1// SPDX-License-Identifier: GPL-2.0+
2// Copyright IBM Corp 2019
3
4#include <linux/device.h>
5#include <linux/export.h>
6#include <linux/hwmon.h>
7#include <linux/hwmon-sysfs.h>
8#include <linux/jiffies.h>
9#include <linux/kernel.h>
10#include <linux/math64.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/sysfs.h>
14#include <asm/unaligned.h>
15
16#include "common.h"
17
18#define EXTN_FLAG_SENSOR_ID		BIT(7)
19
20#define OCC_ERROR_COUNT_THRESHOLD	2	/* required by OCC spec */
21
22#define OCC_STATE_SAFE			4
23#define OCC_SAFE_TIMEOUT		msecs_to_jiffies(60000) /* 1 min */
24
25#define OCC_UPDATE_FREQUENCY		msecs_to_jiffies(1000)
26
27#define OCC_TEMP_SENSOR_FAULT		0xFF
28
29#define OCC_FRU_TYPE_VRM		3
30
31/* OCC sensor type and version definitions */
32
33struct temp_sensor_1 {
34	u16 sensor_id;
35	u16 value;
36} __packed;
37
38struct temp_sensor_2 {
39	u32 sensor_id;
40	u8 fru_type;
41	u8 value;
42} __packed;
43
44struct freq_sensor_1 {
45	u16 sensor_id;
46	u16 value;
47} __packed;
48
49struct freq_sensor_2 {
50	u32 sensor_id;
51	u16 value;
52} __packed;
53
54struct power_sensor_1 {
55	u16 sensor_id;
56	u32 update_tag;
57	u32 accumulator;
58	u16 value;
59} __packed;
60
61struct power_sensor_2 {
62	u32 sensor_id;
63	u8 function_id;
64	u8 apss_channel;
65	u16 reserved;
66	u32 update_tag;
67	u64 accumulator;
68	u16 value;
69} __packed;
70
71struct power_sensor_data {
72	u16 value;
73	u32 update_tag;
74	u64 accumulator;
75} __packed;
76
77struct power_sensor_data_and_time {
78	u16 update_time;
79	u16 value;
80	u32 update_tag;
81	u64 accumulator;
82} __packed;
83
84struct power_sensor_a0 {
85	u32 sensor_id;
86	struct power_sensor_data_and_time system;
87	u32 reserved;
88	struct power_sensor_data_and_time proc;
89	struct power_sensor_data vdd;
90	struct power_sensor_data vdn;
91} __packed;
92
93struct caps_sensor_2 {
94	u16 cap;
95	u16 system_power;
96	u16 n_cap;
97	u16 max;
98	u16 min;
99	u16 user;
100	u8 user_source;
101} __packed;
102
103struct caps_sensor_3 {
104	u16 cap;
105	u16 system_power;
106	u16 n_cap;
107	u16 max;
108	u16 hard_min;
109	u16 soft_min;
110	u16 user;
111	u8 user_source;
112} __packed;
113
114struct extended_sensor {
115	union {
116		u8 name[4];
117		u32 sensor_id;
118	};
119	u8 flags;
120	u8 reserved;
121	u8 data[6];
122} __packed;
123
124static int occ_poll(struct occ *occ)
125{
126	int rc;
127	u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
128	u8 cmd[8];
129	struct occ_poll_response_header *header;
130
131	/* big endian */
132	cmd[0] = occ->seq_no++;		/* sequence number */
133	cmd[1] = 0;			/* cmd type */
134	cmd[2] = 0;			/* data length msb */
135	cmd[3] = 1;			/* data length lsb */
136	cmd[4] = occ->poll_cmd_data;	/* data */
137	cmd[5] = checksum >> 8;		/* checksum msb */
138	cmd[6] = checksum & 0xFF;	/* checksum lsb */
139	cmd[7] = 0;
140
141	/* mutex should already be locked if necessary */
142	rc = occ->send_cmd(occ, cmd);
143	if (rc) {
144		occ->last_error = rc;
145		if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
146			occ->error = rc;
147
148		goto done;
149	}
150
151	/* clear error since communication was successful */
152	occ->error_count = 0;
153	occ->last_error = 0;
154	occ->error = 0;
155
156	/* check for safe state */
157	header = (struct occ_poll_response_header *)occ->resp.data;
158	if (header->occ_state == OCC_STATE_SAFE) {
159		if (occ->last_safe) {
160			if (time_after(jiffies,
161				       occ->last_safe + OCC_SAFE_TIMEOUT))
162				occ->error = -EHOSTDOWN;
163		} else {
164			occ->last_safe = jiffies;
165		}
166	} else {
167		occ->last_safe = 0;
168	}
169
170done:
171	occ_sysfs_poll_done(occ);
172	return rc;
173}
174
175static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
176{
177	int rc;
178	u8 cmd[8];
179	u16 checksum = 0x24;
180	__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
181
182	cmd[0] = 0;
183	cmd[1] = 0x22;
184	cmd[2] = 0;
185	cmd[3] = 2;
186
187	memcpy(&cmd[4], &user_power_cap_be, 2);
188
189	checksum += cmd[4] + cmd[5];
190	cmd[6] = checksum >> 8;
191	cmd[7] = checksum & 0xFF;
192
193	rc = mutex_lock_interruptible(&occ->lock);
194	if (rc)
195		return rc;
196
197	rc = occ->send_cmd(occ, cmd);
198
199	mutex_unlock(&occ->lock);
200
201	return rc;
202}
203
204int occ_update_response(struct occ *occ)
205{
