1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org> 4 * Portions Copyright (C) 2001 Sun Microsystems, Inc. 5 * Portions Copyright (C) 2003 Red Hat Inc 6 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz 7 * Portions Copyright (C) 2005-2009 MontaVista Software, Inc. 8 * 9 * Thanks to HighPoint Technologies for their assistance, and hardware. 10 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his 11 * donation of an ABit BP6 mainboard, processor, and memory acellerated 12 * development and support. 13 * 14 * 15 * HighPoint has its own drivers (open source except for the RAID part) 16 * available from http://www.highpoint-tech.com/USA_new/service_support.htm 17 * This may be useful to anyone wanting to work on this driver, however do not 18 * trust them too much since the code tends to become less and less meaningful 19 * as the time passes... :-/ 20 * 21 * Note that final HPT370 support was done by force extraction of GPL. 22 * 23 * - add function for getting/setting power status of drive 24 * - the HPT370's state machine can get confused. reset it before each dma 25 * xfer to prevent that from happening. 26 * - reset state engine whenever we get an error. 27 * - check for busmaster state at end of dma. 28 * - use new highpoint timings. 29 * - detect bus speed using highpoint register. 30 * - use pll if we don't have a clock table. added a 66MHz table that's 31 * just 2x the 33MHz table. 32 * - removed turnaround. NOTE: we never want to switch between pll and 33 * pci clocks as the chip can glitch in those cases. the highpoint 34 * approved workaround slows everything down too much to be useful. in 35 * addition, we would have to serialize access to each chip. 36 * Adrian Sun <a.sun@sun.com> 37 * 38 * add drive timings for 66MHz PCI bus, 39 * fix ATA Cable signal detection, fix incorrect /proc info 40 * add /proc display for per-drive PIO/DMA/UDMA mode and 41 * per-channel ATA-33/66 Cable detect. 42 * Duncan Laurie <void@sun.com> 43 * 44 * fixup /proc output for multiple controllers 45 * Tim Hockin <thockin@sun.com> 46 * 47 * On hpt366: 48 * Reset the hpt366 on error, reset on dma 49 * Fix disabling Fast Interrupt hpt366. 50 * Mike Waychison <crlf@sun.com> 51 * 52 * Added support for 372N clocking and clock switching. The 372N needs 53 * different clocks on read/write. This requires overloading rw_disk and 54 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for 55 * keeping me sane. 56 * Alan Cox <alan@lxorguk.ukuu.org.uk> 57 * 58 * - fix the clock turnaround code: it was writing to the wrong ports when 59 * called for the secondary channel, caching the current clock mode per- 60 * channel caused the cached register value to get out of sync with the 61 * actual one, the channels weren't serialized, the turnaround shouldn't 62 * be done on 66 MHz PCI bus 63 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used 64 * does not allow for this speed anyway 65 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips, 66 * their primary channel is kind of virtual, it isn't tied to any pins) 67 * - fix/remove bad/unused timing tables and use one set of tables for the whole 68 * HPT37x chip family; save space by introducing the separate transfer mode 69 * table in which the mode lookup is done 70 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives 71 * the wrong PCI frequency since DPLL has already been calibrated by BIOS; 72 * read it only from the function 0 of HPT374 chips 73 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus, 74 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead 75 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as 76 * they tamper with its fields 77 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure 78 * since they may tamper with its fields 79 * - prefix the driver startup messages with the real chip name 80 * - claim the extra 240 bytes of I/O space for all chips 81 * - optimize the UltraDMA filtering and the drive list lookup code 82 * - use pci_get_slot() to get to the function 1 of HPT36x/374 83 * - cache offset of the channel's misc. control registers (MCRs) being used 84 * throughout the driver 85 * - only touch the relevant MCR when detecting the cable type on HPT374's 86 * function 1 87 * - rename all the register related variables consistently 88 * - move all the interrupt twiddling code from the speedproc handlers into 89 * init_hwif_hpt366(), also grouping all the DMA related code together there 90 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and 91 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings 92 * when setting an UltraDMA mode 93 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select 94 * the best possible one 95 * - clean up DMA timeout handling for HPT370 96 * - switch to using the enumeration type to differ between the numerous chip 97 * variants, matching PCI device/revision ID with the chip type early, at the 98 * init_setup stage 99 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies, 100 * stop duplicating it for each channel by storing the pointer in the pci_dev 101 * structure: first, at the init_setup stage, point it to a static "template" 102 * with only the chip type and its specific base DPLL frequency, the highest 103 * UltraDMA mode, and the chip settings table pointer filled, then, at the 104 * init_chipset stage, allocate per-chip instance and fill it with the rest 105 * of the necessary information 106 * - get rid of the constant thresholds in the HPT37x PCI clock detection code, 107 * switch to calculating PCI clock frequency based on the chip's base DPLL 108 * frequency 109 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on 110 * anything newer than HPT370/A (except HPT374 that is not capable of this 111 * mode according to the manual) 112 