1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4 *  - BMC150
5 *  - BMI055
6 *  - BMA255
7 *  - BMA250E
8 *  - BMA222E
9 *  - BMA280
10 *
11 * Copyright (c) 2014, Intel Corporation.
12 */
13
14#include <linux/module.h>
15#include <linux/i2c.h>
16#include <linux/interrupt.h>
17#include <linux/delay.h>
18#include <linux/slab.h>
19#include <linux/acpi.h>
20#include <linux/pm.h>
21#include <linux/pm_runtime.h>
22#include <linux/iio/iio.h>
23#include <linux/iio/sysfs.h>
24#include <linux/iio/buffer.h>
25#include <linux/iio/events.h>
26#include <linux/iio/trigger.h>
27#include <linux/iio/trigger_consumer.h>
28#include <linux/iio/triggered_buffer.h>
29#include <linux/regmap.h>
30
31#include "bmc150-accel.h"
32
33#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
34#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
35
36#define BMC150_ACCEL_REG_CHIP_ID		0x00
37
38#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
39#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
40#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
41#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
42#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
43#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
44
45#define BMC150_ACCEL_REG_PMU_LPW		0x11
46#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
47#define BMC150_ACCEL_PMU_MODE_SHIFT		5
48#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
49#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
50
51#define BMC150_ACCEL_REG_PMU_RANGE		0x0F
52
53#define BMC150_ACCEL_DEF_RANGE_2G		0x03
54#define BMC150_ACCEL_DEF_RANGE_4G		0x05
55#define BMC150_ACCEL_DEF_RANGE_8G		0x08
56#define BMC150_ACCEL_DEF_RANGE_16G		0x0C
57
58/* Default BW: 125Hz */
59#define BMC150_ACCEL_REG_PMU_BW		0x10
60#define BMC150_ACCEL_DEF_BW			125
61
62#define BMC150_ACCEL_REG_RESET			0x14
63#define BMC150_ACCEL_RESET_VAL			0xB6
64
65#define BMC150_ACCEL_REG_INT_MAP_0		0x19
66#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
67
68#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
69#define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
70#define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
71#define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
72
73#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
74#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
75#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
76#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
77
78#define BMC150_ACCEL_REG_INT_EN_0		0x16
79#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
80#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
81#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
82
83#define BMC150_ACCEL_REG_INT_EN_1		0x17
84#define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
85#define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
86#define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
87
88#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
89#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
90
91#define BMC150_ACCEL_REG_INT_5			0x27
92#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
93
94#define BMC150_ACCEL_REG_INT_6			0x28
95#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
96
97/* Slope duration in terms of number of samples */
98#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
99/* in terms of multiples of g's/LSB, based on range */
100#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
101
102#define BMC150_ACCEL_REG_XOUT_L		0x02
103
104#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
105
106/* Sleep Duration values */
107#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
108#define BMC150_ACCEL_SLEEP_1_MS		0x06
109#define BMC150_ACCEL_SLEEP_2_MS		0x07
110#define BMC150_ACCEL_SLEEP_4_MS		0x08
111#define BMC150_ACCEL_SLEEP_6_MS		0x09
112#define BMC150_ACCEL_SLEEP_10_MS		0x0A
113#define BMC150_ACCEL_SLEEP_25_MS		0x0B
114#define BMC150_ACCEL_SLEEP_50_MS		0x0C
115#define BMC150_ACCEL_SLEEP_100_MS		0x0D
116#define BMC150_ACCEL_SLEEP_500_MS		0x0E
117#define BMC150_ACCEL_SLEEP_1_SEC		0x0F
118
119#define BMC150_ACCEL_REG_TEMP			0x08
120#define BMC150_ACCEL_TEMP_CENTER_VAL		23
121
122#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123#define BMC150_AUTO_SUSPEND_DELAY_MS		2000
124
125#define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
126#define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
127#define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
128#define BMC150_ACCEL_REG_FIFO_DATA		0x3F
129#define BMC150_ACCEL_FIFO_LENGTH		32
130
131enum bmc150_accel_axis {
132	AXIS_X,
133	AXIS_Y,
134	AXIS_Z,
135	AXIS_MAX,
136};
137
138enum bmc150_power_modes {
139	BMC150_ACCEL_SLEEP_MODE_NORMAL,
140	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141	BMC150_ACCEL_SLEEP_MODE_LPM,
142	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
143};
144
145struct bmc150_scale_info {
146	int scale;
147	u8 reg_range;
148};
149
150struct bmc150_accel_chip_info {
151	const char *name;
152	u8 chip_id;
153	const struct iio_chan_spec *channels;
154	int num_channels;
155	const struct bmc150_scale_info scale_table[4];
156};
157
158struct bmc150_accel_interrupt {
159	const struct bmc150_accel_interrupt_info *info;
160	atomic_t users;
161};
162
163struct bmc150_accel_trigger {
164	struct bmc150_accel_data *data;
165	struct iio_trigger *indio_trig;
166	int (*setup)(struct bmc150_accel_trigger *t, bool state);
167	int intr;
168	bool enabled;
169};
170
171enum bmc150_accel_interrupt_id {
172	BMC150_ACCEL_INT_DATA_READY,
173	BMC150_ACCEL_INT_ANY_MOTION,
174	BMC150_ACCEL_INT_WATERMARK,
175	BMC150_ACCEL_INTERRUPTS,
176};
177
178enum bmc150_accel_trigger_id {
179	BMC150_ACCEL_TRIGGER_DATA_READY,
180	BMC150_ACCEL_TRIGGER_ANY_MOTION,
181	BMC150_ACCEL_TRIGGERS,
182};
183
184struct bmc150_accel_data {
185	struct regmap *regmap;
186	int irq;
187	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189	struct mutex mutex;
190	u8 fifo_mode, watermark;
191	s16 buffer[8];
192	/*
193	 * Ensure there is sufficient space and correct alignment for
194	 * the timestamp if enabled
195	 */
196	struct {
197		__le16 channels[3];
198		s64 ts __aligned(8);
199	} scan;
200	u8 bw_bits;
201	u32 slope_dur;
202	u32 slope_thres;
203	u32 range;
204	int ev_enable_state;
205	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206	const struct bmc150_accel_chip_info *chip_info;
207	struct iio_mount_matrix orientation;
208};
209
210static const struct {
211	int val;
212	int val2;
213	u8 bw_bits;
214} bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215				     {31, 260000, 0x09},
216				     {62, 500000, 0x0A},
217				     {125, 0, 0x0B},
218				     {250, 0, 0x0C},
219				     {500, 0, 0x0D},
220				     {1000, 0, 0x0E},
221				     {2000, 0, 0x0F} };
222
223static const struct {
224	int bw_bits;
225	int msec;
226} bmc150_accel_sample_upd_time[] = { {0x08, 64},
227				     {0x09, 32},
228				     {0x0A, 16},
229				     {0x0B, 8},
230				     {0x0C, 4},
231				     {0x0D, 2},
232				     {0x0E, 1},
233				     {0x0F, 1} };
234
235static const struct {
236	int sleep_dur;
237	u8 reg_value;
238} bmc150_accel_sleep_value_table[] = { {0, 0},
239				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
240				       {1000, BMC150_ACCEL_SLEEP_1_MS},
241				       {2000, BMC150_ACCEL_SLEEP_2_MS},
242				       {4000, BMC150_ACCEL_SLEEP_4_MS},
243				       {6000, BMC150_ACCEL_SLEEP_6_MS},
244				       {10000, BMC150_ACCEL_SLEEP_10_MS},
245				       {25000, BMC150_ACCEL_SLEEP_25_MS},
246				       {50000, BMC150_ACCEL_SLEEP_50_MS},
247				       {100000, BMC150_ACCEL_SLEEP_100_MS},
248				       {500000, BMC150_ACCEL_SLEEP_500_MS},
249				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250
251const struct regmap_config bmc150_regmap_conf = {
252	.reg_bits = 8,
253	.val_bits = 8,
254	.max_register = 0x3f,
255};
256EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257
258static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259				 enum bmc150_power_modes mode,
260				 int dur_us)
261{
262	struct device *dev = regmap_get_device(data->regmap);
263	int i;
264	int ret;
265	u8 lpw_bits;
266	int dur_val = -1;
267
268	if (dur_us > 0) {
269		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270									 ++i) {
271			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272									dur_us)
273				dur_val =
274				bmc150_accel_sleep_value_table[i].reg_value;
275		}
276	} else {
277		dur_val = 0;
278	}
279
280	if (dur_val < 0)
281		return -EINVAL;
282
283	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285
286	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287
288	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289	if (ret < 0) {
290		dev_err(dev, "Error writing reg_pmu_lpw\n");
291		return ret;
292	}
293
294	return 0;
295}
296
297static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298			       int val2)
299{
300	int i;
301	int ret;
302
303	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304		if (bmc150_accel_samp_freq_table[i].val == val &&
305		    bmc150_accel_samp_freq_table[i].val2 == val2) {
306			ret = regmap_write(data->regmap,
307				BMC150_ACCEL_REG_PMU_BW,
308				bmc150_accel_samp_freq_table[i].bw_bits);
309			if (ret < 0)
310				return ret;
311
312			data->bw_bits =
313				bmc150_accel_samp_freq_table[i].bw_bits;
314			return 0;
315		}
316	}
317
318	return -EINVAL;
319}
320
321static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322{
323	struct device *dev = regmap_get_device(data->regmap);
324	int ret;
325
326	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327					data->slope_thres);
328	if (ret < 0) {
329		dev_err(dev, "Error writing reg_int_6\n");
330		return ret;
331	}
332
333	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335	if (ret < 0) {
336		dev_err(dev, "Error updating reg_int_5\n");
337		return ret;
338	}
339
340	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
341
342	return ret;
343}
344
345static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
346					 bool state)
347{
348	if (state)
349		return bmc150_accel_update_slope(t->data);
350
351	return 0;
352}
353
354static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
355			       int *val2)
356{
357	int i;
358
359	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361			*val = bmc150_accel_samp_freq_table[i].val;
362			*val2 = bmc150_accel_samp_freq_table[i].val2;
363			return IIO_VAL_INT_PLUS_MICRO;
364		}
365	}
366
367	return -EINVAL;
368}
369
370#ifdef CONFIG_PM
371static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
372{
373	int i;
374
375	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377			return bmc150_accel_sample_upd_time[i].msec;
378	}
379
380	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
381}
382
383static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
384{
385	struct device *dev = regmap_get_device(data->regmap);
386	int ret;
387
388	if (on) {
389		ret = pm_runtime_get_sync(dev);
390	} else {
391		pm_runtime_mark_last_busy(dev);
392		ret = pm_runtime_put_autosuspend(dev);
393	}
394
395	if (ret < 0) {
396		dev_err(dev,
397			"Failed: %s for %d\n", __func__, on);
398		if (on)
399			pm_runtime_put_noidle(dev);
400
401		return ret;
402	}
403
404	return 0;
405}
406#else
407static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
408{
409	return 0;
410}
411#endif
412
413static const struct bmc150_accel_interrupt_info {
414	u8 map_reg;
415	u8 map_bitmask;
416	u8 en_reg;
417	u8 en_bitmask;
418} bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419	{ /* data ready interrupt */
420		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
423		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
424	},
425	{  /* motion interrupt */
426		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
429		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
430			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431			BMC150_ACCEL_INT_EN_BIT_SLP_Z
432	},
433	{ /* fifo watermark interrupt */
434		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
437		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
438	},
439};
440
441static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442					  struct bmc150_accel_data *data)
443{
444	int i;
445
446	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447		data->interrupts[i].info = &bmc150_accel_interrupts[i];
448}
449
450static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451				      bool state)
452{
453	struct device *dev = regmap_get_device(data->regmap);
454	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455	const struct bmc150_accel_interrupt_info *info = intr->info;
456	int ret;
457
458	if (state) {
459		if (atomic_inc_return(&intr->users) > 1)
460			return 0;
461	} else {
462		if (atomic_dec_return(&intr->users) > 0)
463			return 0;
464	}
465
466	/*
467	 * We will expect the enable and disable to do operation in reverse
468	 * order. This will happen here anyway, as our resume operation uses
469	 * sync mode runtime pm calls. The suspend operation will be delayed
470	 * by autosuspend delay.
