1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/i2c/busses/i2c-tegra.c
4 *
5 * Copyright (C) 2010 Google, Inc.
6 * Author: Colin Cross <ccross@android.com>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/clk.h>
11#include <linux/delay.h>
12#include <linux/dmaengine.h>
13#include <linux/dma-mapping.h>
14#include <linux/err.h>
15#include <linux/i2c.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/irq.h>
21#include <linux/kernel.h>
22#include <linux/ktime.h>
23#include <linux/module.h>
24#include <linux/of_device.h>
25#include <linux/pinctrl/consumer.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/reset.h>
29
30#define BYTES_PER_FIFO_WORD 4
31
32#define I2C_CNFG				0x000
33#define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
34#define I2C_CNFG_PACKET_MODE_EN			BIT(10)
35#define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
36#define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
37#define I2C_STATUS				0x01c
38#define I2C_SL_CNFG				0x020
39#define I2C_SL_CNFG_NACK			BIT(1)
40#define I2C_SL_CNFG_NEWSL			BIT(2)
41#define I2C_SL_ADDR1				0x02c
42#define I2C_SL_ADDR2				0x030
43#define I2C_TLOW_SEXT				0x034
44#define I2C_TX_FIFO				0x050
45#define I2C_RX_FIFO				0x054
46#define I2C_PACKET_TRANSFER_STATUS		0x058
47#define I2C_FIFO_CONTROL			0x05c
48#define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
49#define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
50#define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
51#define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
52#define I2C_FIFO_STATUS				0x060
53#define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
54#define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
55#define I2C_INT_MASK				0x064
56#define I2C_INT_STATUS				0x068
57#define I2C_INT_BUS_CLR_DONE			BIT(11)
58#define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
59#define I2C_INT_NO_ACK				BIT(3)
60#define I2C_INT_ARBITRATION_LOST		BIT(2)
61#define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
62#define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
63#define I2C_CLK_DIVISOR				0x06c
64#define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
65#define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
66
67#define DVC_CTRL_REG1				0x000
68#define DVC_CTRL_REG1_INTR_EN			BIT(10)
69#define DVC_CTRL_REG3				0x008
70#define DVC_CTRL_REG3_SW_PROG			BIT(26)
71#define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
72#define DVC_STATUS				0x00c
73#define DVC_STATUS_I2C_DONE_INTR		BIT(30)
74
75#define I2C_ERR_NONE				0x00
76#define I2C_ERR_NO_ACK				BIT(0)
77#define I2C_ERR_ARBITRATION_LOST		BIT(1)
78#define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
79#define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
80
81#define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
82#define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
83#define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
84#define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
85#define PACKET_HEADER0_PROTOCOL_I2C		1
86
87#define I2C_HEADER_CONT_ON_NAK			BIT(21)
88#define I2C_HEADER_READ				BIT(19)
89#define I2C_HEADER_10BIT_ADDR			BIT(18)
90#define I2C_HEADER_IE_ENABLE			BIT(17)
91#define I2C_HEADER_REPEAT_START			BIT(16)
92#define I2C_HEADER_CONTINUE_XFER		BIT(15)
93#define I2C_HEADER_SLAVE_ADDR_SHIFT		1
94
95#define I2C_BUS_CLEAR_CNFG			0x084
96#define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
97#define I2C_BC_STOP_COND			BIT(2)
98#define I2C_BC_TERMINATE			BIT(1)
99#define I2C_BC_ENABLE				BIT(0)
100#define I2C_BUS_CLEAR_STATUS			0x088
101#define I2C_BC_STATUS				BIT(0)
102
103#define I2C_CONFIG_LOAD				0x08c
104#define I2C_MSTR_CONFIG_LOAD			BIT(0)
105
106#define I2C_CLKEN_OVERRIDE			0x090
107#define I2C_MST_CORE_CLKEN_OVR			BIT(0)
108
109#define I2C_INTERFACE_TIMING_0			0x094
110#define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
111#define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
112#define I2C_INTERFACE_TIMING_1			0x098
113#define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
114#define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
115#define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
116#define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
117
118#define I2C_HS_INTERFACE_TIMING_0		0x09c
119#define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
120#define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
121#define I2C_HS_INTERFACE_TIMING_1		0x0a0
122#define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
123#define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
124#define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
125
126#define I2C_MST_FIFO_CONTROL			0x0b4
127#define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
128#define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
129#define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
130#define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
131
132#define I2C_MST_FIFO_STATUS			0x0b8
133#define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
134#define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
135
136/* configuration load timeout in microseconds */
137#define I2C_CONFIG_LOAD_TIMEOUT			1000000
138
139/* packet header size in bytes */
140#define I2C_PACKET_HEADER_SIZE			12
141
142/*
143 * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
144 * avoid DMA overhead, otherwise external APB DMA controller will be used.
145 * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
146 * I2C_PACKET_HEADER_SIZE.
147 */
148#define I2C_PIO_MODE_PREFERRED_LEN		32
149
150/*
151 * msg_end_type: The bus control which needs to be sent at end of transfer.
152 * @MSG_END_STOP: Send stop pulse.
153 * @MSG_END_REPEAT_START: Send repeat-start.
154 * @MSG_END_CONTINUE: Don't send stop or repeat-start.
155 */
156enum msg_end_type {
157	MSG_END_STOP,
158	MSG_END_REPEAT_START,
159	MSG_END_CONTINUE,
160};
161
162/**
163 * struct tegra_i2c_hw_feature : per hardware generation features
164 * @has_continue_xfer_support: continue-transfer supported
165 * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
166 *		completion interrupt on per packet basis.
167 * @has_config_load_reg: Has the config load register to load the new
168 *		configuration.
169 * @clk_divisor_hs_mode: Clock divisor in HS mode.
170 * @clk_divisor_std_mode: Clock divisor in standard mode. It is
171 *		applicable if there is no fast clock source i.e. single clock
172 *		source.
173 * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
174 *		applicable if there is no fast clock source i.e. single clock
175 *		source.
176 * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
177 *		applicable if there is no fast clock source (i.e. single
178 *		clock source).
179 * @has_multi_master_mode: The I2C controller supports running in single-master
180 *		or multi-master mode.
181 * @has_slcg_override_reg: The I2C controller supports a register that
182 *		overrides the second level clock gating.
183 * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
184 *		provides additional features and allows for longer messages to
185 *		be transferred in one go.
186 * @quirks: I2C adapter quirks for limiting write/read transfer size and not
187 *		allowing 0 length transfers.
188 * @supports_bus_clear: Bus Clear support to recover from bus hang during
189 *		SDA stuck low from device for some unknown reasons.
190 * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
191 * @tlow_std_mode: Low period of the clock in standard mode.
192 * @thigh_std_mode: High period of the clock in standard mode.
193 * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
194 * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
195 * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
196 *		in standard mode.
197 * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
198 *		conditions in fast/fast-plus modes.
199 * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
200 *		in HS mode.
201 * @has_interface_timing_reg: Has interface timing register to program the tuned
202 *		timing settings.