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(), 113 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips; 114 * unify HPT36x/37x timing setup code and the speedproc handlers by joining 115 * the register setting lists into the table indexed by the clock selected 116 * - set the correct hwif->ultra_mask for each individual chip 117 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards 118 * - stop resetting HPT370's state machine before each DMA transfer as that has 119 * caused more harm than good 120 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com> 121 */ 122 123#include <linux/types.h> 124#include <linux/module.h> 125#include <linux/kernel.h> 126#include <linux/delay.h> 127#include <linux/blkdev.h> 128#include <linux/interrupt.h> 129#include <linux/pci.h> 130#include <linux/init.h> 131#include <linux/ide.h> 132#include <linux/slab.h> 133 134#include <linux/uaccess.h> 135#include <asm/io.h> 136 137#define DRV_NAME "hpt366" 138 139/* various tuning parameters */ 140#undef HPT_RESET_STATE_ENGINE 141#undef HPT_DELAY_INTERRUPT 142 143static const char *bad_ata100_5[] = { 144 "IBM-DTLA-307075", 145 "IBM-DTLA-307060", 146 "IBM-DTLA-307045", 147 "IBM-DTLA-307030", 148 "IBM-DTLA-307020", 149 "IBM-DTLA-307015", 150 "IBM-DTLA-305040", 151 "IBM-DTLA-305030", 152 "IBM-DTLA-305020", 153 "IC35L010AVER07-0", 154 "IC35L020AVER07-0", 155 "IC35L030AVER07-0", 156 "IC35L040AVER07-0", 157 "IC35L060AVER07-0", 158 "WDC AC310200R", 159 NULL 160}; 161 162static const char *bad_ata66_4[] = { 163 "IBM-DTLA-307075", 164 "IBM-DTLA-307060", 165 "IBM-DTLA-307045", 166 "IBM-DTLA-307030", 167 "IBM-DTLA-307020", 168 "IBM-DTLA-307015", 169 "IBM-DTLA-305040", 170 "IBM-DTLA-305030", 171 "IBM-DTLA-305020", 172 "IC35L010AVER07-0", 173 "IC35L020AVER07-0", 174 "IC35L030AVER07-0", 175 "IC35L040AVER07-0", 176 "IC35L060AVER07-0", 177 "WDC AC310200R", 178 "MAXTOR STM3320620A", 179 NULL 180}; 181 182static const char *bad_ata66_3[] = { 183 "WDC AC310200R", 184 NULL 185}; 186 187static const char *bad_ata33[] = { 188 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2", 189 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2", 190 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4", 191 "Maxtor 90510D4", 192 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2", 193 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4", 194 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2", 195 NULL 196}; 197 198static u8 xfer_speeds[] = { 199 XFER_UDMA_6, 200 XFER_UDMA_5, 201 XFER_UDMA_4, 202 XFER_UDMA_3, 203 XFER_UDMA_2, 204 XFER_UDMA_1, 205 XFER_UDMA_0, 206 207 XFER_MW_DMA_2, 208 XFER_MW_DMA_1, 209 XFER_MW_DMA_0, 210 211 XFER_PIO_4, 212 XFER_PIO_3, 213 XFER_PIO_2, 214 XFER_PIO_1, 215 XFER_PIO_0 216}; 217 218/* Key for bus clock timings 219 * 36x 37x 220 * bits bits 221 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA. 222 * cycles = value + 1 223 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA. 224 * cycles = value + 1 225 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file 226 * register access. 227 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file 228 * register access. 229 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer. 230 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock. 231 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and 232 * MW DMA xfer. 233 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for 234 * task file register access. 235 * 28 28 UDMA enable. 236 * 29 29 DMA enable. 237 * 30 30 PIO MST enable. If set, the chip is in bus master mode during 238 * PIO xfer. 239 * 31 31 FIFO enable. 240 */ 241 242static u32 forty_base_hpt36x[] = { 243 /* XFER_UDMA_6 */ 0x900fd943, 244 /* XFER_UDMA_5 */ 0x900fd943, 245 /* XFER_UDMA_4 */ 0x900fd943, 246 /* XFER_UDMA_3 */ 0x900ad943, 247 /* XFER_UDMA_2 */ 0x900bd943, 248 /* XFER_UDMA_1 */ 0x9008d943, 249 /* XFER_UDMA_0 */ 0x9008d943, 250 251 /* XFER_MW_DMA_2 */ 0xa008d943, 252 /* XFER_MW_DMA_1 */ 0xa010d955, 253 /* XFER_MW_DMA_0 */ 0xa010d9fc, 254 255 /* XFER_PIO_4 */ 0xc008d963, 256 /* XFER_PIO_3 */ 0xc010d974, 257 /* XFER_PIO_2 */ 0xc010d997, 258 /* XFER_PIO_1 */ 0xc010d9c7, 259 /* XFER_PIO_0 */ 0xc018d9d9 260}; 261 262static u32 thirty_three_base_hpt36x[] = { 263 /* XFER_UDMA_6 */ 0x90c9a731, 264 /* XFER_UDMA_5 */ 0x90c9a731, 265 /* XFER_UDMA_4 */ 0x90c9a731, 266 /* XFER_UDMA_3 */ 0x90cfa731, 267 /* XFER_UDMA_2 */ 0x90caa731, 268 /* XFER_UDMA_1 */ 0x90cba731, 269 /* XFER_UDMA_0 */ 0x90c8a731, 270 271 /* XFER_MW_DMA_2 */ 0xa0c8a731, 272 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */ 273 /* XFER_MW_DMA_0 */ 0xa0c8a797, 274 275 /* XFER_PIO_4 */ 0xc0c8a731, 276 /* XFER_PIO_3 */ 0xc0c8a742, 277 /* XFER_PIO_2 */ 0xc0d0a753, 278 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */ 279 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */ 280}; 281 282static u32 twenty_five_base_hpt36x[] = { 283 /* XFER_UDMA_6 */ 0x90c98521, 284 /* XFER_UDMA_5 */ 0x90c98521, 285 /* XFER_UDMA_4 */ 0x90c98521, 286 /* XFER_UDMA_3 */ 0x90cf8521, 287 /* XFER_UDMA_2 */ 0x90cf8521, 288 /* XFER_UDMA_1 */ 0x90cb8521, 289 /* XFER_UDMA_0 */ 0x90cb8521, 290 291 /* XFER_MW_DMA_2 */ 0xa0ca8521, 292 /* XFER_MW_DMA_1 */ 0xa0ca8532, 293 /* XFER_MW_DMA_0 */ 0xa0ca8575, 294 295 /* XFER_PIO_4 */ 0xc0ca8521, 296 /* XFER_PIO_3 */ 0xc0ca8532, 297 /* XFER_PIO_2 */ 0xc0ca8542, 298 /* XFER_PIO_1 */ 0xc0d08572, 299 /* XFER_PIO_0 */ 0xc0d08585 300}; 301 302/* 303 * The following are the new timing tables with PIO mode data/taskfile transfer 304 * overclocking fixed... 