471	 * So the disable operation will still happen in reverse order of
472	 * enable operation. When runtime pm is disabled the mode is always on,
473	 * so sequence doesn't matter.
474	 */
475	ret = bmc150_accel_set_power_state(data, state);
476	if (ret < 0)
477		return ret;
478
479	/* map the interrupt to the appropriate pins */
480	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481				 (state ? info->map_bitmask : 0));
482	if (ret < 0) {
483		dev_err(dev, "Error updating reg_int_map\n");
484		goto out_fix_power_state;
485	}
486
487	/* enable/disable the interrupt */
488	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489				 (state ? info->en_bitmask : 0));
490	if (ret < 0) {
491		dev_err(dev, "Error updating reg_int_en\n");
492		goto out_fix_power_state;
493	}
494
495	return 0;
496
497out_fix_power_state:
498	bmc150_accel_set_power_state(data, false);
499	return ret;
500}
501
502static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
503{
504	struct device *dev = regmap_get_device(data->regmap);
505	int ret, i;
506
507	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508		if (data->chip_info->scale_table[i].scale == val) {
509			ret = regmap_write(data->regmap,
510				     BMC150_ACCEL_REG_PMU_RANGE,
511				     data->chip_info->scale_table[i].reg_range);
512			if (ret < 0) {
513				dev_err(dev, "Error writing pmu_range\n");
514				return ret;
515			}
516
517			data->range = data->chip_info->scale_table[i].reg_range;
518			return 0;
519		}
520	}
521
522	return -EINVAL;
523}
524
525static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
526{
527	struct device *dev = regmap_get_device(data->regmap);
528	int ret;
529	unsigned int value;
530
531	mutex_lock(&data->mutex);
532
533	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534	if (ret < 0) {
535		dev_err(dev, "Error reading reg_temp\n");
536		mutex_unlock(&data->mutex);
537		return ret;
538	}
539	*val = sign_extend32(value, 7);
540
541	mutex_unlock(&data->mutex);
542
543	return IIO_VAL_INT;
544}
545
546static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547				 struct iio_chan_spec const *chan,
548				 int *val)
549{
550	struct device *dev = regmap_get_device(data->regmap);
551	int ret;
552	int axis = chan->scan_index;
553	__le16 raw_val;
554
555	mutex_lock(&data->mutex);
556	ret = bmc150_accel_set_power_state(data, true);
557	if (ret < 0) {
558		mutex_unlock(&data->mutex);
559		return ret;
560	}
561
562	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563			       &raw_val, sizeof(raw_val));
564	if (ret < 0) {
565		dev_err(dev, "Error reading axis %d\n", axis);
566		bmc150_accel_set_power_state(data, false);
567		mutex_unlock(&data->mutex);
568		return ret;
569	}
570	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571			     chan->scan_type.realbits - 1);
572	ret = bmc150_accel_set_power_state(data, false);
573	mutex_unlock(&data->mutex);
574	if (ret < 0)
575		return ret;
576
577	return IIO_VAL_INT;
578}
579
580static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581				 struct iio_chan_spec const *chan,
582				 int *val, int *val2, long mask)
583{
584	struct bmc150_accel_data *data = iio_priv(indio_dev);
585	int ret;
586
587	switch (mask) {
588	case IIO_CHAN_INFO_RAW:
589		switch (chan->type) {
590		case IIO_TEMP:
591			return bmc150_accel_get_temp(data, val);
592		case IIO_ACCEL:
593			if (iio_buffer_enabled(indio_dev))
594				return -EBUSY;
595			else
596				return bmc150_accel_get_axis(data, chan, val);
597		default:
598			return -EINVAL;
599		}
600	case IIO_CHAN_INFO_OFFSET:
601		if (chan->type == IIO_TEMP) {
602			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
603			return IIO_VAL_INT;
604		} else {
605			return -EINVAL;
606		}
607	case IIO_CHAN_INFO_SCALE:
608		*val = 0;
609		switch (chan->type) {
610		case IIO_TEMP:
611			*val2 = 500000;
612			return IIO_VAL_INT_PLUS_MICRO;
613		case IIO_ACCEL:
614		{
615			int i;
616			const struct bmc150_scale_info *si;
617			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618
619			for (i = 0; i < st_size; ++i) {
620				si = &data->chip_info->scale_table[i];
621				if (si->reg_range == data->range) {
622					*val2 = si->scale;
623					return IIO_VAL_INT_PLUS_MICRO;
624				}
625			}
626			return -EINVAL;
627		}
628		default:
629			return -EINVAL;
630		}
631	case IIO_CHAN_INFO_SAMP_FREQ:
632		mutex_lock(&data->mutex);
633		ret = bmc150_accel_get_bw(data, val, val2);
634		mutex_unlock(&data->mutex);
635		return ret;
636	default:
637		return -EINVAL;
638	}
639}
640
641static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642				  struct iio_chan_spec const *chan,
643				  int val, int val2, long mask)
644{
645	struct bmc150_accel_data *data = iio_priv(indio_dev);
646	int ret;
647
648	switch (mask) {
649	case IIO_CHAN_INFO_SAMP_FREQ:
650		mutex_lock(&data->mutex);
651		ret = bmc150_accel_set_bw(data, val, val2);
652		mutex_unlock(&data->mutex);
653		break;
654	case IIO_CHAN_INFO_SCALE:
655		if (val)
656			return -EINVAL;
657
658		mutex_lock(&data->mutex);
659		ret = bmc150_accel_set_scale(data, val2);
660		mutex_unlock(&data->mutex);
661		return ret;
662	default:
663		ret = -EINVAL;
664	}
665
666	return ret;
667}
668
669static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670				   const struct iio_chan_spec *chan,
671				   enum iio_event_type type,
672				   enum iio_event_direction dir,
673				   enum iio_event_info info,
674				   int *val, int *val2)
675{
676	struct bmc150_accel_data *data = iio_priv(indio_dev);
677
678	*val2 = 0;
679	switch (info) {
680	case IIO_EV_INFO_VALUE:
681		*val = data->slope_thres;
682		break;
683	case IIO_EV_INFO_PERIOD:
684		*val = data->slope_dur;
685		break;
686	default:
687		return -EINVAL;
688	}
689
690	return IIO_VAL_INT;
691}
692
693static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694				    const struct iio_chan_spec *chan,
695				    enum iio_event_type type,