206	int rc = mutex_lock_interruptible(&occ->lock);
207
208	if (rc)
209		return rc;
210
211	/* limit the maximum rate of polling the OCC */
212	if (time_after(jiffies, occ->next_update)) {
213		rc = occ_poll(occ);
214		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
215	} else {
216		rc = occ->last_error;
217	}
218
219	mutex_unlock(&occ->lock);
220	return rc;
221}
222
223static ssize_t occ_show_temp_1(struct device *dev,
224			       struct device_attribute *attr, char *buf)
225{
226	int rc;
227	u32 val = 0;
228	struct temp_sensor_1 *temp;
229	struct occ *occ = dev_get_drvdata(dev);
230	struct occ_sensors *sensors = &occ->sensors;
231	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
232
233	rc = occ_update_response(occ);
234	if (rc)
235		return rc;
236
237	temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
238
239	switch (sattr->nr) {
240	case 0:
241		val = get_unaligned_be16(&temp->sensor_id);
242		break;
243	case 1:
244		/*
245		 * If a sensor reading has expired and couldn't be refreshed,
246		 * OCC returns 0xFFFF for that sensor.
247		 */
248		if (temp->value == 0xFFFF)
249			return -EREMOTEIO;
250		val = get_unaligned_be16(&temp->value) * 1000;
251		break;
252	default:
253		return -EINVAL;
254	}
255
256	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
257}
258
259static ssize_t occ_show_temp_2(struct device *dev,
260			       struct device_attribute *attr, char *buf)
261{
262	int rc;
263	u32 val = 0;
264	struct temp_sensor_2 *temp;
265	struct occ *occ = dev_get_drvdata(dev);
266	struct occ_sensors *sensors = &occ->sensors;
267	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
268
269	rc = occ_update_response(occ);
270	if (rc)
271		return rc;
272
273	temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
274
275	switch (sattr->nr) {
276	case 0:
277		val = get_unaligned_be32(&temp->sensor_id);
278		break;
279	case 1:
280		val = temp->value;
281		if (val == OCC_TEMP_SENSOR_FAULT)
282			return -EREMOTEIO;
283
284		/*
285		 * VRM doesn't return temperature, only alarm bit. This
286		 * attribute maps to tempX_alarm instead of tempX_input for
287		 * VRM
288		 */
289		if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290			/* sensor not ready */
291			if (val == 0)
292				return -EAGAIN;
293
294			val *= 1000;
295		}
296		break;
297	case 2:
298		val = temp->fru_type;
299		break;
300	case 3:
301		val = temp->value == OCC_TEMP_SENSOR_FAULT;
302		break;
303	default:
304		return -EINVAL;
305	}
306
307	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
308}
309
310static ssize_t occ_show_freq_1(struct device *dev,
311			       struct device_attribute *attr, char *buf)
312{
313	int rc;
314	u16 val = 0;
315	struct freq_sensor_1 *freq;
316	struct occ *occ = dev_get_drvdata(dev);
317	struct occ_sensors *sensors = &occ->sensors;
318	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
319
320	rc = occ_update_response(occ);
321	if (rc)
322		return rc;
323
324	freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
325
326	switch (sattr->nr) {
327	case 0:
328		val = get_unaligned_be16(&freq->sensor_id);
329		break;
330	case 1:
331		val = get_unaligned_be16(&freq->value);
332		break;
333	default:
334		return -EINVAL;
335	}
336
337	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
338}
339
340static ssize_t occ_show_freq_2(struct device *dev,
341			       struct device_attribute *attr, char *buf)
342{
343	int rc;
344	u32 val = 0;
345	struct freq_sensor_2 *freq;
346	struct occ *occ = dev_get_drvdata(dev);
347	struct occ_sensors *sensors = &occ->sensors;
348	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
349
350	rc = occ_update_response(occ);
351	if (rc)
352		return rc;
353
354	freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
355
356	switch (sattr->nr) {
357	case 0:
358		val = get_unaligned_be32(&freq->sensor_id);
359		break;
360	case 1:
361		val = get_unaligned_be16(&freq->value);
362		break;
363	default:
364		return -EINVAL;
365	}
366
367	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
368}
369
370static ssize_t occ_show_power_1(struct device *dev,
371				struct device_attribute *attr, char *buf)
372{
373	int rc;
374	u64 val = 0;
375	struct power_sensor_1 *power;
376	struct occ *occ = dev_get_drvdata(dev);
377	struct occ_sensors *sensors = &occ->sensors;
