1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2012, Microsoft Corporation.
4 *
5 * Author:
6 *   K. Y. Srinivasan <kys@microsoft.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/jiffies.h>
13#include <linux/mman.h>
14#include <linux/delay.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/kthread.h>
19#include <linux/completion.h>
20#include <linux/memory_hotplug.h>
21#include <linux/memory.h>
22#include <linux/notifier.h>
23#include <linux/percpu_counter.h>
24
25#include <linux/hyperv.h>
26#include <asm/hyperv-tlfs.h>
27
28#include <asm/mshyperv.h>
29
30#define CREATE_TRACE_POINTS
31#include "hv_trace_balloon.h"
32
33/*
34 * We begin with definitions supporting the Dynamic Memory protocol
35 * with the host.
36 *
37 * Begin protocol definitions.
38 */
39
40
41
42/*
43 * Protocol versions. The low word is the minor version, the high word the major
44 * version.
45 *
46 * History:
47 * Initial version 1.0
48 * Changed to 0.1 on 2009/03/25
49 * Changes to 0.2 on 2009/05/14
50 * Changes to 0.3 on 2009/12/03
51 * Changed to 1.0 on 2011/04/05
52 */
53
54#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
55#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
56#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
57
58enum {
59	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
60	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
61	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
62
63	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
64	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
65	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
66
67	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
68};
69
70
71
72/*
73 * Message Types
74 */
75
76enum dm_message_type {
77	/*
78	 * Version 0.3
79	 */
80	DM_ERROR			= 0,
81	DM_VERSION_REQUEST		= 1,
82	DM_VERSION_RESPONSE		= 2,
83	DM_CAPABILITIES_REPORT		= 3,
84	DM_CAPABILITIES_RESPONSE	= 4,
85	DM_STATUS_REPORT		= 5,
86	DM_BALLOON_REQUEST		= 6,
87	DM_BALLOON_RESPONSE		= 7,
88	DM_UNBALLOON_REQUEST		= 8,
89	DM_UNBALLOON_RESPONSE		= 9,
90	DM_MEM_HOT_ADD_REQUEST		= 10,
91	DM_MEM_HOT_ADD_RESPONSE		= 11,
92	DM_VERSION_03_MAX		= 11,
93	/*
94	 * Version 1.0.
95	 */
96	DM_INFO_MESSAGE			= 12,
97	DM_VERSION_1_MAX		= 12
98};
99
100
101/*
102 * Structures defining the dynamic memory management
103 * protocol.
104 */
105
106union dm_version {
107	struct {
108		__u16 minor_version;
109		__u16 major_version;
110	};
111	__u32 version;
112} __packed;
113
114
115union dm_caps {
116	struct {
117		__u64 balloon:1;
118		__u64 hot_add:1;
119		/*
120		 * To support guests that may have alignment
121		 * limitations on hot-add, the guest can specify
122		 * its alignment requirements; a value of n
123		 * represents an alignment of 2^n in mega bytes.
124		 */
125		__u64 hot_add_alignment:4;
126		__u64 reservedz:58;
127	} cap_bits;
128	__u64 caps;
129} __packed;
130
131union dm_mem_page_range {
132	struct  {
133		/*
134		 * The PFN number of the first page in the range.
135		 * 40 bits is the architectural limit of a PFN
136		 * number for AMD64.
137		 */
138		__u64 start_page:40;
139		/*
140		 * The number of pages in the range.
141		 */
142		__u64 page_cnt:24;
143	} finfo;
144	__u64  page_range;
145} __packed;
146
147
148
149/*
150 * The header for all dynamic memory messages:
151 *
152 * type: Type of the message.
153 * size: Size of the message in bytes; including the header.
154 * trans_id: The guest is responsible for manufacturing this ID.
155 */
156
157struct dm_header {
158	__u16 type;
159	__u16 size;
160	__u32 trans_id;
161} __packed;
162
163/*
164 * A generic message format for dynamic memory.
165 * Specific message formats are defined later in the file.
166 */
167
168struct dm_message {
169	struct dm_header hdr;
170	__u8 data[]; /* enclosed message */
171} __packed;
172
173
174/*
175 * Specific message types supporting the dynamic memory protocol.
176 */
177
178/*
179 * Version negotiation message. Sent from the guest to the host.
180 * The guest is free to try different versions until the host
181 * accepts the version.
182 *
183 * dm_version: The protocol version requested.
184 * is_last_attempt: If TRUE, this is the last version guest will request.
185 * reservedz: Reserved field, set to zero.
186 */
187
188struct dm_version_request {
189	struct dm_header hdr;
190	union dm_version version;
191	__u32 is_last_attempt:1;
192	__u32 reservedz:31;
193} __packed;
194
195/*
196 * Version response message; Host to Guest and indicates
197 * if the host has accepted the version sent by the guest.
198 *
199 * is_accepted: If TRUE, host has accepted the version and the guest
200 * should proceed to the next stage of the protocol. FALSE indicates that
201 * guest should re-try with a different version.
202 *
203 * reservedz: Reserved field, set to zero.
204 */
205
206struct dm_version_response {
207	struct dm_header hdr;
208	__u64 is_accepted:1;
209	__u64 reservedz:63;
210} __packed;
211
212/*
213 * Message reporting capabilities. This is sent from the guest to the
214 * host.
215 */
216
217struct dm_capabilities {
218	struct dm_header hdr;
219	union dm_caps caps;
220	__u64 min_page_cnt;
221	__u64 max_page_number;
222} __packed;
223
224/*
225 * Response to the capabilities message. This is sent from the host to the
226 * guest. This message notifies if the host has accepted the guest's
227 * capabilities. If the host has not accepted, the guest must shutdown
228 * the service.
229 *
230 * is_accepted: Indicates if the host has accepted guest's capabilities.
231 * reservedz: Must be 0.
232 */
233
234struct dm_capabilities_resp_msg {
235	struct dm_header hdr;
236	__u64 is_accepted:1;
237	__u64 reservedz:63;
238} __packed;
239
240/*
241 * This message is used to report memory pressure from the guest.
242 * This message is not part of any transaction and there is no
243 * response to this message.
244 *
245 * num_avail: Available memory in pages.
246 * num_committed: Committed memory in pages.
247 * page_file_size: The accumulated size of all page files
248 *		   in the system in pages.
249 * zero_free: The nunber of zero and free pages.
250 * page_file_writes: The writes to the page file in pages.
