xref: /kernel/linux/linux-5.10/drivers/hv/vmbus_drv.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 *   Haiyang Zhang <haiyangz@microsoft.com>
7 *   Hank Janssen  <hjanssen@microsoft.com>
8 *   K. Y. Srinivasan <kys@microsoft.com>
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
15#include <linux/interrupt.h>
16#include <linux/sysctl.h>
17#include <linux/slab.h>
18#include <linux/acpi.h>
19#include <linux/completion.h>
20#include <linux/hyperv.h>
21#include <linux/kernel_stat.h>
22#include <linux/clockchips.h>
23#include <linux/cpu.h>
24#include <linux/sched/task_stack.h>
25
26#include <linux/delay.h>
27#include <linux/notifier.h>
28#include <linux/ptrace.h>
29#include <linux/screen_info.h>
30#include <linux/kdebug.h>
31#include <linux/efi.h>
32#include <linux/random.h>
33#include <linux/kernel.h>
34#include <linux/syscore_ops.h>
35#include <clocksource/hyperv_timer.h>
36#include "hyperv_vmbus.h"
37
38struct vmbus_dynid {
39	struct list_head node;
40	struct hv_vmbus_device_id id;
41};
42
43static struct acpi_device  *hv_acpi_dev;
44
45static struct completion probe_event;
46
47static int hyperv_cpuhp_online;
48
49static void *hv_panic_page;
50
51/* Values parsed from ACPI DSDT */
52static int vmbus_irq;
53int vmbus_interrupt;
54
55/*
56 * Boolean to control whether to report panic messages over Hyper-V.
57 *
58 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
59 */
60static int sysctl_record_panic_msg = 1;
61
62static int hyperv_report_reg(void)
63{
64	return !sysctl_record_panic_msg || !hv_panic_page;
65}
66
67static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
68			      void *args)
69{
70	struct pt_regs *regs;
71
72	vmbus_initiate_unload(true);
73
74	/*
75	 * Hyper-V should be notified only once about a panic.  If we will be
76	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
77	 * the notification here.
78	 */
79	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
80	    && hyperv_report_reg()) {
81		regs = current_pt_regs();
82		hyperv_report_panic(regs, val, false);
83	}
84	return NOTIFY_DONE;
85}
86
87static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88			    void *args)
89{
90	struct die_args *die = args;
91	struct pt_regs *regs = die->regs;
92
93	/* Don't notify Hyper-V if the die event is other than oops */
94	if (val != DIE_OOPS)
95		return NOTIFY_DONE;
96
97	/*
98	 * Hyper-V should be notified only once about a panic.  If we will be
99	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
100	 * the notification here.
101	 */
102	if (hyperv_report_reg())
103		hyperv_report_panic(regs, val, true);
104	return NOTIFY_DONE;
105}
106
107static struct notifier_block hyperv_die_block = {
108	.notifier_call = hyperv_die_event,
109};
110static struct notifier_block hyperv_panic_block = {
111	.notifier_call = hyperv_panic_event,
112};
113
114static const char *fb_mmio_name = "fb_range";
115static struct resource *fb_mmio;
116static struct resource *hyperv_mmio;
117static DEFINE_MUTEX(hyperv_mmio_lock);
118
119static int vmbus_exists(void)
120{
121	if (hv_acpi_dev == NULL)
122		return -ENODEV;
123
124	return 0;
125}
126
127static u8 channel_monitor_group(const struct vmbus_channel *channel)
128{
129	return (u8)channel->offermsg.monitorid / 32;
130}
131
132static u8 channel_monitor_offset(const struct vmbus_channel *channel)
133{
134	return (u8)channel->offermsg.monitorid % 32;
135}
136
137static u32 channel_pending(const struct vmbus_channel *channel,
138			   const struct hv_monitor_page *monitor_page)
139{
140	u8 monitor_group = channel_monitor_group(channel);
141
142	return monitor_page->trigger_group[monitor_group].pending;
143}
144
145static u32 channel_latency(const struct vmbus_channel *channel,
146			   const struct hv_monitor_page *monitor_page)
147{
148	u8 monitor_group = channel_monitor_group(channel);
149	u8 monitor_offset = channel_monitor_offset(channel);
150
151	return monitor_page->latency[monitor_group][monitor_offset];
152}
153
154static u32 channel_conn_id(struct vmbus_channel *channel,
155			   struct hv_monitor_page *monitor_page)
156{
157	u8 monitor_group = channel_monitor_group(channel);
158	u8 monitor_offset = channel_monitor_offset(channel);
159	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
160}
161
162static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
163		       char *buf)
164{
165	struct hv_device *hv_dev = device_to_hv_device(dev);
166
167	if (!hv_dev->channel)
168		return -ENODEV;
169	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
170}
171static DEVICE_ATTR_RO(id);
172
173static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
174			  char *buf)
175{
176	struct hv_device *hv_dev = device_to_hv_device(dev);
177
178	if (!hv_dev->channel)
179		return -ENODEV;
180	return sprintf(buf, "%d\n", hv_dev->channel->state);
181}
182static DEVICE_ATTR_RO(state);
183
184static ssize_t monitor_id_show(struct device *dev,
185			       struct device_attribute *dev_attr, char *buf)
186{
187	struct hv_device *hv_dev = device_to_hv_device(dev);
188
189	if (!hv_dev->channel)
190		return -ENODEV;
191	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
192}
193static DEVICE_ATTR_RO(monitor_id);
194
195static ssize_t class_id_show(struct device *dev,
196			       struct device_attribute *dev_attr, char *buf)
197{
198	struct hv_device *hv_dev = device_to_hv_device(dev);
199
200	if (!hv_dev->channel)
201		return -ENODEV;
202	return sprintf(buf, "{%pUl}\n",
203		       &hv_dev->channel->offermsg.offer.if_type);
204}
205static DEVICE_ATTR_RO(class_id);
206
207static ssize_t device_id_show(struct device *dev,
208			      struct device_attribute *dev_attr, char *buf)
209{
210	struct hv_device *hv_dev = device_to_hv_device(dev);
211
212	if (!hv_dev->channel)
213		return -ENODEV;
214	return sprintf(buf, "{%pUl}\n",
215		       &hv_dev->channel->offermsg.offer.if_instance);
216}
217static DEVICE_ATTR_RO(device_id);
218
219static ssize_t modalias_show(struct device *dev,
220			     struct device_attribute *dev_attr, char *buf)
221{
222	struct hv_device *hv_dev = device_to_hv_device(dev);
223
224	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
225}
226static DEVICE_ATTR_RO(modalias);
227
228#ifdef CONFIG_NUMA
229static ssize_t numa_node_show(struct device *dev,
230			      struct device_attribute *attr, char *buf)
231{
232	struct hv_device *hv_dev = device_to_hv_device(dev);
233
234	if (!hv_dev->channel)
235		return -ENODEV;
236
237	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
238}
239static DEVICE_ATTR_RO(numa_node);
240#endif
241
242static ssize_t server_monitor_pending_show(struct device *dev,
243					   struct device_attribute *dev_attr,
244					   char *buf)
245{
246	struct hv_device *hv_dev = device_to_hv_device(dev);
247
248	if (!hv_dev->channel)
249		return -ENODEV;
250	return sprintf(buf, "%d\n",
251		       channel_pending(hv_dev->channel,
252				       vmbus_connection.monitor_pages[0]));
253}
254static DEVICE_ATTR_RO(server_monitor_pending);
255
256static ssize_t client_monitor_pending_show(struct device *dev,
257					   struct device_attribute *dev_attr,
258					   char *buf)
259{
260	struct hv_device *hv_dev = device_to_hv_device(dev);
261
262	if (!hv_dev->channel)
263		return -ENODEV;
264	return sprintf(buf, "%d\n",
265		       channel_pending(hv_dev->channel,
266				       vmbus_connection.monitor_pages[1]));
267}
268static DEVICE_ATTR_RO(client_monitor_pending);
269
270static ssize_t server_monitor_latency_show(struct device *dev,
271					   struct device_attribute *dev_attr,
272					   char *buf)
273{
274	struct hv_device *hv_dev = device_to_hv_device(dev);
275
276	if (!hv_dev->channel)
277		return -ENODEV;
278	return sprintf(buf, "%d\n",
279		       channel_latency(hv_dev->channel,
280				       vmbus_connection.monitor_pages[0]));
281}
282static DEVICE_ATTR_RO(server_monitor_latency);
283
284static ssize_t client_monitor_latency_show(struct device *dev,
285					   struct device_attribute *dev_attr,
286					   char *buf)
287{
288	struct hv_device *hv_dev = device_to_hv_device(dev);
289
290	if (!hv_dev->channel)
291		return -ENODEV;
292	return sprintf(buf, "%d\n",
293		       channel_latency(hv_dev->channel,
294				       vmbus_connection.monitor_pages[1]));
295}
296static DEVICE_ATTR_RO(client_monitor_latency);
297
298static ssize_t server_monitor_conn_id_show(struct device *dev,
299					   struct device_attribute *dev_attr,
300					   char *buf)
301{
302	struct hv_device *hv_dev = device_to_hv_device(dev);
303
304	if (!hv_dev->channel)
305		return -ENODEV;
306	return sprintf(buf, "%d\n",
307		       channel_conn_id(hv_dev->channel,
308				       vmbus_connection.monitor_pages[0]));
309}
310static DEVICE_ATTR_RO(server_monitor_conn_id);
311
312static ssize_t client_monitor_conn_id_show(struct device *dev,
313					   struct device_attribute *dev_attr,
314					   char *buf)
315{
316	struct hv_device *hv_dev = device_to_hv_device(dev);
317
318	if (!hv_dev->channel)
319		return -ENODEV;
320	return sprintf(buf, "%d\n",
321		       channel_conn_id(hv_dev->channel,
322				       vmbus_connection.monitor_pages[1]));
323}
324static DEVICE_ATTR_RO(client_monitor_conn_id);
325
326static ssize_t out_intr_mask_show(struct device *dev,
327				  struct device_attribute *dev_attr, char *buf)
328{
329	struct hv_device *hv_dev = device_to_hv_device(dev);
330	struct hv_ring_buffer_debug_info outbound;
331	int ret;
332
333	if (!hv_dev->channel)
334		return -ENODEV;
335
336	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
337					  &outbound);
338	if (ret < 0)
339		return ret;
340
341	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
342}
343static DEVICE_ATTR_RO(out_intr_mask);
344
345static ssize_t out_read_index_show(struct device *dev,
346				   struct device_attribute *dev_attr, char *buf)
347{
348	struct hv_device *hv_dev = device_to_hv_device(dev);
349	struct hv_ring_buffer_debug_info outbound;
350	int ret;
351
352	if (!hv_dev->channel)
