xref: /kernel/linux/linux-5.10/drivers/hv/hv_util.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2010, Microsoft Corporation.
4 *
5 * Authors:
6 *   Haiyang Zhang <haiyangz@microsoft.com>
7 *   Hank Janssen  <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/sysctl.h>
16#include <linux/reboot.h>
17#include <linux/hyperv.h>
18#include <linux/clockchips.h>
19#include <linux/ptp_clock_kernel.h>
20#include <clocksource/hyperv_timer.h>
21#include <asm/mshyperv.h>
22
23#include "hyperv_vmbus.h"
24
25#define SD_MAJOR	3
26#define SD_MINOR	0
27#define SD_MINOR_1	1
28#define SD_MINOR_2	2
29#define SD_VERSION_3_1	(SD_MAJOR << 16 | SD_MINOR_1)
30#define SD_VERSION_3_2	(SD_MAJOR << 16 | SD_MINOR_2)
31#define SD_VERSION	(SD_MAJOR << 16 | SD_MINOR)
32
33#define SD_MAJOR_1	1
34#define SD_VERSION_1	(SD_MAJOR_1 << 16 | SD_MINOR)
35
36#define TS_MAJOR	4
37#define TS_MINOR	0
38#define TS_VERSION	(TS_MAJOR << 16 | TS_MINOR)
39
40#define TS_MAJOR_1	1
41#define TS_VERSION_1	(TS_MAJOR_1 << 16 | TS_MINOR)
42
43#define TS_MAJOR_3	3
44#define TS_VERSION_3	(TS_MAJOR_3 << 16 | TS_MINOR)
45
46#define HB_MAJOR	3
47#define HB_MINOR	0
48#define HB_VERSION	(HB_MAJOR << 16 | HB_MINOR)
49
50#define HB_MAJOR_1	1
51#define HB_VERSION_1	(HB_MAJOR_1 << 16 | HB_MINOR)
52
53static int sd_srv_version;
54static int ts_srv_version;
55static int hb_srv_version;
56
57#define SD_VER_COUNT 4
58static const int sd_versions[] = {
59	SD_VERSION_3_2,
60	SD_VERSION_3_1,
61	SD_VERSION,
62	SD_VERSION_1
63};
64
65#define TS_VER_COUNT 3
66static const int ts_versions[] = {
67	TS_VERSION,
68	TS_VERSION_3,
69	TS_VERSION_1
70};
71
72#define HB_VER_COUNT 2
73static const int hb_versions[] = {
74	HB_VERSION,
75	HB_VERSION_1
76};
77
78#define FW_VER_COUNT 2
79static const int fw_versions[] = {
80	UTIL_FW_VERSION,
81	UTIL_WS2K8_FW_VERSION
82};
83
84/*
85 * Send the "hibernate" udev event in a thread context.
86 */
87struct hibernate_work_context {
88	struct work_struct work;
89	struct hv_device *dev;
90};
91
92static struct hibernate_work_context hibernate_context;
93static bool hibernation_supported;
94
95static void send_hibernate_uevent(struct work_struct *work)
96{
97	char *uevent_env[2] = { "EVENT=hibernate", NULL };
98	struct hibernate_work_context *ctx;
99
100	ctx = container_of(work, struct hibernate_work_context, work);
101
102	kobject_uevent_env(&ctx->dev->device.kobj, KOBJ_CHANGE, uevent_env);
103
104	pr_info("Sent hibernation uevent\n");
105}
106
107static int hv_shutdown_init(struct hv_util_service *srv)
108{
109	struct vmbus_channel *channel = srv->channel;
110
111	INIT_WORK(&hibernate_context.work, send_hibernate_uevent);
112	hibernate_context.dev = channel->device_obj;
113
114	hibernation_supported = hv_is_hibernation_supported();
115
116	return 0;
117}
118
119static void shutdown_onchannelcallback(void *context);
120static struct hv_util_service util_shutdown = {
121	.util_cb = shutdown_onchannelcallback,
122	.util_init = hv_shutdown_init,
123};
124
125static int hv_timesync_init(struct hv_util_service *srv);
126static int hv_timesync_pre_suspend(void);
127static void hv_timesync_deinit(void);
128
129static void timesync_onchannelcallback(void *context);
130static struct hv_util_service util_timesynch = {
131	.util_cb = timesync_onchannelcallback,
132	.util_init = hv_timesync_init,
