1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
4 *
5 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
6 *
7 * See industrialio/accels/sca3000.h for comments.
8 */
9
10#include <linux/interrupt.h>
11#include <linux/fs.h>
12#include <linux/device.h>
13#include <linux/slab.h>
14#include <linux/kernel.h>
15#include <linux/spi/spi.h>
16#include <linux/sysfs.h>
17#include <linux/module.h>
18#include <linux/uaccess.h>
19#include <linux/iio/iio.h>
20#include <linux/iio/sysfs.h>
21#include <linux/iio/events.h>
22#include <linux/iio/buffer.h>
23#include <linux/iio/kfifo_buf.h>
24
25#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
26#define SCA3000_READ_REG(a) ((a) << 2)
27
28#define SCA3000_REG_REVID_ADDR				0x00
29#define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
30#define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
31
32#define SCA3000_REG_STATUS_ADDR				0x02
33#define   SCA3000_LOCKED				BIT(5)
34#define   SCA3000_EEPROM_CS_ERROR			BIT(1)
35#define   SCA3000_SPI_FRAME_ERROR			BIT(0)
36
37/* All reads done using register decrement so no need to directly access LSBs */
38#define SCA3000_REG_X_MSB_ADDR				0x05
39#define SCA3000_REG_Y_MSB_ADDR				0x07
40#define SCA3000_REG_Z_MSB_ADDR				0x09
41
42#define SCA3000_REG_RING_OUT_ADDR			0x0f
43
44/* Temp read untested - the e05 doesn't have the sensor */
45#define SCA3000_REG_TEMP_MSB_ADDR			0x13
46
47#define SCA3000_REG_MODE_ADDR				0x14
48#define SCA3000_MODE_PROT_MASK				0x28
49#define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
50#define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
51
52/*
53 * Free fall detection triggers an interrupt if the acceleration
54 * is below a threshold for equivalent of 25cm drop
55 */
56#define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
57#define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
58#define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
59#define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
60
61/*
62 * In motion detection mode the accelerations are band pass filtered
63 * (approx 1 - 25Hz) and then a programmable threshold used to trigger
64 * and interrupt.
65 */
66#define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
67#define   SCA3000_REG_MODE_MODE_MASK			0x03
68
69#define SCA3000_REG_BUF_COUNT_ADDR			0x15
70
71#define SCA3000_REG_INT_STATUS_ADDR			0x16
72#define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
73#define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
74
75#define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
76#define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
77#define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
78#define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
79
80/* Used to allow access to multiplexed registers */
81#define SCA3000_REG_CTRL_SEL_ADDR			0x18
82/* Only available for SCA3000-D03 and SCA3000-D01 */
83#define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
84#define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
85#define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
86#define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
87#define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
88/*
89 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
90 * will not function
91 */
92#define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
93
94#define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
95#define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
96#define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
97#define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
98#define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
99#define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
100#define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
101
102
103/*
104 * Control which motion detector interrupts are on.
105 * For now only OR combinations are supported.
106 */
107#define SCA3000_MD_CTRL_PROT_MASK			0xC0
108#define SCA3000_MD_CTRL_OR_Y				BIT(0)
109#define SCA3000_MD_CTRL_OR_X				BIT(1)
110#define SCA3000_MD_CTRL_OR_Z				BIT(2)
111/* Currently unsupported */
112#define SCA3000_MD_CTRL_AND_Y				BIT(3)
113#define SCA3000_MD_CTRL_AND_X				BIT(4)
114#define SCA3000_MD_CTRL_AND_Z				BIT(5)
115
116/*
117 * Some control registers of complex access methods requiring this register to
118 * be used to remove a lock.
119 */
120#define SCA3000_REG_UNLOCK_ADDR				0x1e
121
122#define SCA3000_REG_INT_MASK_ADDR			0x21
123#define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
124
125#define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
126#define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
127
128#define SCA3000_REG_INT_MASK_ALL_INTS			0x02
129#define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
130#define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
131/* Values of multiplexed registers (write to ctrl_data after select) */
132#define SCA3000_REG_CTRL_DATA_ADDR			0x22
133
134/*
135 * Measurement modes available on some sca3000 series chips. Code assumes others
136 * may become available in the future.
137 *
138 * Bypass - Bypass the low-pass filter in the signal channel so as to increase
139 *          signal bandwidth.
140 *
141 * Narrow - Narrow low-pass filtering of the signal channel and half output
142 *          data rate by decimation.
143 *
144 * Wide - Widen low-pass filtering of signal channel to increase bandwidth
145 */
146#define SCA3000_OP_MODE_BYPASS				0x01
147#define SCA3000_OP_MODE_NARROW				0x02
148#define SCA3000_OP_MODE_WIDE				0x04
149#define SCA3000_MAX_TX 6
150#define SCA3000_MAX_RX 2
151
152/**
153 * struct sca3000_state - device instance state information
154 * @us:			the associated spi device
155 * @info:			chip variant information
156 * @last_timestamp:		the timestamp of the last event
157 * @mo_det_use_count:		reference counter for the motion detection unit
158 * @lock:			lock used to protect elements of sca3000_state
159 *				and the underlying device state.
160 * @tx:			dma-able transmit buffer
161 * @rx:			dma-able receive buffer
162 **/
163struct sca3000_state {
164	struct spi_device		*us;
165	const struct sca3000_chip_info	*info;
166	s64				last_timestamp;
167	int				mo_det_use_count;
168	struct mutex			lock;
169	/* Can these share a cacheline ? */
170	u8				rx[384] ____cacheline_aligned;
171	u8				tx[6] ____cacheline_aligned;
172};
173
174/**
175 * struct sca3000_chip_info - model dependent parameters
176 * @scale:			scale * 10^-6
177 * @temp_output:		some devices have temperature sensors.