353		return -ENODEV;
354
355	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
356					  &outbound);
357	if (ret < 0)
358		return ret;
359	return sprintf(buf, "%d\n", outbound.current_read_index);
360}
361static DEVICE_ATTR_RO(out_read_index);
362
363static ssize_t out_write_index_show(struct device *dev,
364				    struct device_attribute *dev_attr,
365				    char *buf)
366{
367	struct hv_device *hv_dev = device_to_hv_device(dev);
368	struct hv_ring_buffer_debug_info outbound;
369	int ret;
370
371	if (!hv_dev->channel)
372		return -ENODEV;
373
374	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
375					  &outbound);
376	if (ret < 0)
377		return ret;
378	return sprintf(buf, "%d\n", outbound.current_write_index);
379}
380static DEVICE_ATTR_RO(out_write_index);
381
382static ssize_t out_read_bytes_avail_show(struct device *dev,
383					 struct device_attribute *dev_attr,
384					 char *buf)
385{
386	struct hv_device *hv_dev = device_to_hv_device(dev);
387	struct hv_ring_buffer_debug_info outbound;
388	int ret;
389
390	if (!hv_dev->channel)
391		return -ENODEV;
392
393	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
394					  &outbound);
395	if (ret < 0)
396		return ret;
397	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
398}
399static DEVICE_ATTR_RO(out_read_bytes_avail);
400
401static ssize_t out_write_bytes_avail_show(struct device *dev,
402					  struct device_attribute *dev_attr,
403					  char *buf)
404{
405	struct hv_device *hv_dev = device_to_hv_device(dev);
406	struct hv_ring_buffer_debug_info outbound;
407	int ret;
408
409	if (!hv_dev->channel)
410		return -ENODEV;
411
412	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
413					  &outbound);
414	if (ret < 0)
415		return ret;
416	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
417}
418static DEVICE_ATTR_RO(out_write_bytes_avail);
419
420static ssize_t in_intr_mask_show(struct device *dev,
421				 struct device_attribute *dev_attr, char *buf)
422{
423	struct hv_device *hv_dev = device_to_hv_device(dev);
424	struct hv_ring_buffer_debug_info inbound;
425	int ret;
426
427	if (!hv_dev->channel)
428		return -ENODEV;
429
430	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
431	if (ret < 0)
432		return ret;
433
434	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
435}
436static DEVICE_ATTR_RO(in_intr_mask);
437
438static ssize_t in_read_index_show(struct device *dev,
439				  struct device_attribute *dev_attr, char *buf)
440{
441	struct hv_device *hv_dev = device_to_hv_device(dev);
442	struct hv_ring_buffer_debug_info inbound;
443	int ret;
444
445	if (!hv_dev->channel)
446		return -ENODEV;
447
448	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
449	if (ret < 0)
450		return ret;
451
452	return sprintf(buf, "%d\n", inbound.current_read_index);
453}
454static DEVICE_ATTR_RO(in_read_index);
455
456static ssize_t in_write_index_show(struct device *dev,
457				   struct device_attribute *dev_attr, char *buf)
458{
459	struct hv_device *hv_dev = device_to_hv_device(dev);
460	struct hv_ring_buffer_debug_info inbound;
461	int ret;
462
463	if (!hv_dev->channel)
464		return -ENODEV;
465
466	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
467	if (ret < 0)
468		return ret;
469
470	return sprintf(buf, "%d\n", inbound.current_write_index);
471}
472static DEVICE_ATTR_RO(in_write_index);
473
474static ssize_t in_read_bytes_avail_show(struct device *dev,
475					struct device_attribute *dev_attr,
476					char *buf)
477{
478	struct hv_device *hv_dev = device_to_hv_device(dev);
479	struct hv_ring_buffer_debug_info inbound;
480	int ret;
481
482	if (!hv_dev->channel)
483		return -ENODEV;
484
485	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
486	if (ret < 0)
487		return ret;
488
489	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
490}
491static DEVICE_ATTR_RO(in_read_bytes_avail);
492
493static ssize_t in_write_bytes_avail_show(struct device *dev,
494					 struct device_attribute *dev_attr,
495					 char *buf)
496{
497	struct hv_device *hv_dev = device_to_hv_device(dev);
498	struct hv_ring_buffer_debug_info inbound;
499	int ret;
500
501	if (!hv_dev->channel)
502		return -ENODEV;
503
504	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
505	if (ret < 0)
506		return ret;
507
508	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
509}
510static DEVICE_ATTR_RO(in_write_bytes_avail);
511
512static ssize_t channel_vp_mapping_show(struct device *dev,
513				       struct device_attribute *dev_attr,
514				       char *buf)
515{
516	struct hv_device *hv_dev = device_to_hv_device(dev);
517	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
518	int buf_size = PAGE_SIZE, n_written, tot_written;
519	struct list_head *cur;
520
521	if (!channel)
522		return -ENODEV;
523
524	mutex_lock(&vmbus_connection.channel_mutex);
525
526	tot_written = snprintf(buf, buf_size, "%u:%u\n",
527		channel->offermsg.child_relid, channel->target_cpu);
528
529	list_for_each(cur, &channel->sc_list) {
530		if (tot_written >= buf_size - 1)
531			break;
532
533		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
534		n_written = scnprintf(buf + tot_written,
535				     buf_size - tot_written,
536				     "%u:%u\n",
537				     cur_sc->offermsg.child_relid,
538				     cur_sc->target_cpu);
539		tot_written += n_written;
540	}
541
542	mutex_unlock(&vmbus_connection.channel_mutex);
543
544	return tot_written;
545}
546static DEVICE_ATTR_RO(channel_vp_mapping);
547
548static ssize_t vendor_show(struct device *dev,
549			   struct device_attribute *dev_attr,
550			   char *buf)
551{
552	struct hv_device *hv_dev = device_to_hv_device(dev);
553	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
554}
555static DEVICE_ATTR_RO(vendor);
556
557static ssize_t device_show(struct device *dev,
558			   struct device_attribute *dev_attr,
559			   char *buf)
560{
561	struct hv_device *hv_dev = device_to_hv_device(dev);
562	return sprintf(buf, "0x%x\n", hv_dev->device_id);
563}
564static DEVICE_ATTR_RO(device);
565
566static ssize_t driver_override_store(struct device *dev,
567				     struct device_attribute *attr,
568				     const char *buf, size_t count)
569{
570	struct hv_device *hv_dev = device_to_hv_device(dev);
571	char *driver_override, *old, *cp;
572
573	/* We need to keep extra room for a newline */
574	if (count >= (PAGE_SIZE - 1))
575		return -EINVAL;
576
577	driver_override = kstrndup(buf, count, GFP_KERNEL);
578	if (!driver_override)
579		return -ENOMEM;
580
581	cp = strchr(driver_override, '\n');
582	if (cp)
583		*cp = '\0';
584
585	device_lock(dev);
586	old = hv_dev->driver_override;
587	if (strlen(driver_override)) {
588		hv_dev->driver_override = driver_override;
589	} else {
590		kfree(driver_override);
591		hv_dev->driver_override = NULL;
592	}
593	device_unlock(dev);
594
595	kfree(old);
596
597	return count;
598}
599
600static ssize_t driver_override_show(struct device *dev,
601				    struct device_attribute *attr, char *buf)
602{
603	struct hv_device *hv_dev = device_to_hv_device(dev);
604	ssize_t len;
605
606	device_lock(dev);
607	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
608	device_unlock(dev);
609
610	return len;
611}
612static DEVICE_ATTR_RW(driver_override);
613
614/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
615static struct attribute *vmbus_dev_attrs[] = {
616	&dev_attr_id.attr,
617	&dev_attr_state.attr,
618	&dev_attr_monitor_id.attr,
619	&dev_attr_class_id.attr,
620	&dev_attr_device_id.attr,
621	&dev_attr_modalias.attr,
622#ifdef CONFIG_NUMA
623	&dev_attr_numa_node.attr,
624#endif
625	&dev_attr_server_monitor_pending.attr,
626	&dev_attr_client_monitor_pending.attr,
627	&dev_attr_server_monitor_latency.attr,
628	&dev_attr_client_monitor_latency.attr,
629	&dev_attr_server_monitor_conn_id.attr,
630	&dev_attr_client_monitor_conn_id.attr,
631	&dev_attr_out_intr_mask.attr,
632	&dev_attr_out_read_index.attr,
633	&dev_attr_out_write_index.attr,
634	&dev_attr_out_read_bytes_avail.attr,
635	&dev_attr_out_write_bytes_avail.attr,
636	&dev_attr_in_intr_mask.attr,
637	&dev_attr_in_read_index.attr,
638	&dev_attr_in_write_index.attr,
639	&dev_attr_in_read_bytes_avail.attr,
640	&dev_attr_in_write_bytes_avail.attr,
641	&dev_attr_channel_vp_mapping.attr,
642	&dev_attr_vendor.attr,
643	&dev_attr_device.attr,
644	&dev_attr_driver_override.attr,
645	NULL,
646};
647
648/*
649 * Device-level attribute_group callback function. Returns the permission for
650 * each attribute, and returns 0 if an attribute is not visible.
651 */
652static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
653					 struct attribute *attr, int idx)
654{
655	struct device *dev = kobj_to_dev(kobj);
656	const struct hv_device *hv_dev = device_to_hv_device(dev);
657
658	/* Hide the monitor attributes if the monitor mechanism is not used. */
659	if (!hv_dev->channel->offermsg.monitor_allocated &&
660	    (attr == &dev_attr_monitor_id.attr ||
661	     attr == &dev_attr_server_monitor_pending.attr ||
662	     attr == &dev_attr_client_monitor_pending.attr ||
663	     attr == &dev_attr_server_monitor_latency.attr ||
664	     attr == &dev_attr_client_monitor_latency.attr ||
665	     attr == &dev_attr_server_monitor_conn_id.attr ||
666	     attr == &dev_attr_client_monitor_conn_id.attr))
667		return 0;
668
669	return attr->mode;
670}
671
672static const struct attribute_group vmbus_dev_group = {
673	.attrs = vmbus_dev_attrs,
674	.is_visible = vmbus_dev_attr_is_visible
675};
676__ATTRIBUTE_GROUPS(vmbus_dev);
677
678/*
679 * vmbus_uevent - add uevent for our device
680 *
681 * This routine is invoked when a device is added or removed on the vmbus to
682 * generate a uevent to udev in the userspace. The udev will then look at its
683 * rule and the uevent generated here to load the appropriate driver
684 *
685 * The alias string will be of the form vmbus:guid where guid is the string
686 * representation of the device guid (each byte of the guid will be
687 * represented with two hex characters.