203 */
204struct tegra_i2c_hw_feature {
205	bool has_continue_xfer_support;
206	bool has_per_pkt_xfer_complete_irq;
207	bool has_config_load_reg;
208	u32 clk_divisor_hs_mode;
209	u32 clk_divisor_std_mode;
210	u32 clk_divisor_fast_mode;
211	u32 clk_divisor_fast_plus_mode;
212	bool has_multi_master_mode;
213	bool has_slcg_override_reg;
214	bool has_mst_fifo;
215	const struct i2c_adapter_quirks *quirks;
216	bool supports_bus_clear;
217	bool has_apb_dma;
218	u32 tlow_std_mode;
219	u32 thigh_std_mode;
220	u32 tlow_fast_fastplus_mode;
221	u32 thigh_fast_fastplus_mode;
222	u32 setup_hold_time_std_mode;
223	u32 setup_hold_time_fast_fast_plus_mode;
224	u32 setup_hold_time_hs_mode;
225	bool has_interface_timing_reg;
226};
227
228/**
229 * struct tegra_i2c_dev - per device I2C context
230 * @dev: device reference for power management
231 * @hw: Tegra I2C HW feature
232 * @adapter: core I2C layer adapter information
233 * @div_clk: clock reference for div clock of I2C controller
234 * @clocks: array of I2C controller clocks
235 * @nclocks: number of clocks in the array
236 * @rst: reset control for the I2C controller
237 * @base: ioremapped registers cookie
238 * @base_phys: physical base address of the I2C controller
239 * @cont_id: I2C controller ID, used for packet header
240 * @irq: IRQ number of transfer complete interrupt
241 * @is_dvc: identifies the DVC I2C controller, has a different register layout
242 * @is_vi: identifies the VI I2C controller, has a different register layout
243 * @msg_complete: transfer completion notifier
244 * @msg_err: error code for completed message
245 * @msg_buf: pointer to current message data
246 * @msg_buf_remaining: size of unsent data in the message buffer
247 * @msg_read: indicates that the transfer is a read access
248 * @bus_clk_rate: current I2C bus clock rate
249 * @multimaster_mode: indicates that I2C controller is in multi-master mode
250 * @tx_dma_chan: DMA transmit channel
251 * @rx_dma_chan: DMA receive channel
252 * @dma_phys: handle to DMA resources
253 * @dma_buf: pointer to allocated DMA buffer
254 * @dma_buf_size: DMA buffer size
255 * @dma_mode: indicates active DMA transfer
256 * @dma_complete: DMA completion notifier
257 * @atomic_mode: indicates active atomic transfer
258 */
259struct tegra_i2c_dev {
260	struct device *dev;
261	struct i2c_adapter adapter;
262
263	const struct tegra_i2c_hw_feature *hw;
264	struct reset_control *rst;
265	unsigned int cont_id;
266	unsigned int irq;
267
268	phys_addr_t base_phys;
269	void __iomem *base;
270
271	struct clk_bulk_data clocks[2];
272	unsigned int nclocks;
273
274	struct clk *div_clk;
275	u32 bus_clk_rate;
276
277	struct completion msg_complete;
278	size_t msg_buf_remaining;
279	int msg_err;
280	u8 *msg_buf;
281
282	struct completion dma_complete;
283	struct dma_chan *tx_dma_chan;
284	struct dma_chan *rx_dma_chan;
285	unsigned int dma_buf_size;
286	struct device *dma_dev;
287	dma_addr_t dma_phys;
288	void *dma_buf;
289
290	bool multimaster_mode;
291	bool atomic_mode;
292	bool dma_mode;
293	bool msg_read;
294	bool is_dvc;
295	bool is_vi;
296};
297
298static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
299		       unsigned int reg)
300{
301	writel_relaxed(val, i2c_dev->base + reg);
302}
303
304static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
305{
306	return readl_relaxed(i2c_dev->base + reg);
307}
308
309/*
310 * If necessary, i2c_writel() and i2c_readl() will offset the register
311 * in order to talk to the I2C block inside the DVC block.
312 */
313static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
314{
315	if (i2c_dev->is_dvc)
316		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
317	else if (i2c_dev->is_vi)
318		reg = 0xc00 + (reg << 2);
319
320	return reg;
321}
322
323static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
324{
325	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
326
327	/* read back register to make sure that register writes completed */
328	if (reg != I2C_TX_FIFO)
329		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330	else if (i2c_dev->is_vi)
331		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
332}
333
334static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
335{
336	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
337}
338
339static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
340			unsigned int reg, unsigned int len)
341{
342	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
343}
344
345static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
346			   unsigned int reg, unsigned int len)
347{
348	u32 *data32 = data;
349
350	/*
351	 * VI I2C controller has known hardware bug where writes get stuck
352	 * when immediate multiple writes happen to TX_FIFO register.
353	 * Recommended software work around is to read I2C register after
354	 * each write to TX_FIFO register to flush out the data.
355	 */
356	while (len--)
357		i2c_writel(i2c_dev, *data32++, reg);
358}
359
360static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
361		       unsigned int reg, unsigned int len)
362{
363	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
364}
365
366static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
367{
368	u32 int_mask;
369
370	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
371	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
372}
373
374static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
375{
376	u32 int_mask;
377
378	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
379	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
380}
381
382static void tegra_i2c_dma_complete(void *args)
383{
384	struct tegra_i2c_dev *i2c_dev = args;
385
386	complete(&i2c_dev->dma_complete);
387}
388
389static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
390{
391	struct dma_async_tx_descriptor *dma_desc;
392	enum dma_transfer_direction dir;
393	struct dma_chan *chan;
394
395	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
396
397	reinit_completion(&i2c_dev->dma_complete);
398
399	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
400	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
401
402	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
403					       len, dir, DMA_PREP_INTERRUPT |
404					       DMA_CTRL_ACK);
405	if (!dma_desc) {
406		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
407			i2c_dev->msg_read ? "RX" : "TX");
408		return -EINVAL;
409	}
410
411	dma_desc->callback = tegra_i2c_dma_complete;
412	dma_desc->callback_param = i2c_dev;
413
414	dmaengine_submit(dma_desc);
415	dma_async_issue_pending(chan);
416
417	return 0;
418}
419
420static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
421{
422	if (i2c_dev->dma_buf) {
423		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
424				  i2c_dev->dma_buf, i2c_dev->dma_phys);
425		i2c_dev->dma_buf = NULL;
426	}
427
428	if (i2c_dev->tx_dma_chan) {
429		dma_release_channel(i2c_dev->tx_dma_chan);
430		i2c_dev->tx_dma_chan = NULL;
431	}
432
433	if (i2c_dev->rx_dma_chan) {
434		dma_release_channel(i2c_dev->rx_dma_chan);
435		i2c_dev->rx_dma_chan = NULL;
436	}
437}
438
439static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
440{
441	struct dma_chan *chan;
442	dma_addr_t dma_phys;
443	u32 *dma_buf;
444	int err;
445
446	if (!i2c_dev->hw->has_apb_dma || i2c_dev->is_vi)
447		return 0;
448
449	if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
450		dev_dbg(i2c_dev->dev, "DMA support not enabled\n");
451		return 0;
452	}
453
454	chan = dma_request_chan(i2c_dev->dev, "rx");
455	if (IS_ERR(chan)) {
456		err = PTR_ERR(chan);
457		goto err_out;
458	}
459
460	i2c_dev->rx_dma_chan = chan;
461
462	chan = dma_request_chan(i2c_dev->dev, "tx");
463	if (IS_ERR(chan)) {
464		err = PTR_ERR(chan);
465		goto err_out;
466	}
467
468	i2c_dev->tx_dma_chan = chan;
469
470	WARN_ON(i2c_dev->tx_dma_chan->device != i2c_dev->rx_dma_chan->device);
471	i2c_dev->dma_dev = chan->device->dev;
472
473	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
474				I2C_PACKET_HEADER_SIZE;
475
476	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
477				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
478	if (!dma_buf) {
479		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
480		err = -ENOMEM;
481		goto err_out;
482	}
483
484	i2c_dev->dma_buf = dma_buf;
485	i2c_dev->dma_phys = dma_phys;
486
487	return 0;
488
489err_out:
490	tegra_i2c_release_dma(i2c_dev);
491	if (err != -EPROBE_DEFER) {
492		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
493		dev_err(i2c_dev->dev, "falling back to PIO\n");
494		return 0;
495	}
496
497	return err;
498}
499
500/*
501 * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
502 * block.  This block is identical to the rest of the I2C blocks, except that
503 * it only supports master mode, it has registers moved around, and it needs
504 * some extra init to get it into I2C mode.  The register moves are handled
505 * by i2c_readl() and i2c_writel().