305 */ 306 307/* This table is taken from the HPT370 data manual rev. 1.02 */ 308static u32 thirty_three_base_hpt37x[] = { 309 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */ 310 /* XFER_UDMA_5 */ 0x16455031, 311 /* XFER_UDMA_4 */ 0x16455031, 312 /* XFER_UDMA_3 */ 0x166d5031, 313 /* XFER_UDMA_2 */ 0x16495031, 314 /* XFER_UDMA_1 */ 0x164d5033, 315 /* XFER_UDMA_0 */ 0x16515097, 316 317 /* XFER_MW_DMA_2 */ 0x26515031, 318 /* XFER_MW_DMA_1 */ 0x26515033, 319 /* XFER_MW_DMA_0 */ 0x26515097, 320 321 /* XFER_PIO_4 */ 0x06515021, 322 /* XFER_PIO_3 */ 0x06515022, 323 /* XFER_PIO_2 */ 0x06515033, 324 /* XFER_PIO_1 */ 0x06915065, 325 /* XFER_PIO_0 */ 0x06d1508a 326}; 327 328static u32 fifty_base_hpt37x[] = { 329 /* XFER_UDMA_6 */ 0x1a861842, 330 /* XFER_UDMA_5 */ 0x1a861842, 331 /* XFER_UDMA_4 */ 0x1aae1842, 332 /* XFER_UDMA_3 */ 0x1a8e1842, 333 /* XFER_UDMA_2 */ 0x1a0e1842, 334 /* XFER_UDMA_1 */ 0x1a161854, 335 /* XFER_UDMA_0 */ 0x1a1a18ea, 336 337 /* XFER_MW_DMA_2 */ 0x2a821842, 338 /* XFER_MW_DMA_1 */ 0x2a821854, 339 /* XFER_MW_DMA_0 */ 0x2a8218ea, 340 341 /* XFER_PIO_4 */ 0x0a821842, 342 /* XFER_PIO_3 */ 0x0a821843, 343 /* XFER_PIO_2 */ 0x0a821855, 344 /* XFER_PIO_1 */ 0x0ac218a8, 345 /* XFER_PIO_0 */ 0x0b02190c 346}; 347 348static u32 sixty_six_base_hpt37x[] = { 349 /* XFER_UDMA_6 */ 0x1c86fe62, 350 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */ 351 /* XFER_UDMA_4 */ 0x1c8afe62, 352 /* XFER_UDMA_3 */ 0x1c8efe62, 353 /* XFER_UDMA_2 */ 0x1c92fe62, 354 /* XFER_UDMA_1 */ 0x1c9afe62, 355 /* XFER_UDMA_0 */ 0x1c82fe62, 356 357 /* XFER_MW_DMA_2 */ 0x2c82fe62, 358 /* XFER_MW_DMA_1 */ 0x2c82fe66, 359 /* XFER_MW_DMA_0 */ 0x2c82ff2e, 360 361 /* XFER_PIO_4 */ 0x0c82fe62, 362 /* XFER_PIO_3 */ 0x0c82fe84, 363 /* XFER_PIO_2 */ 0x0c82fea6, 364 /* XFER_PIO_1 */ 0x0d02ff26, 365 /* XFER_PIO_0 */ 0x0d42ff7f 366}; 367 368#define HPT371_ALLOW_ATA133_6 1 369#define HPT302_ALLOW_ATA133_6 1 370#define HPT372_ALLOW_ATA133_6 1 371#define HPT370_ALLOW_ATA100_5 0 372#define HPT366_ALLOW_ATA66_4 1 373#define HPT366_ALLOW_ATA66_3 1 374 375/* Supported ATA clock frequencies */ 376enum ata_clock { 377 ATA_CLOCK_25MHZ, 378 ATA_CLOCK_33MHZ, 379 ATA_CLOCK_40MHZ, 380 ATA_CLOCK_50MHZ, 381 ATA_CLOCK_66MHZ, 382 NUM_ATA_CLOCKS 383}; 384 385struct hpt_timings { 386 u32 pio_mask; 387 u32 dma_mask; 388 u32 ultra_mask; 389 u32 *clock_table[NUM_ATA_CLOCKS]; 390}; 391 392/* 393 * Hold all the HighPoint chip information in one place. 394 */ 395 396struct hpt_info { 397 char *chip_name; /* Chip name */ 398 u8 chip_type; /* Chip type */ 399 u8 udma_mask; /* Allowed UltraDMA modes mask. */ 400 u8 dpll_clk; /* DPLL clock in MHz */ 401 u8 pci_clk; /* PCI clock in MHz */ 402 struct hpt_timings *timings; /* Chipset timing data */ 403 u8 clock; /* ATA clock selected */ 404}; 405 406/* Supported HighPoint chips */ 407enum { 408 HPT36x, 409 HPT370, 410 HPT370A, 411 HPT374, 412 HPT372, 413 HPT372A, 414 HPT302, 415 HPT371, 416 HPT372N, 417 HPT302N, 418 HPT371N 419}; 420 421static struct hpt_timings hpt36x_timings = { 422 .pio_mask = 0xc1f8ffff, 423 .dma_mask = 0x303800ff, 424 .ultra_mask = 0x30070000, 425 .clock_table = { 426 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x, 427 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x, 428 [ATA_CLOCK_40MHZ] = forty_base_hpt36x, 429 [ATA_CLOCK_50MHZ] = NULL, 430 [ATA_CLOCK_66MHZ] = NULL 431 } 432}; 433 434static struct hpt_timings hpt37x_timings = { 435 .pio_mask = 0xcfc3ffff, 436 .dma_mask = 0x31c001ff, 437 .ultra_mask = 0x303c0000, 438 .clock_table = { 439 [ATA_CLOCK_25MHZ] = NULL, 440 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x, 441 [ATA_CLOCK_40MHZ] = NULL, 442 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x, 443 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x 444 } 445}; 446 447static const struct hpt_info hpt36x = { 448 .chip_name = "HPT36x", 449 .chip_type = HPT36x, 450 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2, 451 .dpll_clk = 0, /* no DPLL */ 452 .timings = &hpt36x_timings 453}; 454 455static const struct hpt_info hpt370 = { 456 .chip_name = "HPT370", 457 .chip_type = HPT370, 458 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4, 459 .dpll_clk = 48, 460 .timings = &hpt37x_timings 461}; 462 463static const struct hpt_info hpt370a = { 464 .chip_name = "HPT370A", 465 .chip_type = HPT370A, 466 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4, 467 .dpll_clk = 48, 468 .timings = &hpt37x_timings 469}; 470 471static const struct hpt_info hpt374 = { 472 .chip_name = "HPT374", 473 .chip_type = HPT374, 474 .udma_mask = ATA_UDMA5, 475 .dpll_clk = 48, 476 .timings = &hpt37x_timings 477}; 478 479static const struct hpt_info hpt372 = { 480 .chip_name = "HPT372", 481 .chip_type = HPT372, 482 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 483 .dpll_clk = 55, 484 .timings = &hpt37x_timings 485}; 486 487static const struct hpt_info hpt372a = { 488 .chip_name = "HPT372A", 489 .chip_type = HPT372A, 490 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 491 .dpll_clk = 66, 492 .timings = &hpt37x_timings 493}; 494 495static const struct hpt_info hpt302 = { 496 .chip_name = "HPT302", 497 .chip_type = HPT302, 498 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 499 .dpll_clk = 66, 500 .timings = &hpt37x_timings 501}; 502 503static const struct hpt_info hpt371 = { 504 .chip_name = "HPT371", 505 .chip_type = HPT371, 506 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 507 .dpll_clk = 66, 508 .timings = &hpt37x_timings 509}; 510 511static const struct hpt_info hpt372n = { 512 .chip_name = "HPT372N", 513 .chip_type = HPT372N, 514 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 515 .dpll_clk = 77, 516 .timings = &hpt37x_timings 517}; 518 519static const struct hpt_info hpt302n = { 520 .chip_name = "HPT302N", 521 .chip_type = HPT302N, 522 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 523 .dpll_clk = 77, 524 .timings = &hpt37x_timings 525}; 526 527static const struct hpt_info hpt371n = { 528 .chip_name = "HPT371N", 529 .chip_type = HPT371N, 530 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5, 531 .dpll_clk = 77, 532 .timings = &hpt37x_timings 533}; 534 535static bool check_in_drive_list(ide_drive_t *drive, const char **list) 536{ 537 return match_string(list, -1, (char *)&drive->id[ATA_ID_PROD]) >= 0; 538} 539 540static struct hpt_info *hpt3xx_get_info(struct device *dev) 541{ 542 struct ide_host *host = dev_get_drvdata(dev); 543 struct hpt_info *info = (struct hpt_info *)host->host_priv; 544 545 return dev == host->dev[1] ? info + 1 : info; 546} 547 548/* 549 * The Marvell bridge chips used on the HighPoint SATA cards do not seem 550 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes... 551 */ 552 553static u8 hpt3xx_udma_filter(ide_drive_t *drive) 554{ 555 ide_hwif_t *hwif = drive->hwif; 556 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 557 u8 mask = hwif->ultra_mask; 558 559 switch (info->chip_type) { 560 case HPT36x: 561 if (!HPT366_ALLOW_ATA66_4 || 562 check_in_drive_list(drive, bad_ata66_4)) 563 mask = ATA_UDMA3; 564 565 if (!HPT366_ALLOW_ATA66_3 || 566 check_in_drive_list(drive, bad_ata66_3)) 567 mask = ATA_UDMA2; 568 break; 569 case HPT370: 570 if (!HPT370_ALLOW_ATA100_5 || 571 check_in_drive_list(drive, bad_ata100_5)) 572 mask = ATA_UDMA4; 573 break; 574 case HPT370A: 575 if (!HPT370_ALLOW_ATA100_5 || 576 check_in_drive_list(drive, bad_ata100_5)) 577 return ATA_UDMA4; 578 fallthrough; 579 case HPT372 : 580 case HPT372A: 581 case HPT372N: 582 case HPT374 : 583 if (ata_id_is_sata(drive->id)) 584 mask &= ~0x0e; 585 fallthrough; 586 default: 587 return mask; 588 } 589 590 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask; 591} 592 593static u8 hpt3xx_mdma_filter(ide_drive_t *drive) 594{ 595 ide_hwif_t *hwif = drive->hwif; 596 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 597 598 switch (info->chip_type) { 599 case HPT372 : 600 case HPT372A: 601 case HPT372N: 602 case HPT374 : 603 if (ata_id_is_sata(drive->id)) 604 return 0x00; 605 fallthrough; 606 default: 607 return 0x07; 608 } 609} 610 611static u32 get_speed_setting(u8 speed, struct hpt_info *info) 612{ 613 int i; 614 615 /* 616 * Lookup the transfer mode table to get the index into 617 * the timing table. 618 * 619 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used. 620 */ 621 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++) 622 if (xfer_speeds[i] == speed) 623 break; 624 625 return info->timings->clock_table[info->clock][i]; 626} 627 628static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive) 629{ 630 struct pci_dev *dev = to_pci_dev(hwif->dev); 631 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 632 struct hpt_timings *t = info->timings; 633 u8 itr_addr = 0x40 + (drive->dn * 4); 634 u32 old_itr = 0; 635 const u8 speed = drive->dma_mode; 636 u32 new_itr = get_speed_setting(speed, info); 637 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask : 638 (speed < XFER_UDMA_0 ? t->dma_mask : 639 t->ultra_mask); 640 641 pci_read_config_dword(dev, itr_addr, &old_itr); 642 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask); 643 /* 644 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well) 645 * to avoid problems handling I/O errors later 646 */ 647 new_itr &= ~0xc0000000; 648 649 pci_write_config_dword(dev, itr_addr, new_itr); 650} 651 652static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive) 653{ 654 drive->dma_mode = drive->pio_mode; 655 hpt3xx_set_mode(hwif, drive); 656} 657 658static void hpt3xx_maskproc(ide_drive_t *drive, int mask) 659{ 660 ide_hwif_t *hwif = drive->hwif; 661 struct pci_dev *dev = to_pci_dev(hwif->dev); 662 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 663 664 if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0) 665 return; 666 667 if (info->chip_type >= HPT370) { 668 u8 scr1 = 0; 669 670 pci_read_config_byte(dev, 0x5a, &scr1); 671 if (((scr1 & 0x10) >> 4) != mask) { 672 if (mask) 673 scr1 |= 0x10; 674 else 675 scr1 &= ~0x10; 676 pci_write_config_byte(dev, 0x5a, scr1); 677 } 678 } else if (mask) 679 disable_irq(hwif->irq); 680 else 681 enable_irq(hwif->irq); 682} 683 684/* 685 * This is specific to the HPT366 UDMA chipset 686 * by HighPoint|Triones Technologies, Inc. 687 */ 688static void hpt366_dma_lost_irq(ide_drive_t *drive) 689{ 690 struct pci_dev *dev = to_pci_dev(drive->hwif->dev); 691 u8 mcr1 = 0, mcr3 = 0, scr1 = 0; 692 693 pci_read_config_byte(dev, 0x50, &mcr1); 694 pci_read_config_byte(dev, 0x52, &mcr3); 695 pci_read_config_byte(dev, 0x5a, &scr1); 696 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n", 697 drive->name, __func__, mcr1, mcr3, scr1); 698 if (scr1 & 0x10) 699 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10); 700 ide_dma_lost_irq(drive); 701} 702 703static void hpt370_clear_engine(ide_drive_t *drive) 704{ 705 ide_hwif_t *hwif = drive->hwif; 706 struct pci_dev *dev = to_pci_dev(hwif->dev); 707 708 pci_write_config_byte(dev, hwif->select_data, 0x37); 709 udelay(10); 710} 711 712static void hpt370_irq_timeout(ide_drive_t *drive) 713{ 714 ide_hwif_t *hwif = drive->hwif; 715 struct pci_dev *dev = to_pci_dev(hwif->dev); 716 u16 bfifo = 0; 717 u8 dma_cmd; 718 719 pci_read_config_word(dev, hwif->select_data + 2, &bfifo); 720 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff); 721 722 /* get DMA command mode */ 723 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD); 724 /* stop DMA */ 725 outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD); 726 hpt370_clear_engine(drive); 727} 728 729static void hpt370_dma_start(ide_drive_t *drive) 730{ 731#ifdef HPT_RESET_STATE_ENGINE 732 hpt370_clear_engine(drive); 733#endif 734 ide_dma_start(drive); 735} 736 737static int hpt370_dma_end(ide_drive_t *drive) 738{ 739 ide_hwif_t *hwif = drive->hwif; 740 u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS); 741 742 if (dma_stat & ATA_DMA_ACTIVE) { 743 /* wait a little */ 744 udelay(20); 