688 */
689static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
690{
691	struct hv_device *dev = device_to_hv_device(device);
692	const char *format = "MODALIAS=vmbus:%*phN";
693
694	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
695}
696
697static const struct hv_vmbus_device_id *
698hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
699{
700	if (id == NULL)
701		return NULL; /* empty device table */
702
703	for (; !guid_is_null(&id->guid); id++)
704		if (guid_equal(&id->guid, guid))
705			return id;
706
707	return NULL;
708}
709
710static const struct hv_vmbus_device_id *
711hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
712{
713	const struct hv_vmbus_device_id *id = NULL;
714	struct vmbus_dynid *dynid;
715
716	spin_lock(&drv->dynids.lock);
717	list_for_each_entry(dynid, &drv->dynids.list, node) {
718		if (guid_equal(&dynid->id.guid, guid)) {
719			id = &dynid->id;
720			break;
721		}
722	}
723	spin_unlock(&drv->dynids.lock);
724
725	return id;
726}
727
728static const struct hv_vmbus_device_id vmbus_device_null;
729
730/*
731 * Return a matching hv_vmbus_device_id pointer.
732 * If there is no match, return NULL.
733 */
734static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
735							struct hv_device *dev)
736{
737	const guid_t *guid = &dev->dev_type;
738	const struct hv_vmbus_device_id *id;
739
740	/* When driver_override is set, only bind to the matching driver */
741	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
742		return NULL;
743
744	/* Look at the dynamic ids first, before the static ones */
745	id = hv_vmbus_dynid_match(drv, guid);
746	if (!id)
747		id = hv_vmbus_dev_match(drv->id_table, guid);
748
749	/* driver_override will always match, send a dummy id */
750	if (!id && dev->driver_override)
751		id = &vmbus_device_null;
752
753	return id;
754}
755
756/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
757static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
758{
759	struct vmbus_dynid *dynid;
760
761	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
762	if (!dynid)
763		return -ENOMEM;
764
765	dynid->id.guid = *guid;
766
767	spin_lock(&drv->dynids.lock);
768	list_add_tail(&dynid->node, &drv->dynids.list);
769	spin_unlock(&drv->dynids.lock);
770
771	return driver_attach(&drv->driver);
772}
773
774static void vmbus_free_dynids(struct hv_driver *drv)
775{
776	struct vmbus_dynid *dynid, *n;
777
778	spin_lock(&drv->dynids.lock);
779	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
780		list_del(&dynid->node);
781		kfree(dynid);
782	}
783	spin_unlock(&drv->dynids.lock);
784}
785
786/*
787 * store_new_id - sysfs frontend to vmbus_add_dynid()
788 *
789 * Allow GUIDs to be added to an existing driver via sysfs.
790 */
791static ssize_t new_id_store(struct device_driver *driver, const char *buf,
792			    size_t count)
793{
794	struct hv_driver *drv = drv_to_hv_drv(driver);
795	guid_t guid;
796	ssize_t retval;
797
798	retval = guid_parse(buf, &guid);
799	if (retval)
800		return retval;
801
802	if (hv_vmbus_dynid_match(drv, &guid))
803		return -EEXIST;
804
805	retval = vmbus_add_dynid(drv, &guid);
806	if (retval)
807		return retval;
808	return count;
809}
810static DRIVER_ATTR_WO(new_id);
811
812/*
813 * store_remove_id - remove a PCI device ID from this driver
814 *
815 * Removes a dynamic pci device ID to this driver.
816 */
817static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
818			       size_t count)
819{
820	struct hv_driver *drv = drv_to_hv_drv(driver);
821	struct vmbus_dynid *dynid, *n;
822	guid_t guid;
823	ssize_t retval;
824
825	retval = guid_parse(buf, &guid);
826	if (retval)
827		return retval;
828
829	retval = -ENODEV;
830	spin_lock(&drv->dynids.lock);
831	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
832		struct hv_vmbus_device_id *id = &dynid->id;
833
834		if (guid_equal(&id->guid, &guid)) {
835			list_del(&dynid->node);
836			kfree(dynid);
837			retval = count;
838			break;
839		}
840	}
841	spin_unlock(&drv->dynids.lock);
842
843	return retval;
844}
845static DRIVER_ATTR_WO(remove_id);
846
847static struct attribute *vmbus_drv_attrs[] = {
848	&driver_attr_new_id.attr,
849	&driver_attr_remove_id.attr,
850	NULL,
851};
852ATTRIBUTE_GROUPS(vmbus_drv);
853
854
855/*
856 * vmbus_match - Attempt to match the specified device to the specified driver
857 */
858static int vmbus_match(struct device *device, struct device_driver *driver)
859{
860	struct hv_driver *drv = drv_to_hv_drv(driver);
861	struct hv_device *hv_dev = device_to_hv_device(device);
862
863	/* The hv_sock driver handles all hv_sock offers. */
864	if (is_hvsock_channel(hv_dev->channel))
865		return drv->hvsock;
866
867	if (hv_vmbus_get_id(drv, hv_dev))
868		return 1;
869
870	return 0;
871}
872
873/*
874 * vmbus_probe - Add the new vmbus's child device
875 */
876static int vmbus_probe(struct device *child_device)
877{
878	int ret = 0;
879	struct hv_driver *drv =
880			drv_to_hv_drv(child_device->driver);
881	struct hv_device *dev = device_to_hv_device(child_device);
882	const struct hv_vmbus_device_id *dev_id;
883
884	dev_id = hv_vmbus_get_id(drv, dev);
885	if (drv->probe) {
886		ret = drv->probe(dev, dev_id);
887		if (ret != 0)
888			pr_err("probe failed for device %s (%d)\n",
889			       dev_name(child_device), ret);
890
891	} else {
892		pr_err("probe not set for driver %s\n",
893		       dev_name(child_device));
894		ret = -ENODEV;
895	}
896	return ret;
897}
898
899/*
900 * vmbus_remove - Remove a vmbus device
901 */
902static int vmbus_remove(struct device *child_device)
903{
904	struct hv_driver *drv;
905	struct hv_device *dev = device_to_hv_device(child_device);
906
907	if (child_device->driver) {
908		drv = drv_to_hv_drv(child_device->driver);
909		if (drv->remove)
910			drv->remove(dev);
911	}
912
913	return 0;
914}
915
916
917/*
918 * vmbus_shutdown - Shutdown a vmbus device
919 */
920static void vmbus_shutdown(struct device *child_device)
921{
922	struct hv_driver *drv;
923	struct hv_device *dev = device_to_hv_device(child_device);
924
925
926	/* The device may not be attached yet */
927	if (!child_device->driver)
928		return;
929
930	drv = drv_to_hv_drv(child_device->driver);
931
932	if (drv->shutdown)
933		drv->shutdown(dev);
934}
935
936#ifdef CONFIG_PM_SLEEP
937/*
938 * vmbus_suspend - Suspend a vmbus device
939 */
940static int vmbus_suspend(struct device *child_device)
941{
942	struct hv_driver *drv;
943	struct hv_device *dev = device_to_hv_device(child_device);
944
945	/* The device may not be attached yet */
946	if (!child_device->driver)
947		return 0;
948
949	drv = drv_to_hv_drv(child_device->driver);
950	if (!drv->suspend)
951		return -EOPNOTSUPP;
952
953	return drv->suspend(dev);
954}
955
956/*
957 * vmbus_resume - Resume a vmbus device
958 */
959static int vmbus_resume(struct device *child_device)
960{
961	struct hv_driver *drv;
962	struct hv_device *dev = device_to_hv_device(child_device);
963
964	/* The device may not be attached yet */
965	if (!child_device->driver)
966		return 0;
967
968	drv = drv_to_hv_drv(child_device->driver);
969	if (!drv->resume)
970		return -EOPNOTSUPP;
971
972	return drv->resume(dev);
973}
974#else
975#define vmbus_suspend NULL
976#define vmbus_resume NULL
977#endif /* CONFIG_PM_SLEEP */
978
979/*
980 * vmbus_device_release - Final callback release of the vmbus child device
981 */
982static void vmbus_device_release(struct device *device)
983{
984	struct hv_device *hv_dev = device_to_hv_device(device);
985	struct vmbus_channel *channel = hv_dev->channel;
986
987	hv_debug_rm_dev_dir(hv_dev);
988
989	mutex_lock(&vmbus_connection.channel_mutex);
990	hv_process_channel_removal(channel);
991	mutex_unlock(&vmbus_connection.channel_mutex);
992	kfree(hv_dev);
993}
994
995/*
996 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
997 *
998 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
999 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1000 * is no way to wake up a Generation-2 VM.
1001 *
1002 * The other 4 ops are for hibernation.