506 */
507static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
508{
509	u32 val;
510
511	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
512	val |= DVC_CTRL_REG3_SW_PROG;
513	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
514	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
515
516	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
517	val |= DVC_CTRL_REG1_INTR_EN;
518	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
519}
520
521static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
522{
523	u32 value;
524
525	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
526		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
527	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
528
529	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
530		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
531		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
532		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
533	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
534
535	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
536		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
537	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
538
539	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
540		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
541		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
542	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
543
544	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
545	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
546
547	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
548}
549
550static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
551				   u32 reg, u32 mask, u32 delay_us,
552				   u32 timeout_us)
553{
554	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
555	u32 val;
556
557	if (!i2c_dev->atomic_mode && !in_irq())
558		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
559						  delay_us, timeout_us);
560
561	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
562						 delay_us, timeout_us);
563}
564
565static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
566{
567	u32 mask, val, offset;
568	int err;
569
570	if (i2c_dev->hw->has_mst_fifo) {
571		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
572		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
573		offset = I2C_MST_FIFO_CONTROL;
574	} else {
575		mask = I2C_FIFO_CONTROL_TX_FLUSH |
576		       I2C_FIFO_CONTROL_RX_FLUSH;
577		offset = I2C_FIFO_CONTROL;
578	}
579
580	val = i2c_readl(i2c_dev, offset);
581	val |= mask;
582	i2c_writel(i2c_dev, val, offset);
583
584	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
585	if (err) {
586		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
587		return err;
588	}
589
590	return 0;
591}
592
593static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
594{
595	int err;
596
597	if (!i2c_dev->hw->has_config_load_reg)
598		return 0;
599
600	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
601
602	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
603				      1000, I2C_CONFIG_LOAD_TIMEOUT);
604	if (err) {
605		dev_err(i2c_dev->dev, "failed to load config\n");
606		return err;
607	}
608
609	return 0;
610}
611
612static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
613{
614	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
615	int err;
616
617	/*
618	 * The reset shouldn't ever fail in practice. The failure will be a
619	 * sign of a severe problem that needs to be resolved. Still we don't
620	 * want to fail the initialization completely because this may break
621	 * kernel boot up since voltage regulators use I2C. Hence, we will
622	 * emit a noisy warning on error, which won't stay unnoticed and
623	 * won't hose machine entirely.
624	 */
625	err = reset_control_reset(i2c_dev->rst);
626	WARN_ON_ONCE(err);
627
628	if (i2c_dev->is_dvc)
629		tegra_dvc_init(i2c_dev);
630
631	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
632	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
633
634	if (i2c_dev->hw->has_multi_master_mode)
635		val |= I2C_CNFG_MULTI_MASTER_MODE;
636
637	i2c_writel(i2c_dev, val, I2C_CNFG);
638	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
639
640	if (i2c_dev->is_vi)
641		tegra_i2c_vi_init(i2c_dev);
642
643	switch (i2c_dev->bus_clk_rate) {
644	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
645	default:
646		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
647		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
648		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
649
650		if (i2c_dev->bus_clk_rate > I2C_MAX_FAST_MODE_FREQ)
651			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
652		else
653			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
654		break;
655
656	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
657		tlow = i2c_dev->hw->tlow_std_mode;
658		thigh = i2c_dev->hw->thigh_std_mode;
659		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
660		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
661		break;
662	}
663
664	/* make sure clock divisor programmed correctly */
665	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
666				 i2c_dev->hw->clk_divisor_hs_mode) |
667		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
668	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
669
670	if (i2c_dev->hw->has_interface_timing_reg) {
671		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
672		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
673		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
674	}
675
676	/*
677	 * Configure setup and hold times only when tsu_thd is non-zero.
678	 * Otherwise, preserve the chip default values.
679	 */
680	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
681		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
682
683	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
684
685	err = clk_set_rate(i2c_dev->div_clk,
686			   i2c_dev->bus_clk_rate * clk_multiplier);
687	if (err) {
688		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
689		return err;
690	}
691
692	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
693		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
694
695		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
696		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
697		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
698		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
699	}
700
701	err = tegra_i2c_flush_fifos(i2c_dev);
702	if (err)
703		return err;
704
705	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
706		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
707
708	err = tegra_i2c_wait_for_config_load(i2c_dev);
709	if (err)
710		return err;
711
712	return 0;
713}
714
715static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
716{
717	u32 cnfg;
718
719	/*
720	 * NACK interrupt is generated before the I2C controller generates
721	 * the STOP condition on the bus.  So, wait for 2 clock periods
722	 * before disabling the controller so that the STOP condition has
723	 * been delivered properly.
724	 */
725	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->bus_clk_rate));
726
727	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
728	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
729		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
730
731	return tegra_i2c_wait_for_config_load(i2c_dev);
732}
733
734static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
735{
736	size_t buf_remaining = i2c_dev->msg_buf_remaining;
737	unsigned int words_to_transfer, rx_fifo_avail;
738	u8 *buf = i2c_dev->msg_buf;
739	u32 val;
740
741	/*
742	 * Catch overflow due to message fully sent before the check for
743	 * RX FIFO availability.
