1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
4 *	       monitoring
5 * Based on lm75.c and lm85.c
6 * Supports adm1030 / adm1031
7 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
8 * Reworked by Jean Delvare <jdelvare@suse.de>
9 */
10
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/i2c.h>
16#include <linux/hwmon.h>
17#include <linux/hwmon-sysfs.h>
18#include <linux/err.h>
19#include <linux/mutex.h>
20
21/* Following macros takes channel parameter starting from 0 to 2 */
22#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
23#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
24#define ADM1031_REG_PWM			(0x22)
25#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
26#define ADM1031_REG_FAN_FILTER		(0x23)
27
28#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
29#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
30#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
31#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
32
33#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
34#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
35
36#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
37
38#define ADM1031_REG_CONF1		0x00
39#define ADM1031_REG_CONF2		0x01
40#define ADM1031_REG_EXT_TEMP		0x06
41
42#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
43#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
44#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
45
46#define ADM1031_CONF2_PWM1_ENABLE	0x01
47#define ADM1031_CONF2_PWM2_ENABLE	0x02
48#define ADM1031_CONF2_TACH1_ENABLE	0x04
49#define ADM1031_CONF2_TACH2_ENABLE	0x08
50#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
51
52#define ADM1031_UPDATE_RATE_MASK	0x1c
53#define ADM1031_UPDATE_RATE_SHIFT	2
54
55/* Addresses to scan */
56static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
57
58enum chips { adm1030, adm1031 };
59
60typedef u8 auto_chan_table_t[8][2];
61
62/* Each client has this additional data */
63struct adm1031_data {
64	struct i2c_client *client;
65	const struct attribute_group *groups[3];
66	struct mutex update_lock;
67	int chip_type;
68	char valid;		/* !=0 if following fields are valid */
69	unsigned long last_updated;	/* In jiffies */
70	unsigned int update_interval;	/* In milliseconds */
71	/*
72	 * The chan_select_table contains the possible configurations for
73	 * auto fan control.
74	 */
75	const auto_chan_table_t *chan_select_table;
76	u16 alarm;
77	u8 conf1;
78	u8 conf2;
79	u8 fan[2];
80	u8 fan_div[2];
81	u8 fan_min[2];
82	u8 pwm[2];
83	u8 old_pwm[2];
84	s8 temp[3];
85	u8 ext_temp[3];
86	u8 auto_temp[3];
87	u8 auto_temp_min[3];
88	u8 auto_temp_off[3];
89	u8 auto_temp_max[3];
90	s8 temp_offset[3];
91	s8 temp_min[3];
92	s8 temp_max[3];
93	s8 temp_crit[3];
94};
95
96static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
97{
98	return i2c_smbus_read_byte_data(client, reg);
99}
100
101static inline int
102adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
103{
104	return i2c_smbus_write_byte_data(client, reg, value);
105}
106
107static struct adm1031_data *adm1031_update_device(struct device *dev)
108{
109	struct adm1031_data *data = dev_get_drvdata(dev);
110	struct i2c_client *client = data->client;
111	unsigned long next_update;
112	int chan;
113
114	mutex_lock(&data->update_lock);
115
116	next_update = data->last_updated
117	  + msecs_to_jiffies(data->update_interval);
118	if (time_after(jiffies, next_update) || !data->valid) {
119
120		dev_dbg(&client->dev, "Starting adm1031 update\n");
121		for (chan = 0;
122		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
123			u8 oldh, newh;
124
125			oldh =
126			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
127			data->ext_temp[chan] =
128			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
129			newh =
130			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
131			if (newh != oldh) {
132				data->ext_temp[chan] =
133				    adm1031_read_value(client,
134						       ADM1031_REG_EXT_TEMP);
135#ifdef DEBUG
136				oldh =
137				    adm1031_read_value(client,
138						       ADM1031_REG_TEMP(chan));
139
140				/* oldh is actually newer */
141				if (newh != oldh)
142					dev_warn(&client->dev,
143					  "Remote temperature may be wrong.\n");
144#endif
145			}
146			data->temp[chan] = newh;
147
148			data->temp_offset[chan] =
149			    adm1031_read_value(client,
150					       ADM1031_REG_TEMP_OFFSET(chan));
151			data->temp_min[chan] =