1003 */
1004
1005static const struct dev_pm_ops vmbus_pm = {
1006	.suspend_noirq	= NULL,
1007	.resume_noirq	= NULL,
1008	.freeze_noirq	= vmbus_suspend,
1009	.thaw_noirq	= vmbus_resume,
1010	.poweroff_noirq	= vmbus_suspend,
1011	.restore_noirq	= vmbus_resume,
1012};
1013
1014/* The one and only one */
1015static struct bus_type  hv_bus = {
1016	.name =		"vmbus",
1017	.match =		vmbus_match,
1018	.shutdown =		vmbus_shutdown,
1019	.remove =		vmbus_remove,
1020	.probe =		vmbus_probe,
1021	.uevent =		vmbus_uevent,
1022	.dev_groups =		vmbus_dev_groups,
1023	.drv_groups =		vmbus_drv_groups,
1024	.pm =			&vmbus_pm,
1025};
1026
1027struct onmessage_work_context {
1028	struct work_struct work;
1029	struct {
1030		struct hv_message_header header;
1031		u8 payload[];
1032	} msg;
1033};
1034
1035static void vmbus_onmessage_work(struct work_struct *work)
1036{
1037	struct onmessage_work_context *ctx;
1038
1039	/* Do not process messages if we're in DISCONNECTED state */
1040	if (vmbus_connection.conn_state == DISCONNECTED)
1041		return;
1042
1043	ctx = container_of(work, struct onmessage_work_context,
1044			   work);
1045	vmbus_onmessage((struct vmbus_channel_message_header *)
1046			&ctx->msg.payload);
1047	kfree(ctx);
1048}
1049
1050void vmbus_on_msg_dpc(unsigned long data)
1051{
1052	struct hv_per_cpu_context *hv_cpu = (void *)data;
1053	void *page_addr = hv_cpu->synic_message_page;
1054	struct hv_message *msg = (struct hv_message *)page_addr +
1055				  VMBUS_MESSAGE_SINT;
1056	struct vmbus_channel_message_header *hdr;
1057	const struct vmbus_channel_message_table_entry *entry;
1058	struct onmessage_work_context *ctx;
1059	u32 message_type = msg->header.message_type;
1060
1061	/*
1062	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1063	 * it is being used in 'struct vmbus_channel_message_header' definition
1064	 * which is supposed to match hypervisor ABI.
1065	 */
1066	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1067
1068	if (message_type == HVMSG_NONE)
1069		/* no msg */
1070		return;
1071
1072	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1073
1074	trace_vmbus_on_msg_dpc(hdr);
1075
1076	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1077		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1078		goto msg_handled;
1079	}
1080
1081	if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1082		WARN_ONCE(1, "payload size is too large (%d)\n",
1083			  msg->header.payload_size);
1084		goto msg_handled;
1085	}
1086
1087	entry = &channel_message_table[hdr->msgtype];
1088
1089	if (!entry->message_handler)
1090		goto msg_handled;
1091
1092	if (msg->header.payload_size < entry->min_payload_len) {
1093		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1094			  hdr->msgtype, msg->header.payload_size);
1095		goto msg_handled;
1096	}
1097
1098	if (entry->handler_type	== VMHT_BLOCKING) {
1099		ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1100			      GFP_ATOMIC);
1101		if (ctx == NULL)
1102			return;
1103
1104		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1105		memcpy(&ctx->msg, msg, sizeof(msg->header) +
1106		       msg->header.payload_size);
1107
1108		/*
1109		 * The host can generate a rescind message while we
1110		 * may still be handling the original offer. We deal with
1111		 * this condition by relying on the synchronization provided
1112		 * by offer_in_progress and by channel_mutex.  See also the
1113		 * inline comments in vmbus_onoffer_rescind().
1114		 */
1115		switch (hdr->msgtype) {
1116		case CHANNELMSG_RESCIND_CHANNELOFFER:
1117			/*
1118			 * If we are handling the rescind message;
1119			 * schedule the work on the global work queue.
1120			 *
1121			 * The OFFER message and the RESCIND message should
1122			 * not be handled by the same serialized work queue,
1123			 * because the OFFER handler may call vmbus_open(),
1124			 * which tries to open the channel by sending an
1125			 * OPEN_CHANNEL message to the host and waits for
1126			 * the host's response; however, if the host has
1127			 * rescinded the channel before it receives the
1128			 * OPEN_CHANNEL message, the host just silently
1129			 * ignores the OPEN_CHANNEL message; as a result,
1130			 * the guest's OFFER handler hangs for ever, if we
1131			 * handle the RESCIND message in the same serialized
1132			 * work queue: the RESCIND handler can not start to
1133			 * run before the OFFER handler finishes.
1134			 */
1135			schedule_work(&ctx->work);
1136			break;
1137
1138		case CHANNELMSG_OFFERCHANNEL:
1139			/*
1140			 * The host sends the offer message of a given channel
1141			 * before sending the rescind message of the same
1142			 * channel.  These messages are sent to the guest's
1143			 * connect CPU; the guest then starts processing them
1144			 * in the tasklet handler on this CPU:
1145			 *
1146			 * VMBUS_CONNECT_CPU
1147			 *
1148			 * [vmbus_on_msg_dpc()]
1149			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
1150			 * queue_work()
1151			 * ...
1152			 * [vmbus_on_msg_dpc()]
1153			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
1154			 *
1155			 * We rely on the memory-ordering properties of the
1156			 * queue_work() and schedule_work() primitives, which
1157			 * guarantee that the atomic increment will be visible
1158			 * to the CPUs which will execute the offer & rescind
1159			 * works by the time these works will start execution.
1160			 */
1161			atomic_inc(&vmbus_connection.offer_in_progress);
1162			fallthrough;
1163
1164		default:
1165			queue_work(vmbus_connection.work_queue, &ctx->work);
1166		}
1167	} else
1168		entry->message_handler(hdr);
1169
1170msg_handled:
1171	vmbus_signal_eom(msg, message_type);
1172}
1173
1174#ifdef CONFIG_PM_SLEEP
1175/*
1176 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1177 * hibernation, because hv_sock connections can not persist across hibernation.
1178 */
1179static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1180{
1181	struct onmessage_work_context *ctx;
1182	struct vmbus_channel_rescind_offer *rescind;
1183
1184	WARN_ON(!is_hvsock_channel(channel));
1185
1186	/*
1187	 * Allocation size is small and the allocation should really not fail,
1188	 * otherwise the state of the hv_sock connections ends up in limbo.
1189	 */
1190	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1191		      GFP_KERNEL | __GFP_NOFAIL);
1192
1193	/*
1194	 * So far, these are not really used by Linux. Just set them to the
1195	 * reasonable values conforming to the definitions of the fields.
1196	 */
1197	ctx->msg.header.message_type = 1;
1198	ctx->msg.header.payload_size = sizeof(*rescind);
1199
1200	/* These values are actually used by Linux. */
1201	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1202	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1203	rescind->child_relid = channel->offermsg.child_relid;
1204
1205	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1206
1207	queue_work(vmbus_connection.work_queue, &ctx->work);
1208}
1209#endif /* CONFIG_PM_SLEEP */
1210
1211/*
1212 * Schedule all channels with events pending
1213 */
1214static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1215{
1216	unsigned long *recv_int_page;
1217	u32 maxbits, relid;
1218
1219	if (vmbus_proto_version < VERSION_WIN8) {
1220		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1221		recv_int_page = vmbus_connection.recv_int_page;
1222	} else {
1223		/*
1224		 * When the host is win8 and beyond, the event page
1225		 * can be directly checked to get the id of the channel
1226		 * that has the interrupt pending.
1227		 */
1228		void *page_addr = hv_cpu->synic_event_page;
1229		union hv_synic_event_flags *event
1230			= (union hv_synic_event_flags *)page_addr +
1231						 VMBUS_MESSAGE_SINT;
1232
1233		maxbits = HV_EVENT_FLAGS_COUNT;
1234		recv_int_page = event->flags;
1235	}
1236
1237	if (unlikely(!recv_int_page))
1238		return;
1239
1240	for_each_set_bit(relid, recv_int_page, maxbits) {
1241		void (*callback_fn)(void *context);
1242		struct vmbus_channel *channel;
1243
1244		if (!sync_test_and_clear_bit(relid, recv_int_page))
1245			continue;
1246
1247		/* Special case - vmbus channel protocol msg */
1248		if (relid == 0)
1249			continue;
1250
1251		/*
1252		 * Pairs with the kfree_rcu() in vmbus_chan_release().
1253		 * Guarantees that the channel data structure doesn't
1254		 * get freed while the channel pointer below is being
1255		 * dereferenced.
1256		 */
1257		rcu_read_lock();
1258
1259		/* Find channel based on relid */
1260		channel = relid2channel(relid);
1261		if (channel == NULL)
1262			goto sched_unlock_rcu;
1263
1264		if (channel->rescind)
1265			goto sched_unlock_rcu;
1266
1267		/*
1268		 * Make sure that the ring buffer data structure doesn't get
1269		 * freed while we dereference the ring buffer pointer.  Test
1270		 * for the channel's onchannel_callback being NULL within a
1271		 * sched_lock critical section.  See also the inline comments
1272		 * in vmbus_reset_channel_cb().
1273		 */
1274		spin_lock(&channel->sched_lock);
1275
1276		callback_fn = channel->onchannel_callback;
1277		if (unlikely(callback_fn == NULL))
1278			goto sched_unlock;
1279
1280		trace_vmbus_chan_sched(channel);
1281
1282		++channel->interrupts;
1283
1284		switch (channel->callback_mode) {
1285		case HV_CALL_ISR:
1286			(*callback_fn)(channel->channel_callback_context);
1287			break;
1288
1289		case HV_CALL_BATCHED:
1290			hv_begin_read(&channel->inbound);
1291			fallthrough;
1292		case HV_CALL_DIRECT:
1293			tasklet_schedule(&channel->callback_event);
1294		}
1295
1296sched_unlock:
1297		spin_unlock(&channel->sched_lock);
1298sched_unlock_rcu:
1299		rcu_read_unlock();
1300	}
1301}
1302
1303static void vmbus_isr(void)
1304{
1305	struct hv_per_cpu_context *hv_cpu
1306		= this_cpu_ptr(hv_context.cpu_context);
1307	void *page_addr = hv_cpu->synic_event_page;
1308	struct hv_message *msg;
1309	union hv_synic_event_flags *event;
1310	bool handled = false;
1311
1312	if (unlikely(page_addr == NULL))
1313		return;
1314
1315	event = (union hv_synic_event_flags *)page_addr +
1316					 VMBUS_MESSAGE_SINT;
1317	/*
1318	 * Check for events before checking for messages. This is the order
1319	 * in which events and messages are checked in Windows guests on
1320	 * Hyper-V, and the Windows team suggested we do the same.
1321	 */
1322
1323	if ((vmbus_proto_version == VERSION_WS2008) ||
1324		(vmbus_proto_version == VERSION_WIN7)) {
1325
1326		/* Since we are a child, we only need to check bit 0 */
1327		if (sync_test_and_clear_bit(0, event->flags))
1328			handled = true;
1329	} else {
1330		/*
1331		 * Our host is win8 or above. The signaling mechanism
1332		 * has changed and we can directly look at the event page.
1333		 * If bit n is set then we have an interrup on the channel
1334		 * whose id is n.