745 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS); 746 if (dma_stat & ATA_DMA_ACTIVE) 747 hpt370_irq_timeout(drive); 748 } 749 return ide_dma_end(drive); 750} 751 752/* returns 1 if DMA IRQ issued, 0 otherwise */ 753static int hpt374_dma_test_irq(ide_drive_t *drive) 754{ 755 ide_hwif_t *hwif = drive->hwif; 756 struct pci_dev *dev = to_pci_dev(hwif->dev); 757 u16 bfifo = 0; 758 u8 dma_stat; 759 760 pci_read_config_word(dev, hwif->select_data + 2, &bfifo); 761 if (bfifo & 0x1FF) { 762// printk("%s: %d bytes in FIFO\n", drive->name, bfifo); 763 return 0; 764 } 765 766 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS); 767 /* return 1 if INTR asserted */ 768 if (dma_stat & ATA_DMA_INTR) 769 return 1; 770 771 return 0; 772} 773 774static int hpt374_dma_end(ide_drive_t *drive) 775{ 776 ide_hwif_t *hwif = drive->hwif; 777 struct pci_dev *dev = to_pci_dev(hwif->dev); 778 u8 mcr = 0, mcr_addr = hwif->select_data; 779 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01; 780 781 pci_read_config_byte(dev, 0x6a, &bwsr); 782 pci_read_config_byte(dev, mcr_addr, &mcr); 783 if (bwsr & mask) 784 pci_write_config_byte(dev, mcr_addr, mcr | 0x30); 785 return ide_dma_end(drive); 786} 787 788/** 789 * hpt3xxn_set_clock - perform clock switching dance 790 * @hwif: hwif to switch 791 * @mode: clocking mode (0x21 for write, 0x23 otherwise) 792 * 793 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess. 794 */ 795 796static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode) 797{ 798 unsigned long base = hwif->extra_base; 799 u8 scr2 = inb(base + 0x6b); 800 801 if ((scr2 & 0x7f) == mode) 802 return; 803 804 /* Tristate the bus */ 805 outb(0x80, base + 0x63); 806 outb(0x80, base + 0x67); 807 808 /* Switch clock and reset channels */ 809 outb(mode, base + 0x6b); 810 outb(0xc0, base + 0x69); 811 812 /* 813 * Reset the state machines. 814 * NOTE: avoid accidentally enabling the disabled channels. 815 */ 816 outb(inb(base + 0x60) | 0x32, base + 0x60); 817 outb(inb(base + 0x64) | 0x32, base + 0x64); 818 819 /* Complete reset */ 820 outb(0x00, base + 0x69); 821 822 /* Reconnect channels to bus */ 823 outb(0x00, base + 0x63); 824 outb(0x00, base + 0x67); 825} 826 827/** 828 * hpt3xxn_rw_disk - prepare for I/O 829 * @drive: drive for command 830 * @rq: block request structure 831 * 832 * This is called when a disk I/O is issued to HPT3xxN. 833 * We need it because of the clock switching. 834 */ 835 836static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq) 837{ 838 hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23); 839} 840 841/** 842 * hpt37x_calibrate_dpll - calibrate the DPLL 843 * @dev: PCI device 844 * 845 * Perform a calibration cycle on the DPLL. 846 * Returns 1 if this succeeds 847 */ 848static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high) 849{ 850 u32 dpll = (f_high << 16) | f_low | 0x100; 851 u8 scr2; 852 int i; 853 854 pci_write_config_dword(dev, 0x5c, dpll); 855 856 /* Wait for oscillator ready */ 857 for(i = 0; i < 0x5000; ++i) { 858 udelay(50); 859 pci_read_config_byte(dev, 0x5b, &scr2); 860 if (scr2 & 0x80) 861 break; 862 } 863 /* See if it stays ready (we'll just bail out if it's not yet) */ 864 for(i = 0; i < 0x1000; ++i) { 865 pci_read_config_byte(dev, 0x5b, &scr2); 866 /* DPLL destabilized? */ 867 if(!(scr2 & 0x80)) 868 return 0; 869 } 870 /* Turn off tuning, we have the DPLL set */ 871 pci_read_config_dword (dev, 0x5c, &dpll); 872 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100)); 873 return 1; 874} 875 876static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr) 877{ 878 struct ide_host *host = pci_get_drvdata(dev); 879 struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]); 880 u8 chip_type = info->chip_type; 881 u8 new_mcr, old_mcr = 0; 882 883 /* 884 * Disable the "fast interrupt" prediction. Don't hold off 885 * on interrupts. (== 0x01 despite what the docs say) 886 */ 887 pci_read_config_byte(dev, mcr_addr + 1, &old_mcr); 888 889 if (chip_type >= HPT374) 890 new_mcr = old_mcr & ~0x07; 891 else if (chip_type >= HPT370) { 892 new_mcr = old_mcr; 893 new_mcr &= ~0x02; 894#ifdef HPT_DELAY_INTERRUPT 895 new_mcr &= ~0x01; 896#else 897 new_mcr |= 0x01; 898#endif 899 } else /* HPT366 and HPT368 */ 900 new_mcr = old_mcr & ~0x80; 901 902 if (new_mcr != old_mcr) 903 pci_write_config_byte(dev, mcr_addr + 1, new_mcr); 904} 905 906static int init_chipset_hpt366(struct pci_dev *dev) 907{ 908 unsigned long io_base = pci_resource_start(dev, 4); 909 struct hpt_info *info = hpt3xx_get_info(&dev->dev); 910 const char *name = DRV_NAME; 911 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */ 912 u8 chip_type; 913 enum ata_clock clock; 914 915 chip_type = info->chip_type; 916 917 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4)); 918 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78); 919 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08); 920 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08); 921 922 /* 923 * First, try to estimate the PCI clock frequency... 924 */ 925 if (chip_type >= HPT370) { 926 u8 scr1 = 0; 927 u16 f_cnt = 0; 928 u32 temp = 0; 929 930 /* Interrupt force enable. */ 931 pci_read_config_byte(dev, 0x5a, &scr1); 932 if (scr1 & 0x10) 933 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10); 934 935 /* 936 * HighPoint does this for HPT372A. 937 * NOTE: This register is only writeable via I/O space. 938 */ 939 if (chip_type == HPT372A) 940 outb(0x0e, io_base + 0x9c); 941 942 /* 943 * Default to PCI clock. Make sure MA15/16 are set to output 944 * to prevent drives having problems with 40-pin cables. 