378	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
379
380	rc = occ_update_response(occ);
381	if (rc)
382		return rc;
383
384	power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
385
386	switch (sattr->nr) {
387	case 0:
388		val = get_unaligned_be16(&power->sensor_id);
389		break;
390	case 1:
391		val = get_unaligned_be32(&power->accumulator) /
392			get_unaligned_be32(&power->update_tag);
393		val *= 1000000ULL;
394		break;
395	case 2:
396		val = (u64)get_unaligned_be32(&power->update_tag) *
397			   occ->powr_sample_time_us;
398		break;
399	case 3:
400		val = get_unaligned_be16(&power->value) * 1000000ULL;
401		break;
402	default:
403		return -EINVAL;
404	}
405
406	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
407}
408
409static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
410{
411	u64 divisor = get_unaligned_be32(samples);
412
413	return (divisor == 0) ? 0 :
414		div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
415}
416
417static ssize_t occ_show_power_2(struct device *dev,
418				struct device_attribute *attr, char *buf)
419{
420	int rc;
421	u64 val = 0;
422	struct power_sensor_2 *power;
423	struct occ *occ = dev_get_drvdata(dev);
424	struct occ_sensors *sensors = &occ->sensors;
425	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
426
427	rc = occ_update_response(occ);
428	if (rc)
429		return rc;
430
431	power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
432
433	switch (sattr->nr) {
434	case 0:
435		return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
436				get_unaligned_be32(&power->sensor_id),
437				power->function_id, power->apss_channel);
438	case 1:
439		val = occ_get_powr_avg(&power->accumulator,
440				       &power->update_tag);
441		break;
442	case 2:
443		val = (u64)get_unaligned_be32(&power->update_tag) *
444			   occ->powr_sample_time_us;
445		break;
446	case 3:
447		val = get_unaligned_be16(&power->value) * 1000000ULL;
448		break;
449	default:
450		return -EINVAL;
451	}
452
453	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
454}
455
456static ssize_t occ_show_power_a0(struct device *dev,
457				 struct device_attribute *attr, char *buf)
458{
459	int rc;
460	u64 val = 0;
461	struct power_sensor_a0 *power;
462	struct occ *occ = dev_get_drvdata(dev);
463	struct occ_sensors *sensors = &occ->sensors;
464	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
465
466	rc = occ_update_response(occ);
467	if (rc)
468		return rc;
469
470	power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
471
472	switch (sattr->nr) {
473	case 0:
474		return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
475				get_unaligned_be32(&power->sensor_id));
476	case 1:
477		val = occ_get_powr_avg(&power->system.accumulator,
478				       &power->system.update_tag);
479		break;
480	case 2:
481		val = (u64)get_unaligned_be32(&power->system.update_tag) *
482			   occ->powr_sample_time_us;
483		break;
484	case 3:
485		val = get_unaligned_be16(&power->system.value) * 1000000ULL;
486		break;
487	case 4:
488		return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
489				get_unaligned_be32(&power->sensor_id));
490	case 5:
491		val = occ_get_powr_avg(&power->proc.accumulator,
492				       &power->proc.update_tag);
493		break;
494	case 6:
495		val = (u64)get_unaligned_be32(&power->proc.update_tag) *
496			   occ->powr_sample_time_us;
497		break;
498	case 7:
499		val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
500		break;
501	case 8:
502		return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
503				get_unaligned_be32(&power->sensor_id));
504	case 9:
505		val = occ_get_powr_avg(&power->vdd.accumulator,
506				       &power->vdd.update_tag);
507		break;
508	case 10:
509		val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
510			   occ->powr_sample_time_us;
511		break;
512	case 11:
513		val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
514		break;
515	case 12:
516		return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
517				get_unaligned_be32(&power->sensor_id));
518	case 13:
519		val = occ_get_powr_avg(&power->vdn.accumulator,
520				       &power->vdn.update_tag);
521		break;
522	case 14:
523		val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
524			   occ->powr_sample_time_us;
525		break;
526	case 15:
527		val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