152			    adm1031_read_value(client,
153					       ADM1031_REG_TEMP_MIN(chan));
154			data->temp_max[chan] =
155			    adm1031_read_value(client,
156					       ADM1031_REG_TEMP_MAX(chan));
157			data->temp_crit[chan] =
158			    adm1031_read_value(client,
159					       ADM1031_REG_TEMP_CRIT(chan));
160			data->auto_temp[chan] =
161			    adm1031_read_value(client,
162					       ADM1031_REG_AUTO_TEMP(chan));
163
164		}
165
166		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
167		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
168
169		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
170		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
171		if (data->chip_type == adm1030)
172			data->alarm &= 0xc0ff;
173
174		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
175		     chan++) {
176			data->fan_div[chan] =
177			    adm1031_read_value(client,
178					       ADM1031_REG_FAN_DIV(chan));
179			data->fan_min[chan] =
180			    adm1031_read_value(client,
181					       ADM1031_REG_FAN_MIN(chan));
182			data->fan[chan] =
183			    adm1031_read_value(client,
184					       ADM1031_REG_FAN_SPEED(chan));
185			data->pwm[chan] =
186			  (adm1031_read_value(client,
187					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
188		}
189		data->last_updated = jiffies;
190		data->valid = 1;
191	}
192
193	mutex_unlock(&data->update_lock);
194
195	return data;
196}
197
198#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
199					((val + 500) / 1000)))
200
201#define TEMP_FROM_REG(val)		((val) * 1000)
202
203#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
204
205#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
206#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
207						      (val) | 0x70 : (val))
208
209#define FAN_FROM_REG(reg, div)		((reg) ? \
210					 (11250 * 60) / ((reg) * (div)) : 0)
211
212static int FAN_TO_REG(int reg, int div)
213{
214	int tmp;
215	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
216	return tmp > 255 ? 255 : tmp;
217}
218
219#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
220
221#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
222#define PWM_FROM_REG(val)		((val) << 4)
223
224#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
225#define FAN_CHAN_TO_REG(val, reg)	\
226	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
227
228#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
229	((((val) / 500) & 0xf8) | ((reg) & 0x7))
230#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
231#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
232
233#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
234
235#define AUTO_TEMP_OFF_FROM_REG(reg)		\
236	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
237
238#define AUTO_TEMP_MAX_FROM_REG(reg)		\
239	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
240	AUTO_TEMP_MIN_FROM_REG(reg))
241
242static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
243{
244	int ret;
245	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
246
247	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
248	ret = ((reg & 0xf8) |
249	       (range < 10000 ? 0 :
250		range < 20000 ? 1 :
251		range < 40000 ? 2 : range < 80000 ? 3 : 4));
252	return ret;
253}
254
255/* FAN auto control */
256#define GET_FAN_AUTO_BITFIELD(data, idx)	\
257	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
258
259/*
260 * The tables below contains the possible values for the auto fan
261 * control bitfields. the index in the table is the register value.
262 * MSb is the auto fan control enable bit, so the four first entries
263 * in the table disables auto fan control when both bitfields are zero.
264 */
265static const auto_chan_table_t auto_channel_select_table_adm1031 = {
266	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
267	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
268	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
269	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
270	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
271};
272
273static const auto_chan_table_t auto_channel_select_table_adm1030 = {
274	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
275	{ 2 /* 0b10 */		, 0 },
276	{ 0xff /* invalid */	, 0 },
277	{ 0xff /* invalid */	, 0 },
278	{ 3 /* 0b11 */		, 0 },
279};
280
281/*
282 * That function checks if a bitfield is valid and returns the other bitfield
283 * nearest match if no exact match where found.
