1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Analog Devices AD7768-1 SPI ADC driver 4 * 5 * Copyright 2017 Analog Devices Inc. 6 */ 7#include <linux/bitfield.h> 8#include <linux/clk.h> 9#include <linux/delay.h> 10#include <linux/device.h> 11#include <linux/err.h> 12#include <linux/gpio/consumer.h> 13#include <linux/kernel.h> 14#include <linux/module.h> 15#include <linux/regulator/consumer.h> 16#include <linux/sysfs.h> 17#include <linux/spi/spi.h> 18 19#include <linux/iio/buffer.h> 20#include <linux/iio/iio.h> 21#include <linux/iio/sysfs.h> 22#include <linux/iio/trigger.h> 23#include <linux/iio/triggered_buffer.h> 24#include <linux/iio/trigger_consumer.h> 25 26/* AD7768 registers definition */ 27#define AD7768_REG_CHIP_TYPE 0x3 28#define AD7768_REG_PROD_ID_L 0x4 29#define AD7768_REG_PROD_ID_H 0x5 30#define AD7768_REG_CHIP_GRADE 0x6 31#define AD7768_REG_SCRATCH_PAD 0x0A 32#define AD7768_REG_VENDOR_L 0x0C 33#define AD7768_REG_VENDOR_H 0x0D 34#define AD7768_REG_INTERFACE_FORMAT 0x14 35#define AD7768_REG_POWER_CLOCK 0x15 36#define AD7768_REG_ANALOG 0x16 37#define AD7768_REG_ANALOG2 0x17 38#define AD7768_REG_CONVERSION 0x18 39#define AD7768_REG_DIGITAL_FILTER 0x19 40#define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A 41#define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B 42#define AD7768_REG_DUTY_CYCLE_RATIO 0x1C 43#define AD7768_REG_SYNC_RESET 0x1D 44#define AD7768_REG_GPIO_CONTROL 0x1E 45#define AD7768_REG_GPIO_WRITE 0x1F 46#define AD7768_REG_GPIO_READ 0x20 47#define AD7768_REG_OFFSET_HI 0x21 48#define AD7768_REG_OFFSET_MID 0x22 49#define AD7768_REG_OFFSET_LO 0x23 50#define AD7768_REG_GAIN_HI 0x24 51#define AD7768_REG_GAIN_MID 0x25 52#define AD7768_REG_GAIN_LO 0x26 53#define AD7768_REG_SPI_DIAG_ENABLE 0x28 54#define AD7768_REG_ADC_DIAG_ENABLE 0x29 55#define AD7768_REG_DIG_DIAG_ENABLE 0x2A 56#define AD7768_REG_ADC_DATA 0x2C 57#define AD7768_REG_MASTER_STATUS 0x2D 58#define AD7768_REG_SPI_DIAG_STATUS 0x2E 59#define AD7768_REG_ADC_DIAG_STATUS 0x2F 60#define AD7768_REG_DIG_DIAG_STATUS 0x30 61#define AD7768_REG_MCLK_COUNTER 0x31 62 63/* AD7768_REG_POWER_CLOCK */ 64#define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4) 65#define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x) 66#define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0) 67#define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x) 68 69/* AD7768_REG_DIGITAL_FILTER */ 70#define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4) 71#define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x) 72#define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0) 73#define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x) 74 75/* AD7768_REG_CONVERSION */ 76#define AD7768_CONV_MODE_MSK GENMASK(2, 0) 77#define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x) 78 79#define AD7768_RD_FLAG_MSK(x) (BIT(6) | ((x) & 0x3F)) 80#define AD7768_WR_FLAG_MSK(x) ((x) & 0x3F) 81 82enum ad7768_conv_mode { 83 AD7768_CONTINUOUS, 84 AD7768_ONE_SHOT, 85 AD7768_SINGLE, 86 AD7768_PERIODIC, 87 AD7768_STANDBY 88}; 89 90enum ad7768_pwrmode { 91 AD7768_ECO_MODE = 0, 92 AD7768_MED_MODE = 2, 93 AD7768_FAST_MODE = 3 94}; 95 96enum ad7768_mclk_div { 97 AD7768_MCLK_DIV_16, 98 AD7768_MCLK_DIV_8, 99 AD7768_MCLK_DIV_4, 100 AD7768_MCLK_DIV_2 101}; 102 103enum ad7768_dec_rate { 104 AD7768_DEC_RATE_32 = 0, 105 AD7768_DEC_RATE_64 = 1, 106 AD7768_DEC_RATE_128 = 2, 107 AD7768_DEC_RATE_256 = 3, 108 AD7768_DEC_RATE_512 = 4, 109 AD7768_DEC_RATE_1024 = 5, 110 AD7768_DEC_RATE_8 = 9, 111 AD7768_DEC_RATE_16 = 10 112}; 113 114struct ad7768_clk_configuration { 115 enum ad7768_mclk_div