178 * @measurement_mode_freq:	normal mode sampling frequency
179 * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
180 * the normal measurement mode.
181 * @option_mode_1:		first optional mode. Not all models have one
182 * @option_mode_1_freq:		option mode 1 sampling frequency
183 * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
184 * the first option mode.
185 * @option_mode_2:		second optional mode. Not all chips have one
186 * @option_mode_2_freq:		option mode 2 sampling frequency
187 * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
188 * the second option mode.
189 * @mot_det_mult_xz:		Bit wise multipliers to calculate the threshold
190 * for motion detection in the x and z axis.
191 * @mot_det_mult_y:		Bit wise multipliers to calculate the threshold
192 * for motion detection in the y axis.
193 *
194 * This structure is used to hold information about the functionality of a given
195 * sca3000 variant.
196 **/
197struct sca3000_chip_info {
198	unsigned int		scale;
199	bool			temp_output;
200	int			measurement_mode_freq;
201	int			measurement_mode_3db_freq;
202	int			option_mode_1;
203	int			option_mode_1_freq;
204	int			option_mode_1_3db_freq;
205	int			option_mode_2;
206	int			option_mode_2_freq;
207	int			option_mode_2_3db_freq;
208	int			mot_det_mult_xz[6];
209	int			mot_det_mult_y[7];
210};
211
212enum sca3000_variant {
213	d01,
214	e02,
215	e04,
216	e05,
217};
218
219/*
220 * Note where option modes are not defined, the chip simply does not
221 * support any.
222 * Other chips in the sca3000 series use i2c and are not included here.
223 *
224 * Some of these devices are only listed in the family data sheet and
225 * do not actually appear to be available.
226 */
227static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
228	[d01] = {
229		.scale = 7357,
230		.temp_output = true,
231		.measurement_mode_freq = 250,
232		.measurement_mode_3db_freq = 45,
233		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
234		.option_mode_1_freq = 250,
235		.option_mode_1_3db_freq = 70,
236		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
237		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
238	},
239	[e02] = {
240		.scale = 9810,
241		.measurement_mode_freq = 125,
242		.measurement_mode_3db_freq = 40,
243		.option_mode_1 = SCA3000_OP_MODE_NARROW,
244		.option_mode_1_freq = 63,
245		.option_mode_1_3db_freq = 11,
246		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
247		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
248	},
249	[e04] = {
250		.scale = 19620,
251		.measurement_mode_freq = 100,
252		.measurement_mode_3db_freq = 38,
253		.option_mode_1 = SCA3000_OP_MODE_NARROW,
254		.option_mode_1_freq = 50,
255		.option_mode_1_3db_freq = 9,
256		.option_mode_2 = SCA3000_OP_MODE_WIDE,
257		.option_mode_2_freq = 400,
258		.option_mode_2_3db_freq = 70,
259		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
260		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
261	},
262	[e05] = {
263		.scale = 61313,
264		.measurement_mode_freq = 200,
265		.measurement_mode_3db_freq = 60,
266		.option_mode_1 = SCA3000_OP_MODE_NARROW,
267		.option_mode_1_freq = 50,
268		.option_mode_1_3db_freq = 9,
269		.option_mode_2 = SCA3000_OP_MODE_WIDE,
270		.option_mode_2_freq = 400,
271		.option_mode_2_3db_freq = 75,
272		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
273		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
274	},
275};
276
277static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
278{
279	st->tx[0] = SCA3000_WRITE_REG(address);
280	st->tx[1] = val;
281	return spi_write(st->us, st->tx, 2);
282}
283
284static int sca3000_read_data_short(struct sca3000_state *st,
285				   u8 reg_address_high,
286				   int len)
287{
288	struct spi_transfer xfer[2] = {
289		{
290			.len = 1,
291			.tx_buf = st->tx,
292		}, {
293			.len = len,
294			.rx_buf = st->rx,
295		}
296	};
297	st->tx[0] = SCA3000_READ_REG(reg_address_high);
298
299	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
300}
301
302/**
303 * sca3000_reg_lock_on() - test if the ctrl register lock is on
304 * @st: Driver specific device instance data.
305 *
306 * Lock must be held.
307 **/
308static int sca3000_reg_lock_on(struct sca3000_state *st)
309{
310	int ret;
311
312	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
313	if (ret < 0)
314		return ret;
315
316	return !(st->rx[0] & SCA3000_LOCKED);
317}
318
319/**
320 * __sca3000_unlock_reg_lock() - unlock the control registers
321 * @st: Driver specific device instance data.
322 *
323 * Note the device does not appear to support doing this in a single transfer.
324 * This should only ever be used as part of ctrl reg read.
325 * Lock must be held before calling this
326 */
327static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
328{
329	struct spi_transfer xfer[3] = {
330		{
331			.len = 2,
332			.cs_change = 1,
333			.tx_buf = st->tx,
334		}, {
335			.len = 2,
336			.cs_change = 1,
337			.tx_buf = st->tx + 2,
338		}, {
339			.len = 2,
340			.tx_buf = st->tx + 4,
341		},
342	};
343	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
344	st->tx[1] = 0x00;
345	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
346	st->tx[3] = 0x50;
347	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
348	st->tx[5] = 0xA0;
349
350	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
351}
352
353/**
354 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
355 * @st: Driver specific device instance data.
356 * @sel: selects which registers we wish to write to
357 * @val: the value to be written
358 *
359 * Certain control registers are protected against overwriting by the lock
360 * register and use a shared write address. This function allows writing of
361 * these registers.
362 * Lock must be held.