696				    enum iio_event_direction dir,
697				    enum iio_event_info info,
698				    int val, int val2)
699{
700	struct bmc150_accel_data *data = iio_priv(indio_dev);
701
702	if (data->ev_enable_state)
703		return -EBUSY;
704
705	switch (info) {
706	case IIO_EV_INFO_VALUE:
707		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708		break;
709	case IIO_EV_INFO_PERIOD:
710		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711		break;
712	default:
713		return -EINVAL;
714	}
715
716	return 0;
717}
718
719static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720					  const struct iio_chan_spec *chan,
721					  enum iio_event_type type,
722					  enum iio_event_direction dir)
723{
724	struct bmc150_accel_data *data = iio_priv(indio_dev);
725
726	return data->ev_enable_state;
727}
728
729static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730					   const struct iio_chan_spec *chan,
731					   enum iio_event_type type,
732					   enum iio_event_direction dir,
733					   int state)
734{
735	struct bmc150_accel_data *data = iio_priv(indio_dev);
736	int ret;
737
738	if (state == data->ev_enable_state)
739		return 0;
740
741	mutex_lock(&data->mutex);
742
743	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
744					 state);
745	if (ret < 0) {
746		mutex_unlock(&data->mutex);
747		return ret;
748	}
749
750	data->ev_enable_state = state;
751	mutex_unlock(&data->mutex);
752
753	return 0;
754}
755
756static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757					 struct iio_trigger *trig)
758{
759	struct bmc150_accel_data *data = iio_priv(indio_dev);
760	int i;
761
762	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763		if (data->triggers[i].indio_trig == trig)
764			return 0;
765	}
766
767	return -EINVAL;
768}
769
770static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771					       struct device_attribute *attr,
772					       char *buf)
773{
774	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775	struct bmc150_accel_data *data = iio_priv(indio_dev);
776	int wm;
777
778	mutex_lock(&data->mutex);
779	wm = data->watermark;
780	mutex_unlock(&data->mutex);
781
782	return sprintf(buf, "%d\n", wm);
783}
784
785static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786					   struct device_attribute *attr,
787					   char *buf)
788{
789	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790	struct bmc150_accel_data *data = iio_priv(indio_dev);
791	bool state;
792
793	mutex_lock(&data->mutex);
794	state = data->fifo_mode;
795	mutex_unlock(&data->mutex);
796
797	return sprintf(buf, "%d\n", state);
798}
799
800static const struct iio_mount_matrix *
801bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
802				const struct iio_chan_spec *chan)
803{
804	struct bmc150_accel_data *data = iio_priv(indio_dev);
805
806	return &data->orientation;
807}
808
809static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
810	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
811	{ }
812};
813
814static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
815static IIO_CONST_ATTR(hwfifo_watermark_max,
816		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
817static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
818		       bmc150_accel_get_fifo_state, NULL, 0);
819static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
820		       bmc150_accel_get_fifo_watermark, NULL, 0);
821
822static const struct attribute *bmc150_accel_fifo_attributes[] = {
823	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
824	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
825	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
826	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
827	NULL,
828};
829
830static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
831{
832	struct bmc150_accel_data *data = iio_priv(indio_dev);
833
834	if (val > BMC150_ACCEL_FIFO_LENGTH)
835		val = BMC150_ACCEL_FIFO_LENGTH;
836
837	mutex_lock(&data->mutex);
838	data->watermark = val;
839	mutex_unlock(&data->mutex);
840
841	return 0;
842}
843
844/*
845 * We must read at least one full frame in one burst, otherwise the rest of the
846 * frame data is discarded.
847 */
848static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
849				      char *buffer, int samples)
850{
851	struct device *dev = regmap_get_device(data->regmap);
852	int sample_length = 3 * 2;
853	int ret;
854	int total_length = samples * sample_length;
855
856	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
857			      buffer, total_length);
858	if (ret)
859		dev_err(dev,
860			"Error transferring data from fifo: %d\n", ret);
861
862	return ret;
863}
864
865static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
866				     unsigned samples, bool irq)
867{
868	struct bmc150_accel_data *data = iio_priv(indio_dev);
869	struct device *dev = regmap_get_device(data->regmap);
870	int ret, i;
871	u8 count;
872	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
873	int64_t tstamp;
874	uint64_t sample_period;
875	unsigned int val;
876
877	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
878	if (ret < 0) {
879		dev_err(dev, "Error reading reg_fifo_status\n");
880		return ret;
881	}
882
883	count = val & 0x7F;
884
885	if (!count)
886		return 0;
887
888	/*
889	 * If we getting called from IRQ handler we know the stored timestamp is
890	 * fairly accurate for the last stored sample. Otherwise, if we are
891	 * called as a result of a read operation from userspace and hence
892	 * before the watermark interrupt was triggered, take a timestamp
893	 * now. We can fall anywhere in between two samples so the error in this
894	 * case is at most one sample period.
895	 */
896	if (!irq) {
897		data->old_timestamp = data->timestamp;
898		data->timestamp = iio_get_time_ns(indio_dev);
899	}
900
901	/*
902	 * Approximate timestamps for each of the sample based on the sampling
903	 * frequency, timestamp for last sample and number of samples.
