1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
4 *
5 * Authors:
6 *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
7 *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
8 *
9 * Baikal-T1 Process, Voltage, Temperature sensor driver
10 */
11
12#include <linux/bitfield.h>
13#include <linux/bitops.h>
14#include <linux/clk.h>
15#include <linux/completion.h>
16#include <linux/delay.h>
17#include <linux/device.h>
18#include <linux/hwmon-sysfs.h>
19#include <linux/hwmon.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/kernel.h>
23#include <linux/ktime.h>
24#include <linux/limits.h>
25#include <linux/module.h>
26#include <linux/mutex.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/seqlock.h>
30#include <linux/sysfs.h>
31#include <linux/types.h>
32
33#include "bt1-pvt.h"
34
35/*
36 * For the sake of the code simplification we created the sensors info table
37 * with the sensor names, activation modes, threshold registers base address
38 * and the thresholds bit fields.
39 */
40static const struct pvt_sensor_info pvt_info[] = {
41	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
42	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
43	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
44	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
45	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
46};
47
48/*
49 * The original translation formulae of the temperature (in degrees of Celsius)
50 * to PVT data and vice-versa are following:
51 * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
52 *     1.7204e2,
53 * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
54 *     3.1020e-1*(N^1) - 4.838e1,
55 * where T = [-48.380, 147.438]C and N = [0, 1023].
56 * They must be accordingly altered to be suitable for the integer arithmetics.
57 * The technique is called 'factor redistribution', which just makes sure the
58 * multiplications and divisions are made so to have a result of the operations
59 * within the integer numbers limit. In addition we need to translate the
60 * formulae to accept millidegrees of Celsius. Here what they look like after
61 * the alterations:
62 * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
63 *     17204e2) / 1e4,
64 * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
65 *     48380,
66 * where T = [-48380, 147438] mC and N = [0, 1023].
67 */
68static const struct pvt_poly __maybe_unused poly_temp_to_N = {
69	.total_divider = 10000,
70	.terms = {
71		{4, 18322, 10000, 10000},
72		{3, 2343, 10000, 10},
73		{2, 87018, 10000, 10},
74		{1, 39269, 1000, 1},
75		{0, 1720400, 1, 1}
76	}
77};
78
79static const struct pvt_poly poly_N_to_temp = {
80	.total_divider = 1,
81	.terms = {
82		{4, -16743, 1000, 1},
83		{3, 81542, 1000, 1},
84		{2, -182010, 1000, 1},
85		{1, 310200, 1000, 1},
86		{0, -48380, 1, 1}
87	}
88};
89
90/*
91 * Similar alterations are performed for the voltage conversion equations.
92 * The original formulae are:
93 * N = 1.8658e3*V - 1.1572e3,
94 * V = (N + 1.1572e3) / 1.8658e3,
95 * where V = [0.620, 1.168] V and N = [0, 1023].
96 * After the optimization they looks as follows:
97 * N = (18658e-3*V - 11572) / 10,
98 * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
99 */
100static const struct pvt_poly __maybe_unused poly_volt_to_N = {
101	.total_divider = 10,
102	.terms = {
103		{1, 18658, 1000, 1},
104		{0, -11572, 1, 1}
105	}
106};
107
108static const struct pvt_poly poly_N_to_volt = {
109	.total_divider = 10,
110	.terms = {
111		{1, 100000, 18658, 1},
112		{0, 115720000, 1, 18658}
113	}
114};
115
116/*
117 * Here is the polynomial calculation function, which performs the
118 * redistributed terms calculations. It's pretty straightforward. We walk
119 * over each degree term up to the free one, and perform the redistributed
120 * multiplication of the term coefficient, its divider (as for the rationale
121 * fraction representation), data power and the rational fraction divider
122 * leftover. Then all of this is collected in a total sum variable, which
123 * value is normalized by the total divider before being returned.