133	.util_pre_suspend = hv_timesync_pre_suspend,
134	.util_deinit = hv_timesync_deinit,
135};
136
137static void heartbeat_onchannelcallback(void *context);
138static struct hv_util_service util_heartbeat = {
139	.util_cb = heartbeat_onchannelcallback,
140};
141
142static struct hv_util_service util_kvp = {
143	.util_cb = hv_kvp_onchannelcallback,
144	.util_init = hv_kvp_init,
145	.util_pre_suspend = hv_kvp_pre_suspend,
146	.util_pre_resume = hv_kvp_pre_resume,
147	.util_deinit = hv_kvp_deinit,
148};
149
150static struct hv_util_service util_vss = {
151	.util_cb = hv_vss_onchannelcallback,
152	.util_init = hv_vss_init,
153	.util_pre_suspend = hv_vss_pre_suspend,
154	.util_pre_resume = hv_vss_pre_resume,
155	.util_deinit = hv_vss_deinit,
156};
157
158static struct hv_util_service util_fcopy = {
159	.util_cb = hv_fcopy_onchannelcallback,
160	.util_init = hv_fcopy_init,
161	.util_pre_suspend = hv_fcopy_pre_suspend,
162	.util_pre_resume = hv_fcopy_pre_resume,
163	.util_deinit = hv_fcopy_deinit,
164};
165
166static void perform_shutdown(struct work_struct *dummy)
167{
168	orderly_poweroff(true);
169}
170
171static void perform_restart(struct work_struct *dummy)
172{
173	orderly_reboot();
174}
175
176/*
177 * Perform the shutdown operation in a thread context.
178 */
179static DECLARE_WORK(shutdown_work, perform_shutdown);
180
181/*
182 * Perform the restart operation in a thread context.
183 */
184static DECLARE_WORK(restart_work, perform_restart);
185
186static void shutdown_onchannelcallback(void *context)
187{
188	struct vmbus_channel *channel = context;
189	struct work_struct *work = NULL;
190	u32 recvlen;
191	u64 requestid;
192	u8  *shut_txf_buf = util_shutdown.recv_buffer;
193
194	struct shutdown_msg_data *shutdown_msg;
195
196	struct icmsg_hdr *icmsghdrp;
197
198	vmbus_recvpacket(channel, shut_txf_buf,
199			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
200
201	if (recvlen > 0) {
202		icmsghdrp = (struct icmsg_hdr *)&shut_txf_buf[
203			sizeof(struct vmbuspipe_hdr)];
204
205		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
206			if (vmbus_prep_negotiate_resp(icmsghdrp, shut_txf_buf,
207					fw_versions, FW_VER_COUNT,
208					sd_versions, SD_VER_COUNT,
209					NULL, &sd_srv_version)) {
210				pr_info("Shutdown IC version %d.%d\n",
211					sd_srv_version >> 16,
212					sd_srv_version & 0xFFFF);
213			}
214		} else {
215			shutdown_msg =
216				(struct shutdown_msg_data *)&shut_txf_buf[
217					sizeof(struct vmbuspipe_hdr) +
218					sizeof(struct icmsg_hdr)];
219
220			/*
221			 * shutdown_msg->flags can be 0(shut down), 2(reboot),
222			 * or 4(hibernate). It may bitwise-OR 1, which means
223			 * performing the request by force. Linux always tries
224			 * to perform the request by force.
225			 */
226			switch (shutdown_msg->flags) {
227			case 0:
228			case 1:
229				icmsghdrp->status = HV_S_OK;
230				work = &shutdown_work;
231				pr_info("Shutdown request received -"
232					    " graceful shutdown initiated\n");
233				break;
234			case 2:
235			case 3:
236				icmsghdrp->status = HV_S_OK;
237				work = &restart_work;
238				pr_info("Restart request received -"
239					    " graceful restart initiated\n");
240				break;
241			case 4:
242			case 5:
243				pr_info("Hibernation request received\n");
244				icmsghdrp->status = hibernation_supported ?