528		break;
529	default:
530		return -EINVAL;
531	}
532
533	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
534}
535
536static ssize_t occ_show_caps_1_2(struct device *dev,
537				 struct device_attribute *attr, char *buf)
538{
539	int rc;
540	u64 val = 0;
541	struct caps_sensor_2 *caps;
542	struct occ *occ = dev_get_drvdata(dev);
543	struct occ_sensors *sensors = &occ->sensors;
544	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
545
546	rc = occ_update_response(occ);
547	if (rc)
548		return rc;
549
550	caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
551
552	switch (sattr->nr) {
553	case 0:
554		return snprintf(buf, PAGE_SIZE - 1, "system\n");
555	case 1:
556		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
557		break;
558	case 2:
559		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
560		break;
561	case 3:
562		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
563		break;
564	case 4:
565		val = get_unaligned_be16(&caps->max) * 1000000ULL;
566		break;
567	case 5:
568		val = get_unaligned_be16(&caps->min) * 1000000ULL;
569		break;
570	case 6:
571		val = get_unaligned_be16(&caps->user) * 1000000ULL;
572		break;
573	case 7:
574		if (occ->sensors.caps.version == 1)
575			return -EINVAL;
576
577		val = caps->user_source;
578		break;
579	default:
580		return -EINVAL;
581	}
582
583	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
584}
585
586static ssize_t occ_show_caps_3(struct device *dev,
587			       struct device_attribute *attr, char *buf)
588{
589	int rc;
590	u64 val = 0;
591	struct caps_sensor_3 *caps;
592	struct occ *occ = dev_get_drvdata(dev);
593	struct occ_sensors *sensors = &occ->sensors;
594	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
595
596	rc = occ_update_response(occ);
597	if (rc)
598		return rc;
599
600	caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
601
602	switch (sattr->nr) {
603	case 0:
604		return snprintf(buf, PAGE_SIZE - 1, "system\n");
605	case 1:
606		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
607		break;
608	case 2:
609		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
610		break;
611	case 3:
612		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
613		break;
614	case 4:
615		val = get_unaligned_be16(&caps->max) * 1000000ULL;
616		break;
617	case 5:
618		val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
619		break;
620	case 6:
621		val = get_unaligned_be16(&caps->user) * 1000000ULL;
622		break;
623	case 7:
624		val = caps->user_source;
625		break;
626	default:
627		return -EINVAL;
628	}
629
630	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
631}
632
633static ssize_t occ_store_caps_user(struct device *dev,
634				   struct device_attribute *attr,
635				   const char *buf, size_t count)
636{
637	int rc;
638	u16 user_power_cap;
639	unsigned long long value;
640	struct occ *occ = dev_get_drvdata(dev);
641
642	rc = kstrtoull(buf, 0, &value);
643	if (rc)
644		return rc;
645
646	user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
647
648	rc = occ_set_user_power_cap(occ, user_power_cap);
649	if (rc)
650		return rc;
651
652	return count;
653}
654
655static ssize_t occ_show_extended(struct device *dev,
656				 struct device_attribute *attr, char *buf)
657{
658	int rc;
659	struct extended_sensor *extn;
660	struct occ *occ = dev_get_drvdata(dev);
661	struct occ_sensors *sensors = &occ->sensors;
662	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
663
664	rc = occ_update_response(occ);
665	if (rc)
666		return rc;
667
668	extn = ((struct extended_sensor *)sensors->extended.data) +
669		sattr->index;
670
671	switch (sattr->nr) {
672	case 0:
673		if (extn->flags & EXTN_FLAG_SENSOR_ID)
674			rc = snprintf(buf, PAGE_SIZE - 1, "%u",
675				      get_unaligned_be32(&extn->sensor_id));
676		else
677			rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
678				      extn->name[0], extn->name[1],
679				      extn->name[2], extn->name[3]);
680		break;
681	case 1:
682		rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
683		break;
684	case 2:
685		rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
686			      extn->data[0], extn->data[1], extn->data[2],
687			      extn->data[3], extn->data[4], extn->data[5]);
688		break;
689	default:
690		return -EINVAL;
691	}
692