284 */
285static int
286get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
287{
288	int i;
289	int first_match = -1, exact_match = -1;
290	u8 other_reg_val =
291	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
292
293	if (val == 0)
294		return 0;
295
296	for (i = 0; i < 8; i++) {
297		if ((val == (*data->chan_select_table)[i][chan]) &&
298		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
299		     other_reg_val)) {
300			/* We found an exact match */
301			exact_match = i;
302			break;
303		} else if (val == (*data->chan_select_table)[i][chan] &&
304			   first_match == -1) {
305			/*
306			 * Save the first match in case of an exact match has
307			 * not been found
308			 */
309			first_match = i;
310		}
311	}
312
313	if (exact_match >= 0)
314		return exact_match;
315	else if (first_match >= 0)
316		return first_match;
317
318	return -EINVAL;
319}
320
321static ssize_t fan_auto_channel_show(struct device *dev,
322				     struct device_attribute *attr, char *buf)
323{
324	int nr = to_sensor_dev_attr(attr)->index;
325	struct adm1031_data *data = adm1031_update_device(dev);
326	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
327}
328
329static ssize_t
330fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
331		       const char *buf, size_t count)
332{
333	struct adm1031_data *data = dev_get_drvdata(dev);
334	struct i2c_client *client = data->client;
335	int nr = to_sensor_dev_attr(attr)->index;
336	long val;
337	u8 reg;
338	int ret;
339	u8 old_fan_mode;
340
341	ret = kstrtol(buf, 10, &val);
342	if (ret)
343		return ret;
344
345	old_fan_mode = data->conf1;
346
347	mutex_lock(&data->update_lock);
348
349	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
350	if (ret < 0) {
351		mutex_unlock(&data->update_lock);
352		return ret;
353	}
354	reg = ret;
355	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
356	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
357	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
358		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
359			/*
360			 * Switch to Auto Fan Mode
361			 * Save PWM registers
362			 * Set PWM registers to 33% Both
363			 */
364			data->old_pwm[0] = data->pwm[0];
365			data->old_pwm[1] = data->pwm[1];
366			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
367		} else {
368			/* Switch to Manual Mode */
369			data->pwm[0] = data->old_pwm[0];
370			data->pwm[1] = data->old_pwm[1];
371			/* Restore PWM registers */
372			adm1031_write_value(client, ADM1031_REG_PWM,
373					    data->pwm[0] | (data->pwm[1] << 4));
374		}
375	}
376	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
377	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
378	mutex_unlock(&data->update_lock);
379	return count;
380}
381
382static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
383static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
384
385/* Auto Temps */
386static ssize_t auto_temp_off_show(struct device *dev,
387				  struct device_attribute *attr, char *buf)
388{
389	int nr = to_sensor_dev_attr(attr)->index;
390	struct adm1031_data *data = adm1031_update_device(dev);
391	return sprintf(buf, "%d\n",
392		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
393}
394static ssize_t auto_temp_min_show(struct device *dev,
395				  struct device_attribute *attr, char *buf)
396{
397	int nr = to_sensor_dev_attr(attr)->index;
398	struct adm1031_data *data = adm1031_update_device(dev);
399	return sprintf(buf, "%d\n",
400		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
401}
402static ssize_t
403auto_temp_min_store(struct device *dev, struct device_attribute *attr,
404		    const char *buf, size_t count)
405{
406	struct adm1031_data *data = dev_get_drvdata(dev);
407	struct i2c_client *client = data->client;
408	int nr = to_sensor_dev_attr(attr)->index;
409	long val;
410	int ret;
411
412	ret = kstrtol(buf, 10, &val);
413	if (ret)
414		return ret;
415
416	val = clamp_val(val, 0, 127000);
417	mutex_lock(&data->update_lock);
418	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
419	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
420			    data->auto_temp[nr]);