124 */
125static long pvt_calc_poly(const struct pvt_poly *poly, long data)
126{
127	const struct pvt_poly_term *term = poly->terms;
128	long tmp, ret = 0;
129	int deg;
130
131	do {
132		tmp = term->coef;
133		for (deg = 0; deg < term->deg; ++deg)
134			tmp = mult_frac(tmp, data, term->divider);
135		ret += tmp / term->divider_leftover;
136	} while ((term++)->deg);
137
138	return ret / poly->total_divider;
139}
140
141static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
142{
143	u32 old;
144
145	old = readl_relaxed(reg);
146	writel((old & ~mask) | (data & mask), reg);
147
148	return old & mask;
149}
150
151/*
152 * Baikal-T1 PVT mode can be updated only when the controller is disabled.
153 * So first we disable it, then set the new mode together with the controller
154 * getting back enabled. The same concerns the temperature trim and
155 * measurements timeout. If it is necessary the interface mutex is supposed
156 * to be locked at the time the operations are performed.
157 */
158static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
159{
160	u32 old;
161
162	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
163
164	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
165	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
166		   mode | old);
167}
168
169static inline u32 pvt_calc_trim(long temp)
170{
171	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
172
173	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
174}
175
176static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
177{
178	u32 old;
179
180	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
181
182	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
183	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
184		   trim | old);
185}
186
187static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
188{
189	u32 old;
190
191	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
192	writel(tout, pvt->regs + PVT_TTIMEOUT);
193	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
194}
195
196/*
197 * This driver can optionally provide the hwmon alarms for each sensor the PVT
198 * controller supports. The alarms functionality is made compile-time
199 * configurable due to the hardware interface implementation peculiarity
200 * described further in this comment. So in case if alarms are unnecessary in
201 * your system design it's recommended to have them disabled to prevent the PVT
202 * IRQs being periodically raised to get the data cache/alarms status up to
203 * date.
204 *
205 * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
206 * but is equipped with a dedicated control wrapper. It exposes the PVT
207 * sub-block registers space via the APB3 bus. In addition the wrapper provides
208 * a common interrupt vector of the sensors conversion completion events and
209 * threshold value alarms. Alas the wrapper interface hasn't been fully thought
210 * through. There is only one sensor can be activated at a time, for which the
211 * thresholds comparator is enabled right after the data conversion is
212 * completed. Due to this if alarms need to be implemented for all available
213 * sensors we can't just set the thresholds and enable the interrupts. We need
214 * to enable the sensors one after another and let the controller to detect
215 * the alarms by itself at each conversion. This also makes pointless to handle
216 * the alarms interrupts, since in occasion they happen synchronously with
217 * data conversion completion. The best driver design would be to have the
218 * completion interrupts enabled only and keep the converted value in the
219 * driver data cache. This solution is implemented if hwmon alarms are enabled
220 * in this driver. In case if the alarms are disabled, the conversion is
221 * performed on demand at the time a sensors input file is read.
222 */
223
224#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
225
226#define pvt_hard_isr NULL
227
228static irqreturn_t pvt_soft_isr(int irq, void *data)
229{
230	const struct pvt_sensor_info *info;
231	struct pvt_hwmon *pvt = data;
232	struct pvt_cache *cache;
233	u32 val, thres_sts, old;
234
235	/*
236	 * DVALID bit will be cleared by reading the data. We need to save the
237	 * status before the next conversion happens. Threshold events will be
238	 * handled a bit later.
239	 */
240	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
241
242	/*
243	 * Then lets recharge the PVT interface with the next sampling mode.
244	 * Lock the interface mutex to serialize trim, timeouts and alarm
245	 * thresholds settings.
246	 */
247	cache = &pvt->cache[pvt->sensor];
248	info = &pvt_info[pvt->sensor];
249	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
250		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
251
252	/*
253	 * For some reason we have to mask the interrupt before changing the
254	 * mode, otherwise sometimes the temperature mode doesn't get
255	 * activated even though the actual mode in the ctrl register
256	 * corresponds to one. Then we read the data. By doing so we also
257	 * recharge the data conversion. After this the mode corresponding
258	 * to the next sensor in the row is set. Finally we enable the
259	 * interrupts back.
260	 */
261	mutex_lock(&pvt->iface_mtx);
262
263	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
264			 PVT_INTR_DVALID);
265
266	val = readl(pvt->regs + PVT_DATA);
267
268	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
269
270	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
271
272	mutex_unlock(&pvt->iface_mtx);
273
274	/*
275	 * We can now update the data cache with data just retrieved from the
276	 * sensor. Lock write-seqlock to make sure the reader has a coherent
277	 * data.