mclk_div; 116 enum ad7768_dec_rate dec_rate; 117 unsigned int clk_div; 118 enum ad7768_pwrmode pwrmode; 119}; 120 121static const struct ad7768_clk_configuration ad7768_clk_config[] = { 122 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_8, 16, AD7768_FAST_MODE }, 123 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_16, 32, AD7768_FAST_MODE }, 124 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_32, 64, AD7768_FAST_MODE }, 125 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_64, 128, AD7768_FAST_MODE }, 126 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_128, 256, AD7768_FAST_MODE }, 127 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_128, 512, AD7768_MED_MODE }, 128 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_256, 1024, AD7768_MED_MODE }, 129 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_512, 2048, AD7768_MED_MODE }, 130 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_1024, 4096, AD7768_MED_MODE }, 131 { AD7768_MCLK_DIV_8, AD7768_DEC_RATE_1024, 8192, AD7768_MED_MODE }, 132 { AD7768_MCLK_DIV_16, AD7768_DEC_RATE_1024, 16384, AD7768_ECO_MODE }, 133}; 134 135static const struct iio_chan_spec ad7768_channels[] = { 136 { 137 .type = IIO_VOLTAGE, 138 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 139 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), 140 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 141 .indexed = 1, 142 .channel = 0, 143 .scan_index = 0, 144 .scan_type = { 145 .sign = 'u', 146 .realbits = 24, 147 .storagebits = 32, 148 .shift = 8, 149 .endianness = IIO_BE, 150 }, 151 }, 152}; 153 154struct ad7768_state { 155 struct spi_device *spi; 156 struct regulator *vref; 157 struct mutex lock; 158 struct clk *mclk; 159 unsigned int mclk_freq; 160 unsigned int samp_freq; 161 struct completion completion; 162 struct iio_trigger *trig; 163 struct gpio_desc *gpio_sync_in; 164 /* 165 * DMA (thus cache coherency maintenance) requires the 166 * transfer buffers to live in their own cache lines. 167 */ 168 union { 169 struct { 170 __be32 chan; 171 s64 timestamp; 172 } scan; 173 __be32 d32; 174 u8 d8[2]; 175 } data ____cacheline_aligned; 176}; 177 178static int ad7768_spi_reg_read(struct ad7768_state *st, unsigned int addr, 179 unsigned int len) 180{ 181 unsigned int shift; 182 int ret; 183 184 shift = 32 - (8 * len); 185 st->data.d8[0] = AD7768_RD_FLAG_MSK(addr); 186 187 ret = spi_write_then_read(st->spi, st->data.d8, 1, 188 &st->data.d32, len); 189 if (ret < 0) 190 return ret; 191 192 return (be32_to_cpu(st->data.d32) >> shift); 193} 194 195static int ad7768_spi_reg_write(struct ad7768_state *st, 196 unsigned int addr, 197 unsigned int val) 198{ 199 st->data.d8[0] = AD7768_WR_FLAG_MSK(addr); 200 st->data.d8[1] = val & 0xFF; 201 202 return spi_write(st->spi, st->data.d8, 2); 203} 204 205static int ad7768_set_mode(struct ad7768_state *st, 206 enum ad7768_conv_mode mode) 207{ 208 int regval; 209 210 regval = ad7768_spi_reg_read(st, AD7768_REG_CONVERSION, 1); 211 if (regval < 0) 212 return regval; 213 214 regval &= ~AD7768_CONV_MODE_MSK; 215 regval |= AD7768_CONV_MODE(mode); 216 217 return ad7768_spi_reg_write(st, AD7768_REG_CONVERSION, regval); 218} 219 220static int ad7768_scan_direct(struct iio_dev *indio_dev) 221{ 222 struct ad7768_state *st = iio_priv(indio_dev); 223 int readval, ret; 224 225 reinit_completion(&st->completion); 226 227 ret = ad7768_set_mode(st, AD7768_ONE_SHOT); 228 if (ret < 0) 229 return ret; 230 231 ret = wait_for_completion_timeout(&st->completion, 232 msecs_to_jiffies(1000)); 233 if (!ret) 234 return -ETIMEDOUT; 235 236 readval = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 