945 */ 946 pci_write_config_byte(dev, 0x5b, 0x23); 947 948 /* 949 * We'll have to read f_CNT value in order to determine 950 * the PCI clock frequency according to the following ratio: 951 * 952 * f_CNT = Fpci * 192 / Fdpll 953 * 954 * First try reading the register in which the HighPoint BIOS 955 * saves f_CNT value before reprogramming the DPLL from its 956 * default setting (which differs for the various chips). 957 * 958 * NOTE: This register is only accessible via I/O space; 959 * HPT374 BIOS only saves it for the function 0, so we have to 960 * always read it from there -- no need to check the result of 961 * pci_get_slot() for the function 0 as the whole device has 962 * been already "pinned" (via function 1) in init_setup_hpt374() 963 */ 964 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) { 965 struct pci_dev *dev1 = pci_get_slot(dev->bus, 966 dev->devfn - 1); 967 unsigned long io_base = pci_resource_start(dev1, 4); 968 969 temp = inl(io_base + 0x90); 970 pci_dev_put(dev1); 971 } else 972 temp = inl(io_base + 0x90); 973 974 /* 975 * In case the signature check fails, we'll have to 976 * resort to reading the f_CNT register itself in hopes 977 * that nobody has touched the DPLL yet... 978 */ 979 if ((temp & 0xFFFFF000) != 0xABCDE000) { 980 int i; 981 982 printk(KERN_WARNING "%s %s: no clock data saved by " 983 "BIOS\n", name, pci_name(dev)); 984 985 /* Calculate the average value of f_CNT. */ 986 for (temp = i = 0; i < 128; i++) { 987 pci_read_config_word(dev, 0x78, &f_cnt); 988 temp += f_cnt & 0x1ff; 989 mdelay(1); 990 } 991 f_cnt = temp / 128; 992 } else 993 f_cnt = temp & 0x1ff; 994 995 dpll_clk = info->dpll_clk; 996 pci_clk = (f_cnt * dpll_clk) / 192; 997 998 /* Clamp PCI clock to bands. */ 999 if (pci_clk < 40) 1000 pci_clk = 33; 1001 else if(pci_clk < 45) 1002 pci_clk = 40; 1003 else if(pci_clk < 55) 1004 pci_clk = 50; 1005 else 1006 pci_clk = 66; 1007 1008 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, " 1009 "assuming %d MHz PCI\n", name, pci_name(dev), 1010 dpll_clk, f_cnt, pci_clk); 1011 } else { 1012 u32 itr1 = 0; 1013 1014 pci_read_config_dword(dev, 0x40, &itr1); 1015 1016 /* Detect PCI clock by looking at cmd_high_time. */ 1017 switch ((itr1 >> 8) & 0x0f) { 1018 case 0x09: 1019 pci_clk = 40; 1020 break; 1021 case 0x05: 1022 pci_clk = 25; 1023 break; 1024 case 0x07: 1025 default: 1026 pci_clk = 33; 1027 break; 1028 } 1029 } 1030 1031 /* Let's assume we'll use PCI clock for the ATA clock... */ 1032 switch (pci_clk) { 1033 case 25: 1034 clock = ATA_CLOCK_25MHZ; 1035 break; 1036 case 33: 1037 default: 1038 clock = ATA_CLOCK_33MHZ; 1039 break; 1040 case 40: 1041 clock = ATA_CLOCK_40MHZ; 1042 break; 1043 case 50: 1044 clock = ATA_CLOCK_50MHZ; 1045 break; 1046 case 66: 1047 clock = ATA_CLOCK_66MHZ; 1048 break; 1049 } 1050 1051 /* 1052 * Only try the DPLL if we don't have a table for the PCI clock that 1053 * we are running at for HPT370/A, always use it for anything newer... 1054 * 1055 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI. 1056 * We also don't like using the DPLL because this causes glitches 1057 * on PRST-/SRST- when the state engine gets reset... 1058 */ 1059 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) { 1060 u16 f_low, delta = pci_clk < 50 ? 2 : 4; 1061 int adjust; 1062 1063 /* 1064 * Select 66 MHz DPLL clock only if UltraATA/133 mode is 1065 * supported/enabled, use 50 MHz DPLL clock otherwise... 1066 */ 1067 if (info->udma_mask == ATA_UDMA6) { 1068 dpll_clk = 66; 1069 clock = ATA_CLOCK_66MHZ; 1070 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */ 1071 dpll_clk = 50; 1072 clock = ATA_CLOCK_50MHZ; 1073 } 1074 1075 if (info->timings->clock_table[clock] == NULL) { 1076 printk(KERN_ERR "%s %s: unknown bus timing!\n", 1077 name, pci_name(dev)); 1078 return -EIO; 1079 } 1080 1081 /* Select the DPLL clock. */ 1082 pci_write_config_byte(dev, 0x5b, 0x21); 1083 1084 /* 1085 * Adjust the DPLL based upon PCI clock, enable it, 1086 * and wait for stabilization... 1087 */ 1088 f_low = (pci_clk * 48) / dpll_clk; 1089 1090 for (adjust = 0; adjust < 8; adjust++) { 1091 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta)) 1092 break; 1093 1094 /* 1095 * See if it'll settle at a fractionally different clock 1096 */ 1097 if (adjust & 1) 1098 f_low -= adjust >> 1; 1099 else 1100 f_low += adjust >> 1; 1101 } 1102 if (adjust == 8) { 1103 printk(KERN_ERR "%s %s: DPLL did not stabilize!\n", 1104 name, pci_name(dev)); 1105 return -EIO; 1106 } 1107 1108 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n", 1109 name, pci_name(dev), dpll_clk); 1110 } else { 1111 /* Mark the fact that we're not using the DPLL. */ 1112 dpll_clk = 0; 1113 1114 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n", 1115 name, pci_name(dev), pci_clk); 1116 } 1117 1118 /* Store the clock frequencies. */ 1119 info->dpll_clk = dpll_clk; 1120 info->pci_clk = pci_clk; 1121 info->clock = clock; 1122 1123 if (chip_type >= HPT370) { 1124 u8 mcr1, mcr4; 1125 1126 /* 1127 * Reset the state engines. 1128 * NOTE: Avoid accidentally enabling the disabled channels. 1129 */ 1130 pci_read_config_byte (dev, 0x50, &mcr1); 1131 pci_read_config_byte (dev, 0x54, &mcr4); 1132 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32)); 1133 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32)); 1134 udelay(100); 1135 } 1136 1137 /* 1138 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in 1139 * the MISC. register to stretch the UltraDMA Tss timing. 1140 * NOTE: This register is only writeable via I/O space. 1141 */ 1142 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ) 1143 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c); 1144 1145 hpt3xx_disable_fast_irq(dev, 0x50); 1146 hpt3xx_disable_fast_irq(dev, 0x54); 1147 1148 return 0; 1149} 1150 1151static u8 hpt3xx_cable_detect(ide_hwif_t *hwif) 1152{ 1153 struct pci_dev *dev = to_pci_dev(hwif->dev); 1154 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 1155 u8 chip_type = info->chip_type; 1156 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02; 1157 1158 /* 1159 * The HPT37x uses the CBLID pins as outputs for MA15/MA16 1160 * address lines to access an external EEPROM. To read valid 1161 * cable detect state the pins must be enabled as inputs. 