363 */
364static int sca3000_write_ctrl_reg(struct sca3000_state *st,
365				  u8 sel,
366				  uint8_t val)
367{
368	int ret;
369
370	ret = sca3000_reg_lock_on(st);
371	if (ret < 0)
372		goto error_ret;
373	if (ret) {
374		ret = __sca3000_unlock_reg_lock(st);
375		if (ret)
376			goto error_ret;
377	}
378
379	/* Set the control select register */
380	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
381	if (ret)
382		goto error_ret;
383
384	/* Write the actual value into the register */
385	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
386
387error_ret:
388	return ret;
389}
390
391/**
392 * sca3000_read_ctrl_reg() read from lock protected control register.
393 * @st: Driver specific device instance data.
394 * @ctrl_reg: Which ctrl register do we want to read.
395 *
396 * Lock must be held.
397 */
398static int sca3000_read_ctrl_reg(struct sca3000_state *st,
399				 u8 ctrl_reg)
400{
401	int ret;
402
403	ret = sca3000_reg_lock_on(st);
404	if (ret < 0)
405		goto error_ret;
406	if (ret) {
407		ret = __sca3000_unlock_reg_lock(st);
408		if (ret)
409			goto error_ret;
410	}
411	/* Set the control select register */
412	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
413	if (ret)
414		goto error_ret;
415	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
416	if (ret)
417		goto error_ret;
418	return st->rx[0];
419error_ret:
420	return ret;
421}
422
423/**
424 * sca3000_show_rev() - sysfs interface to read the chip revision number
425 * @indio_dev: Device instance specific generic IIO data.
426 * Driver specific device instance data can be obtained via
427 * via iio_priv(indio_dev)
428 */
429static int sca3000_print_rev(struct iio_dev *indio_dev)
430{
431	int ret;
432	struct sca3000_state *st = iio_priv(indio_dev);
433
434	mutex_lock(&st->lock);
435	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
436	if (ret < 0)
437		goto error_ret;
438	dev_info(&indio_dev->dev,
439		 "sca3000 revision major=%lu, minor=%lu\n",
440		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
441		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
442error_ret:
443	mutex_unlock(&st->lock);
444
445	return ret;
446}
447
448static ssize_t
449sca3000_show_available_3db_freqs(struct device *dev,
450				 struct device_attribute *attr,
451				 char *buf)
452{
453	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
454	struct sca3000_state *st = iio_priv(indio_dev);
455	int len;
456
457	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
458	if (st->info->option_mode_1)
459		len += sprintf(buf + len, " %d",
460			       st->info->option_mode_1_3db_freq);
461	if (st->info->option_mode_2)
462		len += sprintf(buf + len, " %d",
463			       st->info->option_mode_2_3db_freq);
464	len += sprintf(buf + len, "\n");
465
466	return len;
467}
468
469static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
470		       S_IRUGO, sca3000_show_available_3db_freqs,
471		       NULL, 0);
472
473static const struct iio_event_spec sca3000_event = {
474	.type = IIO_EV_TYPE_MAG,
475	.dir = IIO_EV_DIR_RISING,
476	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
477};
478
479/*
480 * Note the hack in the number of bits to pretend we have 2 more than
481 * we do in the fifo.
482 */
483#define SCA3000_CHAN(index, mod)				\
484	{							\
485		.type = IIO_ACCEL,				\
486		.modified = 1,					\
487		.channel2 = mod,				\
488		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
489		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
490			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
491		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
492		.address = index,				\
493		.scan_index = index,				\
494		.scan_type = {					\
495			.sign = 's',				\
496			.realbits = 13,				\
497			.storagebits = 16,			\
498			.shift = 3,				\
499			.endianness = IIO_BE,			\
500		},						\
501		.event_spec = &sca3000_event,			\
502		.num_event_specs = 1,				\
503	}
504
505static const struct iio_event_spec sca3000_freefall_event_spec = {
506	.type = IIO_EV_TYPE_MAG,
507	.dir = IIO_EV_DIR_FALLING,
508	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
509		BIT(IIO_EV_INFO_PERIOD),
510};
511
512static const struct iio_chan_spec sca3000_channels[] = {
513	SCA3000_CHAN(0, IIO_MOD_X),
514	SCA3000_CHAN(1, IIO_MOD_Y),
515	SCA3000_CHAN(2, IIO_MOD_Z),
516	{
517		.type = IIO_ACCEL,
518		.modified = 1,
519		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
520		.scan_index = -1, /* Fake channel */
521		.event_spec = &sca3000_freefall_event_spec,
522		.num_event_specs = 1,
523	},
524};
525
526static const struct iio_chan_spec sca3000_channels_with_temp[] = {
527	SCA3000_CHAN(0, IIO_MOD_X),
528	SCA3000_CHAN(1, IIO_MOD_Y),
529	SCA3000_CHAN(2, IIO_MOD_Z),
530	{
531		.type = IIO_TEMP,
532		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
533		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
534			BIT(IIO_CHAN_INFO_OFFSET),
535		/* No buffer support */
536		.scan_index = -1,
537	},
538	{
539		.type = IIO_ACCEL,
540		.modified = 1,
541		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
542		.scan_index = -1, /* Fake channel */
543		.event_spec = &sca3000_freefall_event_spec,
544		.num_event_specs = 1,
545	},
546};
547
548static u8 sca3000_addresses[3][3] = {
549	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
550	       SCA3000_MD_CTRL_OR_X},
551	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
552	       SCA3000_MD_CTRL_OR_Y},
553	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
554	       SCA3000_MD_CTRL_OR_Z},
555};
556
557/**
558 * __sca3000_get_base_freq() - obtain mode specific base frequency
559 * @st: Private driver specific device instance specific state.
560 * @info: chip type specific information.
561 * @base_freq: Base frequency for the current measurement mode.
