1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Copyright (c) 1999-2001 Vojtech Pavlik
4 *  Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 *
6 * Should you need to contact me, the author, you can do so either by
7 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
8 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
9 */
10
11#include <linux/kernel.h>
12#include <linux/ide.h>
13#include <linux/module.h>
14
15/*
16 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
17 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
18 * for PIO 5, which is a nonstandard extension and UDMA6, which
19 * is currently supported only by Maxtor drives.
20 */
21
22static struct ide_timing ide_timing[] = {
23
24	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
25	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
26	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
27	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
28
29	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
30	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
31	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
32
33	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
34	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
35	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
36	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
37	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
38
39	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
40	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
41	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
42
43	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
44	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
45	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
46	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
47
48	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
49	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
50	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
51
52	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 },
53
54	{ 0xff }
55};
56
57struct ide_timing *ide_timing_find_mode(u8 speed)
58{
59	struct ide_timing *t;
60
61	for (t = ide_timing; t->mode != speed; t++)
62		if (t->mode == 0xff)
63			return NULL;
64	return t;
65}
66EXPORT_SYMBOL_GPL(ide_timing_find_mode);
67
68u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
69{
70	u16 *id = drive->id;
71	struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
72	u16 cycle = 0;
73
74	if (id[ATA_ID_FIELD_VALID] & 2) {
75		if (ata_id_has_iordy(drive->id))
76			cycle = id[ATA_ID_EIDE_PIO_IORDY];
77		else
78			cycle = id[ATA_ID_EIDE_PIO];
79
80		/* conservative "downgrade" for all pre-ATA2 drives */
81		if (pio < 3 && cycle < t->cycle)
82			cycle = 0; /* use standard timing */
83
84		/* Use the standard timing for the CF specific modes too */
85		if (pio > 4 && ata_id_is_cfa(id))
86			cycle = 0;
87	}
88
89	return cycle ? cycle : t->cycle;
90}
91EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
92
93#define ENOUGH(v, unit)		(((v) - 1) / (unit) + 1)
94#define EZ(v, unit)		((v) ? ENOUGH((v) * 1000, unit) : 0)
95
96static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
97				int T, int UT)
98{
99	q->setup   = EZ(t->setup,   T);
100	q->act8b   = EZ(t->act8b,   T);
101	q->rec8b   = EZ(t->rec8b,   T);
102	q->cyc8b   = EZ(t->cyc8b,   T);
103	q->active  = EZ(t->active,  T);
104	q->recover = EZ(t->recover, T);
105	q->cycle   = EZ(t->cycle,   T);
106	q->udma    = EZ(t->udma,    UT);
107}
108
109void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
110		      struct ide_timing *m, unsigned int what)
111{
112	if (what & IDE_TIMING_SETUP)
113		m->setup   = max(a->setup,   b->setup);
114	if (what & IDE_TIMING_ACT8B)
115		m->act8b   = max(a->act8b,   b->act8b);
116	if (what & IDE_TIMING_REC8B)
117		m->rec8b   = max(a->rec8b,   b->rec8b);
118	if (what & IDE_TIMING_CYC8B)
119		m->cyc8b   = max(a->cyc8b,   b->cyc8b);
120	if (what & IDE_TIMING_ACTIVE)
121		m->active  = max(a->active,  b->active);
122	if (what & IDE_TIMING_RECOVER)
123		m->recover = max(a->recover, b->recover);
124	if (what & IDE_TIMING_CYCLE)
125		m->cycle   = max(a->cycle,   b->cycle);
126	if (what & IDE_TIMING_UDMA)
127		m->udma    = max(a->udma,    b->udma);
128}
129EXPORT_SYMBOL_GPL(ide_timing_merge);
130
131int ide_timing_compute(ide_drive_t *drive, u8 speed,
132		       struct ide_timing *t, int T, int UT)
133{
134	u16 *id = drive->id;
135	struct ide_timing *s, p;
136
137	/*
138	 * Find the mode.
139	 */
140	s = ide_timing_find_mode(speed);
141	if (s == NULL)
142		return -EINVAL;
143
144	/*
145	 * Copy the timing from the table.
146	 */
147	*t = *s;
148
149	/*
150	 * If the drive is an EIDE drive, it can tell us it needs extended
151	 * PIO/MWDMA cycle timing.
152	 */
153	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
154		memset(&p, 0, sizeof(p));
155
156		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
157			if (speed <= XFER_PIO_2)
158				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
159			else if ((speed <= XFER_PIO_4) ||
160				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
161				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
162		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
163			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
164
165		ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
166	}
167
168	/*
169	 * Convert the timing to bus clock counts.
170	 */
171	ide_timing_quantize(t, t, T, UT);
172
173	/*
174	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
175	 * S.M.A.R.T and some other commands. We have to ensure that the
176	 * DMA cycle timing is slower/equal than the current PIO timing.
177	 */
178	if (speed >= XFER_SW_DMA_0) {
179		ide_timing_compute(drive, drive->pio_mode, &p, T, UT);
180		ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
181	}
182
183	/*
184	 * Lengthen active & recovery time so that cycle time is correct.
185	 */
186	if (t->act8b + t->rec8b < t->cyc8b) {
187		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
188		t->rec8b = t->cyc8b - t->act8b;
189	}
190
191	if (t->active + t->recover < t->cycle) {
192		t->active += (t->cycle - (t->active + t->recover)) / 2;
193		t->recover = t->cycle - t->active;
194	}
195
196	return 0;
197}
198EXPORT_SYMBOL_GPL(ide_timing_compute);
199