421	mutex_unlock(&data->update_lock);
422	return count;
423}
424static ssize_t auto_temp_max_show(struct device *dev,
425				  struct device_attribute *attr, char *buf)
426{
427	int nr = to_sensor_dev_attr(attr)->index;
428	struct adm1031_data *data = adm1031_update_device(dev);
429	return sprintf(buf, "%d\n",
430		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
431}
432static ssize_t
433auto_temp_max_store(struct device *dev, struct device_attribute *attr,
434		    const char *buf, size_t count)
435{
436	struct adm1031_data *data = dev_get_drvdata(dev);
437	struct i2c_client *client = data->client;
438	int nr = to_sensor_dev_attr(attr)->index;
439	long val;
440	int ret;
441
442	ret = kstrtol(buf, 10, &val);
443	if (ret)
444		return ret;
445
446	val = clamp_val(val, 0, 127000);
447	mutex_lock(&data->update_lock);
448	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
449						  data->pwm[nr]);
450	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
451			    data->temp_max[nr]);
452	mutex_unlock(&data->update_lock);
453	return count;
454}
455
456static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
457static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
458static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
459static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
460static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
461static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
462static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
463static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
464static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
465
466/* pwm */
467static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
468			char *buf)
469{
470	int nr = to_sensor_dev_attr(attr)->index;
471	struct adm1031_data *data = adm1031_update_device(dev);
472	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
473}
474static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
475			 const char *buf, size_t count)
476{
477	struct adm1031_data *data = dev_get_drvdata(dev);
478	struct i2c_client *client = data->client;
479	int nr = to_sensor_dev_attr(attr)->index;
480	long val;
481	int ret, reg;
482
483	ret = kstrtol(buf, 10, &val);
484	if (ret)
485		return ret;
486
487	mutex_lock(&data->update_lock);
488	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
489	    (((val>>4) & 0xf) != 5)) {
490		/* In automatic mode, the only PWM accepted is 33% */
491		mutex_unlock(&data->update_lock);
492		return -EINVAL;
493	}
494	data->pwm[nr] = PWM_TO_REG(val);
495	reg = adm1031_read_value(client, ADM1031_REG_PWM);
496	adm1031_write_value(client, ADM1031_REG_PWM,
497			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
498			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
499	mutex_unlock(&data->update_lock);
500	return count;
501}
502
503static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
504static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
505static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
506static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
507
508/* Fans */
509
510/*
511 * That function checks the cases where the fan reading is not
512 * relevant.  It is used to provide 0 as fan reading when the fan is
513 * not supposed to run
514 */
515static int trust_fan_readings(struct adm1031_data *data, int chan)
516{
517	int res = 0;
518
519	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
520		switch (data->conf1 & 0x60) {
521		case 0x00:
522			/*
523			 * remote temp1 controls fan1,
524			 * remote temp2 controls fan2
525			 */
526			res = data->temp[chan+1] >=
527			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
528			break;
529		case 0x20:	/* remote temp1 controls both fans */
530			res =
531			    data->temp[1] >=
532			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
533			break;
534		case 0x40:	/* remote temp2 controls both fans */
535			res =
536			    data->temp[2] >=
537			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
538			break;
539		case 0x60:	/* max controls both fans */
540			res =
541			    data->temp[0] >=