562 *
563 * lock must be held
564 */
565static inline int __sca3000_get_base_freq(struct sca3000_state *st,
566					  const struct sca3000_chip_info *info,
567					  int *base_freq)
568{
569	int ret;
570
571	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
572	if (ret)
573		goto error_ret;
574	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
575	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
576		*base_freq = info->measurement_mode_freq;
577		break;
578	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
579		*base_freq = info->option_mode_1_freq;
580		break;
581	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
582		*base_freq = info->option_mode_2_freq;
583		break;
584	default:
585		ret = -EINVAL;
586	}
587error_ret:
588	return ret;
589}
590
591/**
592 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
593 * @st: Private driver specific device instance specific state.
594 * @val: The frequency read back.
595 *
596 * lock must be held
597 **/
598static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
599{
600	int ret;
601
602	ret = __sca3000_get_base_freq(st, st->info, val);
603	if (ret)
604		return ret;
605
606	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
607	if (ret < 0)
608		return ret;
609
610	if (*val > 0) {
611		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
612		switch (ret) {
613		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
614			*val /= 2;
615			break;
616		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
617			*val /= 4;
618			break;
619		}
620	}
621
622	return 0;
623}
624
625/**
626 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
627 * @st: Private driver specific device instance specific state.
628 * @val: The frequency desired.
629 *
630 * lock must be held
631 */
632static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
633{
634	int ret, base_freq, ctrlval;
635
636	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
637	if (ret)
638		return ret;
639
640	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
641	if (ret < 0)
642		return ret;
643
644	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
645
646	if (val == base_freq / 2)
647		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
648	if (val == base_freq / 4)
649		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
650	else if (val != base_freq)
651		return -EINVAL;
652
653	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
654				     ctrlval);
655}
656
657static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
658{
659	int ret;
660
661	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
662	if (ret)
663		return ret;
664
665	/* mask bottom 2 bits - only ones that are relevant */
666	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
667	switch (st->rx[0]) {
668	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
669		*val = st->info->measurement_mode_3db_freq;
670		return IIO_VAL_INT;
671	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
672		return -EBUSY;
673	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
674		*val = st->info->option_mode_1_3db_freq;
675		return IIO_VAL_INT;
676	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
677		*val = st->info->option_mode_2_3db_freq;
678		return IIO_VAL_INT;
679	default:
680		return -EINVAL;
681	}
682}
683
684static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
685{
686	int ret;
687	int mode;
688
689	if (val == st->info->measurement_mode_3db_freq)
690		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
691	else if (st->info->option_mode_1 &&
692		 (val == st->info->option_mode_1_3db_freq))
693		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
694	else if (st->info->option_mode_2 &&
695		 (val == st->info->option_mode_2_3db_freq))
696		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
697	else
698		return -EINVAL;
699	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
700	if (ret)
701		return ret;
702
703	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
704	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
705
706	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
707}
708
709static int sca3000_read_raw(struct iio_dev *indio_dev,
710			    struct iio_chan_spec const *chan,
711			    int *val,
712			    int *val2,
713			    long mask)
714{
715	struct sca3000_state *st = iio_priv(indio_dev);
716	int ret;
717	u8 address;
718
719	switch (mask) {
720	case IIO_CHAN_INFO_RAW:
721		mutex_lock(&st->lock);
722		if (chan->type == IIO_ACCEL) {
723			if (st->mo_det_use_count) {
724				mutex_unlock(&st->lock);
725				return -EBUSY;
726			}
727			address = sca3000_addresses[chan->address][0];
728			ret = sca3000_read_data_short(st, address, 2);
729			if (ret < 0) {
730				mutex_unlock(&st->lock);
731				return ret;
732			}
733			*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
734			*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
735				(sizeof(*val) * 8 - 13);
736		} else {
737			/* get the temperature when available */
738			ret = sca3000_read_data_short(st,
739						      SCA3000_REG_TEMP_MSB_ADDR,
740						      2);
741			if (ret < 0) {
742				mutex_unlock(&st->lock);
743				return ret;
744			}
745			*val = ((st->rx[0] & 0x3F) << 3) |
746			       ((st->rx[1] & 0xE0) >> 5);
747		}
748		mutex_unlock(&st->lock);
749		return IIO_VAL_INT;
750	case IIO_CHAN_INFO_SCALE:
751		*val = 0;
752		if (chan->type == IIO_ACCEL)
753			*val2 = st->info->scale;
754		else /* temperature */
755			*val2 = 555556;
756		return IIO_VAL_INT_PLUS_MICRO;
757	case IIO_CHAN_INFO_OFFSET:
758		*val = -214;
759		*val2 = 600000;
760		return IIO_VAL_INT_PLUS_MICRO;
761	case IIO_CHAN_INFO_SAMP_FREQ:
762		mutex_lock(&st->lock);
763		ret = sca3000_read_raw_samp_freq(st, val);
764		mutex_unlock(&st->lock);
765		return ret ? ret : IIO_VAL_INT;
766	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
767		mutex_lock(&st->lock);
768		ret = sca3000_read_3db_freq(st, val);
769		mutex_unlock(&st->lock);
770		return ret;
771	default:
772		return -EINVAL;
773	}
774}
775
776static int sca3000_write_raw(struct iio_dev *indio_dev,
777			     struct iio_chan_spec const *chan,
778			     int val, int val2, long mask)
779{
780	struct sca3000_state *st = iio_priv(indio_dev);
781	int ret;
782
783	switch (mask) {
784	case IIO_CHAN_INFO_SAMP_FREQ:
785		if (val2)
786			return -EINVAL;
787		mutex_lock(&st->lock);
788		ret = sca3000_write_raw_samp_freq(st, val);
789		mutex_unlock(&st->lock);
790		return ret;
791	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
792		if (val2)
793			return -EINVAL;
794		mutex_lock(&st->lock);
795		ret = sca3000_write_3db_freq(st, val);
796		mutex_unlock(&st->lock);
797		return ret;
798	default:
799		return -EINVAL;
800	}
801
802	return ret;
803}
804
805/**
806 * sca3000_read_av_freq() - sysfs function to get available frequencies
807 * @dev: Device structure for this device.