904	 *
905	 * Note that we can't use the current bandwidth settings to compute the
906	 * sample period because the sample rate varies with the device
907	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
908	 * small variation adds when we store a large number of samples and
909	 * creates significant jitter between the last and first samples in
910	 * different batches (e.g. 32ms vs 21ms).
911	 *
912	 * To avoid this issue we compute the actual sample period ourselves
913	 * based on the timestamp delta between the last two flush operations.
914	 */
915	sample_period = (data->timestamp - data->old_timestamp);
916	do_div(sample_period, count);
917	tstamp = data->timestamp - (count - 1) * sample_period;
918
919	if (samples && count > samples)
920		count = samples;
921
922	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
923	if (ret)
924		return ret;
925
926	/*
927	 * Ideally we want the IIO core to handle the demux when running in fifo
928	 * mode but not when running in triggered buffer mode. Unfortunately
929	 * this does not seem to be possible, so stick with driver demux for
930	 * now.
931	 */
932	for (i = 0; i < count; i++) {
933		int j, bit;
934
935		j = 0;
936		for_each_set_bit(bit, indio_dev->active_scan_mask,
937				 indio_dev->masklength)
938			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
939			       sizeof(data->scan.channels[0]));
940
941		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
942						   tstamp);
943
944		tstamp += sample_period;
945	}
946
947	return count;
948}
949
950static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
951{
952	struct bmc150_accel_data *data = iio_priv(indio_dev);
953	int ret;
954
955	mutex_lock(&data->mutex);
956	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
957	mutex_unlock(&data->mutex);
958
959	return ret;
960}
961
962static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
963		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
964
965static struct attribute *bmc150_accel_attributes[] = {
966	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
967	NULL,
968};
969
970static const struct attribute_group bmc150_accel_attrs_group = {
971	.attrs = bmc150_accel_attributes,
972};
973
974static const struct iio_event_spec bmc150_accel_event = {
975		.type = IIO_EV_TYPE_ROC,
976		.dir = IIO_EV_DIR_EITHER,
977		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
978				 BIT(IIO_EV_INFO_ENABLE) |
979				 BIT(IIO_EV_INFO_PERIOD)
980};
981
982#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
983	.type = IIO_ACCEL,						\
984	.modified = 1,							\
985	.channel2 = IIO_MOD_##_axis,					\
986	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
987	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
988				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
989	.scan_index = AXIS_##_axis,					\
990	.scan_type = {							\
991		.sign = 's',						\
992		.realbits = (bits),					\
993		.storagebits = 16,					\
994		.shift = 16 - (bits),					\
995		.endianness = IIO_LE,					\
996	},								\
997	.ext_info = bmc150_accel_ext_info,				\
998	.event_spec = &bmc150_accel_event,				\
999	.num_event_specs = 1						\
1000}
1001
1002#define BMC150_ACCEL_CHANNELS(bits) {					\
1003	{								\
1004		.type = IIO_TEMP,					\
1005		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1006				      BIT(IIO_CHAN_INFO_SCALE) |	\
1007				      BIT(IIO_CHAN_INFO_OFFSET),	\
1008		.scan_index = -1,					\
1009	},								\
1010	BMC150_ACCEL_CHANNEL(X, bits),					\
1011	BMC150_ACCEL_CHANNEL(Y, bits),					\
1012	BMC150_ACCEL_CHANNEL(Z, bits),					\
1013	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1014}
1015
1016static const struct iio_chan_spec bma222e_accel_channels[] =
1017	BMC150_ACCEL_CHANNELS(8);
1018static const struct iio_chan_spec bma250e_accel_channels[] =
1019	BMC150_ACCEL_CHANNELS(10);
1020static const struct iio_chan_spec bmc150_accel_channels[] =
1021	BMC150_ACCEL_CHANNELS(12);
1022static const struct iio_chan_spec bma280_accel_channels[] =
1023	BMC150_ACCEL_CHANNELS(14);
1024
1025static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1026	[bmc150] = {
1027		.name = "BMC150A",
1028		.chip_id = 0xFA,
1029		.channels = bmc150_accel_channels,
1030		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1031		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1032				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1033				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1034				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1035	},
1036	[bmi055] = {
1037		.name = "BMI055A",
1038		.chip_id = 0xFA,
1039		.channels = bmc150_accel_channels,
1040		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1041		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1042				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1043				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1044				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1045	},
1046	[bma255] = {
1047		.name = "BMA0255",
1048		.chip_id = 0xFA,
1049		.channels = bmc150_accel_channels,
1050		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1051		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1052				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1053				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1054				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1055	},
1056	[bma250e] = {
1057		.name = "BMA250E",
1058		.chip_id = 0xF9,
1059		.channels = bma250e_accel_channels,
1060		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1061		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1062				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1063				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1064				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1065	},
1066	[bma222e] = {
1067		.name = "BMA222E",
1068		.chip_id = 0xF8,
1069		.channels = bma222e_accel_channels,
1070		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1071		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1072				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1073				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1074				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1075	},
1076	[bma280] = {
1077		.name = "BMA0280",
1078		.chip_id = 0xFB,
1079		.channels = bma280_accel_channels,
1080		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1081		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1082				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1083				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1084				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1085	},
1086};
1087
1088static const struct iio_info bmc150_accel_info = {
1089	.attrs			= &bmc150_accel_attrs_group,
1090	.read_raw		= bmc150_accel_read_raw,
1091	.write_raw		= bmc150_accel_write_raw,
1092	.read_event_value	= bmc150_accel_read_event,
1093	.write_event_value	= bmc150_accel_write_event,
1094	.write_event_config	= bmc150_accel_write_event_config,
1095	.read_event_config	= bmc150_accel_read_event_config,
1096};
1097
1098static const struct iio_info bmc150_accel_info_fifo = {
1099	.attrs			= &bmc150_accel_attrs_group,
1100	.read_raw		= bmc150_accel_read_raw,