542			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
543			    || data->temp[1] >=
544			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
545			    || (data->chip_type == adm1031
546				&& data->temp[2] >=
547				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
548			break;
549		}
550	} else {
551		res = data->pwm[chan] > 0;
552	}
553	return res;
554}
555
556static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
557			char *buf)
558{
559	int nr = to_sensor_dev_attr(attr)->index;
560	struct adm1031_data *data = adm1031_update_device(dev);
561	int value;
562
563	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
564				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
565	return sprintf(buf, "%d\n", value);
566}
567
568static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
569			    char *buf)
570{
571	int nr = to_sensor_dev_attr(attr)->index;
572	struct adm1031_data *data = adm1031_update_device(dev);
573	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
574}
575static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
576			    char *buf)
577{
578	int nr = to_sensor_dev_attr(attr)->index;
579	struct adm1031_data *data = adm1031_update_device(dev);
580	return sprintf(buf, "%d\n",
581		       FAN_FROM_REG(data->fan_min[nr],
582				    FAN_DIV_FROM_REG(data->fan_div[nr])));
583}
584static ssize_t fan_min_store(struct device *dev,
585			     struct device_attribute *attr, const char *buf,
586			     size_t count)
587{
588	struct adm1031_data *data = dev_get_drvdata(dev);
589	struct i2c_client *client = data->client;
590	int nr = to_sensor_dev_attr(attr)->index;
591	long val;
592	int ret;
593
594	ret = kstrtol(buf, 10, &val);
595	if (ret)
596		return ret;
597
598	mutex_lock(&data->update_lock);
599	if (val) {
600		data->fan_min[nr] =
601			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
602	} else {
603		data->fan_min[nr] = 0xff;
604	}
605	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
606	mutex_unlock(&data->update_lock);
607	return count;
608}
609static ssize_t fan_div_store(struct device *dev,
610			     struct device_attribute *attr, const char *buf,
611			     size_t count)
612{
613	struct adm1031_data *data = dev_get_drvdata(dev);
614	struct i2c_client *client = data->client;
615	int nr = to_sensor_dev_attr(attr)->index;
616	long val;
617	u8 tmp;
618	int old_div;
619	int new_min;
620	int ret;
621
622	ret = kstrtol(buf, 10, &val);
623	if (ret)
624		return ret;
625
626	tmp = val == 8 ? 0xc0 :
627	      val == 4 ? 0x80 :
628	      val == 2 ? 0x40 :
629	      val == 1 ? 0x00 :
630	      0xff;
631	if (tmp == 0xff)
632		return -EINVAL;
633
634	mutex_lock(&data->update_lock);
635	/* Get fresh readings */
636	data->fan_div[nr] = adm1031_read_value(client,
637					       ADM1031_REG_FAN_DIV(nr));
638	data->fan_min[nr] = adm1031_read_value(client,
639					       ADM1031_REG_FAN_MIN(nr));
640
641	/* Write the new clock divider and fan min */
642	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
643	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
644	new_min = data->fan_min[nr] * old_div / val;
645	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
646
647	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
648			    data->fan_div[nr]);
649	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
650			    data->fan_min[nr]);
651
652	/* Invalidate the cache: fan speed is no longer valid */
653	data->valid = 0;
654	mutex_unlock(&data->update_lock);
655	return count;
656}
657
658static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
659static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
660static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
661static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
662static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
663static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
664
665/* Temps */
666static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
667			 char *buf)
668{
669	int nr = to_sensor_dev_attr(attr)->index;
670	struct adm1031_data *data = adm1031_update_device(dev);
671	int ext;
672	ext = nr == 0 ?