808 * @attr: Description of the attribute.
809 * @buf: Incoming string
810 *
811 * The later modes are only relevant to the ring buffer - and depend on current
812 * mode. Note that data sheet gives rather wide tolerances for these so integer
813 * division will give good enough answer and not all chips have them specified
814 * at all.
815 **/
816static ssize_t sca3000_read_av_freq(struct device *dev,
817				    struct device_attribute *attr,
818				    char *buf)
819{
820	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
821	struct sca3000_state *st = iio_priv(indio_dev);
822	int len = 0, ret, val;
823
824	mutex_lock(&st->lock);
825	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
826	val = st->rx[0];
827	mutex_unlock(&st->lock);
828	if (ret)
829		goto error_ret;
830
831	switch (val & SCA3000_REG_MODE_MODE_MASK) {
832	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
833		len += sprintf(buf + len, "%d %d %d\n",
834			       st->info->measurement_mode_freq,
835			       st->info->measurement_mode_freq / 2,
836			       st->info->measurement_mode_freq / 4);
837		break;
838	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
839		len += sprintf(buf + len, "%d %d %d\n",
840			       st->info->option_mode_1_freq,
841			       st->info->option_mode_1_freq / 2,
842			       st->info->option_mode_1_freq / 4);
843		break;
844	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
845		len += sprintf(buf + len, "%d %d %d\n",
846			       st->info->option_mode_2_freq,
847			       st->info->option_mode_2_freq / 2,
848			       st->info->option_mode_2_freq / 4);
849		break;
850	}
851	return len;
852error_ret:
853	return ret;
854}
855
856/*
857 * Should only really be registered if ring buffer support is compiled in.
858 * Does no harm however and doing it right would add a fair bit of complexity
859 */
860static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
861
862/*
863 * sca3000_read_event_value() - query of a threshold or period
864 */
865static int sca3000_read_event_value(struct iio_dev *indio_dev,
866				    const struct iio_chan_spec *chan,
867				    enum iio_event_type type,
868				    enum iio_event_direction dir,
869				    enum iio_event_info info,
870				    int *val, int *val2)
871{
872	struct sca3000_state *st = iio_priv(indio_dev);
873	long ret;
874	int i;
875
876	switch (info) {
877	case IIO_EV_INFO_VALUE:
878		mutex_lock(&st->lock);
879		ret = sca3000_read_ctrl_reg(st,
880					    sca3000_addresses[chan->address][1]);
881		mutex_unlock(&st->lock);
882		if (ret < 0)
883			return ret;
884		*val = 0;
885		if (chan->channel2 == IIO_MOD_Y)
886			for_each_set_bit(i, &ret,
887					 ARRAY_SIZE(st->info->mot_det_mult_y))
888				*val += st->info->mot_det_mult_y[i];
889		else
890			for_each_set_bit(i, &ret,
891					 ARRAY_SIZE(st->info->mot_det_mult_xz))
892				*val += st->info->mot_det_mult_xz[i];
893
894		return IIO_VAL_INT;
895	case IIO_EV_INFO_PERIOD:
896		*val = 0;
897		*val2 = 226000;
898		return IIO_VAL_INT_PLUS_MICRO;
899	default:
900		return -EINVAL;
901	}
902}
903
904/**
905 * sca3000_write_value() - control of threshold and period
906 * @indio_dev: Device instance specific IIO information.
907 * @chan: Description of the channel for which the event is being
908 * configured.
909 * @type: The type of event being configured, here magnitude rising
910 * as everything else is read only.
911 * @dir: Direction of the event (here rising)
912 * @info: What information about the event are we configuring.
913 * Here the threshold only.
914 * @val: Integer part of the value being written..
915 * @val2: Non integer part of the value being written. Here always 0.
916 */
917static int sca3000_write_event_value(struct iio_dev *indio_dev,
918				     const struct iio_chan_spec *chan,
919				     enum iio_event_type type,
920				     enum iio_event_direction dir,
921				     enum iio_event_info info,
922				     int val, int val2)
923{
924	struct sca3000_state *st = iio_priv(indio_dev);
925	int ret;
926	int i;
927	u8 nonlinear = 0;
928
929	if (chan->channel2 == IIO_MOD_Y) {
930		i = ARRAY_SIZE(st->info->mot_det_mult_y);
931		while (i > 0)
932			if (val >= st->info->mot_det_mult_y[--i]) {
933				nonlinear |= (1 << i);
934				val -= st->info->mot_det_mult_y[i];
935			}
936	} else {
937		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
938		while (i > 0)
939			if (val >= st->info->mot_det_mult_xz[--i]) {
940				nonlinear |= (1 << i);
941				val -= st->info->mot_det_mult_xz[i];
942			}
943	}
944
945	mutex_lock(&st->lock);
946	ret = sca3000_write_ctrl_reg(st,
947				     sca3000_addresses[chan->address][1],
948				     nonlinear);
949	mutex_unlock(&st->lock);
950
951	return ret;
952}
953
954static struct attribute *sca3000_attributes[] = {
955	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
956	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
957	NULL,
958};
959
960static const struct attribute_group sca3000_attribute_group = {
961	.attrs = sca3000_attributes,
962};
963
964static int sca3000_read_data(struct sca3000_state *st,
965			     u8 reg_address_high,
966			     u8 *rx,
967			     int len)
968{
969	int ret;
970	struct spi_transfer xfer[2] = {
971		{
972			.len = 1,
973			.tx_buf = st->tx,
974		}, {
975			.len = len,
976			.rx_buf = rx,
977		}
978	};
979
980	st->tx[0] = SCA3000_READ_REG(reg_address_high);
981	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
982	if (ret) {
983		dev_err(&st->us->dev, "problem reading register\n");
984		return ret;
985	}
986
987	return 0;
988}
989
990/**
991 * sca3000_ring_int_process() - ring specific interrupt handling.