1335		 */
1336		handled = true;
1337	}
1338
1339	if (handled)
1340		vmbus_chan_sched(hv_cpu);
1341
1342	page_addr = hv_cpu->synic_message_page;
1343	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1344
1345	/* Check if there are actual msgs to be processed */
1346	if (msg->header.message_type != HVMSG_NONE) {
1347		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1348			hv_stimer0_isr();
1349			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1350		} else
1351			tasklet_schedule(&hv_cpu->msg_dpc);
1352	}
1353
1354	add_interrupt_randomness(hv_get_vector());
1355}
1356
1357/*
1358 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1359 * buffer and call into Hyper-V to transfer the data.
1360 */
1361static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1362			 enum kmsg_dump_reason reason)
1363{
1364	size_t bytes_written;
1365	phys_addr_t panic_pa;
1366
1367	/* We are only interested in panics. */
1368	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1369		return;
1370
1371	panic_pa = virt_to_phys(hv_panic_page);
1372
1373	/*
1374	 * Write dump contents to the page. No need to synchronize; panic should
1375	 * be single-threaded.
1376	 */
1377	kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1378			     &bytes_written);
1379	if (bytes_written)
1380		hyperv_report_panic_msg(panic_pa, bytes_written);
1381}
1382
1383static struct kmsg_dumper hv_kmsg_dumper = {
1384	.dump = hv_kmsg_dump,
1385};
1386
1387static struct ctl_table_header *hv_ctl_table_hdr;
1388
1389/*
1390 * sysctl option to allow the user to control whether kmsg data should be
1391 * reported to Hyper-V on panic.
1392 */
1393static struct ctl_table hv_ctl_table[] = {
1394	{
1395		.procname       = "hyperv_record_panic_msg",
1396		.data           = &sysctl_record_panic_msg,
1397		.maxlen         = sizeof(int),
1398		.mode           = 0644,
1399		.proc_handler   = proc_dointvec_minmax,
1400		.extra1		= SYSCTL_ZERO,
1401		.extra2		= SYSCTL_ONE
1402	},
1403	{}
1404};
1405
1406static struct ctl_table hv_root_table[] = {
1407	{
1408		.procname	= "kernel",
1409		.mode		= 0555,
1410		.child		= hv_ctl_table
1411	},
1412	{}
1413};
1414
1415/*
1416 * vmbus_bus_init -Main vmbus driver initialization routine.
1417 *
1418 * Here, we
1419 *	- initialize the vmbus driver context
1420 *	- invoke the vmbus hv main init routine
1421 *	- retrieve the channel offers
1422 */
1423static int vmbus_bus_init(void)
1424{
1425	int ret;
1426
1427	ret = hv_init();
1428	if (ret != 0) {
1429		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1430		return ret;
1431	}
1432
1433	ret = bus_register(&hv_bus);
1434	if (ret)
1435		return ret;
1436
1437	ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr);
1438	if (ret)
1439		goto err_setup;
1440
1441	ret = hv_synic_alloc();
1442	if (ret)
1443		goto err_alloc;
1444
1445	/*
1446	 * Initialize the per-cpu interrupt state and stimer state.
1447	 * Then connect to the host.
1448	 */
1449	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1450				hv_synic_init, hv_synic_cleanup);
1451	if (ret < 0)
1452		goto err_cpuhp;
1453	hyperv_cpuhp_online = ret;
1454
1455	ret = vmbus_connect();
1456	if (ret)
1457		goto err_connect;
1458
1459	/*
1460	 * Only register if the crash MSRs are available
1461	 */
1462	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1463		u64 hyperv_crash_ctl;
1464		/*
1465		 * Sysctl registration is not fatal, since by default
1466		 * reporting is enabled.
1467		 */
1468		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1469		if (!hv_ctl_table_hdr)
1470			pr_err("Hyper-V: sysctl table register error");
1471
1472		/*
1473		 * Register for panic kmsg callback only if the right
1474		 * capability is supported by the hypervisor.
1475		 */
1476		hv_get_crash_ctl(hyperv_crash_ctl);
1477		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1478			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1479			if (hv_panic_page) {
1480				ret = kmsg_dump_register(&hv_kmsg_dumper);
1481				if (ret) {
1482					pr_err("Hyper-V: kmsg dump register "
1483						"error 0x%x\n", ret);
1484					hv_free_hyperv_page(
1485					    (unsigned long)hv_panic_page);
1486					hv_panic_page = NULL;
1487				}
1488			} else
1489				pr_err("Hyper-V: panic message page memory "
1490					"allocation failed");
1491		}
1492
1493		register_die_notifier(&hyperv_die_block);
1494	}
1495
1496	/*
1497	 * Always register the panic notifier because we need to unload
1498	 * the VMbus channel connection to prevent any VMbus
1499	 * activity after the VM panics.
1500	 */
1501	atomic_notifier_chain_register(&panic_notifier_list,
1502			       &hyperv_panic_block);
1503
1504	vmbus_request_offers();
1505
1506	return 0;
1507
1508err_connect:
1509	cpuhp_remove_state(hyperv_cpuhp_online);
1510err_cpuhp:
1511	hv_synic_free();
1512err_alloc:
1513	hv_remove_vmbus_irq();
1514err_setup:
1515	bus_unregister(&hv_bus);
1516	unregister_sysctl_table(hv_ctl_table_hdr);
1517	hv_ctl_table_hdr = NULL;
1518	return ret;
1519}
1520
1521/**
1522 * __vmbus_child_driver_register() - Register a vmbus's driver
1523 * @hv_driver: Pointer to driver structure you want to register
1524 * @owner: owner module of the drv
1525 * @mod_name: module name string
1526 *
1527 * Registers the given driver with Linux through the 'driver_register()' call
1528 * and sets up the hyper-v vmbus handling for this driver.
1529 * It will return the state of the 'driver_register()' call.
1530 *
1531 */
1532int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1533{
1534	int ret;
1535
1536	pr_info("registering driver %s\n", hv_driver->name);
1537
1538	ret = vmbus_exists();
1539	if (ret < 0)
1540		return ret;
1541
1542	hv_driver->driver.name = hv_driver->name;
1543	hv_driver->driver.owner = owner;
1544	hv_driver->driver.mod_name = mod_name;
1545	hv_driver->driver.bus = &hv_bus;
1546
1547	spin_lock_init(&hv_driver->dynids.lock);
1548	INIT_LIST_HEAD(&hv_driver->dynids.list);
1549
1550	ret = driver_register(&hv_driver->driver);
1551
1552	return ret;
1553}
1554EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1555
1556/**
1557 * vmbus_driver_unregister() - Unregister a vmbus's driver
1558 * @hv_driver: Pointer to driver structure you want to
1559 *             un-register
1560 *
1561 * Un-register the given driver that was previous registered with a call to
1562 * vmbus_driver_register()
1563 */
1564void vmbus_driver_unregister(struct hv_driver *hv_driver)
1565{
1566	pr_info("unregistering driver %s\n", hv_driver->name);
1567
1568	if (!vmbus_exists()) {
1569		driver_unregister(&hv_driver->driver);
1570		vmbus_free_dynids(hv_driver);
1571	}
1572}
1573EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1574
1575
1576/*
1577 * Called when last reference to channel is gone.
1578 */
1579static void vmbus_chan_release(struct kobject *kobj)
1580{
1581	struct vmbus_channel *channel
1582		= container_of(kobj, struct vmbus_channel, kobj);
1583
1584	kfree_rcu(channel, rcu);
1585}
1586
1587struct vmbus_chan_attribute {
1588	struct attribute attr;
1589	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1590	ssize_t (*store)(struct vmbus_channel *chan,
1591			 const char *buf, size_t count);
1592};
1593#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1594	struct vmbus_chan_attribute chan_attr_##_name \
1595		= __ATTR(_name, _mode, _show, _store)
1596#define VMBUS_CHAN_ATTR_RW(_name) \
1597	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1598#define VMBUS_CHAN_ATTR_RO(_name) \
1599	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1600#define VMBUS_CHAN_ATTR_WO(_name) \
1601	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1602
1603static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1604				    struct attribute *attr, char *buf)
1605{
1606	const struct vmbus_chan_attribute *attribute
1607		= container_of(attr, struct vmbus_chan_attribute, attr);
1608	struct vmbus_channel *chan
1609		= container_of(kobj, struct vmbus_channel, kobj);
1610
1611	if (!attribute->show)
1612		return -EIO;
1613
1614	return attribute->show(chan, buf);
1615}
1616
1617static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1618				     struct attribute *attr, const char *buf,
1619				     size_t count)
1620{
1621	const struct vmbus_chan_attribute *attribute
1622		= container_of(attr, struct vmbus_chan_attribute, attr);
1623	struct vmbus_channel *chan
1624		= container_of(kobj, struct vmbus_channel, kobj);
1625
1626	if (!attribute->store)
1627		return -EIO;
1628
1629	return attribute->store(chan, buf, count);
1630}
1631
1632static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1633	.show = vmbus_chan_attr_show,
1634	.store = vmbus_chan_attr_store,
1635};
1636
1637static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1638{
1639	struct hv_ring_buffer_info *rbi = &channel->outbound;
1640	ssize_t ret;
1641
1642	mutex_lock(&rbi->ring_buffer_mutex);
1643	if (!rbi->ring_buffer) {
1644		mutex_unlock(&rbi->ring_buffer_mutex);
1645		return -EINVAL;
1646	}
1647
1648	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1649	mutex_unlock(&rbi->ring_buffer_mutex);
1650	return ret;
1651}
1652static VMBUS_CHAN_ATTR_RO(out_mask);
1653
1654static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1655{
1656	struct hv_ring_buffer_info *rbi = &channel->inbound;
1657	ssize_t ret;
1658
1659	mutex_lock(&rbi->ring_buffer_mutex);
1660	if (!rbi->ring_buffer) {
1661		mutex_unlock(&rbi->ring_buffer_mutex);
1662		return -EINVAL;
1663	}
1664
1665	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1666	mutex_unlock(&rbi->ring_buffer_mutex);
1667	return ret;
1668}
1669static VMBUS_CHAN_ATTR_RO(in_mask);
1670
1671static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1672{
1673	struct hv_ring_buffer_info *rbi = &channel->inbound;
1674	ssize_t ret;
1675
1676	mutex_lock(&rbi->ring_buffer_mutex);
1677	if (!rbi->ring_buffer) {
1678		mutex_unlock(&rbi->ring_buffer_mutex);
1679		return -EINVAL;
1680	}
1681
1682	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1683	mutex_unlock(&rbi->ring_buffer_mutex);
1684	return ret;
1685}
1686static VMBUS_CHAN_ATTR_RO(read_avail);
1687
1688static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1689{
1690	struct hv_ring_buffer_info *rbi = &channel->outbound;
1691	ssize_t ret;
1692
1693	mutex_lock(&rbi->ring_buffer_mutex);
1694	if (!rbi->ring_buffer) {
1695		mutex_unlock(&rbi->ring_buffer_mutex);
1696		return -EINVAL;
1697	}
1698
1699	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1700	mutex_unlock(&rbi->ring_buffer_mutex);
1701	return ret;
1702}
1703static VMBUS_CHAN_ATTR_RO(write_avail);
1704
1705static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1706{
1707	return sprintf(buf, "%u\n", channel->target_cpu);
1708}
1709static ssize_t target_cpu_store(struct vmbus_channel *channel,
1710				const char *buf, size_t count)
1711{
1712	u32 target_cpu, origin_cpu;
1713	ssize_t ret = count;
1714
1715	if (vmbus_proto_version < VERSION_WIN10_V4_1)
1716		return -EIO;
1717
1718	if (sscanf(buf, "%uu", &target_cpu) != 1)
1719		return -EIO;
1720
1721	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
1722	if (target_cpu >= nr_cpumask_bits)
1723		return -EINVAL;
1724
1725	/* No CPUs should come up or down during this. */
1726	cpus_read_lock();
1727
1728	if (!cpu_online(target_cpu)) {
1729		cpus_read_unlock();
1730		return -EINVAL;
1731	}
1732
1733	/*
1734	 * Synchronizes target_cpu_store() and channel closure:
1735	 *
1736	 * { Initially: state = CHANNEL_OPENED }
1737	 *
1738	 * CPU1				CPU2
1739	 *
1740	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
1741	 *
1742	 * LOCK channel_mutex		LOCK channel_mutex
1743	 * LOAD r1 = state		LOAD r2 = state
1744	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
1745	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
1746	 *   [...]			  SEND CLOSECHANNEL
1747	 * UNLOCK channel_mutex		UNLOCK channel_mutex
1748	 *
1749	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1750	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1751	 *
1752	 * Note.  The host processes the channel messages "sequentially", in
1753	 * the order in which they are received on a per-partition basis.