278	 */
279	write_seqlock(&cache->data_seqlock);
280
281	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
282
283	write_sequnlock(&cache->data_seqlock);
284
285	/*
286	 * While PVT core is doing the next mode data conversion, we'll check
287	 * whether the alarms were triggered for the current sensor. Note that
288	 * according to the documentation only one threshold IRQ status can be
289	 * set at a time, that's why if-else statement is utilized.
290	 */
291	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
292		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
293		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
294				   info->channel);
295	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
296		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
297		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
298				   info->channel);
299	}
300
301	return IRQ_HANDLED;
302}
303
304static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
305{
306	return 0644;
307}
308
309static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
310{
311	return 0444;
312}
313
314static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
315			 long *val)
316{
317	struct pvt_cache *cache = &pvt->cache[type];
318	unsigned int seq;
319	u32 data;
320
321	do {
322		seq = read_seqbegin(&cache->data_seqlock);
323		data = cache->data;
324	} while (read_seqretry(&cache->data_seqlock, seq));
325
326	if (type == PVT_TEMP)
327		*val = pvt_calc_poly(&poly_N_to_temp, data);
328	else
329		*val = pvt_calc_poly(&poly_N_to_volt, data);
330
331	return 0;
332}
333
334static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
335			  bool is_low, long *val)
336{
337	u32 data;
338
339	/* No need in serialization, since it is just read from MMIO. */
340	data = readl(pvt->regs + pvt_info[type].thres_base);
341
342	if (is_low)
343		data = FIELD_GET(PVT_THRES_LO_MASK, data);
344	else
345		data = FIELD_GET(PVT_THRES_HI_MASK, data);
346
347	if (type == PVT_TEMP)
348		*val = pvt_calc_poly(&poly_N_to_temp, data);
349	else
350		*val = pvt_calc_poly(&poly_N_to_volt, data);
351
352	return 0;
353}
354
355static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
356			   bool is_low, long val)
357{
358	u32 data, limit, mask;
359	int ret;
360
361	if (type == PVT_TEMP) {
362		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
363		data = pvt_calc_poly(&poly_temp_to_N, val);
364	} else {
365		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
366		data = pvt_calc_poly(&poly_volt_to_N, val);
367	}
368
369	/* Serialize limit update, since a part of the register is changed. */
370	ret = mutex_lock_interruptible(&pvt->iface_mtx);
371	if (ret)
372		return ret;
373
374	/* Make sure the upper and lower ranges don't intersect. */
375	limit = readl(pvt->regs + pvt_info[type].thres_base);
376	if (is_low) {
377		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
378		data = clamp_val(data, PVT_DATA_MIN, limit);
379		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
380		mask = PVT_THRES_LO_MASK;
381	} else {
382		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
383		data = clamp_val(data, limit, PVT_DATA_MAX);
384		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
385		mask = PVT_THRES_HI_MASK;
386	}
387
388	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
389
390	mutex_unlock(&pvt->iface_mtx);
391
392	return 0;
393}
394
395static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
396			  bool is_low, long *val)
397{
398	if (is_low)
399		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
400	else
401		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
402
403	return 0;
404}
405
406static const struct hwmon_channel_info *pvt_channel_info[] = {
407	HWMON_CHANNEL_INFO(chip,
408			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
409	HWMON_CHANNEL_INFO(temp,
410			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
411			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
412			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
413			   HWMON_T_OFFSET),
414	HWMON_CHANNEL_INFO(in,
415			   HWMON_I_INPUT | HWMON_I_LABEL |
416			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
417			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
418			   HWMON_I_INPUT | HWMON_I_LABEL |
419			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
420			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
421			   HWMON_I_INPUT | HWMON_I_LABEL |
422			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
423			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
424			   HWMON_I_INPUT | HWMON_I_LABEL |
425			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
426			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
427	NULL
428};
429
430#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
431
432static irqreturn_t pvt_hard_isr(int irq, void *data)
433{
434	struct pvt_hwmon *pvt = data;
435	struct pvt_cache *cache;
436	u32 val;
437
438	/*
439	 * Mask the DVALID interrupt so after exiting from the handler a
440	 * repeated conversion wouldn't happen.