744	 */
745	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
746		return -EINVAL;
747
748	if (i2c_dev->hw->has_mst_fifo) {
749		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
750		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
751	} else {
752		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
753		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
754	}
755
756	/* round down to exclude partial word at the end of buffer */
757	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
758	if (words_to_transfer > rx_fifo_avail)
759		words_to_transfer = rx_fifo_avail;
760
761	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
762
763	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
764	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
765	rx_fifo_avail -= words_to_transfer;
766
767	/*
768	 * If there is a partial word at the end of buffer, handle it
769	 * manually to prevent overwriting past the end of buffer.
770	 */
771	if (rx_fifo_avail > 0 && buf_remaining > 0) {
772		/*
773		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
774		 * when (words_to_transfer was > rx_fifo_avail) earlier
775		 * in this function.
776		 */
777		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
778		val = cpu_to_le32(val);
779		memcpy(buf, &val, buf_remaining);
780		buf_remaining = 0;
781		rx_fifo_avail--;
782	}
783
784	/* RX FIFO must be drained, otherwise it's an Overflow case. */
785	if (WARN_ON_ONCE(rx_fifo_avail))
786		return -EINVAL;
787
788	i2c_dev->msg_buf_remaining = buf_remaining;
789	i2c_dev->msg_buf = buf;
790
791	return 0;
792}
793
794static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
795{
796	size_t buf_remaining = i2c_dev->msg_buf_remaining;
797	unsigned int words_to_transfer, tx_fifo_avail;
798	u8 *buf = i2c_dev->msg_buf;
799	u32 val;
800
801	if (i2c_dev->hw->has_mst_fifo) {
802		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
803		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
804	} else {
805		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
806		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
807	}
808
809	/* round down to exclude partial word at the end of buffer */
810	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
811
812	/*
813	 * This hunk pushes 4 bytes at a time into the TX FIFO.
814	 *
815	 * It's very common to have < 4 bytes, hence there is no word
816	 * to push if we have less than 4 bytes to transfer.
817	 */
818	if (words_to_transfer) {
819		if (words_to_transfer > tx_fifo_avail)
820			words_to_transfer = tx_fifo_avail;
821
822		/*
823		 * Update state before writing to FIFO.  Note that this may
824		 * cause us to finish writing all bytes (AKA buf_remaining
825		 * goes to 0), hence we have a potential for an interrupt
826		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
827		 * is disabled at this point.
828		 */
829		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
830		tx_fifo_avail -= words_to_transfer;
831
832		i2c_dev->msg_buf_remaining = buf_remaining;
833		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
834
835		if (i2c_dev->is_vi)
836			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
837		else
838			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
839
840		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
841	}
842
843	/*
844	 * If there is a partial word at the end of buffer, handle it manually
845	 * to prevent reading past the end of buffer, which could cross a page
846	 * boundary and fault.
847	 */
848	if (tx_fifo_avail > 0 && buf_remaining > 0) {
849		/*
850		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
851		 * when (words_to_transfer was > tx_fifo_avail) earlier
852		 * in this function for non-zero words_to_transfer.
853		 */
854		memcpy(&val, buf, buf_remaining);
855		val = le32_to_cpu(val);
856
857		i2c_dev->msg_buf_remaining = 0;
858		i2c_dev->msg_buf = NULL;
859
860		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
861	}
862
863	return 0;
864}
865
866static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
867{
868	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
869	struct tegra_i2c_dev *i2c_dev = dev_id;
870	u32 status;
871
872	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
873
874	if (status == 0) {
875		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
876			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
877			 i2c_readl(i2c_dev, I2C_STATUS),
878			 i2c_readl(i2c_dev, I2C_CNFG));
879		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
880		goto err;
881	}
882
883	if (status & status_err) {
884		tegra_i2c_disable_packet_mode(i2c_dev);
885		if (status & I2C_INT_NO_ACK)
886			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
887		if (status & I2C_INT_ARBITRATION_LOST)
888			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
889		goto err;
890	}
891
892	/*
893	 * I2C transfer is terminated during the bus clear, so skip
894	 * processing the other interrupts.
895	 */
896	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
897		goto err;
898
899	if (!i2c_dev->dma_mode) {
900		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
901			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
902				/*
903				 * Overflow error condition: message fully sent,
904				 * with no XFER_COMPLETE interrupt but hardware
905				 * asks to transfer more.
906				 */
907				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
908				goto err;
909			}
910		}
911
912		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
913			if (i2c_dev->msg_buf_remaining)
914				tegra_i2c_fill_tx_fifo(i2c_dev);
915			else
916				tegra_i2c_mask_irq(i2c_dev,
917						   I2C_INT_TX_FIFO_DATA_REQ);
918		}
919	}
920
921	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
922	if (i2c_dev->is_dvc)
923		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
924
925	/*
926	 * During message read XFER_COMPLETE interrupt is triggered prior to
927	 * DMA completion and during message write XFER_COMPLETE interrupt is
928	 * triggered after DMA completion.
929	 *
930	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
931	 * so forcing msg_buf_remaining to 0 in DMA mode.
932	 */
933	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
934		if (i2c_dev->dma_mode)
935			i2c_dev->msg_buf_remaining = 0;
936		/*
937		 * Underflow error condition: XFER_COMPLETE before message
938		 * fully sent.