1754	 */
1755	mutex_lock(&vmbus_connection.channel_mutex);
1756
1757	/*
1758	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1759	 * avoid sending the message and fail here for such channels.
1760	 */
1761	if (channel->state != CHANNEL_OPENED_STATE) {
1762		ret = -EIO;
1763		goto cpu_store_unlock;
1764	}
1765
1766	origin_cpu = channel->target_cpu;
1767	if (target_cpu == origin_cpu)
1768		goto cpu_store_unlock;
1769
1770	if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1771				     hv_cpu_number_to_vp_number(target_cpu))) {
1772		ret = -EIO;
1773		goto cpu_store_unlock;
1774	}
1775
1776	/*
1777	 * Warning.  At this point, there is *no* guarantee that the host will
1778	 * have successfully processed the vmbus_send_modifychannel() request.
1779	 * See the header comment of vmbus_send_modifychannel() for more info.
1780	 *
1781	 * Lags in the processing of the above vmbus_send_modifychannel() can
1782	 * result in missed interrupts if the "old" target CPU is taken offline
1783	 * before Hyper-V starts sending interrupts to the "new" target CPU.
1784	 * But apart from this offlining scenario, the code tolerates such
1785	 * lags.  It will function correctly even if a channel interrupt comes
1786	 * in on a CPU that is different from the channel target_cpu value.
1787	 */
1788
1789	channel->target_cpu = target_cpu;
1790
1791	/* See init_vp_index(). */
1792	if (hv_is_perf_channel(channel))
1793		hv_update_alloced_cpus(origin_cpu, target_cpu);
1794
1795	/* Currently set only for storvsc channels. */
1796	if (channel->change_target_cpu_callback) {
1797		(*channel->change_target_cpu_callback)(channel,
1798				origin_cpu, target_cpu);
1799	}
1800
1801cpu_store_unlock:
1802	mutex_unlock(&vmbus_connection.channel_mutex);
1803	cpus_read_unlock();
1804	return ret;
1805}
1806static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1807
1808static ssize_t channel_pending_show(struct vmbus_channel *channel,
1809				    char *buf)
1810{
1811	return sprintf(buf, "%d\n",
1812		       channel_pending(channel,
1813				       vmbus_connection.monitor_pages[1]));
1814}
1815static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1816
1817static ssize_t channel_latency_show(struct vmbus_channel *channel,
1818				    char *buf)
1819{
1820	return sprintf(buf, "%d\n",
1821		       channel_latency(channel,
1822				       vmbus_connection.monitor_pages[1]));
1823}
1824static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1825
1826static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1827{
1828	return sprintf(buf, "%llu\n", channel->interrupts);
1829}
1830static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1831
1832static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1833{
1834	return sprintf(buf, "%llu\n", channel->sig_events);
1835}
1836static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1837
1838static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1839					 char *buf)
1840{
1841	return sprintf(buf, "%llu\n",
1842		       (unsigned long long)channel->intr_in_full);
1843}
1844static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1845
1846static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1847					   char *buf)
1848{
1849	return sprintf(buf, "%llu\n",
1850		       (unsigned long long)channel->intr_out_empty);
1851}
1852static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1853
1854static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1855					   char *buf)
1856{
1857	return sprintf(buf, "%llu\n",
1858		       (unsigned long long)channel->out_full_first);
1859}
1860static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1861
1862static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1863					   char *buf)
1864{
1865	return sprintf(buf, "%llu\n",
1866		       (unsigned long long)channel->out_full_total);
1867}
1868static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1869
1870static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1871					  char *buf)
1872{
1873	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1874}
1875static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1876
1877static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1878				  char *buf)
1879{
1880	return sprintf(buf, "%u\n",
1881		       channel->offermsg.offer.sub_channel_index);
1882}
1883static VMBUS_CHAN_ATTR_RO(subchannel_id);
1884
1885static struct attribute *vmbus_chan_attrs[] = {
1886	&chan_attr_out_mask.attr,
1887	&chan_attr_in_mask.attr,
1888	&chan_attr_read_avail.attr,
1889	&chan_attr_write_avail.attr,
1890	&chan_attr_cpu.attr,
1891	&chan_attr_pending.attr,
1892	&chan_attr_latency.attr,
1893	&chan_attr_interrupts.attr,
1894	&chan_attr_events.attr,
1895	&chan_attr_intr_in_full.attr,
1896	&chan_attr_intr_out_empty.attr,
1897	&chan_attr_out_full_first.attr,
1898	&chan_attr_out_full_total.attr,
1899	&chan_attr_monitor_id.attr,
1900	&chan_attr_subchannel_id.attr,
1901	NULL
1902};
1903
1904/*
1905 * Channel-level attribute_group callback function. Returns the permission for
1906 * each attribute, and returns 0 if an attribute is not visible.
1907 */
1908static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1909					  struct attribute *attr, int idx)
1910{
1911	const struct vmbus_channel *channel =
1912		container_of(kobj, struct vmbus_channel, kobj);
1913
1914	/* Hide the monitor attributes if the monitor mechanism is not used. */
1915	if (!channel->offermsg.monitor_allocated &&
1916	    (attr == &chan_attr_pending.attr ||
1917	     attr == &chan_attr_latency.attr ||
1918	     attr == &chan_attr_monitor_id.attr))
1919		return 0;
1920
1921	return attr->mode;
1922}
1923
1924static struct attribute_group vmbus_chan_group = {
1925	.attrs = vmbus_chan_attrs,
1926	.is_visible = vmbus_chan_attr_is_visible
1927};
1928
1929static struct kobj_type vmbus_chan_ktype = {
1930	.sysfs_ops = &vmbus_chan_sysfs_ops,
1931	.release = vmbus_chan_release,
1932};
1933
1934/*
1935 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1936 */
1937int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1938{
1939	const struct device *device = &dev->device;
1940	struct kobject *kobj = &channel->kobj;
1941	u32 relid = channel->offermsg.child_relid;
1942	int ret;
1943
1944	kobj->kset = dev->channels_kset;
1945	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1946				   "%u", relid);
1947	if (ret) {
1948		kobject_put(kobj);
1949		return ret;
1950	}
1951
1952	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1953
1954	if (ret) {
1955		/*
1956		 * The calling functions' error handling paths will cleanup the
1957		 * empty channel directory.
1958		 */
1959		kobject_put(kobj);
1960		dev_err(device, "Unable to set up channel sysfs files\n");
1961		return ret;
1962	}
1963
1964	kobject_uevent(kobj, KOBJ_ADD);
1965
1966	return 0;
1967}
1968
1969/*
1970 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1971 */
1972void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1973{
1974	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1975}
1976
1977/*
1978 * vmbus_device_create - Creates and registers a new child device
1979 * on the vmbus.