673	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
674	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
675	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
676}
677static ssize_t temp_offset_show(struct device *dev,
678				struct device_attribute *attr, char *buf)
679{
680	int nr = to_sensor_dev_attr(attr)->index;
681	struct adm1031_data *data = adm1031_update_device(dev);
682	return sprintf(buf, "%d\n",
683		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
684}
685static ssize_t temp_min_show(struct device *dev,
686			     struct device_attribute *attr, char *buf)
687{
688	int nr = to_sensor_dev_attr(attr)->index;
689	struct adm1031_data *data = adm1031_update_device(dev);
690	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
691}
692static ssize_t temp_max_show(struct device *dev,
693			     struct device_attribute *attr, char *buf)
694{
695	int nr = to_sensor_dev_attr(attr)->index;
696	struct adm1031_data *data = adm1031_update_device(dev);
697	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
698}
699static ssize_t temp_crit_show(struct device *dev,
700			      struct device_attribute *attr, char *buf)
701{
702	int nr = to_sensor_dev_attr(attr)->index;
703	struct adm1031_data *data = adm1031_update_device(dev);
704	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
705}
706static ssize_t temp_offset_store(struct device *dev,
707				 struct device_attribute *attr,
708				 const char *buf, size_t count)
709{
710	struct adm1031_data *data = dev_get_drvdata(dev);
711	struct i2c_client *client = data->client;
712	int nr = to_sensor_dev_attr(attr)->index;
713	long val;
714	int ret;
715
716	ret = kstrtol(buf, 10, &val);
717	if (ret)
718		return ret;
719
720	val = clamp_val(val, -15000, 15000);
721	mutex_lock(&data->update_lock);
722	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
723	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
724			    data->temp_offset[nr]);
725	mutex_unlock(&data->update_lock);
726	return count;
727}
728static ssize_t temp_min_store(struct device *dev,
729			      struct device_attribute *attr, const char *buf,
730			      size_t count)
731{
732	struct adm1031_data *data = dev_get_drvdata(dev);
733	struct i2c_client *client = data->client;
734	int nr = to_sensor_dev_attr(attr)->index;
735	long val;
736	int ret;
737
738	ret = kstrtol(buf, 10, &val);
739	if (ret)
740		return ret;
741
742	val = clamp_val(val, -55000, 127000);
743	mutex_lock(&data->update_lock);
744	data->temp_min[nr] = TEMP_TO_REG(val);
745	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
746			    data->temp_min[nr]);
747	mutex_unlock(&data->update_lock);
748	return count;
749}
750static ssize_t temp_max_store(struct device *dev,
751			      struct device_attribute *attr, const char *buf,
752			      size_t count)
753{
754	struct adm1031_data *data = dev_get_drvdata(dev);
755	struct i2c_client *client = data->client;
756	int nr = to_sensor_dev_attr(attr)->index;
757	long val;
758	int ret;
759
760	ret = kstrtol(buf, 10, &val);
761	if (ret)
762		return ret;
763
764	val = clamp_val(val, -55000, 127000);
765	mutex_lock(&data->update_lock);
766	data->temp_max[nr] = TEMP_TO_REG(val);
767	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
768			    data->temp_max[nr]);
769	mutex_unlock(&data->update_lock);
770	return count;
771}
772static ssize_t temp_crit_store(struct device *dev,
773			       struct device_attribute *attr, const char *buf,
774			       size_t count)
775{
776	struct adm1031_data *data = dev_get_drvdata(dev);
777	struct i2c_client *client = data->client;
778	int nr = to_sensor_dev_attr(attr)->index;
779	long val;
780	int ret;
781
782	ret = kstrtol(buf, 10, &val);
783	if (ret)
784		return ret;
785
786	val = clamp_val(val, -55000, 127000);
787	mutex_lock(&data->update_lock);
788	data->temp_crit[nr] = TEMP_TO_REG(val);
789	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
790			    data->temp_crit[nr]);
791	mutex_unlock(&data->update_lock);
792	return count;
793}
794
795static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
796static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
797static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
798static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
799static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
800static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
801static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
802static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
803static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
804static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
805static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
806static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
807static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
808static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
809static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
810
811/* Alarms */
812static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
813			   char *buf)
814{
815	struct adm1031_data *data = adm1031_update_device(dev);
816	return sprintf(buf, "%d\n", data->alarm);
817}
818
819static DEVICE_ATTR_RO(alarms);
820
821static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
822			  char *buf)
823{
824	int bitnr = to_sensor_dev_attr(attr)->index;
825	struct adm1031_data *data = adm1031_update_device(dev);
826	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
827}
828
829static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
830static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
831static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
832static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
833static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
834static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
835static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
836static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
837static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
838static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
839static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
840static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
841static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
842static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
843static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
844
845/* Update Interval */
846static const unsigned int update_intervals[] = {
847	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
848};
849
850static ssize_t update_interval_show(struct device *dev,
851				    struct device_attribute *attr, char *buf)
852{
853	struct adm1031_data *data = dev_get_drvdata(dev);
854
855	return sprintf(buf, "%u\n", data->update_interval);
856}
857
858static ssize_t update_interval_store(struct device *dev,
859				     struct device_attribute *attr,
860				     const char *buf, size_t count)
861{
862	struct adm1031_data *data = dev_get_drvdata(dev);
863	struct i2c_client *client = data->client;
864	unsigned long val;
865	int i, err;
866	u8 reg;
867
868	err = kstrtoul(buf, 10, &val);
869	if (err)
870		return err;
871
872	/*
873	 * Find the nearest update interval from the table.