237 if (readval < 0) 238 return readval; 239 /* 240 * Any SPI configuration of the AD7768-1 can only be 241 * performed in continuous conversion mode. 242 */ 243 ret = ad7768_set_mode(st, AD7768_CONTINUOUS); 244 if (ret < 0) 245 return ret; 246 247 return readval; 248} 249 250static int ad7768_reg_access(struct iio_dev *indio_dev, 251 unsigned int reg, 252 unsigned int writeval, 253 unsigned int *readval) 254{ 255 struct ad7768_state *st = iio_priv(indio_dev); 256 int ret; 257 258 mutex_lock(&st->lock); 259 if (readval) { 260 ret = ad7768_spi_reg_read(st, reg, 1); 261 if (ret < 0) 262 goto err_unlock; 263 *readval = ret; 264 ret = 0; 265 } else { 266 ret = ad7768_spi_reg_write(st, reg, writeval); 267 } 268err_unlock: 269 mutex_unlock(&st->lock); 270 271 return ret; 272} 273 274static int ad7768_set_dig_fil(struct ad7768_state *st, 275 enum ad7768_dec_rate dec_rate) 276{ 277 unsigned int mode; 278 int ret; 279 280 if (dec_rate == AD7768_DEC_RATE_8 || dec_rate == AD7768_DEC_RATE_16) 281 mode = AD7768_DIG_FIL_FIL(dec_rate); 282 else 283 mode = AD7768_DIG_FIL_DEC_RATE(dec_rate); 284 285 ret = ad7768_spi_reg_write(st, AD7768_REG_DIGITAL_FILTER, mode); 286 if (ret < 0) 287 return ret; 288 289 /* A sync-in pulse is required every time the filter dec rate changes */ 290 gpiod_set_value(st->gpio_sync_in, 1); 291 gpiod_set_value(st->gpio_sync_in, 0); 292 293 return 0; 294} 295 296static int ad7768_set_freq(struct ad7768_state *st, 297 unsigned int freq) 298{ 299 unsigned int diff_new, diff_old, pwr_mode, i, idx; 300 int res, ret; 301 302 diff_old = U32_MAX; 303 idx = 0; 304 305 res = DIV_ROUND_CLOSEST(st->mclk_freq, freq); 306 307 /* Find the closest match for the desired sampling frequency */ 308 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 309 diff_new = abs(res - ad7768_clk_config[i].clk_div); 310 if (diff_new < diff_old) { 311 diff_old = diff_new; 312 idx = i; 313 } 314 } 315 316 /* 317 * Set both the mclk_div and pwrmode with a single write to the 318 * POWER_CLOCK register 319 */ 320 pwr_mode = AD7768_PWR_MCLK_DIV(ad7768_clk_config[idx].mclk_div) | 321 AD7768_PWR_PWRMODE(ad7768_clk_config[idx].pwrmode); 322 ret = ad7768_spi_reg_write(st, AD7768_REG_POWER_CLOCK, pwr_mode); 323 if (ret < 0) 324 return ret; 325 326 ret = ad7768_set_dig_fil(st, ad7768_clk_config[idx].dec_rate); 327 if (ret < 0) 328 return ret; 329 330 st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq, 331 ad7768_clk_config[idx].clk_div); 332 333 return 0; 334} 335 336static ssize_t ad7768_sampling_freq_avail(struct device *dev, 337 struct device_attribute *attr, 338 char *buf) 339{ 340 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 341 struct ad7768_state *st = iio_priv(indio_dev); 342 unsigned int freq; 343 int i, len = 0; 344 345 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 346 freq = DIV_ROUND_CLOSEST(st->mclk_freq, 347 ad7768_clk_config[i].clk_div); 348 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", freq); 349 } 350 351 buf[len - 1] = '\n'; 352 353 return len; 354} 355 356static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(ad7768_sampling_freq_avail); 357 358static int ad7768_read_raw(struct iio_dev *indio_dev, 359 struct iio_chan_spec const *chan, 360 int *val, int *val2, long info) 361{ 362 struct ad7768_state *st = iio_priv(indio_dev); 363 int scale_uv, ret; 364 365 switch (info) { 366 case IIO_CHAN_INFO_RAW: 367 ret = iio_device_claim_direct_mode(indio_dev); 368 if (ret) 369 return ret; 370 371 ret = ad7768_scan_direct(indio_dev); 372 if (ret >= 0) 373 *val = ret; 374 375 iio_device_release_direct_mode(indio_dev); 