251 * io_diff: An indicator of file cache efficiency or page file activity,
252 *	    calculated as File Cache Page Fault Count - Page Read Count.
253 *	    This value is in pages.
254 *
255 * Some of these metrics are Windows specific and fortunately
256 * the algorithm on the host side that computes the guest memory
257 * pressure only uses num_committed value.
258 */
259
260struct dm_status {
261	struct dm_header hdr;
262	__u64 num_avail;
263	__u64 num_committed;
264	__u64 page_file_size;
265	__u64 zero_free;
266	__u32 page_file_writes;
267	__u32 io_diff;
268} __packed;
269
270
271/*
272 * Message to ask the guest to allocate memory - balloon up message.
273 * This message is sent from the host to the guest. The guest may not be
274 * able to allocate as much memory as requested.
275 *
276 * num_pages: number of pages to allocate.
277 */
278
279struct dm_balloon {
280	struct dm_header hdr;
281	__u32 num_pages;
282	__u32 reservedz;
283} __packed;
284
285
286/*
287 * Balloon response message; this message is sent from the guest
288 * to the host in response to the balloon message.
289 *
290 * reservedz: Reserved; must be set to zero.
291 * more_pages: If FALSE, this is the last message of the transaction.
292 * if TRUE there will atleast one more message from the guest.
293 *
294 * range_count: The number of ranges in the range array.
295 *
296 * range_array: An array of page ranges returned to the host.
297 *
298 */
299
300struct dm_balloon_response {
301	struct dm_header hdr;
302	__u32 reservedz;
303	__u32 more_pages:1;
304	__u32 range_count:31;
305	union dm_mem_page_range range_array[];
306} __packed;
307
308/*
309 * Un-balloon message; this message is sent from the host
310 * to the guest to give guest more memory.
311 *
312 * more_pages: If FALSE, this is the last message of the transaction.
313 * if TRUE there will atleast one more message from the guest.
314 *
315 * reservedz: Reserved; must be set to zero.
316 *
317 * range_count: The number of ranges in the range array.
318 *
319 * range_array: An array of page ranges returned to the host.
320 *
321 */
322
323struct dm_unballoon_request {
324	struct dm_header hdr;
325	__u32 more_pages:1;
326	__u32 reservedz:31;
327	__u32 range_count;
328	union dm_mem_page_range range_array[];
329} __packed;
330
331/*
332 * Un-balloon response message; this message is sent from the guest
333 * to the host in response to an unballoon request.
334 *
335 */
336
337struct dm_unballoon_response {
338	struct dm_header hdr;
339} __packed;
340
341
342/*
343 * Hot add request message. Message sent from the host to the guest.
344 *
345 * mem_range: Memory range to hot add.
346 *
347 */
348
349struct dm_hot_add {
350	struct dm_header hdr;
351	union dm_mem_page_range range;
352} __packed;
353
354/*
355 * Hot add response message.
356 * This message is sent by the guest to report the status of a hot add request.
357 * If page_count is less than the requested page count, then the host should
358 * assume all further hot add requests will fail, since this indicates that
359 * the guest has hit an upper physical memory barrier.
360 *
361 * Hot adds may also fail due to low resources; in this case, the guest must
362 * not complete this message until the hot add can succeed, and the host must
363 * not send a new hot add request until the response is sent.
364 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
365 * times it fails the request.
366 *
367 *
368 * page_count: number of pages that were successfully hot added.
369 *
370 * result: result of the operation 1: success, 0: failure.
371 *
372 */
373
374struct dm_hot_add_response {
375	struct dm_header hdr;
376	__u32 page_count;
377	__u32 result;
378} __packed;
379
380/*
381 * Types of information sent from host to the guest.
382 */
383
384enum dm_info_type {
385	INFO_TYPE_MAX_PAGE_CNT = 0,
386	MAX_INFO_TYPE
387};
388
389
390/*
391 * Header for the information message.
392 */
393
394struct dm_info_header {
395	enum dm_info_type type;
396	__u32 data_size;
397} __packed;
398
399/*
400 * This message is sent from the host to the guest to pass
401 * some relevant information (win8 addition).
402 *
403 * reserved: no used.
404 * info_size: size of the information blob.
405 * info: information blob.
406 */
407
408struct dm_info_msg {
409	struct dm_header hdr;
410	__u32 reserved;
411	__u32 info_size;
412	__u8  info[];
413};
414
415/*
416 * End protocol definitions.
417 */
418
419/*
420 * State to manage hot adding memory into the guest.
421 * The range start_pfn : end_pfn specifies the range
422 * that the host has asked us to hot add. The range
423 * start_pfn : ha_end_pfn specifies the range that we have
424 * currently hot added. We hot add in multiples of 128M
425 * chunks; it is possible that we may not be able to bring
426 * online all the pages in the region. The range
427 * covered_start_pfn:covered_end_pfn defines the pages that can
428 * be brough online.
429 */
430
431struct hv_hotadd_state {
432	struct list_head list;
433	unsigned long start_pfn;
434	unsigned long covered_start_pfn;
435	unsigned long covered_end_pfn;
436	unsigned long ha_end_pfn;
437	unsigned long end_pfn;
438	/*
439	 * A list of gaps.
440	 */
441	struct list_head gap_list;
442};
443
444struct hv_hotadd_gap {
445	struct list_head list;
446	unsigned long start_pfn;
447	unsigned long end_pfn;
448};
449
450struct balloon_state {
451	__u32 num_pages;
452	struct work_struct wrk;
453};
454
455struct hot_add_wrk {
456	union dm_mem_page_range ha_page_range;
457	union dm_mem_page_range ha_region_range;
458	struct work_struct wrk;
459};
460
461static bool allow_hibernation;
462static bool hot_add = true;
463static bool do_hot_add;
464/*
465 * Delay reporting memory pressure by
466 * the specified number of seconds.
467 */
468static uint pressure_report_delay = 45;
469
470/*
471 * The last time we posted a pressure report to host.
472 */
473static unsigned long last_post_time;
474
475module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
476MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
477
478module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
479MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
480static atomic_t trans_id = ATOMIC_INIT(0);
481
482static int dm_ring_size = 20 * 1024;
483
484/*
485 * Driver specific state.