1162 */ 1163 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) { 1164 /* 1165 * HPT374 PCI function 1 1166 * - set bit 15 of reg 0x52 to enable TCBLID as input 1167 * - set bit 15 of reg 0x56 to enable FCBLID as input 1168 */ 1169 u8 mcr_addr = hwif->select_data + 2; 1170 u16 mcr; 1171 1172 pci_read_config_word(dev, mcr_addr, &mcr); 1173 pci_write_config_word(dev, mcr_addr, mcr | 0x8000); 1174 /* Debounce, then read cable ID register */ 1175 udelay(10); 1176 pci_read_config_byte(dev, 0x5a, &scr1); 1177 pci_write_config_word(dev, mcr_addr, mcr); 1178 } else if (chip_type >= HPT370) { 1179 /* 1180 * HPT370/372 and 374 pcifn 0 1181 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs 1182 */ 1183 u8 scr2 = 0; 1184 1185 pci_read_config_byte(dev, 0x5b, &scr2); 1186 pci_write_config_byte(dev, 0x5b, scr2 & ~1); 1187 /* Debounce, then read cable ID register */ 1188 udelay(10); 1189 pci_read_config_byte(dev, 0x5a, &scr1); 1190 pci_write_config_byte(dev, 0x5b, scr2); 1191 } else 1192 pci_read_config_byte(dev, 0x5a, &scr1); 1193 1194 return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80; 1195} 1196 1197static void init_hwif_hpt366(ide_hwif_t *hwif) 1198{ 1199 struct hpt_info *info = hpt3xx_get_info(hwif->dev); 1200 u8 chip_type = info->chip_type; 1201 1202 /* Cache the channel's MISC. control registers' offset */ 1203 hwif->select_data = hwif->channel ? 0x54 : 0x50; 1204 1205 /* 1206 * HPT3xxN chips have some complications: 1207 * 1208 * - on 33 MHz PCI we must clock switch 1209 * - on 66 MHz PCI we must NOT use the PCI clock 1210 */ 1211 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) { 1212 /* 1213 * Clock is shared between the channels, 1214 * so we'll have to serialize them... :-( 1215 */ 1216 hwif->host->host_flags |= IDE_HFLAG_SERIALIZE; 1217 hwif->rw_disk = &hpt3xxn_rw_disk; 1218 } 1219} 1220 1221static int init_dma_hpt366(ide_hwif_t *hwif, 1222 const struct ide_port_info *d) 1223{ 1224 struct pci_dev *dev = to_pci_dev(hwif->dev); 1225 unsigned long flags, base = ide_pci_dma_base(hwif, d); 1226 u8 dma_old, dma_new, masterdma = 0, slavedma = 0; 1227 1228 if (base == 0) 1229 return -1; 1230 1231 hwif->dma_base = base; 1232 1233 if (ide_pci_check_simplex(hwif, d) < 0) 1234 return -1; 1235 1236 if (ide_pci_set_master(dev, d->name) < 0) 1237 return -1; 1238 1239 dma_old = inb(base + 2); 1240 1241 local_irq_save(flags); 1242 1243 dma_new = dma_old; 1244 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma); 1245 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma); 1246 1247 if (masterdma & 0x30) dma_new |= 0x20; 1248 if ( slavedma & 0x30) dma_new |= 0x40; 1249 if (dma_new != dma_old) 1250 outb(dma_new, base + 2); 1251 1252 local_irq_restore(flags); 1253 1254 printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n", 1255 hwif->name, base, base + 7); 1256 1257 hwif->extra_base = base + (hwif->channel ? 8 : 16); 1258 1259 if (ide_allocate_dma_engine(hwif)) 1260 return -1; 1261 1262 return 0; 1263} 1264 1265static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2) 1266{ 1267 if (dev2->irq != dev->irq) { 1268 /* FIXME: we need a core pci_set_interrupt() */ 1269 dev2->irq = dev->irq; 1270 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt " 1271 "fixed\n", pci_name(dev2)); 1272 } 1273} 1274 1275static void hpt371_init(struct pci_dev *dev) 1276{ 1277 u8 mcr1 = 0; 1278 1279 /* 1280 * HPT371 chips physically have only one channel, the secondary one, 1281 * but the primary channel registers do exist! Go figure... 1282 * So, we manually disable the non-existing channel here 1283 * (if the BIOS hasn't done this already). 1284 */ 1285 pci_read_config_byte(dev, 0x50, &mcr1); 1286 if (mcr1 & 0x04) 1287 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04); 1288} 1289 1290static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2) 1291{ 1292 u8 mcr1 = 0, pin1 = 0, pin2 = 0; 1293 1294 /* 1295 * Now we'll have to force both channels enabled if 1296 * at least one of them has been enabled by BIOS... 1297 */ 1298 pci_read_config_byte(dev, 0x50, &mcr1); 1299 if (mcr1 & 0x30) 1300 pci_write_config_byte(dev, 0x50, mcr1 | 0x30); 1301 1302 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1); 1303 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2); 1304 1305 if (pin1 != pin2 && dev->irq == dev2->irq) { 1306 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, " 1307 "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2); 1308 return 1; 1309 } 1310 1311 return 0; 1312} 1313 1314#define IDE_HFLAGS_HPT3XX \ 1315 (IDE_HFLAG_NO_ATAPI_DMA | \ 1316 IDE_HFLAG_OFF_BOARD) 1317 1318static const struct ide_port_ops hpt3xx_port_ops = { 1319 .set_pio_mode = hpt3xx_set_pio_mode, 1320 .set_dma_mode = hpt3xx_set_mode, 1321 .maskproc = hpt3xx_maskproc, 1322 .mdma_filter = hpt3xx_mdma_filter, 1323 .udma_filter = hpt3xx_udma_filter, 1324 .cable_detect = hpt3xx_cable_detect, 1325}; 1326 1327static const struct ide_dma_ops hpt37x_dma_ops = { 1328 .dma_host_set = ide_dma_host_set, 1329 .dma_setup = ide_dma_setup, 1330 .dma_start = ide_dma_start, 1331 .dma_end = hpt374_dma_end, 1332 .dma_test_irq = hpt374_dma_test_irq, 1333 .dma_lost_irq = ide_dma_lost_irq, 1334 .dma_timer_expiry = ide_dma_sff_timer_expiry, 1335 .dma_sff_read_status = ide_dma_sff_read_status, 1336}; 1337 1338static const struct ide_dma_ops hpt370_dma_ops = { 1339 .dma_host_set = ide_dma_host_set, 1340 .dma_setup = ide_dma_setup, 1341 .dma_start = hpt370_dma_start, 1342 .dma_end = hpt370_dma_end, 1343 .dma_test_irq = ide_dma_test_irq, 1344 .dma_lost_irq = ide_dma_lost_irq, 1345 .dma_timer_expiry = ide_dma_sff_timer_expiry, 1346 .dma_clear = hpt370_irq_timeout, 1347 .dma_sff_read_status = ide_dma_sff_read_status, 1348}; 1349 1350static const struct ide_dma_ops hpt36x_dma_ops = { 1351 .dma_host_set = ide_dma_host_set, 1352 .dma_setup = ide_dma_setup, 1353 .dma_start = ide_dma_start, 1354 .dma_end = ide_dma_end, 1355 .dma_test_irq = ide_dma_test_irq, 1356 .dma_lost_irq = hpt366_dma_lost_irq, 1357 .dma_timer_expiry = ide_dma_sff_timer_expiry, 1358 .dma_sff_read_status = ide_dma_sff_read_status, 1359}; 1360 1361static const struct ide_port_info hpt366_chipsets[] = { 1362 { /* 0: HPT36x */ 1363 .name = DRV_NAME, 1364 .init_chipset = init_chipset_hpt366, 1365 .init_hwif = init_hwif_hpt366, 1366 .init_dma = init_dma_hpt366, 1367 /* 1368 * HPT36x chips have one channel per function and have 1369 * both channel enable bits located differently and visible 1370 * to both functions -- really stupid design decision... :-( 1371 * Bit 4 is for the primary channel, bit 5 for the secondary. 1372 */ 1373 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}}, 1374 .port_ops = &hpt3xx_port_ops, 1375 .dma_ops = &hpt36x_dma_ops, 1376 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE, 1377 .pio_mask = ATA_PIO4, 1378 .mwdma_mask = ATA_MWDMA2, 1379 }, 1380 { /* 1: HPT3xx */ 1381 .name = DRV_NAME, 1382 .init_chipset = init_chipset_hpt366, 1383 .init_hwif = init_hwif_hpt366, 1384 .init_dma = init_dma_hpt366, 1385 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}}, 1386 .port_ops = &hpt3xx_port_ops, 1387 .dma_ops = &hpt37x_dma_ops, 1388 .host_flags = IDE_HFLAGS_HPT3XX, 1389 .pio_mask = ATA_PIO4, 1390 .mwdma_mask = ATA_MWDMA2, 1391 } 1392}; 1393 1394/** 1395 * hpt366_init_one - called when an HPT366 is found 1396 * @dev: the hpt366 device 1397 * @id: the matching pci id 1398 * 1399 * Called when the PCI registration layer (or the IDE initialization) 1400 * finds a device matching our IDE device tables. 1401 */ 1402static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id) 1403{ 1404 const struct hpt_info *info = NULL; 1405 struct hpt_info *dyn_info; 1406 struct pci_dev *dev2 = NULL; 1407 struct ide_port_info d; 1408 u8 idx = id->driver_data; 1409 u8 rev = dev->revision; 1410 int ret; 1411 1412 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1)) 1413 return -ENODEV; 1414 1415 switch (idx) { 1416 case 0: 1417 if (rev < 3) 1418 info = &hpt36x; 1419 else { 1420 switch (min_t(u8, rev, 6)) { 1421 case 3: info = &hpt370; break; 1422 case 4: info = &hpt370a; break; 1423 case 5: info = &hpt372; break; 1424 case 6: info = &hpt372n; break; 1425 } 1426 idx++; 1427 } 1428 break; 1429 case 1: 1430 info = (rev > 1) ? &hpt372n : &hpt372a; 1431 break; 1432 case 2: 1433 info = (rev > 1) ? &hpt302n : &hpt302; 1434 break; 1435 case 3: 1436 hpt371_init(dev); 1437 info = (rev > 1) ? &hpt371n : &hpt371; 1438 break; 1439 case 4: 1440 info = &hpt374; 1441 break; 1442 case 5: 1443 info = &hpt372n; 1444 break; 1445 } 1446 1447 printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name); 1448 1449 d = hpt366_chipsets[min_t(u8, idx, 1)]; 1450 1451 d.udma_mask = info->udma_mask; 1452 1453 /* fixup ->dma_ops for HPT370/HPT370A */ 1454 if (info == &hpt370 || info == &hpt370a) 1455 d.dma_ops = &hpt370_dma_ops; 1456 1457 if (info == &hpt36x || info == &hpt374) 1458 dev2 = pci_get_slot(dev->bus, dev->devfn + 1); 1459 1460 dyn_info = kcalloc(dev2 ? 2 : 1, sizeof(*dyn_info), GFP_KERNEL); 1461 if (dyn_info == NULL) { 1462 printk(KERN_ERR "%s %s: out of memory!\n", 1463 d.name, pci_name(dev)); 1464 pci_dev_put(dev2); 1465 return -ENOMEM; 1466 } 1467 1468 /* 1469 * Copy everything from a static "template" structure 1470 * to just allocated per-chip hpt_info structure. 1471 */ 1472 memcpy(dyn_info, info, sizeof(*dyn_info)); 1473 1474 if (dev2) { 1475 memcpy(dyn_info + 1, info, sizeof(*dyn_info)); 1476 1477 if (info == &hpt374) 1478 hpt374_init(dev, dev2); 1479 else { 1480 if (hpt36x_init(dev, dev2)) 1481 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE; 1482 } 1483 1484 ret = ide_pci_init_two(dev, dev2, &d, dyn_info); 1485 if (ret < 0) { 1486 pci_dev_put(dev2); 1487 kfree(dyn_info); 1488 } 1489 return ret; 1490 } 1491 1492 ret = ide_pci_init_one(dev, &d, dyn_info); 1493 if (ret < 0) 1494 kfree(dyn_info); 1495 1496 return ret; 1497} 1498 1499static void hpt366_remove(struct pci_dev *dev) 1500{ 1501 struct ide_host *host = pci_get_drvdata(dev); 1502 struct ide_info *info = host->host_priv; 1503 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL; 1504 1505 ide_pci_remove(dev); 1506 pci_dev_put(dev2); 1507 kfree(info); 1508} 1509 1510static const struct pci_device_id hpt366_pci_tbl[] = { 1511 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 }, 1512 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 }, 1513 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 }, 1514 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 }, 1515 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 }, 1516 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 }, 1517 { 0, }, 1518}; 1519MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl); 1520 1521static struct pci_driver hpt366_pci_driver = { 1522 .name = "HPT366_IDE", 1523 .id_table = hpt366_pci_tbl, 1524 .probe = hpt366_init_one, 1525 .remove = hpt366_remove, 1526 .suspend = ide_pci_suspend, 1527 .resume = ide_pci_resume, 1528}; 1529 1530static int __init hpt366_ide_init(void) 1531{ 1532 return ide_pci_register_driver(&hpt366_pci_driver); 1533} 1534 1535static void __exit hpt366_ide_exit(void) 1536{ 1537 pci_unregister_driver(&hpt366_pci_driver); 1538} 1539 1540module_init(hpt366_ide_init); 1541module_exit(hpt366_ide_exit); 1542 1543MODULE_AUTHOR("Andre Hedrick"); 1544MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE"); 1545MODULE_LICENSE("GPL"); 1546