376 if (ret < 0) 377 return ret; 378 379 return IIO_VAL_INT; 380 381 case IIO_CHAN_INFO_SCALE: 382 scale_uv = regulator_get_voltage(st->vref); 383 if (scale_uv < 0) 384 return scale_uv; 385 386 *val = (scale_uv * 2) / 1000; 387 *val2 = chan->scan_type.realbits; 388 389 return IIO_VAL_FRACTIONAL_LOG2; 390 391 case IIO_CHAN_INFO_SAMP_FREQ: 392 *val = st->samp_freq; 393 394 return IIO_VAL_INT; 395 } 396 397 return -EINVAL; 398} 399 400static int ad7768_write_raw(struct iio_dev *indio_dev, 401 struct iio_chan_spec const *chan, 402 int val, int val2, long info) 403{ 404 struct ad7768_state *st = iio_priv(indio_dev); 405 406 switch (info) { 407 case IIO_CHAN_INFO_SAMP_FREQ: 408 return ad7768_set_freq(st, val); 409 default: 410 return -EINVAL; 411 } 412} 413 414static struct attribute *ad7768_attributes[] = { 415 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 416 NULL 417}; 418 419static const struct attribute_group ad7768_group = { 420 .attrs = ad7768_attributes, 421}; 422 423static const struct iio_info ad7768_info = { 424 .attrs = &ad7768_group, 425 .read_raw = &ad7768_read_raw, 426 .write_raw = &ad7768_write_raw, 427 .debugfs_reg_access = &ad7768_reg_access, 428}; 429 430static int ad7768_setup(struct ad7768_state *st) 431{ 432 int ret; 433 434 /* 435 * Two writes to the SPI_RESET[1:0] bits are required to initiate 436 * a software reset. The bits must first be set to 11, and then 437 * to 10. When the sequence is detected, the reset occurs. 438 * See the datasheet, page 70. 439 */ 440 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x3); 441 if (ret) 442 return ret; 443 444 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x2); 445 if (ret) 446 return ret; 447 448 st->gpio_sync_in = devm_gpiod_get(&st->spi->dev, "adi,sync-in", 449 GPIOD_OUT_LOW); 450 if (IS_ERR(st->gpio_sync_in)) 451 return PTR_ERR(st->gpio_sync_in); 452 453 /* Set the default sampling frequency to 32000 kSPS */ 454 return ad7768_set_freq(st, 32000); 455} 456 457static irqreturn_t ad7768_trigger_handler(int irq, void *p) 458{ 459 struct iio_poll_func *pf = p; 460 struct iio_dev *indio_dev = pf->indio_dev; 461 struct ad7768_state *st = iio_priv(indio_dev); 462 int ret; 463 464 mutex_lock(&st->lock); 465 466 ret = spi_read(st->spi, &st->data.scan.chan, 3); 467 if (ret < 0) 468 goto err_unlock; 469 470 iio_push_to_buffers_with_timestamp(indio_dev, &st->data.scan, 471 iio_get_time_ns(indio_dev)); 472 473err_unlock: 474 iio_trigger_notify_done(indio_dev->trig); 475 mutex_unlock(&st->lock); 476 477 return IRQ_HANDLED; 478} 479 480static irqreturn_t ad7768_interrupt(int irq, void *dev_id) 481{ 482 struct iio_dev *indio_dev = dev_id; 483 struct ad7768_state *st = iio_priv(indio_dev); 484 485 if (iio_buffer_enabled(indio_dev)) 486 iio_trigger_poll(st->trig); 487 else 488 complete(&st->completion); 489 490 return IRQ_HANDLED; 491}; 492 493static int ad7768_buffer_postenable(struct iio_dev *indio_dev) 494{ 495 struct ad7768_state *st = iio_priv(indio_dev); 496 497 /* 498 * Write a 1 to the LSB of the INTERFACE_FORMAT register to enter 499 * continuous read mode. Subsequent data reads do not require an 500 * initial 8-bit write to query the ADC_DATA register. 501 */ 502 return ad7768_spi_reg_write(st, AD7768_REG_INTERFACE_FORMAT, 0x01); 503} 504 505static int ad7768_buffer_predisable(struct iio_dev *indio_dev) 506{ 507 struct ad7768_state *st = iio_priv(indio_dev); 508 509 /* 510 * To exit continuous read mode, perform a single read of the ADC_DATA 511 * reg (0x2C), which allows further configuration of the device. 