992 * @val: Value of the interrupt status register.
993 * @indio_dev: Device instance specific IIO device structure.
994 */
995static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
996{
997	struct sca3000_state *st = iio_priv(indio_dev);
998	int ret, i, num_available;
999
1000	mutex_lock(&st->lock);
1001
1002	if (val & SCA3000_REG_INT_STATUS_HALF) {
1003		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1004					      1);
1005		if (ret)
1006			goto error_ret;
1007		num_available = st->rx[0];
1008		/*
1009		 * num_available is the total number of samples available
1010		 * i.e. number of time points * number of channels.
1011		 */
1012		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1013					num_available * 2);
1014		if (ret)
1015			goto error_ret;
1016		for (i = 0; i < num_available / 3; i++) {
1017			/*
1018			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1019			 * direct reading.
1020			 *
1021			 * In theory the bottom two bits are undefined.
1022			 * In reality they appear to always be 0.
1023			 */
1024			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1025		}
1026	}
1027error_ret:
1028	mutex_unlock(&st->lock);
1029}
1030
1031/**
1032 * sca3000_event_handler() - handling ring and non ring events
1033 * @irq: The irq being handled.
1034 * @private: struct iio_device pointer for the device.
1035 *
1036 * Ring related interrupt handler. Depending on event, push to
1037 * the ring buffer event chrdev or the event one.
1038 *
1039 * This function is complicated by the fact that the devices can signify ring
1040 * and non ring events via the same interrupt line and they can only
1041 * be distinguished via a read of the relevant status register.
1042 */
1043static irqreturn_t sca3000_event_handler(int irq, void *private)
1044{
1045	struct iio_dev *indio_dev = private;
1046	struct sca3000_state *st = iio_priv(indio_dev);
1047	int ret, val;
1048	s64 last_timestamp = iio_get_time_ns(indio_dev);
1049
1050	/*
1051	 * Could lead if badly timed to an extra read of status reg,
1052	 * but ensures no interrupt is missed.
1053	 */
1054	mutex_lock(&st->lock);
1055	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1056	val = st->rx[0];
1057	mutex_unlock(&st->lock);
1058	if (ret)
1059		goto done;
1060
1061	sca3000_ring_int_process(val, indio_dev);
1062
1063	if (val & SCA3000_INT_STATUS_FREE_FALL)
1064		iio_push_event(indio_dev,
1065			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1066						  0,
1067						  IIO_MOD_X_AND_Y_AND_Z,
1068						  IIO_EV_TYPE_MAG,
1069						  IIO_EV_DIR_FALLING),
1070			       last_timestamp);
1071
1072	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1073		iio_push_event(indio_dev,
1074			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1075						  0,
1076						  IIO_MOD_Y,
1077						  IIO_EV_TYPE_MAG,
1078						  IIO_EV_DIR_RISING),
1079			       last_timestamp);
1080
1081	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1082		iio_push_event(indio_dev,
1083			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1084						  0,
1085						  IIO_MOD_X,
1086						  IIO_EV_TYPE_MAG,
1087						  IIO_EV_DIR_RISING),
1088			       last_timestamp);
1089
1090	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1091		iio_push_event(indio_dev,
1092			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1093						  0,
1094						  IIO_MOD_Z,
1095						  IIO_EV_TYPE_MAG,
1096						  IIO_EV_DIR_RISING),
1097			       last_timestamp);
1098
1099done:
1100	return IRQ_HANDLED;
1101}
1102
1103/*
1104 * sca3000_read_event_config() what events are enabled
1105 */
1106static int sca3000_read_event_config(struct iio_dev *indio_dev,
1107				     const struct iio_chan_spec *chan,
1108				     enum iio_event_type type,
1109				     enum iio_event_direction dir)
1110{
1111	struct sca3000_state *st = iio_priv(indio_dev);
1112	int ret;
1113	/* read current value of mode register */
1114	mutex_lock(&st->lock);
1115
1116	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1117	if (ret)
1118		goto error_ret;
1119
1120	switch (chan->channel2) {
1121	case IIO_MOD_X_AND_Y_AND_Z:
1122		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1123		break;
1124	case IIO_MOD_X:
1125	case IIO_MOD_Y:
1126	case IIO_MOD_Z:
1127		/*
1128		 * Motion detection mode cannot run at the same time as
1129		 * acceleration data being read.