1980 */
1981struct hv_device *vmbus_device_create(const guid_t *type,
1982				      const guid_t *instance,
1983				      struct vmbus_channel *channel)
1984{
1985	struct hv_device *child_device_obj;
1986
1987	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1988	if (!child_device_obj) {
1989		pr_err("Unable to allocate device object for child device\n");
1990		return NULL;
1991	}
1992
1993	child_device_obj->channel = channel;
1994	guid_copy(&child_device_obj->dev_type, type);
1995	guid_copy(&child_device_obj->dev_instance, instance);
1996	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1997
1998	return child_device_obj;
1999}
2000
2001/*
2002 * vmbus_device_register - Register the child device
2003 */
2004int vmbus_device_register(struct hv_device *child_device_obj)
2005{
2006	struct kobject *kobj = &child_device_obj->device.kobj;
2007	int ret;
2008
2009	dev_set_name(&child_device_obj->device, "%pUl",
2010		     &child_device_obj->channel->offermsg.offer.if_instance);
2011
2012	child_device_obj->device.bus = &hv_bus;
2013	child_device_obj->device.parent = &hv_acpi_dev->dev;
2014	child_device_obj->device.release = vmbus_device_release;
2015
2016	/*
2017	 * Register with the LDM. This will kick off the driver/device
2018	 * binding...which will eventually call vmbus_match() and vmbus_probe()
2019	 */
2020	ret = device_register(&child_device_obj->device);
2021	if (ret) {
2022		pr_err("Unable to register child device\n");
2023		put_device(&child_device_obj->device);
2024		return ret;
2025	}
2026
2027	child_device_obj->channels_kset = kset_create_and_add("channels",
2028							      NULL, kobj);
2029	if (!child_device_obj->channels_kset) {
2030		ret = -ENOMEM;
2031		goto err_dev_unregister;
2032	}
2033
2034	ret = vmbus_add_channel_kobj(child_device_obj,
2035				     child_device_obj->channel);
2036	if (ret) {
2037		pr_err("Unable to register primary channeln");
2038		goto err_kset_unregister;
2039	}
2040	hv_debug_add_dev_dir(child_device_obj);
2041
2042	return 0;
2043
2044err_kset_unregister:
2045	kset_unregister(child_device_obj->channels_kset);
2046
2047err_dev_unregister:
2048	device_unregister(&child_device_obj->device);
2049	return ret;
2050}
2051
2052/*
2053 * vmbus_device_unregister - Remove the specified child device
2054 * from the vmbus.
2055 */
2056void vmbus_device_unregister(struct hv_device *device_obj)
2057{
2058	pr_debug("child device %s unregistered\n",
2059		dev_name(&device_obj->device));
2060
2061	kset_unregister(device_obj->channels_kset);
2062
2063	/*
2064	 * Kick off the process of unregistering the device.
2065	 * This will call vmbus_remove() and eventually vmbus_device_release()
2066	 */
2067	device_unregister(&device_obj->device);
2068}
2069
2070
2071/*
2072 * VMBUS is an acpi enumerated device. Get the information we
2073 * need from DSDT.
2074 */
2075#define VTPM_BASE_ADDRESS 0xfed40000
2076static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2077{
2078	resource_size_t start = 0;
2079	resource_size_t end = 0;
2080	struct resource *new_res;
2081	struct resource **old_res = &hyperv_mmio;
2082	struct resource **prev_res = NULL;
2083	struct resource r;
2084
2085	switch (res->type) {
2086
2087	/*
2088	 * "Address" descriptors are for bus windows. Ignore
2089	 * "memory" descriptors, which are for registers on
2090	 * devices.
2091	 */
2092	case ACPI_RESOURCE_TYPE_ADDRESS32:
2093		start = res->data.address32.address.minimum;
2094		end = res->data.address32.address.maximum;
2095		break;
2096
2097	case ACPI_RESOURCE_TYPE_ADDRESS64:
2098		start = res->data.address64.address.minimum;
2099		end = res->data.address64.address.maximum;
2100		break;
2101
2102	/*
2103	 * The IRQ information is needed only on ARM64, which Hyper-V
2104	 * sets up in the extended format. IRQ information is present
2105	 * on x86/x64 in the non-extended format but it is not used by
2106	 * Linux. So don't bother checking for the non-extended format.
2107	 */
2108	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2109		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2110			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2111			return AE_ERROR;
2112		}
2113		/* ARM64 INTID for VMbus */
2114		vmbus_interrupt = res->data.extended_irq.interrupts[0];
2115		/* Linux IRQ number */
2116		vmbus_irq = r.start;
2117		return AE_OK;
2118
2119	default:
2120		/* Unused resource type */
2121		return AE_OK;
2122
2123	}
2124	/*
2125	 * Ignore ranges that are below 1MB, as they're not
2126	 * necessary or useful here.
2127	 */
2128	if (end < 0x100000)
2129		return AE_OK;
2130
2131	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2132	if (!new_res)
2133		return AE_NO_MEMORY;
2134
2135	/* If this range overlaps the virtual TPM, truncate it. */
2136	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2137		end = VTPM_BASE_ADDRESS;
2138
2139	new_res->name = "hyperv mmio";
2140	new_res->flags = IORESOURCE_MEM;
2141	new_res->start = start;
2142	new_res->end = end;
2143
2144	/*
2145	 * If two ranges are adjacent, merge them.
2146	 */
2147	do {
2148		if (!*old_res) {
2149			*old_res = new_res;
2150			break;
2151		}
2152
2153		if (((*old_res)->end + 1) == new_res->start) {
2154			(*old_res)->end = new_res->end;
2155			kfree(new_res);
2156			break;
2157		}
2158
2159		if ((*old_res)->start == new_res->end + 1) {
2160			(*old_res)->start = new_res->start;
2161			kfree(new_res);
2162			break;
2163		}
2164
2165		if ((*old_res)->start > new_res->end) {
2166			new_res->sibling = *old_res;
2167			if (prev_res)
2168				(*prev_res)->sibling = new_res;
2169			*old_res = new_res;
2170			break;
2171		}
2172
2173		prev_res = old_res;
2174		old_res = &(*old_res)->sibling;
2175
2176	} while (1);
2177
2178	return AE_OK;
2179}
2180
2181static int vmbus_acpi_remove(struct acpi_device *device)
2182{
2183	struct resource *cur_res;
2184	struct resource *next_res;
2185
2186	if (hyperv_mmio) {
2187		if (fb_mmio) {
2188			__release_region(hyperv_mmio, fb_mmio->start,
2189					 resource_size(fb_mmio));
2190			fb_mmio = NULL;
2191		}
2192
2193		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2194			next_res = cur_res->sibling;
2195			kfree(cur_res);
2196		}
2197	}
2198
2199	return 0;
2200}
2201
2202static void vmbus_reserve_fb(void)
2203{
2204	int size;
2205	/*
2206	 * Make a claim for the frame buffer in the resource tree under the
2207	 * first node, which will be the one below 4GB.  The length seems to
2208	 * be underreported, particularly in a Generation 1 VM.  So start out
2209	 * reserving a larger area and make it smaller until it succeeds.
2210	 */
2211
2212	if (screen_info.lfb_base) {
2213		if (efi_enabled(EFI_BOOT))
2214			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2215		else
2216			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2217
2218		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2219			fb_mmio = __request_region(hyperv_mmio,
2220						   screen_info.lfb_base, size,
2221						   fb_mmio_name, 0);
2222		}
2223	}
2224}
2225
2226/**
2227 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2228 * @new:		If successful, supplied a pointer to the
2229 *			allocated MMIO space.
2230 * @device_obj:		Identifies the caller
2231 * @min:		Minimum guest physical address of the
2232 *			allocation
2233 * @max:		Maximum guest physical address
2234 * @size:		Size of the range to be allocated
2235 * @align:		Alignment of the range to be allocated
2236 * @fb_overlap_ok:	Whether this allocation can be allowed
2237 *			to overlap the video frame buffer.
2238 *
2239 * This function walks the resources granted to VMBus by the
2240 * _CRS object in the ACPI namespace underneath the parent
2241 * "bridge" whether that's a root PCI bus in the Generation 1
2242 * case or a Module Device in the Generation 2 case.  It then
2243 * attempts to allocate from the global MMIO pool in a way that
2244 * matches the constraints supplied in these parameters and by
2245 * that _CRS.
2246 *
2247 * Return: 0 on success, -errno on failure
2248 */
2249int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2250			resource_size_t min, resource_size_t max,
2251			resource_size_t size, resource_size_t align,
2252			bool fb_overlap_ok)
2253{
2254	struct resource *iter, *shadow;
2255	resource_size_t range_min, range_max, start, end;
2256	const char *dev_n = dev_name(&device_obj->device);
2257	int retval;
2258
2259	retval = -ENXIO;
2260	mutex_lock(&hyperv_mmio_lock);
2261
2262	/*
2263	 * If overlaps with frame buffers are allowed, then first attempt to
2264	 * make the allocation from within the reserved region.  Because it
2265	 * is already reserved, no shadow allocation is necessary.
2266	 */
2267	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2268	    !(max < fb_mmio->start)) {
2269
2270		range_min = fb_mmio->start;
2271		range_max = fb_mmio->end;
2272		start = (range_min + align - 1) & ~(align - 1);
2273		for (; start + size - 1 <= range_max; start += align) {
2274			*new = request_mem_region_exclusive(start, size, dev_n);
2275			if (*new) {
2276				retval = 0;
2277				goto exit;
2278			}
2279		}
2280	}
2281
2282	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2283		if ((iter->start >= max) || (iter->end <= min))
2284			continue;
2285
2286		range_min = iter->start;
2287		range_max = iter->end;
2288		start = (range_min + align - 1) & ~(align - 1);
2289		for (; start + size - 1 <= range_max; start += align) {
2290			end = start + size - 1;
2291
2292			/* Skip the whole fb_mmio region if not fb_overlap_ok */
2293			if (!fb_overlap_ok && fb_mmio &&
2294			    (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2295			     ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2296				continue;
2297
2298			shadow = __request_region(iter, start, size, NULL,
2299						  IORESOURCE_BUSY);
2300			if (!shadow)
2301				continue;
2302
2303			*new = request_mem_region_exclusive(start, size, dev_n);
2304			if (*new) {
2305				shadow->name = (char *)*new;
2306				retval = 0;
2307				goto exit;
2308			}
2309
2310			__release_region(iter, start, size);
2311		}
2312	}
2313
2314exit:
2315	mutex_unlock(&hyperv_mmio_lock);
2316	return retval;
2317}
2318EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2319
2320/**
2321 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2322 * @start:		Base address of region to release.
2323 * @size:		Size of the range to be allocated
2324 *
2325 * This function releases anything requested by
2326 * vmbus_mmio_allocate().
2327 */
2328void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2329{
2330	struct resource *iter;
2331
2332	mutex_lock(&hyperv_mmio_lock);
2333	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2334		if ((iter->start >= start + size) || (iter->end <= start))
2335			continue;
2336
2337		__release_region(iter, start, size);
2338	}
2339	release_mem_region(start, size);
2340	mutex_unlock(&hyperv_mmio_lock);
2341
2342}
2343EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2344
2345static int vmbus_acpi_add(struct acpi_device *device)
2346{
2347	acpi_status result;
2348	int ret_val = -ENODEV;
2349	struct acpi_device *ancestor;
2350
2351	hv_acpi_dev = device;
2352
2353	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2354					vmbus_walk_resources, NULL);
2355
2356	if (ACPI_FAILURE(result))
2357		goto acpi_walk_err;
2358	/*
2359	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2360	 * firmware) is the VMOD that has the mmio ranges. Get that.