441	 */
442	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
443		   PVT_INTR_DVALID);
444
445	/*
446	 * Nothing special for alarm-less driver. Just read the data, update
447	 * the cache and notify a waiter of this event.
448	 */
449	val = readl(pvt->regs + PVT_DATA);
450	if (!(val & PVT_DATA_VALID)) {
451		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
452		return IRQ_HANDLED;
453	}
454
455	cache = &pvt->cache[pvt->sensor];
456
457	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
458
459	complete(&cache->conversion);
460
461	return IRQ_HANDLED;
462}
463
464#define pvt_soft_isr NULL
465
466static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
467{
468	return 0;
469}
470
471static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
472{
473	return 0;
474}
475
476static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
477			 long *val)
478{
479	struct pvt_cache *cache = &pvt->cache[type];
480	unsigned long timeout;
481	u32 data;
482	int ret;
483
484	/*
485	 * Lock PVT conversion interface until data cache is updated. The
486	 * data read procedure is following: set the requested PVT sensor
487	 * mode, enable IRQ and conversion, wait until conversion is finished,
488	 * then disable conversion and IRQ, and read the cached data.
489	 */
490	ret = mutex_lock_interruptible(&pvt->iface_mtx);
491	if (ret)
492		return ret;
493
494	pvt->sensor = type;
495	pvt_set_mode(pvt, pvt_info[type].mode);
496
497	/*
498	 * Unmask the DVALID interrupt and enable the sensors conversions.
499	 * Do the reverse procedure when conversion is done.
500	 */
501	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
502	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
503
504	/*
505	 * Wait with timeout since in case if the sensor is suddenly powered
506	 * down the request won't be completed and the caller will hang up on
507	 * this procedure until the power is back up again. Multiply the
508	 * timeout by the factor of two to prevent a false timeout.
509	 */
510	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
511	ret = wait_for_completion_timeout(&cache->conversion, timeout);
512
513	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
514	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
515		   PVT_INTR_DVALID);
516
517	data = READ_ONCE(cache->data);
518
519	mutex_unlock(&pvt->iface_mtx);
520
521	if (!ret)
522		return -ETIMEDOUT;
523
524	if (type == PVT_TEMP)
525		*val = pvt_calc_poly(&poly_N_to_temp, data);
526	else
527		*val = pvt_calc_poly(&poly_N_to_volt, data);
528
529	return 0;
530}
531
532static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
533			  bool is_low, long *val)
534{
535	return -EOPNOTSUPP;
536}
537
538static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
539			   bool is_low, long val)
540{
541	return -EOPNOTSUPP;
542}
543
544static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
545			  bool is_low, long *val)
546{
547	return -EOPNOTSUPP;
548}
549
550static const struct hwmon_channel_info *pvt_channel_info[] = {
551	HWMON_CHANNEL_INFO(chip,
552			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
553	HWMON_CHANNEL_INFO(temp,
554			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
555			   HWMON_T_OFFSET),
556	HWMON_CHANNEL_INFO(in,
557			   HWMON_I_INPUT | HWMON_I_LABEL,
558			   HWMON_I_INPUT | HWMON_I_LABEL,
559			   HWMON_I_INPUT | HWMON_I_LABEL,
560			   HWMON_I_INPUT | HWMON_I_LABEL),
561	NULL
562};
563
564#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
565
566static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
567					      int ch)
568{
569	switch (type) {
570	case hwmon_temp:
571		if (ch < 0 || ch >= PVT_TEMP_CHS)
572			return false;
573		break;
574	case hwmon_in:
575		if (ch < 0 || ch >= PVT_VOLT_CHS)
576			return false;
577		break;
578	default:
579		break;
580	}
581
582	/* The rest of the types are independent from the channel number. */
583	return true;
584}
585
586static umode_t pvt_hwmon_is_visible(const void *data,
587				    enum hwmon_sensor_types type,
588				    u32 attr, int ch)
589{
590	if (!pvt_hwmon_channel_is_valid(type, ch))
591		return 0;
592
593	switch (type) {
594	case hwmon_chip:
595		switch (attr) {
596		case hwmon_chip_update_interval:
597			return 0644;
598		}
599		break;
600	case hwmon_temp:
601		switch (attr) {
602		case hwmon_temp_input:
603		case hwmon_temp_type:
604		case hwmon_temp_label:
605			return 0444;
606		case hwmon_temp_min:
607		case hwmon_temp_max:
608			return pvt_limit_is_visible(ch);
609		case hwmon_temp_min_alarm:
610		case hwmon_temp_max_alarm:
611			return pvt_alarm_is_visible(ch);
612		case hwmon_temp_offset:
613			return 0644;
614		}
615		break;
616	case hwmon_in:
617		switch (attr) {
618		case hwmon_in_input:
619		case hwmon_in_label:
620			return 0444;
621		case hwmon_in_min:
622		case hwmon_in_max:
623			return pvt_limit_is_visible(PVT_VOLT + ch);
624		case hwmon_in_min_alarm:
625		case hwmon_in_max_alarm:
626			return pvt_alarm_is_visible(PVT_VOLT + ch);
627		}
628		break;
629	default:
630		break;
631	}
632
633	return 0;
634}
635
636static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
637{
638	u32 data;
639
640	data = readl(pvt->regs + PVT_CTRL);
641	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
642
643	return 0;
644}
645
646static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
647{
648	u32 trim;
649	int ret;
650
651	/*
652	 * Serialize trim update, since a part of the register is changed and
653	 * the controller is supposed to be disabled during this operation.
654	 */
655	ret = mutex_lock_interruptible(&pvt->iface_mtx);
656	if (ret)
657		return ret;
658
659	trim = pvt_calc_trim(val);
660	pvt_set_trim(pvt, trim);
661
662	mutex_unlock(&pvt->iface_mtx);
663
664	return 0;
665}
666
667static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
668{
669	int ret;
670
671	ret = mutex_lock_interruptible(&pvt->iface_mtx);
672	if (ret)
673		return ret;
674
675	/* Return the result in msec as hwmon sysfs interface requires. */
676	*val = ktime_to_ms(pvt->timeout);
677
678	mutex_unlock(&pvt->iface_mtx);
679
680	return 0;
681}
682
683static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
684{
685	unsigned long rate;
686	ktime_t kt, cache;
687	u32 data;
688	int ret;
689
690	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
691	if (!rate)
692		return -ENODEV;
693
694	/*
695	 * If alarms are enabled, the requested timeout must be divided
696	 * between all available sensors to have the requested delay
697	 * applicable to each individual sensor.
698	 */
699	cache = kt = ms_to_ktime(val);
700#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
701	kt = ktime_divns(kt, PVT_SENSORS_NUM);
702#endif
703
704	/*
705	 * Subtract a constant lag, which always persists due to the limited
706	 * PVT sampling rate. Make sure the timeout is not negative.
707	 */
708	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
709	if (ktime_to_ns(kt) < 0)
710		kt = ktime_set(0, 0);
711
712	/*
713	 * Finally recalculate the timeout in terms of the reference clock
714	 * period.
715	 */
716	data = ktime_divns(kt * rate, NSEC_PER_SEC);
717
718	/*
719	 * Update the measurements delay, but lock the interface first, since
720	 * we have to disable PVT in order to have the new delay actually
721	 * updated.