512 */ 513 return ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 514} 515 516static const struct iio_buffer_setup_ops ad7768_buffer_ops = { 517 .postenable = &ad7768_buffer_postenable, 518 .predisable = &ad7768_buffer_predisable, 519}; 520 521static const struct iio_trigger_ops ad7768_trigger_ops = { 522 .validate_device = iio_trigger_validate_own_device, 523}; 524 525static void ad7768_regulator_disable(void *data) 526{ 527 struct ad7768_state *st = data; 528 529 regulator_disable(st->vref); 530} 531 532static void ad7768_clk_disable(void *data) 533{ 534 struct ad7768_state *st = data; 535 536 clk_disable_unprepare(st->mclk); 537} 538 539static int ad7768_probe(struct spi_device *spi) 540{ 541 struct ad7768_state *st; 542 struct iio_dev *indio_dev; 543 int ret; 544 545 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 546 if (!indio_dev) 547 return -ENOMEM; 548 549 st = iio_priv(indio_dev); 550 st->spi = spi; 551 552 st->vref = devm_regulator_get(&spi->dev, "vref"); 553 if (IS_ERR(st->vref)) 554 return PTR_ERR(st->vref); 555 556 ret = regulator_enable(st->vref); 557 if (ret) { 558 dev_err(&spi->dev, "Failed to enable specified vref supply\n"); 559 return ret; 560 } 561 562 ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st); 563 if (ret) 564 return ret; 565 566 st->mclk = devm_clk_get(&spi->dev, "mclk"); 567 if (IS_ERR(st->mclk)) 568 return PTR_ERR(st->mclk); 569 570 ret = clk_prepare_enable(st->mclk); 571 if (ret < 0) 572 return ret; 573 574 ret = devm_add_action_or_reset(&spi->dev, ad7768_clk_disable, st); 575 if (ret) 576 return ret; 577 578 st->mclk_freq = clk_get_rate(st->mclk); 579 580 spi_set_drvdata(spi, indio_dev); 581 mutex_init(&st->lock); 582 583 indio_dev->channels = ad7768_channels; 584 indio_dev->num_channels = ARRAY_SIZE(ad7768_channels); 585 indio_dev->name = spi_get_device_id(spi)->name; 586 indio_dev->info = &ad7768_info; 587 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED; 588 589 ret = ad7768_setup(st); 590 if (ret < 0) { 591 dev_err(&spi->dev, "AD7768 setup failed\n"); 592 return ret; 593 } 594 595 st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d", 596 indio_dev->name, indio_dev->id); 597 if (!st->trig) 598 return -ENOMEM; 599 600 st->trig->ops = &ad7768_trigger_ops; 601 st->trig->dev.parent = &spi->dev; 602 iio_trigger_set_drvdata(st->trig, indio_dev); 603 ret = devm_iio_trigger_register(&spi->dev, st->trig); 604 if (ret) 605 return ret; 606 607 indio_dev->trig = iio_trigger_get(st->trig); 608 609 init_completion(&st->completion); 610 611 ret = devm_request_irq(&spi->dev, spi->irq, 612 &ad7768_interrupt, 613 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 614 indio_dev->name, indio_dev); 615 if (ret) 616 return ret; 617 618 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, 619 &iio_pollfunc_store_time, 620 &ad7768_trigger_handler, 621 &ad7768_buffer_ops); 622 if (ret) 623 return ret; 624 625 return devm_iio_device_register(&spi->dev, indio_dev); 626} 627 628static const struct spi_device_id ad7768_id_table[] = { 629 { "ad7768-1", 0 }, 630 {} 631}; 632MODULE_DEVICE_TABLE(spi, ad7768_id_table); 633 634static const struct of_device_id ad7768_of_match[] = { 635 { .compatible = "adi,ad7768-1" }, 636 { }, 637}; 638MODULE_DEVICE_TABLE(of, ad7768_of_match); 639 640static struct spi_driver ad7768_driver = { 641 .driver = { 642 .name = "ad7768-1", 643 .of_match_table = ad7768_of_match, 644 }, 645 .probe = ad7768_probe, 646 .id_table = ad7768_id_table, 647}; 648module_spi_driver(ad7768_driver); 649 650MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>"); 651MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver"); 652MODULE_LICENSE("GPL v2"); 653