693	return rc;
694}
695
696/*
697 * Some helper macros to make it easier to define an occ_attribute. Since these
698 * are dynamically allocated, we shouldn't use the existing kernel macros which
699 * stringify the name argument.
700 */
701#define ATTR_OCC(_name, _mode, _show, _store) {				\
702	.attr	= {							\
703		.name = _name,						\
704		.mode = VERIFY_OCTAL_PERMISSIONS(_mode),		\
705	},								\
706	.show	= _show,						\
707	.store	= _store,						\
708}
709
710#define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {	\
711	.dev_attr	= ATTR_OCC(_name, _mode, _show, _store),	\
712	.index		= _index,					\
713	.nr		= _nr,						\
714}
715
716#define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)		\
717	((struct sensor_device_attribute_2)				\
718		SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
719
720/*
721 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
722 * use our own instead of the built-in hwmon attribute types.
723 */
724static int occ_setup_sensor_attrs(struct occ *occ)
725{
726	unsigned int i, s, num_attrs = 0;
727	struct device *dev = occ->bus_dev;
728	struct occ_sensors *sensors = &occ->sensors;
729	struct occ_attribute *attr;
730	struct temp_sensor_2 *temp;
731	ssize_t (*show_temp)(struct device *, struct device_attribute *,
732			     char *) = occ_show_temp_1;
733	ssize_t (*show_freq)(struct device *, struct device_attribute *,
734			     char *) = occ_show_freq_1;
735	ssize_t (*show_power)(struct device *, struct device_attribute *,
736			      char *) = occ_show_power_1;
737	ssize_t (*show_caps)(struct device *, struct device_attribute *,
738			     char *) = occ_show_caps_1_2;
739
740	switch (sensors->temp.version) {
741	case 1:
742		num_attrs += (sensors->temp.num_sensors * 2);
743		break;
744	case 2:
745		num_attrs += (sensors->temp.num_sensors * 4);
746		show_temp = occ_show_temp_2;
747		break;
748	default:
749		sensors->temp.num_sensors = 0;
750	}
751
752	switch (sensors->freq.version) {
753	case 2:
754		show_freq = occ_show_freq_2;
755		fallthrough;
756	case 1:
757		num_attrs += (sensors->freq.num_sensors * 2);
758		break;
759	default:
760		sensors->freq.num_sensors = 0;
761	}
762
763	switch (sensors->power.version) {
764	case 2:
765		show_power = occ_show_power_2;
766		fallthrough;
767	case 1:
768		num_attrs += (sensors->power.num_sensors * 4);
769		break;
770	case 0xA0:
771		num_attrs += (sensors->power.num_sensors * 16);
772		show_power = occ_show_power_a0;
773		break;
774	default:
775		sensors->power.num_sensors = 0;
776	}
777
778	switch (sensors->caps.version) {
779	case 1:
780		num_attrs += (sensors->caps.num_sensors * 7);
781		break;
782	case 3:
783		show_caps = occ_show_caps_3;
784		fallthrough;
785	case 2:
786		num_attrs += (sensors->caps.num_sensors * 8);
787		break;
788	default:
789		sensors->caps.num_sensors = 0;
790	}
791
792	switch (sensors->extended.version) {
793	case 1:
794		num_attrs += (sensors->extended.num_sensors * 3);
795		break;
796	default:
797		sensors->extended.num_sensors = 0;
798	}
799
800	occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
801				  GFP_KERNEL);
802	if (!occ->attrs)
803		return -ENOMEM;
804
805	/* null-terminated list */
806	occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
807					num_attrs + 1, GFP_KERNEL);
808	if (!occ->group.attrs)
809		return -ENOMEM;
810
811	attr = occ->attrs;
812
813	for (i = 0; i < sensors->temp.num_sensors; ++i) {
814		s = i + 1;
815		temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
816
817		snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
818		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
819					     0, i);
820		attr++;
821
822		if (sensors->temp.version > 1 &&
823		    temp->fru_type == OCC_FRU_TYPE_VRM) {
824			snprintf(attr->name, sizeof(attr->name),
825				 "temp%d_alarm", s);
826		} else {
827			snprintf(attr->name, sizeof(attr->name),
828				 "temp%d_input", s);
829		}
830
831		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
832					     1, i);
833		attr++;
834
835		if (sensors->temp.version > 1) {
836			snprintf(attr->name, sizeof(attr->name),
837				 "temp%d_fru_type", s);
838			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
839						     show_temp, NULL, 2, i);
840			attr++;
841
842			snprintf(attr->name, sizeof(attr->name),