486 */
487
488enum hv_dm_state {
489	DM_INITIALIZING = 0,
490	DM_INITIALIZED,
491	DM_BALLOON_UP,
492	DM_BALLOON_DOWN,
493	DM_HOT_ADD,
494	DM_INIT_ERROR
495};
496
497
498static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
499static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
500#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
501#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
502
503struct hv_dynmem_device {
504	struct hv_device *dev;
505	enum hv_dm_state state;
506	struct completion host_event;
507	struct completion config_event;
508
509	/*
510	 * Number of pages we have currently ballooned out.
511	 */
512	unsigned int num_pages_ballooned;
513	unsigned int num_pages_onlined;
514	unsigned int num_pages_added;
515
516	/*
517	 * State to manage the ballooning (up) operation.
518	 */
519	struct balloon_state balloon_wrk;
520
521	/*
522	 * State to execute the "hot-add" operation.
523	 */
524	struct hot_add_wrk ha_wrk;
525
526	/*
527	 * This state tracks if the host has specified a hot-add
528	 * region.
529	 */
530	bool host_specified_ha_region;
531
532	/*
533	 * State to synchronize hot-add.
534	 */
535	struct completion  ol_waitevent;
536	/*
537	 * This thread handles hot-add
538	 * requests from the host as well as notifying
539	 * the host with regards to memory pressure in
540	 * the guest.
541	 */
542	struct task_struct *thread;
543
544	/*
545	 * Protects ha_region_list, num_pages_onlined counter and individual
546	 * regions from ha_region_list.
547	 */
548	spinlock_t ha_lock;
549
550	/*
551	 * A list of hot-add regions.
552	 */
553	struct list_head ha_region_list;
554
555	/*
556	 * We start with the highest version we can support
557	 * and downgrade based on the host; we save here the
558	 * next version to try.
559	 */
560	__u32 next_version;
561
562	/*
563	 * The negotiated version agreed by host.
564	 */
565	__u32 version;
566};
567
568static struct hv_dynmem_device dm_device;
569
570static void post_status(struct hv_dynmem_device *dm);
571
572#ifdef CONFIG_MEMORY_HOTPLUG
573static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
574				     unsigned long pfn)
575{
576	struct hv_hotadd_gap *gap;
577
578	/* The page is not backed. */
579	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
580		return false;
581
582	/* Check for gaps. */
583	list_for_each_entry(gap, &has->gap_list, list) {
584		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
585			return false;
586	}
587
588	return true;
589}
590
591static unsigned long hv_page_offline_check(unsigned long start_pfn,
592					   unsigned long nr_pages)
593{
594	unsigned long pfn = start_pfn, count = 0;
595	struct hv_hotadd_state *has;
596	bool found;
597
598	while (pfn < start_pfn + nr_pages) {
599		/*
600		 * Search for HAS which covers the pfn and when we find one
601		 * count how many consequitive PFNs are covered.
602		 */
603		found = false;
604		list_for_each_entry(has, &dm_device.ha_region_list, list) {
605			while ((pfn >= has->start_pfn) &&
606			       (pfn < has->end_pfn) &&
607			       (pfn < start_pfn + nr_pages)) {
608				found = true;
609				if (has_pfn_is_backed(has, pfn))
610					count++;
611				pfn++;
612			}
613		}
614
615		/*
616		 * This PFN is not in any HAS (e.g. we're offlining a region
617		 * which was present at boot), no need to account for it. Go
618		 * to the next one.
619		 */
620		if (!found)
621			pfn++;
622	}
623
624	return count;
625}
626
627static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
628			      void *v)
629{
630	struct memory_notify *mem = (struct memory_notify *)v;
631	unsigned long flags, pfn_count;
632
633	switch (val) {
634	case MEM_ONLINE:
635	case MEM_CANCEL_ONLINE:
636		complete(&dm_device.ol_waitevent);
637		break;
638
639	case MEM_OFFLINE:
640		spin_lock_irqsave(&dm_device.ha_lock, flags);
641		pfn_count = hv_page_offline_check(mem->start_pfn,
642						  mem->nr_pages);
643		if (pfn_count <= dm_device.num_pages_onlined) {
644			dm_device.num_pages_onlined -= pfn_count;
645		} else {
646			/*
647			 * We're offlining more pages than we managed to online.
648			 * This is unexpected. In any case don't let
649			 * num_pages_onlined wrap around zero.
650			 */
651			WARN_ON_ONCE(1);
652			dm_device.num_pages_onlined = 0;
653		}
654		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
655		break;
656	case MEM_GOING_ONLINE:
657	case MEM_GOING_OFFLINE:
658	case MEM_CANCEL_OFFLINE:
659		break;
660	}
661	return NOTIFY_OK;
662}
663
664static struct notifier_block hv_memory_nb = {
665	.notifier_call = hv_memory_notifier,
666	.priority = 0
667};
668
669/* Check if the particular page is backed and can be onlined and online it. */
670static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
671{
672	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
673		if (!PageOffline(pg))
674			__SetPageOffline(pg);
675		return;
676	}
677	if (PageOffline(pg))
678		__ClearPageOffline(pg);
679
680	/* This frame is currently backed; online the page. */
681	generic_online_page(pg, 0);
682
683	lockdep_assert_held(&dm_device.ha_lock);
684	dm_device.num_pages_onlined++;
685}
686
687static void hv_bring_pgs_online(struct hv_hotadd_state *has,
688				unsigned long start_pfn, unsigned long size)
689{
690	int i;
691
692	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
693	for (i = 0; i < size; i++)
694		hv_page_online_one(has, pfn_to_page(start_pfn + i));
695}
696
697static void hv_mem_hot_add(unsigned long start, unsigned long size,
698				unsigned long pfn_count,
699				struct hv_hotadd_state *has)
700{
701	int ret = 0;
702	int i, nid;
703	unsigned long start_pfn;
704	unsigned long processed_pfn;
705	unsigned long total_pfn = pfn_count;
706	unsigned long flags;
707
708	for (i = 0; i < (size/HA_CHUNK); i++) {
709		start_pfn = start + (i * HA_CHUNK);
710
711		spin_lock_irqsave(&dm_device.ha_lock, flags);
712		has->ha_end_pfn +=  HA_CHUNK;
713
714		if (total_pfn > HA_CHUNK) {
715			processed_pfn = HA_CHUNK;
716			total_pfn -= HA_CHUNK;
717		} else {
718			processed_pfn = total_pfn;
719			total_pfn = 0;
720		}
721
722		has->covered_end_pfn +=  processed_pfn;
723		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
724
725		reinit_completion(&dm_device.ol_waitevent);
726
727		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
728		ret = add_memory(nid, PFN_PHYS((start_pfn)),
729				(HA_CHUNK << PAGE_SHIFT), MEMHP_MERGE_RESOURCE);
730
731		if (ret) {
732			pr_err("hot_add memory failed error is %d\n", ret);
733			if (ret == -EEXIST) {
734				/*
735				 * This error indicates that the error
736				 * is not a transient failure. This is the
737				 * case where the guest's physical address map
738				 * precludes hot adding memory. Stop all further
739				 * memory hot-add.