722	 */
723	ret = mutex_lock_interruptible(&pvt->iface_mtx);
724	if (ret)
725		return ret;
726
727	pvt_set_tout(pvt, data);
728	pvt->timeout = cache;
729
730	mutex_unlock(&pvt->iface_mtx);
731
732	return 0;
733}
734
735static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
736			  u32 attr, int ch, long *val)
737{
738	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
739
740	if (!pvt_hwmon_channel_is_valid(type, ch))
741		return -EINVAL;
742
743	switch (type) {
744	case hwmon_chip:
745		switch (attr) {
746		case hwmon_chip_update_interval:
747			return pvt_read_timeout(pvt, val);
748		}
749		break;
750	case hwmon_temp:
751		switch (attr) {
752		case hwmon_temp_input:
753			return pvt_read_data(pvt, ch, val);
754		case hwmon_temp_type:
755			*val = 1;
756			return 0;
757		case hwmon_temp_min:
758			return pvt_read_limit(pvt, ch, true, val);
759		case hwmon_temp_max:
760			return pvt_read_limit(pvt, ch, false, val);
761		case hwmon_temp_min_alarm:
762			return pvt_read_alarm(pvt, ch, true, val);
763		case hwmon_temp_max_alarm:
764			return pvt_read_alarm(pvt, ch, false, val);
765		case hwmon_temp_offset:
766			return pvt_read_trim(pvt, val);
767		}
768		break;
769	case hwmon_in:
770		switch (attr) {
771		case hwmon_in_input:
772			return pvt_read_data(pvt, PVT_VOLT + ch, val);
773		case hwmon_in_min:
774			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
775		case hwmon_in_max:
776			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
777		case hwmon_in_min_alarm:
778			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
779		case hwmon_in_max_alarm:
780			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
781		}
782		break;
783	default:
784		break;
785	}
786
787	return -EOPNOTSUPP;
788}
789
790static int pvt_hwmon_read_string(struct device *dev,
791				 enum hwmon_sensor_types type,
792				 u32 attr, int ch, const char **str)
793{
794	if (!pvt_hwmon_channel_is_valid(type, ch))
795		return -EINVAL;
796
797	switch (type) {
798	case hwmon_temp:
799		switch (attr) {
800		case hwmon_temp_label:
801			*str = pvt_info[ch].label;
802			return 0;
803		}
804		break;
805	case hwmon_in:
806		switch (attr) {
807		case hwmon_in_label:
808			*str = pvt_info[PVT_VOLT + ch].label;
809			return 0;
810		}
811		break;
812	default:
813		break;
814	}
815
816	return -EOPNOTSUPP;
817}
818
819static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
820			   u32 attr, int ch, long val)
821{
822	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
823
824	if (!pvt_hwmon_channel_is_valid(type, ch))
825		return -EINVAL;
826
827	switch (type) {
828	case hwmon_chip:
829		switch (attr) {
830		case hwmon_chip_update_interval:
831			return pvt_write_timeout(pvt, val);
832		}
833		break;
834	case hwmon_temp:
835		switch (attr) {
836		case hwmon_temp_min:
837			return pvt_write_limit(pvt, ch, true, val);
838		case hwmon_temp_max:
839			return pvt_write_limit(pvt, ch, false, val);
840		case hwmon_temp_offset:
841			return pvt_write_trim(pvt, val);
842		}
843		break;
844	case hwmon_in:
845		switch (attr) {
846		case hwmon_in_min:
847			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
848		case hwmon_in_max:
849			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
850		}
851		break;
852	default:
853		break;
854	}
855
856	return -EOPNOTSUPP;
857}
858
859static const struct hwmon_ops pvt_hwmon_ops = {
860	.is_visible = pvt_hwmon_is_visible,
861	.read = pvt_hwmon_read,
862	.read_string = pvt_hwmon_read_string,
863	.write = pvt_hwmon_write
864};
865
866static const struct hwmon_chip_info pvt_hwmon_info = {
867	.ops = &pvt_hwmon_ops,
868	.info = pvt_channel_info
869};
870
871static void pvt_clear_data(void *data)
872{
873	struct pvt_hwmon *pvt = data;
874#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
875	int idx;
876
877	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
878		complete_all(&pvt->cache[idx].conversion);
879#endif
880
881	mutex_destroy(&pvt->iface_mtx);
882}
883
884static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
885{
886	struct device *dev = &pdev->dev;
887	struct pvt_hwmon *pvt;
888	int ret, idx;
889
890	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
891	if (!pvt)
892		return ERR_PTR(-ENOMEM);
893
894	ret = devm_add_action(dev, pvt_clear_data, pvt);
895	if (ret) {
896		dev_err(dev, "Can't add PVT data clear action\n");
897		return ERR_PTR(ret);