245					HV_S_OK : HV_E_FAIL;
246				if (hibernation_supported)
247					work = &hibernate_context.work;
248				break;
249			default:
250				icmsghdrp->status = HV_E_FAIL;
251				pr_info("Shutdown request received -"
252					    " Invalid request\n");
253				break;
254			}
255		}
256
257		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
258			| ICMSGHDRFLAG_RESPONSE;
259
260		vmbus_sendpacket(channel, shut_txf_buf,
261				       recvlen, requestid,
262				       VM_PKT_DATA_INBAND, 0);
263	}
264
265	if (work)
266		schedule_work(work);
267}
268
269/*
270 * Set the host time in a process context.
271 */
272static struct work_struct adj_time_work;
273
274/*
275 * The last time sample, received from the host. PTP device responds to
276 * requests by using this data and the current partition-wide time reference
277 * count.
278 */
279static struct {
280	u64				host_time;
281	u64				ref_time;
282	spinlock_t			lock;
283} host_ts;
284
285static inline u64 reftime_to_ns(u64 reftime)
286{
287	return (reftime - WLTIMEDELTA) * 100;
288}
289
290/*
291 * Hard coded threshold for host timesync delay: 600 seconds
292 */
293static const u64 HOST_TIMESYNC_DELAY_THRESH = 600 * (u64)NSEC_PER_SEC;
294
295static int hv_get_adj_host_time(struct timespec64 *ts)
296{
297	u64 newtime, reftime, timediff_adj;
298	unsigned long flags;
299	int ret = 0;
300
301	spin_lock_irqsave(&host_ts.lock, flags);
302	reftime = hv_read_reference_counter();
303
304	/*
305	 * We need to let the caller know that last update from host
306	 * is older than the max allowable threshold. clock_gettime()
307	 * and PTP ioctl do not have a documented error that we could
308	 * return for this specific case. Use ESTALE to report this.
309	 */
310	timediff_adj = reftime - host_ts.ref_time;
311	if (timediff_adj * 100 > HOST_TIMESYNC_DELAY_THRESH) {
312		pr_warn_once("TIMESYNC IC: Stale time stamp, %llu nsecs old\n",
313			     (timediff_adj * 100));
314		ret = -ESTALE;
315	}
316
317	newtime = host_ts.host_time + timediff_adj;
318	*ts = ns_to_timespec64(reftime_to_ns(newtime));
319	spin_unlock_irqrestore(&host_ts.lock, flags);
320
321	return ret;
322}
323
324static void hv_set_host_time(struct work_struct *work)
325{
326
327	struct timespec64 ts;
328
329	if (!hv_get_adj_host_time(&ts))
330		do_settimeofday64(&ts);
331}
332
333/*
334 * Synchronize time with host after reboot, restore, etc.
335 *
336 * ICTIMESYNCFLAG_SYNC flag bit indicates reboot, restore events of the VM.
337 * After reboot the flag ICTIMESYNCFLAG_SYNC is included in the first time
338 * message after the timesync channel is opened. Since the hv_utils module is
339 * loaded after hv_vmbus, the first message is usually missed. This bit is
340 * considered a hard request to discipline the clock.
341 *
342 * ICTIMESYNCFLAG_SAMPLE bit indicates a time sample from host. This is
343 * typically used as a hint to the guest. The guest is under no obligation
344 * to discipline the clock.
345 */
346static inline void adj_guesttime(u64 hosttime, u64 reftime, u8 adj_flags)
347{
348	unsigned long flags;
349	u64 cur_reftime;
350
351	/*
352	 * Save the adjusted time sample from the host and the snapshot
353	 * of the current system time.
354	 */
355	spin_lock_irqsave(&host_ts.lock, flags);
356
357	cur_reftime = hv_read_reference_counter();
358	host_ts.host_time = hosttime;
359	host_ts.ref_time = cur_reftime;
360
361	/*
362	 * TimeSync v4 messages contain reference time (guest's Hyper-V
363	 * clocksource read when the time sample was generated), we can
364	 * improve the precision by adding the delta between now and the
365	 * time of generation. For older protocols we set
366	 * reftime == cur_reftime on call.