874	 * Use it to determine the matching update rate.
875	 */
876	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
877		if (val >= update_intervals[i])
878			break;
879	}
880	/* if not found, we point to the last entry (lowest update interval) */
881
882	/* set the new update rate while preserving other settings */
883	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
884	reg &= ~ADM1031_UPDATE_RATE_MASK;
885	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
886	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
887
888	mutex_lock(&data->update_lock);
889	data->update_interval = update_intervals[i];
890	mutex_unlock(&data->update_lock);
891
892	return count;
893}
894
895static DEVICE_ATTR_RW(update_interval);
896
897static struct attribute *adm1031_attributes[] = {
898	&sensor_dev_attr_fan1_input.dev_attr.attr,
899	&sensor_dev_attr_fan1_div.dev_attr.attr,
900	&sensor_dev_attr_fan1_min.dev_attr.attr,
901	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
902	&sensor_dev_attr_fan1_fault.dev_attr.attr,
903	&sensor_dev_attr_pwm1.dev_attr.attr,
904	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
905	&sensor_dev_attr_temp1_input.dev_attr.attr,
906	&sensor_dev_attr_temp1_offset.dev_attr.attr,
907	&sensor_dev_attr_temp1_min.dev_attr.attr,
908	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
909	&sensor_dev_attr_temp1_max.dev_attr.attr,
910	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
911	&sensor_dev_attr_temp1_crit.dev_attr.attr,
912	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
913	&sensor_dev_attr_temp2_input.dev_attr.attr,
914	&sensor_dev_attr_temp2_offset.dev_attr.attr,
915	&sensor_dev_attr_temp2_min.dev_attr.attr,
916	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
917	&sensor_dev_attr_temp2_max.dev_attr.attr,
918	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
919	&sensor_dev_attr_temp2_crit.dev_attr.attr,
920	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
921	&sensor_dev_attr_temp2_fault.dev_attr.attr,
922
923	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
924	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
925	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
926
927	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
928	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
929	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
930
931	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
932
933	&dev_attr_update_interval.attr,
934	&dev_attr_alarms.attr,
935
936	NULL
937};
938
939static const struct attribute_group adm1031_group = {
940	.attrs = adm1031_attributes,
941};
942
943static struct attribute *adm1031_attributes_opt[] = {
944	&sensor_dev_attr_fan2_input.dev_attr.attr,
945	&sensor_dev_attr_fan2_div.dev_attr.attr,
946	&sensor_dev_attr_fan2_min.dev_attr.attr,
947	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
948	&sensor_dev_attr_fan2_fault.dev_attr.attr,
949	&sensor_dev_attr_pwm2.dev_attr.attr,
950	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
951	&sensor_dev_attr_temp3_input.dev_attr.attr,
952	&sensor_dev_attr_temp3_offset.dev_attr.attr,
953	&sensor_dev_attr_temp3_min.dev_attr.attr,
954	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
955	&sensor_dev_attr_temp3_max.dev_attr.attr,
956	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
957	&sensor_dev_attr_temp3_crit.dev_attr.attr,
958	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
959	&sensor_dev_attr_temp3_fault.dev_attr.attr,
960	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
961	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
962	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