740				 */
741				do_hot_add = false;
742			}
743			spin_lock_irqsave(&dm_device.ha_lock, flags);
744			has->ha_end_pfn -= HA_CHUNK;
745			has->covered_end_pfn -=  processed_pfn;
746			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
747			break;
748		}
749
750		/*
751		 * Wait for memory to get onlined. If the kernel onlined the
752		 * memory when adding it, this will return directly. Otherwise,
753		 * it will wait for user space to online the memory. This helps
754		 * to avoid adding memory faster than it is getting onlined. As
755		 * adding succeeded, it is ok to proceed even if the memory was
756		 * not onlined in time.
757		 */
758		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
759		post_status(&dm_device);
760	}
761}
762
763static void hv_online_page(struct page *pg, unsigned int order)
764{
765	struct hv_hotadd_state *has;
766	unsigned long flags;
767	unsigned long pfn = page_to_pfn(pg);
768
769	spin_lock_irqsave(&dm_device.ha_lock, flags);
770	list_for_each_entry(has, &dm_device.ha_region_list, list) {
771		/* The page belongs to a different HAS. */
772		if ((pfn < has->start_pfn) ||
773				(pfn + (1UL << order) > has->end_pfn))
774			continue;
775
776		hv_bring_pgs_online(has, pfn, 1UL << order);
777		break;
778	}
779	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
780}
781
782static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
783{
784	struct hv_hotadd_state *has;
785	struct hv_hotadd_gap *gap;
786	unsigned long residual, new_inc;
787	int ret = 0;
788	unsigned long flags;
789
790	spin_lock_irqsave(&dm_device.ha_lock, flags);
791	list_for_each_entry(has, &dm_device.ha_region_list, list) {
792		/*
793		 * If the pfn range we are dealing with is not in the current
794		 * "hot add block", move on.
795		 */
796		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
797			continue;
798
799		/*
800		 * If the current start pfn is not where the covered_end
801		 * is, create a gap and update covered_end_pfn.
802		 */
803		if (has->covered_end_pfn != start_pfn) {
804			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
805			if (!gap) {
806				ret = -ENOMEM;
807				break;
808			}
809
810			INIT_LIST_HEAD(&gap->list);
811			gap->start_pfn = has->covered_end_pfn;
812			gap->end_pfn = start_pfn;
813			list_add_tail(&gap->list, &has->gap_list);
814
815			has->covered_end_pfn = start_pfn;
816		}
817
818		/*
819		 * If the current hot add-request extends beyond
820		 * our current limit; extend it.
821		 */
822		if ((start_pfn + pfn_cnt) > has->end_pfn) {
823			residual = (start_pfn + pfn_cnt - has->end_pfn);
824			/*
825			 * Extend the region by multiples of HA_CHUNK.
826			 */
827			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
828			if (residual % HA_CHUNK)
829				new_inc += HA_CHUNK;
830
831			has->end_pfn += new_inc;
832		}
833
834		ret = 1;
835		break;
836	}
837	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
838
839	return ret;
840}
841
842static unsigned long handle_pg_range(unsigned long pg_start,
843					unsigned long pg_count)
844{
845	unsigned long start_pfn = pg_start;
846	unsigned long pfn_cnt = pg_count;
847	unsigned long size;
848	struct hv_hotadd_state *has;
849	unsigned long pgs_ol = 0;
850	unsigned long old_covered_state;
851	unsigned long res = 0, flags;
852
853	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
854		pg_start);
855
856	spin_lock_irqsave(&dm_device.ha_lock, flags);
857	list_for_each_entry(has, &dm_device.ha_region_list, list) {
858		/*
859		 * If the pfn range we are dealing with is not in the current
860		 * "hot add block", move on.
861		 */
862		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
863			continue;
864
865		old_covered_state = has->covered_end_pfn;
866
867		if (start_pfn < has->ha_end_pfn) {
868			/*
869			 * This is the case where we are backing pages
870			 * in an already hot added region. Bring
871			 * these pages online first.
872			 */
873			pgs_ol = has->ha_end_pfn - start_pfn;
874			if (pgs_ol > pfn_cnt)
875				pgs_ol = pfn_cnt;
876
877			has->covered_end_pfn +=  pgs_ol;
878			pfn_cnt -= pgs_ol;
879			/*
880			 * Check if the corresponding memory block is already
881			 * online. It is possible to observe struct pages still
882			 * being uninitialized here so check section instead.
883			 * In case the section is online we need to bring the
884			 * rest of pfns (which were not backed previously)
885			 * online too.
886			 */
887			if (start_pfn > has->start_pfn &&
888			    online_section_nr(pfn_to_section_nr(start_pfn)))
889				hv_bring_pgs_online(has, start_pfn, pgs_ol);
890
891		}
892
893		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
894			/*
895			 * We have some residual hot add range
896			 * that needs to be hot added; hot add
897			 * it now. Hot add a multiple of
898			 * of HA_CHUNK that fully covers the pages
899			 * we have.
900			 */
901			size = (has->end_pfn - has->ha_end_pfn);
902			if (pfn_cnt <= size) {
903				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
904				if (pfn_cnt % HA_CHUNK)
905					size += HA_CHUNK;
906			} else {
907				pfn_cnt = size;
908			}
909			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
910			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
911			spin_lock_irqsave(&dm_device.ha_lock, flags);
912		}
913		/*
914		 * If we managed to online any pages that were given to us,
915		 * we declare success.
916		 */
917		res = has->covered_end_pfn - old_covered_state;
918		break;
919	}
920	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
921
922	return res;
923}
924
925static unsigned long process_hot_add(unsigned long pg_start,
926					unsigned long pfn_cnt,
927					unsigned long rg_start,
928					unsigned long rg_size)
929{
930	struct hv_hotadd_state *ha_region = NULL;
931	int covered;
932	unsigned long flags;
933
934	if (pfn_cnt == 0)
935		return 0;
936
937	if (!dm_device.host_specified_ha_region) {
938		covered = pfn_covered(pg_start, pfn_cnt);
939		if (covered < 0)
940			return 0;
941
942		if (covered)
943			goto do_pg_range;
944	}
945
946	/*
947	 * If the host has specified a hot-add range; deal with it first.