367	 */
368	host_ts.host_time += (cur_reftime - reftime);
369
370	spin_unlock_irqrestore(&host_ts.lock, flags);
371
372	/* Schedule work to do do_settimeofday64() */
373	if (adj_flags & ICTIMESYNCFLAG_SYNC)
374		schedule_work(&adj_time_work);
375}
376
377/*
378 * Time Sync Channel message handler.
379 */
380static void timesync_onchannelcallback(void *context)
381{
382	struct vmbus_channel *channel = context;
383	u32 recvlen;
384	u64 requestid;
385	struct icmsg_hdr *icmsghdrp;
386	struct ictimesync_data *timedatap;
387	struct ictimesync_ref_data *refdata;
388	u8 *time_txf_buf = util_timesynch.recv_buffer;
389
390	/*
391	 * Drain the ring buffer and use the last packet to update
392	 * host_ts
393	 */
394	while (1) {
395		int ret = vmbus_recvpacket(channel, time_txf_buf,
396					   HV_HYP_PAGE_SIZE, &recvlen,
397					   &requestid);
398		if (ret) {
399			pr_warn_once("TimeSync IC pkt recv failed (Err: %d)\n",
400				     ret);
401			break;
402		}
403
404		if (!recvlen)
405			break;
406
407		icmsghdrp = (struct icmsg_hdr *)&time_txf_buf[
408				sizeof(struct vmbuspipe_hdr)];
409
410		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
411			if (vmbus_prep_negotiate_resp(icmsghdrp, time_txf_buf,
412						fw_versions, FW_VER_COUNT,
413						ts_versions, TS_VER_COUNT,
414						NULL, &ts_srv_version)) {
415				pr_info("TimeSync IC version %d.%d\n",
416					ts_srv_version >> 16,
417					ts_srv_version & 0xFFFF);
418			}
419		} else {
420			if (ts_srv_version > TS_VERSION_3) {
421				refdata = (struct ictimesync_ref_data *)
422					&time_txf_buf[
423					sizeof(struct vmbuspipe_hdr) +
424					sizeof(struct icmsg_hdr)];
425
426				adj_guesttime(refdata->parenttime,
427						refdata->vmreferencetime,
428						refdata->flags);
429			} else {
430				timedatap = (struct ictimesync_data *)
431					&time_txf_buf[
432					sizeof(struct vmbuspipe_hdr) +
433					sizeof(struct icmsg_hdr)];
434				adj_guesttime(timedatap->parenttime,
435					      hv_read_reference_counter(),
436					      timedatap->flags);
437			}
438		}
439
440		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
441			| ICMSGHDRFLAG_RESPONSE;
442
443		vmbus_sendpacket(channel, time_txf_buf,
444				recvlen, requestid,
445				VM_PKT_DATA_INBAND, 0);
446	}
447}
448
449/*
450 * Heartbeat functionality.
451 * Every two seconds, Hyper-V send us a heartbeat request message.
452 * we respond to this message, and Hyper-V knows we are alive.