1130		 */
1131		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1132		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1133			ret = 0;
1134		} else {
1135			ret = sca3000_read_ctrl_reg(st,
1136						SCA3000_REG_CTRL_SEL_MD_CTRL);
1137			if (ret < 0)
1138				goto error_ret;
1139			/* only supporting logical or's for now */
1140			ret = !!(ret & sca3000_addresses[chan->address][2]);
1141		}
1142		break;
1143	default:
1144		ret = -EINVAL;
1145	}
1146
1147error_ret:
1148	mutex_unlock(&st->lock);
1149
1150	return ret;
1151}
1152
1153static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1154{
1155	struct sca3000_state *st = iio_priv(indio_dev);
1156	int ret;
1157
1158	/* read current value of mode register */
1159	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1160	if (ret)
1161		return ret;
1162
1163	/* if off and should be on */
1164	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1165		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1166					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1167	/* if on and should be off */
1168	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1169		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1170					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1171	else
1172		return 0;
1173}
1174
1175static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1176					   int state)
1177{
1178	struct sca3000_state *st = iio_priv(indio_dev);
1179	int ret, ctrlval;
1180
1181	/*
1182	 * First read the motion detector config to find out if
1183	 * this axis is on
1184	 */
1185	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1186	if (ret < 0)
1187		return ret;
1188	ctrlval = ret;
1189	/* if off and should be on */
1190	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1191		ret = sca3000_write_ctrl_reg(st,
1192					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1193					     ctrlval |
1194					     sca3000_addresses[axis][2]);
1195		if (ret)
1196			return ret;
1197		st->mo_det_use_count++;
1198	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1199		ret = sca3000_write_ctrl_reg(st,
1200					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1201					     ctrlval &
1202					     ~(sca3000_addresses[axis][2]));
1203		if (ret)
1204			return ret;
1205		st->mo_det_use_count--;
1206	}
1207
1208	/* read current value of mode register */
1209	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1210	if (ret)
1211		return ret;
1212	/* if off and should be on */
1213	if ((st->mo_det_use_count) &&
1214	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1215	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1216		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1217			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1218			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1219	/* if on and should be off */
1220	else if (!(st->mo_det_use_count) &&
1221		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1222		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1223		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1224			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1225	else
1226		return 0;
1227}
1228
1229/**
1230 * sca3000_write_event_config() - simple on off control for motion detector
1231 * @indio_dev: IIO device instance specific structure. Data specific to this
1232 * particular driver may be accessed via iio_priv(indio_dev).
1233 * @chan: Description of the channel whose event we are configuring.
1234 * @type: The type of event.
1235 * @dir: The direction of the event.
1236 * @state: Desired state of event being configured.
1237 *
1238 * This is a per axis control, but enabling any will result in the
1239 * motion detector unit being enabled.
1240 * N.B. enabling motion detector stops normal data acquisition.
1241 * There is a complexity in knowing which mode to return to when
1242 * this mode is disabled.  Currently normal mode is assumed.
1243 **/
1244static int sca3000_write_event_config(struct iio_dev *indio_dev,
1245				      const struct iio_chan_spec *chan,
1246				      enum iio_event_type type,
1247				      enum iio_event_direction dir,
1248				      int state)
1249{
1250	struct sca3000_state *st = iio_priv(indio_dev);
1251	int ret;
1252
1253	mutex_lock(&st->lock);
1254	switch (chan->channel2) {
1255	case IIO_MOD_X_AND_Y_AND_Z:
1256		ret = sca3000_freefall_set_state(indio_dev, state);
1257		break;
1258
1259	case IIO_MOD_X:
1260	case IIO_MOD_Y:
1261	case IIO_MOD_Z:
1262		ret = sca3000_motion_detect_set_state(indio_dev,
1263						      chan->address,
1264						      state);
1265		break;
1266	default:
1267		ret = -EINVAL;
1268		break;
1269	}
1270	mutex_unlock(&st->lock);
1271
1272	return ret;
1273}
1274
1275static int sca3000_configure_ring(struct iio_dev *indio_dev)
1276{
1277	struct iio_buffer *buffer;
1278
1279	buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1280	if (!buffer)
1281		return -ENOMEM;
1282
1283	iio_device_attach_buffer(indio_dev, buffer);
1284	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1285
1286	return 0;
1287}
1288
1289static inline
1290int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1291{
1292	struct sca3000_state *st = iio_priv(indio_dev);
1293	int ret;
1294
1295	mutex_lock(&st->lock);
1296	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1297	if (ret)
1298		goto error_ret;
1299	if (state) {
1300		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1301		ret = sca3000_write_reg(st,
1302			SCA3000_REG_MODE_ADDR,
1303			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1304	} else
1305		ret = sca3000_write_reg(st,
1306			SCA3000_REG_MODE_ADDR,
1307			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1308error_ret:
1309	mutex_unlock(&st->lock);
1310
1311	return ret;
1312}
1313
1314/**
1315 * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1316 * @indio_dev: structure representing the IIO device. Device instance
1317 * specific state can be accessed via iio_priv(indio_dev).
1318 *
1319 * Very simple enable function as the chip will allows normal reads
1320 * during ring buffer operation so as long as it is indeed running
1321 * before we notify the core, the precise ordering does not matter.
1322 */
1323static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1324{
1325	int ret;
1326	struct sca3000_state *st = iio_priv(indio_dev);
1327
1328	mutex_lock(&st->lock);
1329
1330	/* Enable the 50% full interrupt */
1331	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1332	if (ret)
1333		goto error_unlock;
1334	ret = sca3000_write_reg(st,
1335				SCA3000_REG_INT_MASK_ADDR,
1336				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1337	if (ret)
1338		goto error_unlock;
1339
1340	mutex_unlock(&st->lock);
1341
1342	return __sca3000_hw_ring_state_set(indio_dev, 1);
1343
1344error_unlock:
1345	mutex_unlock(&st->lock);
1346
1347	return ret;
1348}
1349
1350static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1351{
1352	int ret;
1353	struct sca3000_state *st = iio_priv(indio_dev);
1354
1355	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1356	if (ret)
1357		return ret;
1358
1359	/* Disable the 50% full interrupt */
1360	mutex_lock(&st->lock);
1361
1362	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1363	if (ret)
1364		goto unlock;
1365	ret = sca3000_write_reg(st,
1366				SCA3000_REG_INT_MASK_ADDR,
1367				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1368unlock:
1369	mutex_unlock(&st->lock);
1370	return ret;
1371}
1372
1373static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1374	.preenable = &sca3000_hw_ring_preenable,
1375	.postdisable = &sca3000_hw_ring_postdisable,
1376};
1377
1378/**
1379 * sca3000_clean_setup() - get the device into a predictable state
1380 * @st: Device instance specific private data structure
1381 *
1382 * Devices use flash memory to store many of the register values
1383 * and hence can come up in somewhat unpredictable states.