948	 */
949
950	if (rg_size != 0) {
951		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
952		if (!ha_region)
953			return 0;
954
955		INIT_LIST_HEAD(&ha_region->list);
956		INIT_LIST_HEAD(&ha_region->gap_list);
957
958		ha_region->start_pfn = rg_start;
959		ha_region->ha_end_pfn = rg_start;
960		ha_region->covered_start_pfn = pg_start;
961		ha_region->covered_end_pfn = pg_start;
962		ha_region->end_pfn = rg_start + rg_size;
963
964		spin_lock_irqsave(&dm_device.ha_lock, flags);
965		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
966		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
967	}
968
969do_pg_range:
970	/*
971	 * Process the page range specified; bringing them
972	 * online if possible.
973	 */
974	return handle_pg_range(pg_start, pfn_cnt);
975}
976
977#endif
978
979static void hot_add_req(struct work_struct *dummy)
980{
981	struct dm_hot_add_response resp;
982#ifdef CONFIG_MEMORY_HOTPLUG
983	unsigned long pg_start, pfn_cnt;
984	unsigned long rg_start, rg_sz;
985#endif
986	struct hv_dynmem_device *dm = &dm_device;
987
988	memset(&resp, 0, sizeof(struct dm_hot_add_response));
989	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
990	resp.hdr.size = sizeof(struct dm_hot_add_response);
991
992#ifdef CONFIG_MEMORY_HOTPLUG
993	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
994	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
995
996	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
997	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
998
999	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1000		unsigned long region_size;
1001		unsigned long region_start;
1002
1003		/*
1004		 * The host has not specified the hot-add region.
1005		 * Based on the hot-add page range being specified,
1006		 * compute a hot-add region that can cover the pages
1007		 * that need to be hot-added while ensuring the alignment
1008		 * and size requirements of Linux as it relates to hot-add.
1009		 */
1010		region_start = pg_start;
1011		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1012		if (pfn_cnt % HA_CHUNK)
1013			region_size += HA_CHUNK;
1014
1015		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1016
1017		rg_start = region_start;
1018		rg_sz = region_size;
1019	}
1020
1021	if (do_hot_add)
1022		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1023						rg_start, rg_sz);
1024
1025	dm->num_pages_added += resp.page_count;
1026#endif
1027	/*
1028	 * The result field of the response structure has the
1029	 * following semantics:
1030	 *
1031	 * 1. If all or some pages hot-added: Guest should return success.
1032	 *
1033	 * 2. If no pages could be hot-added:
1034	 *
1035	 * If the guest returns success, then the host
1036	 * will not attempt any further hot-add operations. This
1037	 * signifies a permanent failure.
1038	 *
1039	 * If the guest returns failure, then this failure will be
1040	 * treated as a transient failure and the host may retry the
1041	 * hot-add operation after some delay.
1042	 */
1043	if (resp.page_count > 0)
1044		resp.result = 1;
1045	else if (!do_hot_add)
1046		resp.result = 1;
1047	else
1048		resp.result = 0;
1049
1050	if (!do_hot_add || resp.page_count == 0) {
1051		if (!allow_hibernation)
1052			pr_err("Memory hot add failed\n");
1053		else
1054			pr_info("Ignore hot-add request!\n");
1055	}
1056
1057	dm->state = DM_INITIALIZED;
1058	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1059	vmbus_sendpacket(dm->dev->channel, &resp,
1060			sizeof(struct dm_hot_add_response),
1061			(unsigned long)NULL,
1062			VM_PKT_DATA_INBAND, 0);
1063}
1064
1065static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1066{
1067	struct dm_info_header *info_hdr;
1068
1069	info_hdr = (struct dm_info_header *)msg->info;
1070
1071	switch (info_hdr->type) {
1072	case INFO_TYPE_MAX_PAGE_CNT:
1073		if (info_hdr->data_size == sizeof(__u64)) {
1074			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1075
1076			pr_info("Max. dynamic memory size: %llu MB\n",
1077				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1078		}
1079
1080		break;
1081	default:
1082		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1083	}
1084}
1085
1086static unsigned long compute_balloon_floor(void)
1087{
1088	unsigned long min_pages;
1089	unsigned long nr_pages = totalram_pages();
1090#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1091	/* Simple continuous piecewiese linear function:
1092	 *  max MiB -> min MiB  gradient
1093	 *       0         0
1094	 *      16        16
1095	 *      32        24
1096	 *     128        72    (1/2)
1097	 *     512       168    (1/4)
1098	 *    2048       360    (1/8)
1099	 *    8192       744    (1/16)
1100	 *   32768      1512	(1/32)
1101	 */
1102	if (nr_pages < MB2PAGES(128))
1103		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1104	else if (nr_pages < MB2PAGES(512))
1105		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1106	else if (nr_pages < MB2PAGES(2048))
1107		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1108	else if (nr_pages < MB2PAGES(8192))
1109		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1110	else
1111		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1112#undef MB2PAGES
1113	return min_pages;
1114}
1115
1116/*
1117 * Post our status as it relates memory pressure to the
1118 * host. Host expects the guests to post this status
1119 * periodically at 1 second intervals.
1120 *
1121 * The metrics specified in this protocol are very Windows
1122 * specific and so we cook up numbers here to convey our memory
1123 * pressure.
1124 */
1125
1126static void post_status(struct hv_dynmem_device *dm)
1127{
1128	struct dm_status status;
1129	unsigned long now = jiffies;
1130	unsigned long last_post = last_post_time;
1131
1132	if (pressure_report_delay > 0) {
1133		--pressure_report_delay;
1134		return;
1135	}
1136
1137	if (!time_after(now, (last_post_time + HZ)))
1138		return;
1139
1140	memset(&status, 0, sizeof(struct dm_status));
1141	status.hdr.type = DM_STATUS_REPORT;
1142	status.hdr.size = sizeof(struct dm_status);
1143	status.hdr.trans_id = atomic_inc_return(&trans_id);
1144
1145	/*
1146	 * The host expects the guest to report free and committed memory.
1147	 * Furthermore, the host expects the pressure information to include
1148	 * the ballooned out pages. For a given amount of memory that we are
1149	 * managing we need to compute a floor below which we should not
1150	 * balloon. Compute this and add it to the pressure report.