939		 */
940		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
941			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
942			goto err;
943		}
944		complete(&i2c_dev->msg_complete);
945	}
946	goto done;
947err:
948	/* mask all interrupts on error */
949	tegra_i2c_mask_irq(i2c_dev,
950			   I2C_INT_NO_ACK |
951			   I2C_INT_ARBITRATION_LOST |
952			   I2C_INT_PACKET_XFER_COMPLETE |
953			   I2C_INT_TX_FIFO_DATA_REQ |
954			   I2C_INT_RX_FIFO_DATA_REQ);
955
956	if (i2c_dev->hw->supports_bus_clear)
957		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
958
959	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
960
961	if (i2c_dev->is_dvc)
962		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
963
964	if (i2c_dev->dma_mode) {
965		if (i2c_dev->msg_read)
966			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
967		else
968			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
969
970		complete(&i2c_dev->dma_complete);
971	}
972
973	complete(&i2c_dev->msg_complete);
974done:
975	return IRQ_HANDLED;
976}
977
978static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
979				       size_t len)
980{
981	struct dma_slave_config slv_config = {0};
982	u32 val, reg, dma_burst, reg_offset;
983	struct dma_chan *chan;
984	int err;
985
986	if (i2c_dev->hw->has_mst_fifo)
987		reg = I2C_MST_FIFO_CONTROL;
988	else
989		reg = I2C_FIFO_CONTROL;
990
991	if (i2c_dev->dma_mode) {
992		if (len & 0xF)
993			dma_burst = 1;
994		else if (len & 0x10)
995			dma_burst = 4;
996		else
997			dma_burst = 8;
998
999		if (i2c_dev->msg_read) {
1000			chan = i2c_dev->rx_dma_chan;
1001			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1002
1003			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1004			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005			slv_config.src_maxburst = dma_burst;
1006
1007			if (i2c_dev->hw->has_mst_fifo)
1008				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1009			else
1010				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1011		} else {
1012			chan = i2c_dev->tx_dma_chan;
1013			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1014
1015			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1016			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017			slv_config.dst_maxburst = dma_burst;
1018
1019			if (i2c_dev->hw->has_mst_fifo)
1020				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1021			else
1022				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1023		}
1024
1025		slv_config.device_fc = true;
1026		err = dmaengine_slave_config(chan, &slv_config);
1027		if (err) {
1028			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1029			dev_err(i2c_dev->dev, "falling back to PIO\n");
1030
1031			tegra_i2c_release_dma(i2c_dev);
1032			i2c_dev->dma_mode = false;
1033		} else {
1034			goto out;
1035		}
1036	}
1037
1038	if (i2c_dev->hw->has_mst_fifo)
1039		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1040		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1041	else
1042		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1043		      I2C_FIFO_CONTROL_RX_TRIG(1);
1044out:
1045	i2c_writel(i2c_dev, val, reg);
1046}
1047
1048static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1049					       struct completion *complete,
1050					       unsigned int timeout_ms)
1051{
1052	ktime_t ktime = ktime_get();
1053	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1054
1055	do {
1056		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1057
1058		if (status)
1059			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1060
1061		if (completion_done(complete)) {
1062			s64 delta = ktime_ms_delta(ktimeout, ktime);
1063
1064			return msecs_to_jiffies(delta) ?: 1;
1065		}
1066
1067		ktime = ktime_get();
1068
1069	} while (ktime_before(ktime, ktimeout));
1070
1071	return 0;
1072}
1073
1074static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1075					       struct completion *complete,
1076					       unsigned int timeout_ms)
1077{
1078	unsigned long ret;
1079
1080	if (i2c_dev->atomic_mode) {
1081		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1082	} else {
1083		enable_irq(i2c_dev->irq);
1084		ret = wait_for_completion_timeout(complete,
1085						  msecs_to_jiffies(timeout_ms));
1086		disable_irq(i2c_dev->irq);
1087
1088		/*
1089		 * Under some rare circumstances (like running KASAN +
1090		 * NFS root) CPU, which handles interrupt, may stuck in
1091		 * uninterruptible state for a significant time.  In this
1092		 * case we will get timeout if I2C transfer is running on
1093		 * a sibling CPU, despite of IRQ being raised.
1094		 *
1095		 * In order to handle this rare condition, the IRQ status
1096		 * needs to be checked after timeout.
1097		 */
1098		if (ret == 0)
1099			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1100	}
1101
1102	return ret;
1103}
1104
1105static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1106{
1107	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1108	u32 val, time_left;
1109	int err;
1110
1111	reinit_completion(&i2c_dev->msg_complete);
1112
1113	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1114	      I2C_BC_TERMINATE;
1115	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1116
1117	err = tegra_i2c_wait_for_config_load(i2c_dev);
1118	if (err)
1119		return err;
1120
1121	val |= I2C_BC_ENABLE;
1122	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1123	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1124
1125	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1126	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1127
1128	if (time_left == 0) {
1129		dev_err(i2c_dev->dev, "failed to clear bus\n");
1130		return -ETIMEDOUT;
1131	}
1132
1133	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1134	if (!(val & I2C_BC_STATUS)) {
1135		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1136		return -EIO;
1137	}
1138
1139	return -EAGAIN;
1140}
1141
1142static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1143					 struct i2c_msg *msg,
1144					 enum msg_end_type end_state)
1145{
1146	u32 *dma_buf = i2c_dev->dma_buf;
1147	u32 packet_header;
1148
1149	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1150			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1151				   PACKET_HEADER0_PROTOCOL_I2C) |
1152			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1153			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1154
1155	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1156		*dma_buf++ = packet_header;
1157	else
1158		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1159
1160	packet_header = msg->len - 1;
1161
1162	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1163		*dma_buf++ = packet_header;
1164	else
1165		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1166
1167	packet_header = I2C_HEADER_IE_ENABLE;
1168
1169	if (end_state == MSG_END_CONTINUE)
1170		packet_header |= I2C_HEADER_CONTINUE_XFER;
1171	else if (end_state == MSG_END_REPEAT_START)
1172		packet_header |= I2C_HEADER_REPEAT_START;
1173
1174	if (msg->flags & I2C_M_TEN) {
1175		packet_header |= msg->addr;
1176		packet_header |= I2C_HEADER_10BIT_ADDR;
1177	} else {
1178		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1179	}
1180
1181	if (msg->flags & I2C_M_IGNORE_NAK)
1182		packet_header |= I2C_HEADER_CONT_ON_NAK;
1183
1184	if (msg->flags & I2C_M_RD)
1185		packet_header |= I2C_HEADER_READ;
1186
1187	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1188		*dma_buf++ = packet_header;
1189	else
1190		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1191}
1192
1193static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1194				   struct i2c_msg *msg)
1195{
1196	if (i2c_dev->msg_err == I2C_ERR_NONE)
1197		return 0;
1198
1199	tegra_i2c_init(i2c_dev);
1200
1201	/* start recovery upon arbitration loss in single master mode */
1202	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1203		if (!i2c_dev->multimaster_mode)
1204			return i2c_recover_bus(&i2c_dev->adapter);
1205
1206		return -EAGAIN;
1207	}
1208
1209	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1210		if (msg->flags & I2C_M_IGNORE_NAK)
1211			return 0;
1212
1213		return -EREMOTEIO;
1214	}
1215
1216	return -EIO;
1217}
1218
1219static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1220			      struct i2c_msg *msg,
1221			      enum msg_end_type end_state)
1222{
1223	unsigned long time_left, xfer_time = 100;
1224	size_t xfer_size;
1225	u32 int_mask;
1226	int err;
1227
1228	err = tegra_i2c_flush_fifos(i2c_dev);
1229	if (err)
1230		return err;
1231
1232	i2c_dev->msg_buf = msg->buf;
1233	i2c_dev->msg_buf_remaining = msg->len;
1234	i2c_dev->msg_err = I2C_ERR_NONE;
1235	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1236	reinit_completion(&i2c_dev->msg_complete);
1237
1238	if (i2c_dev->msg_read)
1239		xfer_size = msg->len;
1240	else
1241		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1242
1243	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1244
1245	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1246			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1247
1248	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1249
1250	/*
1251	 * Transfer time in mSec = Total bits / transfer rate
1252	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1253	 */
1254	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1255				       i2c_dev->bus_clk_rate);
1256
1257	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1258	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1259
1260	if (i2c_dev->dma_mode) {
1261		if (i2c_dev->msg_read) {
1262			dma_sync_single_for_device(i2c_dev->dma_dev,
1263						   i2c_dev->dma_phys,
1264						   xfer_size, DMA_FROM_DEVICE);
1265
1266			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1267			if (err)
1268				return err;
1269		} else {
1270			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1271						i2c_dev->dma_phys,
1272						xfer_size, DMA_TO_DEVICE);
1273		}
1274	}
1275
1276	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1277
1278	if (!i2c_dev->msg_read) {
1279		if (i2c_dev->dma_mode) {
1280			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1281			       msg->buf, msg->len);
1282
1283			dma_sync_single_for_device(i2c_dev->dma_dev,
1284						   i2c_dev->dma_phys,
1285						   xfer_size, DMA_TO_DEVICE);
1286
1287			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1288			if (err)
1289				return err;
1290		} else {
1291			tegra_i2c_fill_tx_fifo(i2c_dev);
1292		}
1293	}
1294
1295	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1296		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1297
1298	if (!i2c_dev->dma_mode) {
1299		if (msg->flags & I2C_M_RD)
1300			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1301		else if (i2c_dev->msg_buf_remaining)
1302			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1303	}
1304
1305	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1306	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1307		i2c_readl(i2c_dev, I2C_INT_MASK));
1308
1309	if (i2c_dev->dma_mode) {
1310		time_left = tegra_i2c_wait_completion(i2c_dev,
1311						      &i2c_dev->dma_complete,
1312						      xfer_time);
1313
1314		/*
1315		 * Synchronize DMA first, since dmaengine_terminate_sync()
1316		 * performs synchronization after the transfer's termination
1317		 * and we want to get a completion if transfer succeeded.
