652	int ret;
653
654	while (info->input->users) {
655		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
656		if (ret == -ETIMEDOUT)
657			break;
658
659		pressed = x & y & ADC_DATX_PRESSED;
660		if (!pressed) {
661			input_report_key(info->input, BTN_TOUCH, 0);
662			input_sync(info->input);
663			break;
664		}
665
666		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
667		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
668		input_report_key(info->input, BTN_TOUCH, 1);
669		input_sync(info->input);
670
671		usleep_range(1000, 1100);
672	}
673
674	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
675
676	return IRQ_HANDLED;
677}
678
679static int exynos_adc_reg_access(struct iio_dev *indio_dev,
680			      unsigned reg, unsigned writeval,
681			      unsigned *readval)
682{
683	struct exynos_adc *info = iio_priv(indio_dev);
684
685	if (readval == NULL)
686		return -EINVAL;
687
688	*readval = readl(info->regs + reg);
689
690	return 0;
691}
692
693static const struct iio_info exynos_adc_iio_info = {
694	.read_raw = &exynos_read_raw,
695	.debugfs_reg_access = &exynos_adc_reg_access,
696};
697
698#define ADC_CHANNEL(_index, _id) {			\
699	.type = IIO_VOLTAGE,				\
700	.indexed = 1,					\
701	.channel = _index,				\
702	.address = _index,				\
703	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
704	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),	\
705	.datasheet_name = _id,				\
706}
707
708static const struct iio_chan_spec exynos_adc_iio_channels[] = {
709	ADC_CHANNEL(0, "adc0"),
710	ADC_CHANNEL(1, "adc1"),
711	ADC_CHANNEL(2, "adc2"),
712	ADC_CHANNEL(3, "adc3"),
713	ADC_CHANNEL(4, "adc4"),
714	ADC_CHANNEL(5, "adc5"),
715	ADC_CHANNEL(6, "adc6"),
716	ADC_CHANNEL(7, "adc7"),
717	ADC_CHANNEL(8, "adc8"),
718	ADC_CHANNEL(9, "adc9"),
719};
720
721static int exynos_adc_remove_devices(struct device *dev, void *c)
722{
723	struct platform_device *pdev = to_platform_device(dev);
724
725	platform_device_unregister(pdev);
726
727	return 0;
728}
729
730static int exynos_adc_ts_open(struct input_dev *dev)
731{
732	struct exynos_adc *info = input_get_drvdata(dev);
733
734	enable_irq(info->tsirq);
735
736	return 0;
737}
738
739static void exynos_adc_ts_close(struct input_dev *dev)
740{
741	struct exynos_adc *info = input_get_drvdata(dev);
742
743	disable_irq(info->tsirq);
744}
745
746static int exynos_adc_ts_init(struct exynos_adc *info)
747{
748	int ret;
749
750	if (info->tsirq <= 0)
751		return -ENODEV;
752
753	info->input = input_allocate_device();
754	if (!info->input)
755		return -ENOMEM;
756
757	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
758	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
759
760	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
761	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
762
763	info->input->name = "S3C24xx TouchScreen";
764	info->input->id.bustype = BUS_HOST;
765	info->input->open = exynos_adc_ts_open;
766	info->input->close = exynos_adc_ts_close;
767
768	input_set_drvdata(info->input, info);
769
770	ret = input_register_device(info->input);
771	if (ret) {
772		input_free_device(info->input);
773		return ret;
774	}
775
776	disable_irq(info->tsirq);
777	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
778				   IRQF_ONESHOT, "touchscreen", info);
779	if (ret)
780		input_unregister_device(info->input);
781
782	return ret;
783}
784
785static int exynos_adc_probe(struct platform_device *pdev)
786{
787	struct exynos_adc *info = NULL;
788	struct device_node *np = pdev->dev.of_node;
789	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
790	struct iio_dev *indio_dev = NULL;
791	bool has_ts = false;
792	int ret = -ENODEV;
793	int irq;
794
795	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
796	if (!indio_dev) {
797		dev_err(&pdev->dev, "failed allocating iio device\n");
798		return -ENOMEM;
799	}
800
801	info = iio_priv(indio_dev);
802
803	info->data = exynos_adc_get_data(pdev);
804	if (!info->data) {
805		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
806		return -EINVAL;
807	}
808
809	info->regs = devm_platform_ioremap_resource(pdev, 0);
810	if (IS_ERR(info->regs))
811		return PTR_ERR(info->regs);
812
813
814	if (info->data->needs_adc_phy) {
815		info->pmu_map = syscon_regmap_lookup_by_phandle(
816					pdev->dev.of_node,
817					"samsung,syscon-phandle");
818		if (IS_ERR(info->pmu_map)) {
819			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
820			return PTR_ERR(info->pmu_map);
821		}
822	}
823
824	/* leave out any TS related code if unreachable */
825	if (IS_REACHABLE(CONFIG_INPUT)) {
826		has_ts = of_property_read_bool(pdev->dev.of_node,
827					       "has-touchscreen") || pdata;
828	}
829
830	irq = platform_get_irq(pdev, 0);
831	if (irq < 0)
832		return irq;
833	info->irq = irq;
834
835	if (has_ts) {