843				 "temp%d_fault", s);
844			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
845						     show_temp, NULL, 3, i);
846			attr++;
847		}
848	}
849
850	for (i = 0; i < sensors->freq.num_sensors; ++i) {
851		s = i + 1;
852
853		snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
854		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
855					     0, i);
856		attr++;
857
858		snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
859		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
860					     1, i);
861		attr++;
862	}
863
864	if (sensors->power.version == 0xA0) {
865		/*
866		 * Special case for many-attribute power sensor. Split it into
867		 * a sensor number per power type, emulating several sensors.
868		 */
869		for (i = 0; i < sensors->power.num_sensors; ++i) {
870			unsigned int j;
871			unsigned int nr = 0;
872
873			s = (i * 4) + 1;
874
875			for (j = 0; j < 4; ++j) {
876				snprintf(attr->name, sizeof(attr->name),
877					 "power%d_label", s);
878				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
879							     show_power, NULL,
880							     nr++, i);
881				attr++;
882
883				snprintf(attr->name, sizeof(attr->name),
884					 "power%d_average", s);
885				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
886							     show_power, NULL,
887							     nr++, i);
888				attr++;
889
890				snprintf(attr->name, sizeof(attr->name),
891					 "power%d_average_interval", s);
892				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
893							     show_power, NULL,
894							     nr++, i);
895				attr++;
896
897				snprintf(attr->name, sizeof(attr->name),
898					 "power%d_input", s);
899				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
900							     show_power, NULL,
901							     nr++, i);
902				attr++;
903
904				s++;
905			}
906		}
907
908		s = (sensors->power.num_sensors * 4) + 1;
909	} else {
910		for (i = 0; i < sensors->power.num_sensors; ++i) {
911			s = i + 1;
912
913			snprintf(attr->name, sizeof(attr->name),
914				 "power%d_label", s);
915			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
916						     show_power, NULL, 0, i);
917			attr++;
918
919			snprintf(attr->name, sizeof(attr->name),
920				 "power%d_average", s);
921			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
922						     show_power, NULL, 1, i);
923			attr++;
924
925			snprintf(attr->name, sizeof(attr->name),
926				 "power%d_average_interval", s);
927			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
928						     show_power, NULL, 2, i);
929			attr++;
930
931			snprintf(attr->name, sizeof(attr->name),
932				 "power%d_input", s);
933			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
934						     show_power, NULL, 3, i);
935			attr++;
936		}
937
938		s = sensors->power.num_sensors + 1;
939	}
940
941	if (sensors->caps.num_sensors >= 1) {
942		snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
943		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
944					     0, 0);
945		attr++;
946
947		snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
948		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
949					     1, 0);
950		attr++;
951
952		snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
953		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
954					     2, 0);
955		attr++;
956
957		snprintf(attr->name, sizeof(attr->name),
958			 "power%d_cap_not_redundant", s);
959		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
960					     3, 0);
961		attr++;
962
963		snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
964		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
965					     4, 0);
966		attr++;
967
968		snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
969		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
970					     5, 0);
971		attr++;
972
973		snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
974			 s);
975		attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
976					     occ_store_caps_user, 6, 0);
977		attr++;
978
979		if (sensors->caps.version > 1) {
980			snprintf(attr->name, sizeof(attr->name),
981				 "power%d_cap_user_source", s);
982			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
983						     show_caps, NULL, 7, 0);
984			attr++;
985		}
986	}
987
988	for (i = 0; i < sensors->extended.num_sensors; ++i) {