2361	 */
2362	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2363		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2364					     vmbus_walk_resources, NULL);
2365
2366		if (ACPI_FAILURE(result))
2367			continue;
2368		if (hyperv_mmio) {
2369			vmbus_reserve_fb();
2370			break;
2371		}
2372	}
2373	ret_val = 0;
2374
2375acpi_walk_err:
2376	complete(&probe_event);
2377	if (ret_val)
2378		vmbus_acpi_remove(device);
2379	return ret_val;
2380}
2381
2382#ifdef CONFIG_PM_SLEEP
2383static int vmbus_bus_suspend(struct device *dev)
2384{
2385	struct vmbus_channel *channel, *sc;
2386
2387	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2388		/*
2389		 * We wait here until the completion of any channel
2390		 * offers that are currently in progress.
2391		 */
2392		msleep(1);
2393	}
2394
2395	mutex_lock(&vmbus_connection.channel_mutex);
2396	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2397		if (!is_hvsock_channel(channel))
2398			continue;
2399
2400		vmbus_force_channel_rescinded(channel);
2401	}
2402	mutex_unlock(&vmbus_connection.channel_mutex);
2403
2404	/*
2405	 * Wait until all the sub-channels and hv_sock channels have been
2406	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2407	 * they would conflict with the new sub-channels that will be created
2408	 * in the resume path. hv_sock channels should also be destroyed, but
2409	 * a hv_sock channel of an established hv_sock connection can not be
2410	 * really destroyed since it may still be referenced by the userspace
2411	 * application, so we just force the hv_sock channel to be rescinded
2412	 * by vmbus_force_channel_rescinded(), and the userspace application
2413	 * will thoroughly destroy the channel after hibernation.
2414	 *
2415	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2416	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2417	 */
2418	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2419		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2420
2421	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2422		pr_err("Can not suspend due to a previous failed resuming\n");
2423		return -EBUSY;
2424	}
2425
2426	mutex_lock(&vmbus_connection.channel_mutex);
2427
2428	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2429		/*
2430		 * Remove the channel from the array of channels and invalidate
2431		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
2432		 * up the relid (and other fields, if necessary) and add the
2433		 * channel back to the array.
2434		 */
2435		vmbus_channel_unmap_relid(channel);
2436		channel->offermsg.child_relid = INVALID_RELID;
2437
2438		if (is_hvsock_channel(channel)) {
2439			if (!channel->rescind) {
2440				pr_err("hv_sock channel not rescinded!\n");
2441				WARN_ON_ONCE(1);
2442			}
2443			continue;
2444		}
2445
2446		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2447			pr_err("Sub-channel not deleted!\n");
2448			WARN_ON_ONCE(1);
2449		}
2450
2451		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2452	}
2453
2454	mutex_unlock(&vmbus_connection.channel_mutex);
2455
2456	vmbus_initiate_unload(false);
2457
2458	/* Reset the event for the next resume. */
2459	reinit_completion(&vmbus_connection.ready_for_resume_event);
2460
2461	return 0;
2462}
2463
2464static int vmbus_bus_resume(struct device *dev)
2465{
2466	struct vmbus_channel_msginfo *msginfo;
2467	size_t msgsize;
2468	int ret;
2469
2470	/*
2471	 * We only use the 'vmbus_proto_version', which was in use before
2472	 * hibernation, to re-negotiate with the host.
2473	 */
2474	if (!vmbus_proto_version) {
2475		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2476		return -EINVAL;
2477	}
2478
2479	msgsize = sizeof(*msginfo) +
2480		  sizeof(struct vmbus_channel_initiate_contact);
2481
2482	msginfo = kzalloc(msgsize, GFP_KERNEL);
2483
2484	if (msginfo == NULL)
2485		return -ENOMEM;
2486
2487	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2488
2489	kfree(msginfo);
2490
2491	if (ret != 0)
2492		return ret;
2493
2494	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2495
2496	vmbus_request_offers();
2497
2498	if (wait_for_completion_timeout(
2499		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2500		pr_err("Some vmbus device is missing after suspending?\n");
2501
2502	/* Reset the event for the next suspend. */
2503	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2504
2505	return 0;
2506}
2507#else
2508#define vmbus_bus_suspend NULL
2509#define vmbus_bus_resume NULL
2510#endif /* CONFIG_PM_SLEEP */
2511
2512static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2513	{"VMBUS", 0},
2514	{"VMBus", 0},
2515	{"", 0},
2516};
2517MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2518
2519/*
2520 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2521 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2522 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2523 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2524 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2525 * resume callback must also run via the "noirq" ops.
2526 *
2527 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2528 * earlier in this file before vmbus_pm.
2529 */
2530
2531static const struct dev_pm_ops vmbus_bus_pm = {
2532	.suspend_noirq	= NULL,
2533	.resume_noirq	= NULL,
2534	.freeze_noirq	= vmbus_bus_suspend,
2535	.thaw_noirq	= vmbus_bus_resume,
2536	.poweroff_noirq	= vmbus_bus_suspend,
2537	.restore_noirq	= vmbus_bus_resume
2538};
2539
2540static struct acpi_driver vmbus_acpi_driver = {
2541	.name = "vmbus",
2542	.ids = vmbus_acpi_device_ids,
2543	.ops = {
2544		.add = vmbus_acpi_add,
2545		.remove = vmbus_acpi_remove,
2546	},
2547	.drv.pm = &vmbus_bus_pm,
2548};
2549
2550static void hv_kexec_handler(void)
2551{
2552	hv_stimer_global_cleanup();
2553	vmbus_initiate_unload(false);
2554	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2555	mb();
2556	cpuhp_remove_state(hyperv_cpuhp_online);
2557};
2558
2559static void hv_crash_handler(struct pt_regs *regs)
2560{
2561	int cpu;
2562
2563	vmbus_initiate_unload(true);
2564	/*
2565	 * In crash handler we can't schedule synic cleanup for all CPUs,
2566	 * doing the cleanup for current CPU only. This should be sufficient
2567	 * for kdump.
2568	 */
2569	cpu = smp_processor_id();
2570	hv_stimer_cleanup(cpu);
2571	hv_synic_disable_regs(cpu);
2572};
2573
2574static int hv_synic_suspend(void)
2575{
2576	/*
2577	 * When we reach here, all the non-boot CPUs have been offlined.
2578	 * If we're in a legacy configuration where stimer Direct Mode is
2579	 * not enabled, the stimers on the non-boot CPUs have been unbound
2580	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2581	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2582	 *
2583	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2584	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2585	 * 1) it's unnecessary as interrupts remain disabled between
2586	 * syscore_suspend() and syscore_resume(): see create_image() and
2587	 * resume_target_kernel()
2588	 * 2) the stimer on CPU0 is automatically disabled later by
2589	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2590	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2591	 * 3) a warning would be triggered if we call
2592	 * clockevents_unbind_device(), which may sleep, in an
2593	 * interrupts-disabled context.
2594	 */
2595
2596	hv_synic_disable_regs(0);
2597
2598	return 0;
2599}
2600
2601static void hv_synic_resume(void)
2602{
2603	hv_synic_enable_regs(0);
2604
2605	/*
2606	 * Note: we don't need to call hv_stimer_init(0), because the timer
2607	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2608	 * automatically re-enabled in timekeeping_resume().
2609	 */
2610}
2611
2612/* The callbacks run only on CPU0, with irqs_disabled. */
2613static struct syscore_ops hv_synic_syscore_ops = {
2614	.suspend = hv_synic_suspend,
2615	.resume = hv_synic_resume,
2616};
2617
2618static int __init hv_acpi_init(void)
2619{
2620	int ret, t;
2621
2622	if (!hv_is_hyperv_initialized())
2623		return -ENODEV;
2624
2625	init_completion(&probe_event);
2626
2627	/*
2628	 * Get ACPI resources first.
2629	 */
2630	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2631
2632	if (ret)
2633		return ret;
2634
2635	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2636	if (t == 0) {
2637		ret = -ETIMEDOUT;
2638		goto cleanup;
2639	}
2640	hv_debug_init();
2641
2642	ret = vmbus_bus_init();
2643	if (ret)
2644		goto cleanup;
2645
2646	hv_setup_kexec_handler(hv_kexec_handler);
2647	hv_setup_crash_handler(hv_crash_handler);
2648
2649	register_syscore_ops(&hv_synic_syscore_ops);
2650
2651	return 0;
2652
2653cleanup:
2654	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2655	hv_acpi_dev = NULL;
2656	return ret;
2657}
2658
2659static void __exit vmbus_exit(void)
2660{
2661	int cpu;
2662
2663	unregister_syscore_ops(&hv_synic_syscore_ops);
2664
2665	hv_remove_kexec_handler();
2666	hv_remove_crash_handler();
2667	vmbus_connection.conn_state = DISCONNECTED;
2668	hv_stimer_global_cleanup();
2669	vmbus_disconnect();
2670	hv_remove_vmbus_irq();
2671	for_each_online_cpu(cpu) {
2672		struct hv_per_cpu_context *hv_cpu
2673			= per_cpu_ptr(hv_context.cpu_context, cpu);
2674
2675		tasklet_kill(&hv_cpu->msg_dpc);
2676	}
2677	hv_debug_rm_all_dir();
2678
2679	vmbus_free_channels();
2680	kfree(vmbus_connection.channels);
2681
2682	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2683		kmsg_dump_unregister(&hv_kmsg_dumper);
2684		unregister_die_notifier(&hyperv_die_block);
2685	}
2686
2687	/*
2688	 * The panic notifier is always registered, hence we should
2689	 * also unconditionally unregister it here as well.
2690	 */
2691	atomic_notifier_chain_unregister(&panic_notifier_list,
2692					 &hyperv_panic_block);
2693
2694	free_page((unsigned long)hv_panic_page);
2695	unregister_sysctl_table(hv_ctl_table_hdr);
2696	hv_ctl_table_hdr = NULL;
2697	bus_unregister(&hv_bus);
2698
2699	cpuhp_remove_state(hyperv_cpuhp_online);
2700	hv_synic_free();
2701	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2702}
2703
2704
2705MODULE_LICENSE("GPL");
2706MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2707
2708subsys_initcall(hv_acpi_init);
2709module_exit(vmbus_exit);
2710