1318		 */
1319		dmaengine_synchronize(i2c_dev->msg_read ?
1320				      i2c_dev->rx_dma_chan :
1321				      i2c_dev->tx_dma_chan);
1322
1323		dmaengine_terminate_sync(i2c_dev->msg_read ?
1324					 i2c_dev->rx_dma_chan :
1325					 i2c_dev->tx_dma_chan);
1326
1327		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1328			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1329			tegra_i2c_init(i2c_dev);
1330			return -ETIMEDOUT;
1331		}
1332
1333		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1334			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1335						i2c_dev->dma_phys,
1336						xfer_size, DMA_FROM_DEVICE);
1337
1338			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1339		}
1340	}
1341
1342	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1343					      xfer_time);
1344
1345	tegra_i2c_mask_irq(i2c_dev, int_mask);
1346
1347	if (time_left == 0) {
1348		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1349		tegra_i2c_init(i2c_dev);
1350		return -ETIMEDOUT;
1351	}
1352
1353	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1354		time_left, completion_done(&i2c_dev->msg_complete),
1355		i2c_dev->msg_err);
1356
1357	i2c_dev->dma_mode = false;
1358
1359	err = tegra_i2c_error_recover(i2c_dev, msg);
1360	if (err)
1361		return err;
1362
1363	return 0;
1364}
1365
1366static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1367			  int num)
1368{
1369	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1370	int i, ret;
1371
1372	ret = pm_runtime_get_sync(i2c_dev->dev);
1373	if (ret < 0) {
1374		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1375		pm_runtime_put_noidle(i2c_dev->dev);
1376		return ret;
1377	}
1378
1379	for (i = 0; i < num; i++) {
1380		enum msg_end_type end_type = MSG_END_STOP;
1381
1382		if (i < (num - 1)) {
1383			/* check whether follow up message is coming */
1384			if (msgs[i + 1].flags & I2C_M_NOSTART)
1385				end_type = MSG_END_CONTINUE;
1386			else
1387				end_type = MSG_END_REPEAT_START;
1388		}
1389		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1390		if (ret)
1391			break;
1392	}
1393
1394	pm_runtime_put(i2c_dev->dev);
1395
1396	return ret ?: i;
1397}
1398
1399static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1400				 struct i2c_msg msgs[], int num)
1401{
1402	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1403	int ret;
1404
1405	i2c_dev->atomic_mode = true;
1406	ret = tegra_i2c_xfer(adap, msgs, num);
1407	i2c_dev->atomic_mode = false;
1408
1409	return ret;
1410}
1411
1412static u32 tegra_i2c_func(struct i2c_adapter *adap)
1413{
1414	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1415	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1416		  I2C_FUNC_10BIT_ADDR |	I2C_FUNC_PROTOCOL_MANGLING;
1417
1418	if (i2c_dev->hw->has_continue_xfer_support)
1419		ret |= I2C_FUNC_NOSTART;
1420
1421	return ret;
1422}
1423
1424static const struct i2c_algorithm tegra_i2c_algo = {
1425	.master_xfer		= tegra_i2c_xfer,
1426	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1427	.functionality		= tegra_i2c_func,
1428};
1429
1430/* payload size is only 12 bit */
1431static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1432	.flags = I2C_AQ_NO_ZERO_LEN,
1433	.max_read_len = SZ_4K,
1434	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1435};
1436
1437static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1438	.flags = I2C_AQ_NO_ZERO_LEN,
1439	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1440};
1441
1442static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1443	.recover_bus = tegra_i2c_issue_bus_clear,
1444};
1445
1446static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1447	.has_continue_xfer_support = false,
1448	.has_per_pkt_xfer_complete_irq = false,
1449	.clk_divisor_hs_mode = 3,
1450	.clk_divisor_std_mode = 0,
1451	.clk_divisor_fast_mode = 0,
1452	.clk_divisor_fast_plus_mode = 0,
1453	.has_config_load_reg = false,
1454	.has_multi_master_mode = false,
1455	.has_slcg_override_reg = false,
1456	.has_mst_fifo = false,
1457	.quirks = &tegra_i2c_quirks,
1458	.supports_bus_clear = false,
1459	.has_apb_dma = true,
1460	.tlow_std_mode = 0x4,
1461	.thigh_std_mode = 0x2,
1462	.tlow_fast_fastplus_mode = 0x4,
1463	.thigh_fast_fastplus_mode = 0x2,
1464	.setup_hold_time_std_mode = 0x0,
1465	.setup_hold_time_fast_fast_plus_mode = 0x0,
1466	.setup_hold_time_hs_mode = 0x0,
1467	.has_interface_timing_reg = false,
1468};
1469
1470static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1471	.has_continue_xfer_support = true,
1472	.has_per_pkt_xfer_complete_irq = false,
1473	.clk_divisor_hs_mode = 3,
1474	.clk_divisor_std_mode = 0,
1475	.clk_divisor_fast_mode = 0,
1476	.clk_divisor_fast_plus_mode = 0,
1477	.has_config_load_reg = false,
1478	.has_multi_master_mode = false,
1479	.has_slcg_override_reg = false,
1480	.has_mst_fifo = false,
1481	.quirks = &tegra_i2c_quirks,
1482	.supports_bus_clear = false,
1483	.has_apb_dma = true,
1484	.tlow_std_mode = 0x4,
1485	.thigh_std_mode = 0x2,
1486	.tlow_fast_fastplus_mode = 0x4,
1487	.thigh_fast_fastplus_mode = 0x2,
1488	.setup_hold_time_std_mode = 0x0,
1489	.setup_hold_time_fast_fast_plus_mode = 0x0,
1490	.setup_hold_time_hs_mode = 0x0,
1491	.has_interface_timing_reg = false,
1492};
1493
1494static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1495	.has_continue_xfer_support = true,
1496	.has_per_pkt_xfer_complete_irq = true,
1497	.clk_divisor_hs_mode = 1,
1498	.clk_divisor_std_mode = 0x19,
1499	.clk_divisor_fast_mode = 0x19,
1500	.clk_divisor_fast_plus_mode = 0x10,
1501	.has_config_load_reg = false,
1502	.has_multi_master_mode = false,
1503	.has_slcg_override_reg = false,
1504	.has_mst_fifo = false,
1505	.quirks = &tegra_i2c_quirks,
1506	.supports_bus_clear = true,
1507	.has_apb_dma = true,
1508	.tlow_std_mode = 0x4,
1509	.thigh_std_mode = 0x2,
1510	.tlow_fast_fastplus_mode = 0x4,
1511	.thigh_fast_fastplus_mode = 0x2,
1512	.setup_hold_time_std_mode = 0x0,
1513	.setup_hold_time_fast_fast_plus_mode = 0x0,
1514	.setup_hold_time_hs_mode = 0x0,
1515	.has_interface_timing_reg = false,
1516};
1517
1518static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1519	.has_continue_xfer_support = true,
1520	.has_per_pkt_xfer_complete_irq = true,