1151	 * We also need to report all offline pages (num_pages_added -
1152	 * num_pages_onlined) as committed to the host, otherwise it can try
1153	 * asking us to balloon them out.
1154	 */
1155	status.num_avail = si_mem_available();
1156	status.num_committed = vm_memory_committed() +
1157		dm->num_pages_ballooned +
1158		(dm->num_pages_added > dm->num_pages_onlined ?
1159		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1160		compute_balloon_floor();
1161
1162	trace_balloon_status(status.num_avail, status.num_committed,
1163			     vm_memory_committed(), dm->num_pages_ballooned,
1164			     dm->num_pages_added, dm->num_pages_onlined);
1165	/*
1166	 * If our transaction ID is no longer current, just don't
1167	 * send the status. This can happen if we were interrupted
1168	 * after we picked our transaction ID.
1169	 */
1170	if (status.hdr.trans_id != atomic_read(&trans_id))
1171		return;
1172
1173	/*
1174	 * If the last post time that we sampled has changed,
1175	 * we have raced, don't post the status.
1176	 */
1177	if (last_post != last_post_time)
1178		return;
1179
1180	last_post_time = jiffies;
1181	vmbus_sendpacket(dm->dev->channel, &status,
1182				sizeof(struct dm_status),
1183				(unsigned long)NULL,
1184				VM_PKT_DATA_INBAND, 0);
1185
1186}
1187
1188static void free_balloon_pages(struct hv_dynmem_device *dm,
1189			 union dm_mem_page_range *range_array)
1190{
1191	int num_pages = range_array->finfo.page_cnt;
1192	__u64 start_frame = range_array->finfo.start_page;
1193	struct page *pg;
1194	int i;
1195
1196	for (i = 0; i < num_pages; i++) {
1197		pg = pfn_to_page(i + start_frame);
1198		__ClearPageOffline(pg);
1199		__free_page(pg);
1200		dm->num_pages_ballooned--;
1201	}
1202}
1203
1204
1205
1206static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1207					unsigned int num_pages,
1208					struct dm_balloon_response *bl_resp,
1209					int alloc_unit)
1210{
1211	unsigned int i, j;
1212	struct page *pg;
1213
1214	for (i = 0; i < num_pages / alloc_unit; i++) {
1215		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1216			HV_HYP_PAGE_SIZE)
1217			return i * alloc_unit;
1218
1219		/*
1220		 * We execute this code in a thread context. Furthermore,
1221		 * we don't want the kernel to try too hard.
1222		 */
1223		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1224				__GFP_NOMEMALLOC | __GFP_NOWARN,
1225				get_order(alloc_unit << PAGE_SHIFT));
1226
1227		if (!pg)
1228			return i * alloc_unit;
1229
1230		dm->num_pages_ballooned += alloc_unit;
1231
1232		/*
1233		 * If we allocatted 2M pages; split them so we
1234		 * can free them in any order we get.
1235		 */
1236
1237		if (alloc_unit != 1)
1238			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1239
1240		/* mark all pages offline */
1241		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1242			__SetPageOffline(pg + j);
1243
1244		bl_resp->range_count++;
1245		bl_resp->range_array[i].finfo.start_page =
1246			page_to_pfn(pg);
1247		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1249
1250	}
1251
1252	return i * alloc_unit;
1253}
1254
1255static void balloon_up(struct work_struct *dummy)
1256{
1257	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258	unsigned int num_ballooned = 0;
1259	struct dm_balloon_response *bl_resp;
1260	int alloc_unit;
1261	int ret;
1262	bool done = false;
1263	int i;
1264	long avail_pages;
1265	unsigned long floor;
1266
1267	/*
1268	 * We will attempt 2M allocations. However, if we fail to
1269	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1270	 */
1271	alloc_unit = PAGES_IN_2M;
1272
1273	avail_pages = si_mem_available();
1274	floor = compute_balloon_floor();
1275
1276	/* Refuse to balloon below the floor. */
1277	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278		pr_info("Balloon request will be partially fulfilled. %s\n",
1279			avail_pages < num_pages ? "Not enough memory." :
1280			"Balloon floor reached.");
1281
1282		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1283	}
1284
1285	while (!done) {
1286		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1287		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1288		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290		bl_resp->more_pages = 1;
1291
1292		num_pages -= num_ballooned;
1293		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294						    bl_resp, alloc_unit);
1295
1296		if (alloc_unit != 1 && num_ballooned == 0) {
1297			alloc_unit = 1;
1298			continue;
1299		}
1300
1301		if (num_ballooned == 0 || num_ballooned == num_pages) {
1302			pr_debug("Ballooned %u out of %u requested pages.\n",
1303				num_pages, dm_device.balloon_wrk.num_pages);
1304
1305			bl_resp->more_pages = 0;
1306			done = true;
1307			dm_device.state = DM_INITIALIZED;
1308		}
1309
1310		/*
1311		 * We are pushing a lot of data through the channel;
1312		 * deal with transient failures caused because of the
1313		 * lack of space in the ring buffer.
1314		 */
1315
1316		do {
1317			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318			ret = vmbus_sendpacket(dm_device.dev->channel,
1319						bl_resp,
1320						bl_resp->hdr.size,
1321						(unsigned long)NULL,
1322						VM_PKT_DATA_INBAND, 0);
1323
1324			if (ret == -EAGAIN)
1325				msleep(20);
1326			post_status(&dm_device);
1327		} while (ret == -EAGAIN);
1328
1329		if (ret) {
1330			/*
1331			 * Free up the memory we allocatted.