453 */
454static void heartbeat_onchannelcallback(void *context)
455{
456	struct vmbus_channel *channel = context;
457	u32 recvlen;
458	u64 requestid;
459	struct icmsg_hdr *icmsghdrp;
460	struct heartbeat_msg_data *heartbeat_msg;
461	u8 *hbeat_txf_buf = util_heartbeat.recv_buffer;
462
463	while (1) {
464
465		vmbus_recvpacket(channel, hbeat_txf_buf,
466				 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
467
468		if (!recvlen)
469			break;
470
471		icmsghdrp = (struct icmsg_hdr *)&hbeat_txf_buf[
472				sizeof(struct vmbuspipe_hdr)];
473
474		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
475			if (vmbus_prep_negotiate_resp(icmsghdrp,
476					hbeat_txf_buf,
477					fw_versions, FW_VER_COUNT,
478					hb_versions, HB_VER_COUNT,
479					NULL, &hb_srv_version)) {
480
481				pr_info("Heartbeat IC version %d.%d\n",
482					hb_srv_version >> 16,
483					hb_srv_version & 0xFFFF);
484			}
485		} else {
486			heartbeat_msg =
487				(struct heartbeat_msg_data *)&hbeat_txf_buf[
488					sizeof(struct vmbuspipe_hdr) +
489					sizeof(struct icmsg_hdr)];
490
491			heartbeat_msg->seq_num += 1;
492		}
493
494		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
495			| ICMSGHDRFLAG_RESPONSE;
496
497		vmbus_sendpacket(channel, hbeat_txf_buf,
498				       recvlen, requestid,
499				       VM_PKT_DATA_INBAND, 0);
500	}
501}
502
503#define HV_UTIL_RING_SEND_SIZE VMBUS_RING_SIZE(3 * HV_HYP_PAGE_SIZE)
504#define HV_UTIL_RING_RECV_SIZE VMBUS_RING_SIZE(3 * HV_HYP_PAGE_SIZE)
505
506static int util_probe(struct hv_device *dev,
507			const struct hv_vmbus_device_id *dev_id)
508{
509	struct hv_util_service *srv =
510		(struct hv_util_service *)dev_id->driver_data;
511	int ret;
512
513	srv->recv_buffer = kmalloc(HV_HYP_PAGE_SIZE * 4, GFP_KERNEL);
514	if (!srv->recv_buffer)
515		return -ENOMEM;
516	srv->channel = dev->channel;
517	if (srv->util_init) {
518		ret = srv->util_init(srv);
519		if (ret) {
520			ret = -ENODEV;
521			goto error1;
522		}
523	}
524
525	/*
526	 * The set of services managed by the util driver are not performance
527	 * critical and do not need batched reading. Furthermore, some services
528	 * such as KVP can only handle one message from the host at a time.
529	 * Turn off batched reading for all util drivers before we open the
530	 * channel.
531	 */
532	set_channel_read_mode(dev->channel, HV_CALL_DIRECT);
533
534	hv_set_drvdata(dev, srv);
535
536	ret = vmbus_open(dev->channel, HV_UTIL_RING_SEND_SIZE,
537			 HV_UTIL_RING_RECV_SIZE, NULL, 0, srv->util_cb,
538			 dev->channel);
539	if (ret)
540		goto error;
541
542	return 0;
543
544error:
545	if (srv->util_deinit)
546		srv->util_deinit();
547error1:
548	kfree(srv->recv_buffer);
549	return ret;
550}
551
552static int util_remove(struct hv_device *dev)
553{
554	struct hv_util_service *srv = hv_get_drvdata(dev);
555
556	if (srv->util_deinit)
557		srv->util_deinit();
558	vmbus_close(dev->channel);
559	kfree(srv->recv_buffer);
560
561	return 0;
562}
563
564/*
565 * When we're in util_suspend(), all the userspace processes have been frozen
566 * (refer to hibernate() -> freeze_processes()). The userspace is thawed only
567 * after the whole resume procedure, including util_resume(), finishes.
568 */
569static int util_suspend(struct hv_device *dev)
570{
571	struct hv_util_service *srv = hv_get_drvdata(dev);
572	int ret = 0;
573
574	if (srv->util_pre_suspend) {
575		ret = srv->util_pre_suspend();
576		if (ret)
577			return ret;
578	}
579
580	vmbus_close(dev->channel);
581
582	return 0;
583}
584
585static int util_resume(struct hv_device *dev)
586{
587	struct hv_util_service *srv = hv_get_drvdata(dev);
588	int ret = 0;
589
590	if (srv->util_pre_resume) {
591		ret = srv->util_pre_resume();
592		if (ret)