1521	.clk_divisor_hs_mode = 1,
1522	.clk_divisor_std_mode = 0x19,
1523	.clk_divisor_fast_mode = 0x19,
1524	.clk_divisor_fast_plus_mode = 0x10,
1525	.has_config_load_reg = true,
1526	.has_multi_master_mode = false,
1527	.has_slcg_override_reg = true,
1528	.has_mst_fifo = false,
1529	.quirks = &tegra_i2c_quirks,
1530	.supports_bus_clear = true,
1531	.has_apb_dma = true,
1532	.tlow_std_mode = 0x4,
1533	.thigh_std_mode = 0x2,
1534	.tlow_fast_fastplus_mode = 0x4,
1535	.thigh_fast_fastplus_mode = 0x2,
1536	.setup_hold_time_std_mode = 0x0,
1537	.setup_hold_time_fast_fast_plus_mode = 0x0,
1538	.setup_hold_time_hs_mode = 0x0,
1539	.has_interface_timing_reg = true,
1540};
1541
1542static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1543	.has_continue_xfer_support = true,
1544	.has_per_pkt_xfer_complete_irq = true,
1545	.clk_divisor_hs_mode = 1,
1546	.clk_divisor_std_mode = 0x19,
1547	.clk_divisor_fast_mode = 0x19,
1548	.clk_divisor_fast_plus_mode = 0x10,
1549	.has_config_load_reg = true,
1550	.has_multi_master_mode = false,
1551	.has_slcg_override_reg = true,
1552	.has_mst_fifo = false,
1553	.quirks = &tegra_i2c_quirks,
1554	.supports_bus_clear = true,
1555	.has_apb_dma = true,
1556	.tlow_std_mode = 0x4,
1557	.thigh_std_mode = 0x2,
1558	.tlow_fast_fastplus_mode = 0x4,
1559	.thigh_fast_fastplus_mode = 0x2,
1560	.setup_hold_time_std_mode = 0,
1561	.setup_hold_time_fast_fast_plus_mode = 0,
1562	.setup_hold_time_hs_mode = 0,
1563	.has_interface_timing_reg = true,
1564};
1565
1566static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1567	.has_continue_xfer_support = true,
1568	.has_per_pkt_xfer_complete_irq = true,
1569	.clk_divisor_hs_mode = 1,
1570	.clk_divisor_std_mode = 0x16,
1571	.clk_divisor_fast_mode = 0x19,
1572	.clk_divisor_fast_plus_mode = 0x10,
1573	.has_config_load_reg = true,
1574	.has_multi_master_mode = false,
1575	.has_slcg_override_reg = true,
1576	.has_mst_fifo = false,
1577	.quirks = &tegra_i2c_quirks,
1578	.supports_bus_clear = true,
1579	.has_apb_dma = false,
1580	.tlow_std_mode = 0x4,
1581	.thigh_std_mode = 0x3,
1582	.tlow_fast_fastplus_mode = 0x4,
1583	.thigh_fast_fastplus_mode = 0x2,
1584	.setup_hold_time_std_mode = 0,
1585	.setup_hold_time_fast_fast_plus_mode = 0,
1586	.setup_hold_time_hs_mode = 0,
1587	.has_interface_timing_reg = true,
1588};
1589
1590static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1591	.has_continue_xfer_support = true,
1592	.has_per_pkt_xfer_complete_irq = true,
1593	.clk_divisor_hs_mode = 1,
1594	.clk_divisor_std_mode = 0x4f,
1595	.clk_divisor_fast_mode = 0x3c,
1596	.clk_divisor_fast_plus_mode = 0x16,
1597	.has_config_load_reg = true,
1598	.has_multi_master_mode = true,
1599	.has_slcg_override_reg = true,
1600	.has_mst_fifo = true,
1601	.quirks = &tegra194_i2c_quirks,
1602	.supports_bus_clear = true,
1603	.has_apb_dma = false,
1604	.tlow_std_mode = 0x8,
1605	.thigh_std_mode = 0x7,
1606	.tlow_fast_fastplus_mode = 0x2,
1607	.thigh_fast_fastplus_mode = 0x2,
1608	.setup_hold_time_std_mode = 0x08080808,
1609	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1610	.setup_hold_time_hs_mode = 0x090909,
1611	.has_interface_timing_reg = true,
1612};
1613
1614static const struct of_device_id tegra_i2c_of_match[] = {
1615	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1616	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1617	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1618	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1619	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1620	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1621	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1622	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1623	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1624	{},
1625};
1626MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1627
1628static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1629{
1630	struct device_node *np = i2c_dev->dev->of_node;
1631	bool multi_mode;
1632	int err;
1633
1634	err = of_property_read_u32(np, "clock-frequency",
1635				   &i2c_dev->bus_clk_rate);
1636	if (err)
1637		i2c_dev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ;
1638
1639	multi_mode = of_property_read_bool(np, "multi-master");
1640	i2c_dev->multimaster_mode = multi_mode;
1641
1642	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1643		i2c_dev->is_dvc = true;
1644
1645	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1646		i2c_dev->is_vi = true;
1647}
1648
1649static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1650{
1651	int err;
1652
1653	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1654
1655	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1656		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1657
1658	if (i2c_dev->is_vi)
1659		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1660
1661	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1662				i2c_dev->clocks);
1663	if (err)
1664		return err;
1665
1666	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1667	if (err)
1668		return err;
1669
1670	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1671
1672	if (!i2c_dev->multimaster_mode)
1673		return 0;
1674
1675	err = clk_enable(i2c_dev->div_clk);
1676	if (err) {
1677		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1678		goto unprepare_clocks;
1679	}
1680
1681	return 0;
1682
1683unprepare_clocks:
1684	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1685
1686	return err;
1687}
1688
1689static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1690{
1691	if (i2c_dev->multimaster_mode)
1692		clk_disable(i2c_dev->div_clk);
1693
1694	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1695}
1696
1697static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1698{
1699	int ret;
1700
1701	ret = pm_runtime_get_sync(i2c_dev->dev);
1702	if (ret < 0)
1703		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1704	else
1705		ret = tegra_i2c_init(i2c_dev);
1706
1707	pm_runtime_put(i2c_dev->dev);
1708
1709	return ret;
1710}
1711
1712static int tegra_i2c_probe(struct platform_device *pdev)
1713{
1714	struct tegra_i2c_dev *i2c_dev;
1715	struct resource *res;
1716	int err;
1717