1101	.write_raw		= bmc150_accel_write_raw,
1102	.read_event_value	= bmc150_accel_read_event,
1103	.write_event_value	= bmc150_accel_write_event,
1104	.write_event_config	= bmc150_accel_write_event_config,
1105	.read_event_config	= bmc150_accel_read_event_config,
1106	.validate_trigger	= bmc150_accel_validate_trigger,
1107	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1108	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1109};
1110
1111static const unsigned long bmc150_accel_scan_masks[] = {
1112					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1113					0};
1114
1115static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1116{
1117	struct iio_poll_func *pf = p;
1118	struct iio_dev *indio_dev = pf->indio_dev;
1119	struct bmc150_accel_data *data = iio_priv(indio_dev);
1120	int ret;
1121
1122	mutex_lock(&data->mutex);
1123	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1124			       data->buffer, AXIS_MAX * 2);
1125	mutex_unlock(&data->mutex);
1126	if (ret < 0)
1127		goto err_read;
1128
1129	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1130					   pf->timestamp);
1131err_read:
1132	iio_trigger_notify_done(indio_dev->trig);
1133
1134	return IRQ_HANDLED;
1135}
1136
1137static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1138{
1139	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1140	struct bmc150_accel_data *data = t->data;
1141	struct device *dev = regmap_get_device(data->regmap);
1142	int ret;
1143
1144	/* new data interrupts don't need ack */
1145	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1146		return 0;
1147
1148	mutex_lock(&data->mutex);
1149	/* clear any latched interrupt */
1150	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1152			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153	mutex_unlock(&data->mutex);
1154	if (ret < 0) {
1155		dev_err(dev, "Error writing reg_int_rst_latch\n");
1156		return ret;
1157	}
1158
1159	return 0;
1160}
1161
1162static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1163					  bool state)
1164{
1165	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1166	struct bmc150_accel_data *data = t->data;
1167	int ret;
1168
1169	mutex_lock(&data->mutex);
1170
1171	if (t->enabled == state) {
1172		mutex_unlock(&data->mutex);
1173		return 0;
1174	}
1175
1176	if (t->setup) {
1177		ret = t->setup(t, state);
1178		if (ret < 0) {
1179			mutex_unlock(&data->mutex);
1180			return ret;
1181		}
1182	}
1183
1184	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1185	if (ret < 0) {
1186		mutex_unlock(&data->mutex);
1187		return ret;
1188	}
1189
1190	t->enabled = state;
1191
1192	mutex_unlock(&data->mutex);
1193
1194	return ret;
1195}
1196
1197static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1198	.set_trigger_state = bmc150_accel_trigger_set_state,
1199	.try_reenable = bmc150_accel_trig_try_reen,
1200};
1201
1202static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1203{
1204	struct bmc150_accel_data *data = iio_priv(indio_dev);
1205	struct device *dev = regmap_get_device(data->regmap);
1206	int dir;
1207	int ret;
1208	unsigned int val;
1209
1210	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1211	if (ret < 0) {
1212		dev_err(dev, "Error reading reg_int_status_2\n");
1213		return ret;
1214	}
1215
1216	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1217		dir = IIO_EV_DIR_FALLING;
1218	else
1219		dir = IIO_EV_DIR_RISING;
1220
1221	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1222		iio_push_event(indio_dev,
1223			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224						  0,
1225						  IIO_MOD_X,
1226						  IIO_EV_TYPE_ROC,
1227						  dir),
1228			       data->timestamp);
1229
1230	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1231		iio_push_event(indio_dev,
1232			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233						  0,
1234						  IIO_MOD_Y,
1235						  IIO_EV_TYPE_ROC,
1236						  dir),
1237			       data->timestamp);
1238
1239	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1240		iio_push_event(indio_dev,
1241			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1242						  0,
1243						  IIO_MOD_Z,
1244						  IIO_EV_TYPE_ROC,
1245						  dir),
1246			       data->timestamp);
1247
1248	return ret;
1249}
1250
1251static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1252{
1253	struct iio_dev *indio_dev = private;
1254	struct bmc150_accel_data *data = iio_priv(indio_dev);
1255	struct device *dev = regmap_get_device(data->regmap);
1256	bool ack = false;
1257	int ret;
1258
1259	mutex_lock(&data->mutex);
1260
1261	if (data->fifo_mode) {
1262		ret = __bmc150_accel_fifo_flush(indio_dev,
1263						BMC150_ACCEL_FIFO_LENGTH, true);
1264		if (ret > 0)
1265			ack = true;
1266	}
1267
1268	if (data->ev_enable_state) {
1269		ret = bmc150_accel_handle_roc_event(indio_dev);
1270		if (ret > 0)
1271			ack = true;
1272	}
1273
1274	if (ack) {
1275		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1277				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1278		if (ret)
1279			dev_err(dev, "Error writing reg_int_rst_latch\n");
1280
1281		ret = IRQ_HANDLED;
1282	} else {
1283		ret = IRQ_NONE;
1284	}
1285
1286	mutex_unlock(&data->mutex);
1287
1288	return ret;
1289}
1290
1291static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1292{
1293	struct iio_dev *indio_dev = private;
1294	struct bmc150_accel_data *data = iio_priv(indio_dev);
1295	bool ack = false;
1296	int i;
1297
1298	data->old_timestamp = data->timestamp;
1299	data->timestamp = iio_get_time_ns(indio_dev);
1300
1301	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302		if (data->triggers[i].enabled) {
1303			iio_trigger_poll(data->triggers[i].indio_trig);
1304			ack = true;
1305			break;
1306		}
1307	}
1308
1309	if (data->ev_enable_state || data->fifo_mode)
1310		return IRQ_WAKE_THREAD;
1311
1312	if (ack)
1313		return IRQ_HANDLED;
1314
1315	return IRQ_NONE;
1316}
1317
1318static const struct {
1319	int intr;
1320	const char *name;
1321	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322} bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1323	{
1324		.intr = 0,
1325		.name = "%s-dev%d",
1326	},
1327	{
1328		.intr = 1,
1329		.name = "%s-any-motion-dev%d",
1330		.setup = bmc150_accel_any_motion_setup,
1331	},
1332};
1333
1334static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1335					     int from)
1336{
1337	int i;
1338
1339	for (i = from; i >= 0; i--) {
1340		if (data->triggers[i].indio_trig) {
1341			iio_trigger_unregister(data->triggers[i].indio_trig);
1342			data->triggers[i].indio_trig = NULL;
1343		}
1344	}
1345}
1346
1347static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348				       struct bmc150_accel_data *data)
1349{
1350	struct device *dev = regmap_get_device(data->regmap);
1351	int i, ret;
1352
1353	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1354		struct bmc150_accel_trigger *t = &data->triggers[i];
1355
1356		t->indio_trig = devm_iio_trigger_alloc(dev,
1357					bmc150_accel_triggers[i].name,
1358						       indio_dev->name,
1359						       indio_dev->id);
1360		if (!t->indio_trig) {
1361			ret = -ENOMEM;
1362			break;
1363		}
1364