836		irq = platform_get_irq(pdev, 1);
837		if (irq == -EPROBE_DEFER)
838			return irq;
839
840		info->tsirq = irq;
841	} else {
842		info->tsirq = -1;
843	}
844
845	info->dev = &pdev->dev;
846
847	init_completion(&info->completion);
848
849	info->clk = devm_clk_get(&pdev->dev, "adc");
850	if (IS_ERR(info->clk)) {
851		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
852							PTR_ERR(info->clk));
853		return PTR_ERR(info->clk);
854	}
855
856	if (info->data->needs_sclk) {
857		info->sclk = devm_clk_get(&pdev->dev, "sclk");
858		if (IS_ERR(info->sclk)) {
859			dev_err(&pdev->dev,
860				"failed getting sclk clock, err = %ld\n",
861				PTR_ERR(info->sclk));
862			return PTR_ERR(info->sclk);
863		}
864	}
865
866	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
867	if (IS_ERR(info->vdd))
868		return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
869				     "failed getting regulator");
870
871	ret = regulator_enable(info->vdd);
872	if (ret)
873		return ret;
874
875	ret = exynos_adc_prepare_clk(info);
876	if (ret)
877		goto err_disable_reg;
878
879	ret = exynos_adc_enable_clk(info);
880	if (ret)
881		goto err_unprepare_clk;
882
883	platform_set_drvdata(pdev, indio_dev);
884
885	indio_dev->name = dev_name(&pdev->dev);
886	indio_dev->info = &exynos_adc_iio_info;
887	indio_dev->modes = INDIO_DIRECT_MODE;
888	indio_dev->channels = exynos_adc_iio_channels;
889	indio_dev->num_channels = info->data->num_channels;
890
891	mutex_init(&info->lock);
892
893	ret = request_irq(info->irq, exynos_adc_isr,
894					0, dev_name(&pdev->dev), info);
895	if (ret < 0) {
896		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
897							info->irq);
898		goto err_disable_clk;
899	}
900
901	ret = iio_device_register(indio_dev);
902	if (ret)
903		goto err_irq;
904
905	if (info->data->init_hw)
906		info->data->init_hw(info);
907
908	if (pdata)
909		info->delay = pdata->delay;
910	else
911		info->delay = 10000;
912
913	if (has_ts)
914		ret = exynos_adc_ts_init(info);
915	if (ret)
916		goto err_iio;
917
918	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
919	if (ret < 0) {
920		dev_err(&pdev->dev, "failed adding child nodes\n");
921		goto err_of_populate;
922	}
923
924	return 0;
925
926err_of_populate:
927	device_for_each_child(&indio_dev->dev, NULL,
928				exynos_adc_remove_devices);
929	if (has_ts) {
930		input_unregister_device(info->input);
931		free_irq(info->tsirq, info);
932	}
933err_iio:
934	iio_device_unregister(indio_dev);
935err_irq:
936	free_irq(info->irq, info);
937err_disable_clk:
938	if (info->data->exit_hw)
939		info->data->exit_hw(info);
940	exynos_adc_disable_clk(info);
941err_unprepare_clk:
942	exynos_adc_unprepare_clk(info);
943err_disable_reg:
944	regulator_disable(info->vdd);
945	return ret;
946}
947
948static int exynos_adc_remove(struct platform_device *pdev)
949{
950	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
951	struct exynos_adc *info = iio_priv(indio_dev);
952
953	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
954		free_irq(info->tsirq, info);
955		input_unregister_device(info->input);
956	}
957	device_for_each_child(&indio_dev->dev, NULL,
958				exynos_adc_remove_devices);
959	iio_device_unregister(indio_dev);
960	free_irq(info->irq, info);
961	if (info->data->exit_hw)
962		info->data->exit_hw(info);
963	exynos_adc_disable_clk(info);
964	exynos_adc_unprepare_clk(info);
965	regulator_disable(info->vdd);
966
967	return 0;
968}
969
970#ifdef CONFIG_PM_SLEEP
971static int exynos_adc_suspend(struct device *dev)
972{
973	struct iio_dev *indio_dev = dev_get_drvdata(dev);
974	struct exynos_adc *info = iio_priv(indio_dev);
975
976	if (info->data->exit_hw)
977		info->data->exit_hw(info);
978	exynos_adc_disable_clk(info);
979	regulator_disable(info->vdd);
980
981	return 0;
982}
983
984static int exynos_adc_resume(struct device *dev)
985{
986	struct iio_dev *indio_dev = dev_get_drvdata(dev);
987	struct exynos_adc *info = iio_priv(indio_dev);
988	int ret;
989
990	ret = regulator_enable(info->vdd);
991	if (ret)
992		return ret;
993
994	ret = exynos_adc_enable_clk(info);
995	if (ret)
996		return ret;
997
998	if (info->data->init_hw)
999		info->data->init_hw(info);
1000
1001	return 0;
1002}
1003#endif
1004
1005static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
1006			exynos_adc_suspend,
1007			exynos_adc_resume);
1008
1009static struct platform_driver exynos_adc_driver = {
1010	.probe		= exynos_adc_probe,
1011	.remove		= exynos_adc_remove,
1012	.driver		= {
1013		.name	= "exynos-adc",
1014		.of_match_table = exynos_adc_match,
1015		.pm	= &exynos_adc_pm_ops,
1016	},
1017};
1018
1019module_platform_driver(exynos_adc_driver);
1020
1021MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1022MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1023MODULE_LICENSE("GPL v2");
1024