1384 * Hence reset everything on driver load.
1385 */
1386static int sca3000_clean_setup(struct sca3000_state *st)
1387{
1388	int ret;
1389
1390	mutex_lock(&st->lock);
1391	/* Ensure all interrupts have been acknowledged */
1392	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1393	if (ret)
1394		goto error_ret;
1395
1396	/* Turn off all motion detection channels */
1397	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1398	if (ret < 0)
1399		goto error_ret;
1400	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1401				     ret & SCA3000_MD_CTRL_PROT_MASK);
1402	if (ret)
1403		goto error_ret;
1404
1405	/* Disable ring buffer */
1406	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1407	if (ret < 0)
1408		goto error_ret;
1409	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1410				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1411				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1412				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1413				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1414				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1415	if (ret)
1416		goto error_ret;
1417	/* Enable interrupts, relevant to mode and set up as active low */
1418	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1419	if (ret)
1420		goto error_ret;
1421	ret = sca3000_write_reg(st,
1422				SCA3000_REG_INT_MASK_ADDR,
1423				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1424				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1425	if (ret)
1426		goto error_ret;
1427	/*
1428	 * Select normal measurement mode, free fall off, ring off
1429	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1430	 * as that occurs in one of the example on the datasheet
1431	 */
1432	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1433	if (ret)
1434		goto error_ret;
1435	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1436				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1437
1438error_ret:
1439	mutex_unlock(&st->lock);
1440	return ret;
1441}
1442
1443static const struct iio_info sca3000_info = {
1444	.attrs = &sca3000_attribute_group,
1445	.read_raw = &sca3000_read_raw,
1446	.write_raw = &sca3000_write_raw,
1447	.read_event_value = &sca3000_read_event_value,
1448	.write_event_value = &sca3000_write_event_value,
1449	.read_event_config = &sca3000_read_event_config,
1450	.write_event_config = &sca3000_write_event_config,
1451};
1452
1453static int sca3000_probe(struct spi_device *spi)
1454{
1455	int ret;
1456	struct sca3000_state *st;
1457	struct iio_dev *indio_dev;
1458
1459	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1460	if (!indio_dev)
1461		return -ENOMEM;
1462
1463	st = iio_priv(indio_dev);
1464	spi_set_drvdata(spi, indio_dev);
1465	st->us = spi;
1466	mutex_init(&st->lock);
1467	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1468					      ->driver_data];
1469
1470	indio_dev->name = spi_get_device_id(spi)->name;
1471	indio_dev->info = &sca3000_info;
1472	if (st->info->temp_output) {
1473		indio_dev->channels = sca3000_channels_with_temp;
1474		indio_dev->num_channels =
1475			ARRAY_SIZE(sca3000_channels_with_temp);
1476	} else {
1477		indio_dev->channels = sca3000_channels;
1478		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1479	}
1480	indio_dev->modes = INDIO_DIRECT_MODE;
1481
1482	ret = sca3000_configure_ring(indio_dev);
1483	if (ret)
1484		return ret;
1485
1486	if (spi->irq) {
1487		ret = request_threaded_irq(spi->irq,
1488					   NULL,
1489					   &sca3000_event_handler,
1490					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1491					   "sca3000",
1492					   indio_dev);
1493		if (ret)
1494			return ret;
1495	}
1496	indio_dev->setup_ops = &sca3000_ring_setup_ops;
1497	ret = sca3000_clean_setup(st);
1498	if (ret)
1499		goto error_free_irq;
1500
1501	ret = sca3000_print_rev(indio_dev);
1502	if (ret)
1503		goto error_free_irq;
1504
1505	return iio_device_register(indio_dev);
1506
1507error_free_irq:
1508	if (spi->irq)
1509		free_irq(spi->irq, indio_dev);
1510
1511	return ret;
1512}
1513
1514static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1515{
1516	int ret;
1517
1518	mutex_lock(&st->lock);
1519	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1520	if (ret)
1521		goto error_ret;
1522	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1523				(st->rx[0] &
1524				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1525				   SCA3000_REG_INT_MASK_RING_HALF |
1526				   SCA3000_REG_INT_MASK_ALL_INTS)));
1527error_ret:
1528	mutex_unlock(&st->lock);
1529	return ret;
1530}
1531
1532static int sca3000_remove(struct spi_device *spi)
1533{
1534	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1535	struct sca3000_state *st = iio_priv(indio_dev);
1536
1537	iio_device_unregister(indio_dev);
1538
1539	/* Must ensure no interrupts can be generated after this! */
1540	sca3000_stop_all_interrupts(st);
1541	if (spi->irq)
1542		free_irq(spi->irq, indio_dev);
1543
1544	return 0;
1545}
1546
1547static const struct spi_device_id sca3000_id[] = {
1548	{"sca3000_d01", d01},
1549	{"sca3000_e02", e02},
1550	{"sca3000_e04", e04},
1551	{"sca3000_e05", e05},
1552	{}
1553};
1554MODULE_DEVICE_TABLE(spi, sca3000_id);
1555
1556static struct spi_driver sca3000_driver = {
1557	.driver = {
1558		.name = "sca3000",
1559	},
1560	.probe = sca3000_probe,
1561	.remove = sca3000_remove,
1562	.id_table = sca3000_id,
1563};
1564module_spi_driver(sca3000_driver);
1565
1566MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1567MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1568MODULE_LICENSE("GPL v2");
1569