1718	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1719	if (!i2c_dev)
1720		return -ENOMEM;
1721
1722	platform_set_drvdata(pdev, i2c_dev);
1723
1724	init_completion(&i2c_dev->msg_complete);
1725	init_completion(&i2c_dev->dma_complete);
1726
1727	i2c_dev->hw = of_device_get_match_data(&pdev->dev);
1728	i2c_dev->cont_id = pdev->id;
1729	i2c_dev->dev = &pdev->dev;
1730
1731	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1732	if (IS_ERR(i2c_dev->base))
1733		return PTR_ERR(i2c_dev->base);
1734
1735	i2c_dev->base_phys = res->start;
1736
1737	err = platform_get_irq(pdev, 0);
1738	if (err < 0)
1739		return err;
1740
1741	i2c_dev->irq = err;
1742
1743	/* interrupt will be enabled during of transfer time */
1744	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1745
1746	err = devm_request_irq(i2c_dev->dev, i2c_dev->irq, tegra_i2c_isr,
1747			       IRQF_NO_SUSPEND, dev_name(i2c_dev->dev),
1748			       i2c_dev);
1749	if (err)
1750		return err;
1751
1752	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1753	if (IS_ERR(i2c_dev->rst)) {
1754		dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1755			      "failed to get reset control\n");
1756		return PTR_ERR(i2c_dev->rst);
1757	}
1758
1759	tegra_i2c_parse_dt(i2c_dev);
1760
1761	err = tegra_i2c_init_clocks(i2c_dev);
1762	if (err)
1763		return err;
1764
1765	err = tegra_i2c_init_dma(i2c_dev);
1766	if (err)
1767		goto release_clocks;
1768
1769	/*
1770	 * VI I2C is in VE power domain which is not always ON and not
1771	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1772	 * non IRQ-safe domain because this prevents powering off the power
1773	 * domain.
1774	 *
1775	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1776	 * be used for atomic transfers.
1777	 */
1778	if (!i2c_dev->is_vi)
1779		pm_runtime_irq_safe(i2c_dev->dev);
1780
1781	pm_runtime_enable(i2c_dev->dev);
1782
1783	err = tegra_i2c_init_hardware(i2c_dev);
1784	if (err)
1785		goto release_rpm;
1786
1787	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1788	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1789	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1790	i2c_dev->adapter.retries = 1;
1791	i2c_dev->adapter.timeout = 6 * HZ;
1792	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1793	i2c_dev->adapter.owner = THIS_MODULE;
1794	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1795	i2c_dev->adapter.algo = &tegra_i2c_algo;
1796	i2c_dev->adapter.nr = pdev->id;
1797
1798	if (i2c_dev->hw->supports_bus_clear)
1799		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1800
1801	strlcpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1802		sizeof(i2c_dev->adapter.name));
1803
1804	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1805	if (err)
1806		goto release_rpm;
1807
1808	return 0;
1809
1810release_rpm:
1811	pm_runtime_disable(i2c_dev->dev);
1812
1813	tegra_i2c_release_dma(i2c_dev);
1814release_clocks:
1815	tegra_i2c_release_clocks(i2c_dev);
1816
1817	return err;
1818}
1819
1820static int tegra_i2c_remove(struct platform_device *pdev)
1821{
1822	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1823
1824	i2c_del_adapter(&i2c_dev->adapter);
1825	pm_runtime_disable(i2c_dev->dev);
1826
1827	tegra_i2c_release_dma(i2c_dev);
1828	tegra_i2c_release_clocks(i2c_dev);
1829
1830	return 0;
1831}
1832
1833static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1834{
1835	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1836	int err;
1837
1838	err = pinctrl_pm_select_default_state(dev);
1839	if (err)
1840		return err;
1841
1842	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1843	if (err)
1844		return err;
1845
1846	/*
1847	 * VI I2C device is attached to VE power domain which goes through
1848	 * power ON/OFF during runtime PM resume/suspend, meaning that
1849	 * controller needs to be re-initialized after power ON.
1850	 */
1851	if (i2c_dev->is_vi) {
1852		err = tegra_i2c_init(i2c_dev);
1853		if (err)
1854			goto disable_clocks;
1855	}
1856
1857	return 0;
1858
1859disable_clocks:
1860	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1861
1862	return err;
1863}
1864
1865static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1866{
1867	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1868
1869	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1870
1871	return pinctrl_pm_select_idle_state(dev);
1872}
1873
1874static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1875{
1876	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1877	int err;
1878
1879	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1880
1881	if (!pm_runtime_status_suspended(dev)) {
1882		err = tegra_i2c_runtime_suspend(dev);
1883		if (err)
1884			return err;
1885	}
1886
1887	return 0;
1888}
1889
1890static int __maybe_unused tegra_i2c_resume(struct device *dev)
1891{
1892	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1893	int err;
1894
1895	/*
1896	 * We need to ensure that clocks are enabled so that registers can be
1897	 * restored in tegra_i2c_init().
1898	 */
1899	err = tegra_i2c_runtime_resume(dev);
1900	if (err)
1901		return err;
1902
1903	err = tegra_i2c_init(i2c_dev);
1904	if (err)
1905		return err;
1906
1907	/*
1908	 * In case we are runtime suspended, disable clocks again so that we
1909	 * don't unbalance the clock reference counts during the next runtime
1910	 * resume transition.
1911	 */
1912	if (pm_runtime_status_suspended(dev)) {
1913		err = tegra_i2c_runtime_suspend(dev);
1914		if (err)
1915			return err;
1916	}
1917
1918	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1919
1920	return 0;
1921}
1922
1923static const struct dev_pm_ops tegra_i2c_pm = {
1924	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1925	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1926			   NULL)
1927};
1928
1929static struct platform_driver tegra_i2c_driver = {
1930	.probe = tegra_i2c_probe,
1931	.remove = tegra_i2c_remove,
1932	.driver = {
1933		.name = "tegra-i2c",
1934		.of_match_table = tegra_i2c_of_match,
1935		.pm = &tegra_i2c_pm,
1936	},
1937};
1938module_platform_driver(tegra_i2c_driver);
1939
1940MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1941MODULE_AUTHOR("Colin Cross");
1942MODULE_LICENSE("GPL v2");
1943