593			return ret;
594	}
595
596	ret = vmbus_open(dev->channel, HV_UTIL_RING_SEND_SIZE,
597			 HV_UTIL_RING_RECV_SIZE, NULL, 0, srv->util_cb,
598			 dev->channel);
599	return ret;
600}
601
602static const struct hv_vmbus_device_id id_table[] = {
603	/* Shutdown guid */
604	{ HV_SHUTDOWN_GUID,
605	  .driver_data = (unsigned long)&util_shutdown
606	},
607	/* Time synch guid */
608	{ HV_TS_GUID,
609	  .driver_data = (unsigned long)&util_timesynch
610	},
611	/* Heartbeat guid */
612	{ HV_HEART_BEAT_GUID,
613	  .driver_data = (unsigned long)&util_heartbeat
614	},
615	/* KVP guid */
616	{ HV_KVP_GUID,
617	  .driver_data = (unsigned long)&util_kvp
618	},
619	/* VSS GUID */
620	{ HV_VSS_GUID,
621	  .driver_data = (unsigned long)&util_vss
622	},
623	/* File copy GUID */
624	{ HV_FCOPY_GUID,
625	  .driver_data = (unsigned long)&util_fcopy
626	},
627	{ },
628};
629
630MODULE_DEVICE_TABLE(vmbus, id_table);
631
632/* The one and only one */
633static  struct hv_driver util_drv = {
634	.name = "hv_utils",
635	.id_table = id_table,
636	.probe =  util_probe,
637	.remove =  util_remove,
638	.suspend = util_suspend,
639	.resume =  util_resume,
640	.driver = {
641		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
642	},
643};
644
645static int hv_ptp_enable(struct ptp_clock_info *info,
646			 struct ptp_clock_request *request, int on)
647{
648	return -EOPNOTSUPP;
649}
650
651static int hv_ptp_settime(struct ptp_clock_info *p, const struct timespec64 *ts)
652{
653	return -EOPNOTSUPP;
654}
655
656static int hv_ptp_adjfreq(struct ptp_clock_info *ptp, s32 delta)
657{
658	return -EOPNOTSUPP;
659}
660static int hv_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
661{
662	return -EOPNOTSUPP;
663}
664
665static int hv_ptp_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
666{
667	return hv_get_adj_host_time(ts);
668}
669
670static struct ptp_clock_info ptp_hyperv_info = {
671	.name		= "hyperv",
672	.enable         = hv_ptp_enable,
673	.adjtime        = hv_ptp_adjtime,
674	.adjfreq        = hv_ptp_adjfreq,
675	.gettime64      = hv_ptp_gettime,
676	.settime64      = hv_ptp_settime,
677	.owner		= THIS_MODULE,
678};
679
680static struct ptp_clock *hv_ptp_clock;
681
682static int hv_timesync_init(struct hv_util_service *srv)
683{
684	/* TimeSync requires Hyper-V clocksource. */
685	if (!hv_read_reference_counter)
686		return -ENODEV;
687
688	spin_lock_init(&host_ts.lock);
689
690	INIT_WORK(&adj_time_work, hv_set_host_time);
691
692	/*
693	 * ptp_clock_register() returns NULL when CONFIG_PTP_1588_CLOCK is
694	 * disabled but the driver is still useful without the PTP device
695	 * as it still handles the ICTIMESYNCFLAG_SYNC case.
696	 */
697	hv_ptp_clock = ptp_clock_register(&ptp_hyperv_info, NULL);
698	if (IS_ERR_OR_NULL(hv_ptp_clock)) {
699		pr_err("cannot register PTP clock: %d\n",
700		       PTR_ERR_OR_ZERO(hv_ptp_clock));
701		hv_ptp_clock = NULL;
702	}
703
704	return 0;
705}
706
707static void hv_timesync_cancel_work(void)
708{
709	cancel_work_sync(&adj_time_work);
710}
711
712static int hv_timesync_pre_suspend(void)
713{
714	hv_timesync_cancel_work();
715	return 0;
716}
717
718static void hv_timesync_deinit(void)
719{
720	if (hv_ptp_clock)
721		ptp_clock_unregister(hv_ptp_clock);
722
723	hv_timesync_cancel_work();
724}
725
726static int __init init_hyperv_utils(void)
727{
728	pr_info("Registering HyperV Utility Driver\n");
729
730	return vmbus_driver_register(&util_drv);
731}
732
733static void exit_hyperv_utils(void)
734{
735	pr_info("De-Registered HyperV Utility Driver\n");
736
737	vmbus_driver_unregister(&util_drv);
738}
739
740module_init(init_hyperv_utils);
741module_exit(exit_hyperv_utils);
742
743MODULE_DESCRIPTION("Hyper-V Utilities");
744MODULE_LICENSE("GPL");
745