963	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
964	NULL
965};
966
967static const struct attribute_group adm1031_group_opt = {
968	.attrs = adm1031_attributes_opt,
969};
970
971/* Return 0 if detection is successful, -ENODEV otherwise */
972static int adm1031_detect(struct i2c_client *client,
973			  struct i2c_board_info *info)
974{
975	struct i2c_adapter *adapter = client->adapter;
976	const char *name;
977	int id, co;
978
979	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
980		return -ENODEV;
981
982	id = i2c_smbus_read_byte_data(client, 0x3d);
983	co = i2c_smbus_read_byte_data(client, 0x3e);
984
985	if (!((id == 0x31 || id == 0x30) && co == 0x41))
986		return -ENODEV;
987	name = (id == 0x30) ? "adm1030" : "adm1031";
988
989	strlcpy(info->type, name, I2C_NAME_SIZE);
990
991	return 0;
992}
993
994static void adm1031_init_client(struct i2c_client *client)
995{
996	unsigned int read_val;
997	unsigned int mask;
998	int i;
999	struct adm1031_data *data = i2c_get_clientdata(client);
1000
1001	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1002	if (data->chip_type == adm1031) {
1003		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1004			ADM1031_CONF2_TACH2_ENABLE);
1005	}
1006	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1007	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1008	if ((read_val | mask) != read_val)
1009		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1010
1011	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1012	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1013		adm1031_write_value(client, ADM1031_REG_CONF1,
1014				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1015	}
1016
1017	/* Read the chip's update rate */
1018	mask = ADM1031_UPDATE_RATE_MASK;
1019	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1020	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1021	/* Save it as update interval */
1022	data->update_interval = update_intervals[i];
1023}
1024
1025static const struct i2c_device_id adm1031_id[];
1026
1027static int adm1031_probe(struct i2c_client *client)
1028{
1029	struct device *dev = &client->dev;
1030	struct device *hwmon_dev;
1031	struct adm1031_data *data;
1032
1033	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1034	if (!data)
1035		return -ENOMEM;
1036
1037	i2c_set_clientdata(client, data);
1038	data->client = client;
1039	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
1040	mutex_init(&data->update_lock);
1041
1042	if (data->chip_type == adm1030)
1043		data->chan_select_table = &auto_channel_select_table_adm1030;
1044	else
1045		data->chan_select_table = &auto_channel_select_table_adm1031;
1046
1047	/* Initialize the ADM1031 chip */
1048	adm1031_init_client(client);
1049
1050	/* sysfs hooks */
1051	data->groups[0] = &adm1031_group;
1052	if (data->chip_type == adm1031)
1053		data->groups[1] = &adm1031_group_opt;
1054
1055	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1056							   data, data->groups);
1057	return PTR_ERR_OR_ZERO(hwmon_dev);
1058}
1059
1060static const struct i2c_device_id adm1031_id[] = {
1061	{ "adm1030", adm1030 },
1062	{ "adm1031", adm1031 },
1063	{ }
1064};
1065MODULE_DEVICE_TABLE(i2c, adm1031_id);
1066
1067static struct i2c_driver adm1031_driver = {
1068	.class		= I2C_CLASS_HWMON,
1069	.driver = {
1070		.name = "adm1031",
1071	},
1072	.probe_new	= adm1031_probe,
1073	.id_table	= adm1031_id,
1074	.detect		= adm1031_detect,
1075	.address_list	= normal_i2c,
1076};
1077
1078module_i2c_driver(adm1031_driver);
1079
1080MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1081MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1082MODULE_LICENSE("GPL");
1083