898	}
899
900	pvt->dev = dev;
901	pvt->sensor = PVT_SENSOR_FIRST;
902	mutex_init(&pvt->iface_mtx);
903
904#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
905	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
906		seqlock_init(&pvt->cache[idx].data_seqlock);
907#else
908	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
909		init_completion(&pvt->cache[idx].conversion);
910#endif
911
912	return pvt;
913}
914
915static int pvt_request_regs(struct pvt_hwmon *pvt)
916{
917	struct platform_device *pdev = to_platform_device(pvt->dev);
918	struct resource *res;
919
920	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
921	if (!res) {
922		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
923		return -EINVAL;
924	}
925
926	pvt->regs = devm_ioremap_resource(pvt->dev, res);
927	if (IS_ERR(pvt->regs)) {
928		dev_err(pvt->dev, "Couldn't map PVT registers\n");
929		return PTR_ERR(pvt->regs);
930	}
931
932	return 0;
933}
934
935static void pvt_disable_clks(void *data)
936{
937	struct pvt_hwmon *pvt = data;
938
939	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
940}
941
942static int pvt_request_clks(struct pvt_hwmon *pvt)
943{
944	int ret;
945
946	pvt->clks[PVT_CLOCK_APB].id = "pclk";
947	pvt->clks[PVT_CLOCK_REF].id = "ref";
948
949	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
950	if (ret) {
951		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
952		return ret;
953	}
954
955	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
956	if (ret) {
957		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
958		return ret;
959	}
960
961	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
962	if (ret) {
963		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
964		return ret;
965	}
966
967	return 0;
968}
969
970static int pvt_check_pwr(struct pvt_hwmon *pvt)
971{
972	unsigned long tout;
973	int ret = 0;
974	u32 data;
975
976	/*
977	 * Test out the sensor conversion functionality. If it is not done on
978	 * time then the domain must have been unpowered and we won't be able
979	 * to use the device later in this driver.
980	 * Note If the power source is lost during the normal driver work the
981	 * data read procedure will either return -ETIMEDOUT (for the
982	 * alarm-less driver configuration) or just stop the repeated
983	 * conversion. In the later case alas we won't be able to detect the
984	 * problem.
985	 */
986	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
987	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
988	pvt_set_tout(pvt, 0);
989	readl(pvt->regs + PVT_DATA);
990
991	tout = PVT_TOUT_MIN / NSEC_PER_USEC;
992	usleep_range(tout, 2 * tout);
993
994	data = readl(pvt->regs + PVT_DATA);
995	if (!(data & PVT_DATA_VALID)) {
996		ret = -ENODEV;
997		dev_err(pvt->dev, "Sensor is powered down\n");
998	}
999
1000	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1001
1002	return ret;
1003}
1004
1005static int pvt_init_iface(struct pvt_hwmon *pvt)
1006{
1007	unsigned long rate;
1008	u32 trim, temp;
1009
1010	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
1011	if (!rate) {
1012		dev_err(pvt->dev, "Invalid reference clock rate\n");
1013		return -ENODEV;
1014	}
1015
1016	/*
1017	 * Make sure all interrupts and controller are disabled so not to
1018	 * accidentally have ISR executed before the driver data is fully
1019	 * initialized. Clear the IRQ status as well.
1020	 */
1021	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
1022	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1023	readl(pvt->regs + PVT_CLR_INTR);
1024	readl(pvt->regs + PVT_DATA);
1025
1026	/* Setup default sensor mode, timeout and temperature trim. */
1027	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
1028	pvt_set_tout(pvt, PVT_TOUT_DEF);
1029
1030	/*
1031	 * Preserve the current ref-clock based delay (Ttotal) between the
1032	 * sensors data samples in the driver data so not to recalculate it
1033	 * each time on the data requests and timeout reads. It consists of the
1034	 * delay introduced by the internal ref-clock timer (N / Fclk) and the
1035	 * constant timeout caused by each conversion latency (Tmin):
1036	 *   Ttotal = N / Fclk + Tmin
1037	 * If alarms are enabled the sensors are polled one after another and
1038	 * in order to get the next measurement of a particular sensor the
1039	 * caller will have to wait for at most until all the others are