989		s = i + 1;
990
991		snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
992		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
993					     occ_show_extended, NULL, 0, i);
994		attr++;
995
996		snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
997		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998					     occ_show_extended, NULL, 1, i);
999		attr++;
1000
1001		snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1002		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1003					     occ_show_extended, NULL, 2, i);
1004		attr++;
1005	}
1006
1007	/* put the sensors in the group */
1008	for (i = 0; i < num_attrs; ++i) {
1009		sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1010		occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1011	}
1012
1013	return 0;
1014}
1015
1016/* only need to do this once at startup, as OCC won't change sensors on us */
1017static void occ_parse_poll_response(struct occ *occ)
1018{
1019	unsigned int i, old_offset, offset = 0, size = 0;
1020	struct occ_sensor *sensor;
1021	struct occ_sensors *sensors = &occ->sensors;
1022	struct occ_response *resp = &occ->resp;
1023	struct occ_poll_response *poll =
1024		(struct occ_poll_response *)&resp->data[0];
1025	struct occ_poll_response_header *header = &poll->header;
1026	struct occ_sensor_data_block *block = &poll->block;
1027
1028	dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1029		 header->occ_code_level);
1030
1031	for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1032		block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1033		old_offset = offset;
1034		offset = (block->header.num_sensors *
1035			  block->header.sensor_length) + sizeof(block->header);
1036		size += offset;
1037
1038		/* validate all the length/size fields */
1039		if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1040			dev_warn(occ->bus_dev, "exceeded response buffer\n");
1041			return;
1042		}
1043
1044		dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1045			old_offset, offset - 1, block->header.eye_catcher,
1046			block->header.num_sensors);
1047
1048		/* match sensor block type */
1049		if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1050			sensor = &sensors->temp;
1051		else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1052			sensor = &sensors->freq;
1053		else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1054			sensor = &sensors->power;
1055		else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1056			sensor = &sensors->caps;
1057		else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1058			sensor = &sensors->extended;
1059		else {
1060			dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1061				 block->header.eye_catcher);
1062			continue;
1063		}
1064
1065		sensor->num_sensors = block->header.num_sensors;
1066		sensor->version = block->header.sensor_format;
1067		sensor->data = &block->data;
1068	}
1069
1070	dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1071		sizeof(*header), size + sizeof(*header));
1072}
1073
1074int occ_setup(struct occ *occ, const char *name)
1075{
1076	int rc;
1077
1078	mutex_init(&occ->lock);
1079	occ->groups[0] = &occ->group;
1080
1081	/* no need to lock */
1082	rc = occ_poll(occ);
1083	if (rc == -ESHUTDOWN) {
1084		dev_info(occ->bus_dev, "host is not ready\n");
1085		return rc;
1086	} else if (rc < 0) {
1087		dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1088			rc);
1089		return rc;
1090	}
1091
1092	occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1093	occ_parse_poll_response(occ);
1094
1095	rc = occ_setup_sensor_attrs(occ);
1096	if (rc) {
1097		dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1098			rc);
1099		return rc;
1100	}
1101
1102	occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1103							    occ, occ->groups);
1104	if (IS_ERR(occ->hwmon)) {
1105		rc = PTR_ERR(occ->hwmon);
1106		dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1107			rc);
1108		return rc;
1109	}
1110
1111	rc = occ_setup_sysfs(occ);
1112	if (rc)
1113		dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1114
1115	return rc;
1116}
1117EXPORT_SYMBOL_GPL(occ_setup);
1118
1119MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1120MODULE_DESCRIPTION("Common OCC hwmon code");
1121MODULE_LICENSE("GPL");
1122