1365		t->indio_trig->dev.parent = dev;
1366		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1367		t->intr = bmc150_accel_triggers[i].intr;
1368		t->data = data;
1369		t->setup = bmc150_accel_triggers[i].setup;
1370		iio_trigger_set_drvdata(t->indio_trig, t);
1371
1372		ret = iio_trigger_register(t->indio_trig);
1373		if (ret)
1374			break;
1375	}
1376
1377	if (ret)
1378		bmc150_accel_unregister_triggers(data, i - 1);
1379
1380	return ret;
1381}
1382
1383#define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1384#define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1385#define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1386
1387static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1388{
1389	struct device *dev = regmap_get_device(data->regmap);
1390	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1391	int ret;
1392
1393	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1394	if (ret < 0) {
1395		dev_err(dev, "Error writing reg_fifo_config1\n");
1396		return ret;
1397	}
1398
1399	if (!data->fifo_mode)
1400		return 0;
1401
1402	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1403			   data->watermark);
1404	if (ret < 0)
1405		dev_err(dev, "Error writing reg_fifo_config0\n");
1406
1407	return ret;
1408}
1409
1410static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1411{
1412	struct bmc150_accel_data *data = iio_priv(indio_dev);
1413
1414	return bmc150_accel_set_power_state(data, true);
1415}
1416
1417static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1418{
1419	struct bmc150_accel_data *data = iio_priv(indio_dev);
1420	int ret = 0;
1421
1422	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1423		return 0;
1424
1425	mutex_lock(&data->mutex);
1426
1427	if (!data->watermark)
1428		goto out;
1429
1430	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1431					 true);
1432	if (ret)
1433		goto out;
1434
1435	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1436
1437	ret = bmc150_accel_fifo_set_mode(data);
1438	if (ret) {
1439		data->fifo_mode = 0;
1440		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441					   false);
1442	}
1443
1444out:
1445	mutex_unlock(&data->mutex);
1446
1447	return ret;
1448}
1449
1450static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1451{
1452	struct bmc150_accel_data *data = iio_priv(indio_dev);
1453
1454	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1455		return 0;
1456
1457	mutex_lock(&data->mutex);
1458
1459	if (!data->fifo_mode)
1460		goto out;
1461
1462	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1463	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1464	data->fifo_mode = 0;
1465	bmc150_accel_fifo_set_mode(data);
1466
1467out:
1468	mutex_unlock(&data->mutex);
1469
1470	return 0;
1471}
1472
1473static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1474{
1475	struct bmc150_accel_data *data = iio_priv(indio_dev);
1476
1477	return bmc150_accel_set_power_state(data, false);
1478}
1479
1480static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1481	.preenable = bmc150_accel_buffer_preenable,
1482	.postenable = bmc150_accel_buffer_postenable,
1483	.predisable = bmc150_accel_buffer_predisable,
1484	.postdisable = bmc150_accel_buffer_postdisable,
1485};
1486
1487static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1488{
1489	struct device *dev = regmap_get_device(data->regmap);
1490	int ret, i;
1491	unsigned int val;
1492
1493	/*
1494	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1495	 * reset is required according to the data sheets of supported chips.
1496	 */
1497	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1498		     BMC150_ACCEL_RESET_VAL);
1499	usleep_range(1800, 2500);
1500
1501	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1502	if (ret < 0) {
1503		dev_err(dev, "Error: Reading chip id\n");
1504		return ret;
1505	}
1506
1507	dev_dbg(dev, "Chip Id %x\n", val);
1508	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1509		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1510			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1511			break;
1512		}
1513	}
1514
1515	if (!data->chip_info) {
1516		dev_err(dev, "Invalid chip %x\n", val);
1517		return -ENODEV;
1518	}
1519
1520	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1521	if (ret < 0)
1522		return ret;
1523
1524	/* Set Bandwidth */
1525	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1526	if (ret < 0)
1527		return ret;
1528
1529	/* Set Default Range */
1530	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1531			   BMC150_ACCEL_DEF_RANGE_4G);
1532	if (ret < 0) {
1533		dev_err(dev, "Error writing reg_pmu_range\n");
1534		return ret;
1535	}
1536
1537	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1538
1539	/* Set default slope duration and thresholds */
1540	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1541	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1542	ret = bmc150_accel_update_slope(data);
1543	if (ret < 0)
1544		return ret;
1545
1546	/* Set default as latched interrupts */
1547	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1548			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1549			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1550	if (ret < 0) {
1551		dev_err(dev, "Error writing reg_int_rst_latch\n");
1552		return ret;
1553	}
1554
1555	return 0;
1556}
1557
1558int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1559			    const char *name, bool block_supported)
1560{
1561	struct bmc150_accel_data *data;
1562	struct iio_dev *indio_dev;
1563	int ret;
1564
1565	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1566	if (!indio_dev)
1567		return -ENOMEM;
1568
1569	data = iio_priv(indio_dev);
1570	dev_set_drvdata(dev, indio_dev);
1571	data->irq = irq;
1572
1573	data->regmap = regmap;
1574
1575	ret = iio_read_mount_matrix(dev, "mount-matrix",
1576				     &data->orientation);
1577	if (ret)
1578		return ret;
1579
1580	ret = bmc150_accel_chip_init(data);
1581	if (ret < 0)
1582		return ret;
1583
1584	mutex_init(&data->mutex);
1585
1586	indio_dev->channels = data->chip_info->channels;
1587	indio_dev->num_channels = data->chip_info->num_channels;
1588	indio_dev->name = name ? name : data->chip_info->name;
1589	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1590	indio_dev->modes = INDIO_DIRECT_MODE;
1591	indio_dev->info = &bmc150_accel_info;
1592
1593	ret = iio_triggered_buffer_setup(indio_dev,
1594					 &iio_pollfunc_store_time,
1595					 bmc150_accel_trigger_handler,
1596					 &bmc150_accel_buffer_ops);
1597	if (ret < 0) {
1598		dev_err(dev, "Failed: iio triggered buffer setup\n");
1599		return ret;
1600	}
1601
1602	if (data->irq > 0) {
1603		ret = devm_request_threaded_irq(
1604						dev, data->irq,
1605						bmc150_accel_irq_handler,
1606						bmc150_accel_irq_thread_handler,
1607						IRQF_TRIGGER_RISING,
1608						BMC150_ACCEL_IRQ_NAME,
1609						indio_dev);
1610		if (ret)
1611			goto err_buffer_cleanup;
1612
1613		/*
1614		 * Set latched mode interrupt. While certain interrupts are
1615		 * non-latched regardless of this settings (e.g. new data) we
1616		 * want to use latch mode when we can to prevent interrupt
1617		 * flooding.