1040	 * polled. In that case the formulae will look a bit different:
1041	 *   Ttotal = 5 * (N / Fclk + Tmin)
1042	 */
1043#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1044	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
1045	pvt->timeout = ktime_divns(pvt->timeout, rate);
1046	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
1047#else
1048	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
1049	pvt->timeout = ktime_divns(pvt->timeout, rate);
1050	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
1051#endif
1052
1053	trim = PVT_TRIM_DEF;
1054	if (!of_property_read_u32(pvt->dev->of_node,
1055	     "baikal,pvt-temp-offset-millicelsius", &temp))
1056		trim = pvt_calc_trim(temp);
1057
1058	pvt_set_trim(pvt, trim);
1059
1060	return 0;
1061}
1062
1063static int pvt_request_irq(struct pvt_hwmon *pvt)
1064{
1065	struct platform_device *pdev = to_platform_device(pvt->dev);
1066	int ret;
1067
1068	pvt->irq = platform_get_irq(pdev, 0);
1069	if (pvt->irq < 0)
1070		return pvt->irq;
1071
1072	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
1073					pvt_hard_isr, pvt_soft_isr,
1074#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1075					IRQF_SHARED | IRQF_TRIGGER_HIGH |
1076					IRQF_ONESHOT,
1077#else
1078					IRQF_SHARED | IRQF_TRIGGER_HIGH,
1079#endif
1080					"pvt", pvt);
1081	if (ret) {
1082		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
1083		return ret;
1084	}
1085
1086	return 0;
1087}
1088
1089static int pvt_create_hwmon(struct pvt_hwmon *pvt)
1090{
1091	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
1092		&pvt_hwmon_info, NULL);
1093	if (IS_ERR(pvt->hwmon)) {
1094		dev_err(pvt->dev, "Couldn't create hwmon device\n");
1095		return PTR_ERR(pvt->hwmon);
1096	}
1097
1098	return 0;
1099}
1100
1101#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
1102
1103static void pvt_disable_iface(void *data)
1104{
1105	struct pvt_hwmon *pvt = data;
1106
1107	mutex_lock(&pvt->iface_mtx);
1108	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
1109	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
1110		   PVT_INTR_DVALID);
1111	mutex_unlock(&pvt->iface_mtx);
1112}
1113
1114static int pvt_enable_iface(struct pvt_hwmon *pvt)
1115{
1116	int ret;
1117
1118	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
1119	if (ret) {
1120		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
1121		return ret;
1122	}
1123
1124	/*
1125	 * Enable sensors data conversion and IRQ. We need to lock the
1126	 * interface mutex since hwmon has just been created and the
1127	 * corresponding sysfs files are accessible from user-space,
1128	 * which theoretically may cause races.
1129	 */
1130	mutex_lock(&pvt->iface_mtx);
1131	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
1132	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
1133	mutex_unlock(&pvt->iface_mtx);
1134
1135	return 0;
1136}
1137
1138#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1139
1140static int pvt_enable_iface(struct pvt_hwmon *pvt)
1141{
1142	return 0;
1143}
1144
1145#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
1146
1147static int pvt_probe(struct platform_device *pdev)
1148{
1149	struct pvt_hwmon *pvt;
1150	int ret;
1151
1152	pvt = pvt_create_data(pdev);
1153	if (IS_ERR(pvt))
1154		return PTR_ERR(pvt);
1155
1156	ret = pvt_request_regs(pvt);
1157	if (ret)
1158		return ret;
1159
1160	ret = pvt_request_clks(pvt);
1161	if (ret)
1162		return ret;
1163
1164	ret = pvt_check_pwr(pvt);
1165	if (ret)
1166		return ret;
1167
1168	ret = pvt_init_iface(pvt);
1169	if (ret)
1170		return ret;
1171
1172	ret = pvt_request_irq(pvt);
1173	if (ret)
1174		return ret;
1175
1176	ret = pvt_create_hwmon(pvt);
1177	if (ret)
1178		return ret;
1179
1180	ret = pvt_enable_iface(pvt);
1181	if (ret)
1182		return ret;
1183
1184	return 0;
1185}
1186
1187static const struct of_device_id pvt_of_match[] = {
1188	{ .compatible = "baikal,bt1-pvt" },
1189	{ }
1190};
1191MODULE_DEVICE_TABLE(of, pvt_of_match);
1192
1193static struct platform_driver pvt_driver = {
1194	.probe = pvt_probe,
1195	.driver = {
1196		.name = "bt1-pvt",
1197		.of_match_table = pvt_of_match
1198	}
1199};
1200module_platform_driver(pvt_driver);
1201
1202MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
1203MODULE_DESCRIPTION("Baikal-T1 PVT driver");
1204MODULE_LICENSE("GPL v2");
1205