1332			 */
1333			pr_err("Balloon response failed\n");
1334
1335			for (i = 0; i < bl_resp->range_count; i++)
1336				free_balloon_pages(&dm_device,
1337						 &bl_resp->range_array[i]);
1338
1339			done = true;
1340		}
1341	}
1342
1343}
1344
1345static void balloon_down(struct hv_dynmem_device *dm,
1346			struct dm_unballoon_request *req)
1347{
1348	union dm_mem_page_range *range_array = req->range_array;
1349	int range_count = req->range_count;
1350	struct dm_unballoon_response resp;
1351	int i;
1352	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1353
1354	for (i = 0; i < range_count; i++) {
1355		free_balloon_pages(dm, &range_array[i]);
1356		complete(&dm_device.config_event);
1357	}
1358
1359	pr_debug("Freed %u ballooned pages.\n",
1360		prev_pages_ballooned - dm->num_pages_ballooned);
1361
1362	if (req->more_pages == 1)
1363		return;
1364
1365	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368	resp.hdr.size = sizeof(struct dm_unballoon_response);
1369
1370	vmbus_sendpacket(dm_device.dev->channel, &resp,
1371				sizeof(struct dm_unballoon_response),
1372				(unsigned long)NULL,
1373				VM_PKT_DATA_INBAND, 0);
1374
1375	dm->state = DM_INITIALIZED;
1376}
1377
1378static void balloon_onchannelcallback(void *context);
1379
1380static int dm_thread_func(void *dm_dev)
1381{
1382	struct hv_dynmem_device *dm = dm_dev;
1383
1384	while (!kthread_should_stop()) {
1385		wait_for_completion_interruptible_timeout(
1386						&dm_device.config_event, 1*HZ);
1387		/*
1388		 * The host expects us to post information on the memory
1389		 * pressure every second.
1390		 */
1391		reinit_completion(&dm_device.config_event);
1392		post_status(dm);
1393	}
1394
1395	return 0;
1396}
1397
1398
1399static void version_resp(struct hv_dynmem_device *dm,
1400			struct dm_version_response *vresp)
1401{
1402	struct dm_version_request version_req;
1403	int ret;
1404
1405	if (vresp->is_accepted) {
1406		/*
1407		 * We are done; wakeup the
1408		 * context waiting for version
1409		 * negotiation.
1410		 */
1411		complete(&dm->host_event);
1412		return;
1413	}
1414	/*
1415	 * If there are more versions to try, continue
1416	 * with negotiations; if not
1417	 * shutdown the service since we are not able
1418	 * to negotiate a suitable version number
1419	 * with the host.
1420	 */
1421	if (dm->next_version == 0)
1422		goto version_error;
1423
1424	memset(&version_req, 0, sizeof(struct dm_version_request));
1425	version_req.hdr.type = DM_VERSION_REQUEST;
1426	version_req.hdr.size = sizeof(struct dm_version_request);
1427	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428	version_req.version.version = dm->next_version;
1429	dm->version = version_req.version.version;
1430
1431	/*
1432	 * Set the next version to try in case current version fails.
1433	 * Win7 protocol ought to be the last one to try.
1434	 */
1435	switch (version_req.version.version) {
1436	case DYNMEM_PROTOCOL_VERSION_WIN8:
1437		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438		version_req.is_last_attempt = 0;
1439		break;
1440	default:
1441		dm->next_version = 0;
1442		version_req.is_last_attempt = 1;
1443	}
1444
1445	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446				sizeof(struct dm_version_request),
1447				(unsigned long)NULL,
1448				VM_PKT_DATA_INBAND, 0);
1449
1450	if (ret)
1451		goto version_error;
1452
1453	return;
1454
1455version_error:
1456	dm->state = DM_INIT_ERROR;
1457	complete(&dm->host_event);
1458}
1459
1460static void cap_resp(struct hv_dynmem_device *dm,
1461			struct dm_capabilities_resp_msg *cap_resp)
1462{
1463	if (!cap_resp->is_accepted) {
1464		pr_err("Capabilities not accepted by host\n");
1465		dm->state = DM_INIT_ERROR;
1466	}
1467	complete(&dm->host_event);
1468}
1469
1470static void balloon_onchannelcallback(void *context)
1471{
1472	struct hv_device *dev = context;
1473	u32 recvlen;
1474	u64 requestid;
1475	struct dm_message *dm_msg;
1476	struct dm_header *dm_hdr;
1477	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478	struct dm_balloon *bal_msg;
1479	struct dm_hot_add *ha_msg;
1480	union dm_mem_page_range *ha_pg_range;
1481	union dm_mem_page_range *ha_region;
1482
1483	memset(recv_buffer, 0, sizeof(recv_buffer));
1484	vmbus_recvpacket(dev->channel, recv_buffer,
1485			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1486
1487	if (recvlen > 0) {
1488		dm_msg = (struct dm_message *)recv_buffer;
1489		dm_hdr = &dm_msg->hdr;
1490
1491		switch (dm_hdr->type) {
1492		case DM_VERSION_RESPONSE:
1493			version_resp(dm,
1494				 (struct dm_version_response *)dm_msg);
1495			break;
1496
1497		case DM_CAPABILITIES_RESPONSE:
1498			cap_resp(dm,
1499				 (struct dm_capabilities_resp_msg *)dm_msg);
1500			break;
1501
1502		case DM_BALLOON_REQUEST:
1503			if (allow_hibernation) {
1504				pr_info("Ignore balloon-up request!\n");
1505				break;
1506			}
1507
1508			if (dm->state == DM_BALLOON_UP)
1509				pr_warn("Currently ballooning\n");
1510			bal_msg = (struct dm_balloon *)recv_buffer;
1511			dm->state = DM_BALLOON_UP;
1512			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1513			schedule_work(&dm_device.balloon_wrk.wrk);
1514			break;
1515
1516		case DM_UNBALLOON_REQUEST:
1517			if (allow_hibernation) {
1518				pr_info("Ignore balloon-down request!\n");
1519				break;
1520			}
1521
1522			dm->state = DM_BALLOON_DOWN;
1523			balloon_down(dm,
1524				 (struct dm_unballoon_request *)recv_buffer);
1525			break;
1526
1527		case DM_MEM_HOT_ADD_REQUEST:
1528			if (dm->state == DM_HOT_ADD)
1529				pr_warn("Currently hot-adding\n");
1530			dm->state = DM_HOT_ADD;
1531			ha_msg = (struct dm_hot_add *)recv_buffer;
1532			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1533				/*
1534				 * This is a normal hot-add request specifying
1535				 * hot-add memory.
1536				 */
1537				dm->host_specified_ha_region = false;
1538				ha_pg_range = &ha_msg->range;
1539				dm->ha_wrk.ha_page_range = *ha_pg_range;
1540				dm->ha_wrk.ha_region_range.page_range = 0;
1541			} else {
1542				/*
1543				 * Host is specifying that we first hot-add
1544				 * a region and then partially populate this
1545				 * region.