1618		 */
1619		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1620				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1621		if (ret < 0) {
1622			dev_err(dev, "Error writing reg_int_rst_latch\n");
1623			goto err_buffer_cleanup;
1624		}
1625
1626		bmc150_accel_interrupts_setup(indio_dev, data);
1627
1628		ret = bmc150_accel_triggers_setup(indio_dev, data);
1629		if (ret)
1630			goto err_buffer_cleanup;
1631
1632		if (block_supported) {
1633			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1634			indio_dev->info = &bmc150_accel_info_fifo;
1635			iio_buffer_set_attrs(indio_dev->buffer,
1636					     bmc150_accel_fifo_attributes);
1637		}
1638	}
1639
1640	ret = pm_runtime_set_active(dev);
1641	if (ret)
1642		goto err_trigger_unregister;
1643
1644	pm_runtime_enable(dev);
1645	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1646	pm_runtime_use_autosuspend(dev);
1647
1648	ret = iio_device_register(indio_dev);
1649	if (ret < 0) {
1650		dev_err(dev, "Unable to register iio device\n");
1651		goto err_pm_cleanup;
1652	}
1653
1654	return 0;
1655
1656err_pm_cleanup:
1657	pm_runtime_dont_use_autosuspend(dev);
1658	pm_runtime_disable(dev);
1659err_trigger_unregister:
1660	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1661err_buffer_cleanup:
1662	iio_triggered_buffer_cleanup(indio_dev);
1663
1664	return ret;
1665}
1666EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1667
1668int bmc150_accel_core_remove(struct device *dev)
1669{
1670	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671	struct bmc150_accel_data *data = iio_priv(indio_dev);
1672
1673	iio_device_unregister(indio_dev);
1674
1675	pm_runtime_disable(dev);
1676	pm_runtime_set_suspended(dev);
1677	pm_runtime_put_noidle(dev);
1678
1679	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1680
1681	iio_triggered_buffer_cleanup(indio_dev);
1682
1683	mutex_lock(&data->mutex);
1684	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1685	mutex_unlock(&data->mutex);
1686
1687	return 0;
1688}
1689EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1690
1691#ifdef CONFIG_PM_SLEEP
1692static int bmc150_accel_suspend(struct device *dev)
1693{
1694	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1695	struct bmc150_accel_data *data = iio_priv(indio_dev);
1696
1697	mutex_lock(&data->mutex);
1698	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1699	mutex_unlock(&data->mutex);
1700
1701	return 0;
1702}
1703
1704static int bmc150_accel_resume(struct device *dev)
1705{
1706	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707	struct bmc150_accel_data *data = iio_priv(indio_dev);
1708
1709	mutex_lock(&data->mutex);
1710	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1711	bmc150_accel_fifo_set_mode(data);
1712	mutex_unlock(&data->mutex);
1713
1714	return 0;
1715}
1716#endif
1717
1718#ifdef CONFIG_PM
1719static int bmc150_accel_runtime_suspend(struct device *dev)
1720{
1721	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1722	struct bmc150_accel_data *data = iio_priv(indio_dev);
1723	int ret;
1724
1725	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1726	if (ret < 0)
1727		return -EAGAIN;
1728
1729	return 0;
1730}
1731
1732static int bmc150_accel_runtime_resume(struct device *dev)
1733{
1734	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1735	struct bmc150_accel_data *data = iio_priv(indio_dev);
1736	int ret;
1737	int sleep_val;
1738
1739	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1740	if (ret < 0)
1741		return ret;
1742	ret = bmc150_accel_fifo_set_mode(data);
1743	if (ret < 0)
1744		return ret;
1745
1746	sleep_val = bmc150_accel_get_startup_times(data);
1747	if (sleep_val < 20)
1748		usleep_range(sleep_val * 1000, 20000);
1749	else
1750		msleep_interruptible(sleep_val);
1751
1752	return 0;
1753}
1754#endif
1755
1756const struct dev_pm_ops bmc150_accel_pm_ops = {
1757	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1758	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1759			   bmc150_accel_runtime_resume, NULL)
1760};
1761EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1762
1763MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1764MODULE_LICENSE("GPL v2");
1765MODULE_DESCRIPTION("BMC150 accelerometer driver");
1766