1546				 */
1547				dm->host_specified_ha_region = true;
1548				ha_pg_range = &ha_msg->range;
1549				ha_region = &ha_pg_range[1];
1550				dm->ha_wrk.ha_page_range = *ha_pg_range;
1551				dm->ha_wrk.ha_region_range = *ha_region;
1552			}
1553			schedule_work(&dm_device.ha_wrk.wrk);
1554			break;
1555
1556		case DM_INFO_MESSAGE:
1557			process_info(dm, (struct dm_info_msg *)dm_msg);
1558			break;
1559
1560		default:
1561			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1562
1563		}
1564	}
1565
1566}
1567
1568static int balloon_connect_vsp(struct hv_device *dev)
1569{
1570	struct dm_version_request version_req;
1571	struct dm_capabilities cap_msg;
1572	unsigned long t;
1573	int ret;
1574
1575	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1576			 balloon_onchannelcallback, dev);
1577	if (ret)
1578		return ret;
1579
1580	/*
1581	 * Initiate the hand shake with the host and negotiate
1582	 * a version that the host can support. We start with the
1583	 * highest version number and go down if the host cannot
1584	 * support it.
1585	 */
1586	memset(&version_req, 0, sizeof(struct dm_version_request));
1587	version_req.hdr.type = DM_VERSION_REQUEST;
1588	version_req.hdr.size = sizeof(struct dm_version_request);
1589	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1590	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1591	version_req.is_last_attempt = 0;
1592	dm_device.version = version_req.version.version;
1593
1594	ret = vmbus_sendpacket(dev->channel, &version_req,
1595			       sizeof(struct dm_version_request),
1596			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1597	if (ret)
1598		goto out;
1599
1600	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1601	if (t == 0) {
1602		ret = -ETIMEDOUT;
1603		goto out;
1604	}
1605
1606	/*
1607	 * If we could not negotiate a compatible version with the host
1608	 * fail the probe function.
1609	 */
1610	if (dm_device.state == DM_INIT_ERROR) {
1611		ret = -EPROTO;
1612		goto out;
1613	}
1614
1615	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1616		DYNMEM_MAJOR_VERSION(dm_device.version),
1617		DYNMEM_MINOR_VERSION(dm_device.version));
1618
1619	/*
1620	 * Now submit our capabilities to the host.
1621	 */
1622	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1623	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1624	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1625	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1626
1627	/*
1628	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1629	 * currently still requires the bits to be set, so we have to add code
1630	 * to fail the host's hot-add and balloon up/down requests, if any.
1631	 */
1632	cap_msg.caps.cap_bits.balloon = 1;
1633	cap_msg.caps.cap_bits.hot_add = 1;
1634
1635	/*
1636	 * Specify our alignment requirements as it relates
1637	 * memory hot-add. Specify 128MB alignment.
1638	 */
1639	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1640
1641	/*
1642	 * Currently the host does not use these
1643	 * values and we set them to what is done in the
1644	 * Windows driver.
1645	 */
1646	cap_msg.min_page_cnt = 0;
1647	cap_msg.max_page_number = -1;
1648
1649	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1650			       sizeof(struct dm_capabilities),
1651			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1652	if (ret)
1653		goto out;
1654
1655	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1656	if (t == 0) {
1657		ret = -ETIMEDOUT;
1658		goto out;
1659	}
1660
1661	/*
1662	 * If the host does not like our capabilities,
1663	 * fail the probe function.
1664	 */
1665	if (dm_device.state == DM_INIT_ERROR) {
1666		ret = -EPROTO;
1667		goto out;
1668	}
1669
1670	return 0;
1671out:
1672	vmbus_close(dev->channel);
1673	return ret;
1674}
1675
1676static int balloon_probe(struct hv_device *dev,
1677			 const struct hv_vmbus_device_id *dev_id)
1678{
1679	int ret;
1680
1681	allow_hibernation = hv_is_hibernation_supported();
1682	if (allow_hibernation)
1683		hot_add = false;
1684
1685#ifdef CONFIG_MEMORY_HOTPLUG
1686	do_hot_add = hot_add;
1687#else
1688	do_hot_add = false;
1689#endif
1690	dm_device.dev = dev;
1691	dm_device.state = DM_INITIALIZING;
1692	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1693	init_completion(&dm_device.host_event);
1694	init_completion(&dm_device.config_event);
1695	INIT_LIST_HEAD(&dm_device.ha_region_list);
1696	spin_lock_init(&dm_device.ha_lock);
1697	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1698	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1699	dm_device.host_specified_ha_region = false;
1700
1701#ifdef CONFIG_MEMORY_HOTPLUG
1702	set_online_page_callback(&hv_online_page);
1703	init_completion(&dm_device.ol_waitevent);
1704	register_memory_notifier(&hv_memory_nb);
1705#endif
1706
1707	hv_set_drvdata(dev, &dm_device);
1708
1709	ret = balloon_connect_vsp(dev);
1710	if (ret != 0)
1711		return ret;
1712
1713	dm_device.state = DM_INITIALIZED;
1714
1715	dm_device.thread =
1716		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1717	if (IS_ERR(dm_device.thread)) {
1718		ret = PTR_ERR(dm_device.thread);
1719		goto probe_error;
1720	}
1721
1722	return 0;
1723
1724probe_error:
1725	dm_device.state = DM_INIT_ERROR;
1726	dm_device.thread  = NULL;
1727	vmbus_close(dev->channel);
1728#ifdef CONFIG_MEMORY_HOTPLUG
1729	unregister_memory_notifier(&hv_memory_nb);
1730	restore_online_page_callback(&hv_online_page);
1731#endif
1732	return ret;
1733}
1734
1735static int balloon_remove(struct hv_device *dev)
1736{
1737	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1738	struct hv_hotadd_state *has, *tmp;
1739	struct hv_hotadd_gap *gap, *tmp_gap;
1740	unsigned long flags;
1741
1742	if (dm->num_pages_ballooned != 0)
1743		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1744
1745	cancel_work_sync(&dm->balloon_wrk.wrk);
1746	cancel_work_sync(&dm->ha_wrk.wrk);
1747
1748	kthread_stop(dm->thread);
1749	vmbus_close(dev->channel);
1750#ifdef CONFIG_MEMORY_HOTPLUG
1751	unregister_memory_notifier(&hv_memory_nb);
1752	restore_online_page_callback(&hv_online_page);
1753#endif
1754	spin_lock_irqsave(&dm_device.ha_lock, flags);
1755	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757			list_del(&gap->list);
1758			kfree(gap);
1759		}
1760		list_del(&has->list);
1761		kfree(has);
1762	}
1763	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764
1765	return 0;
1766}
1767
1768static int balloon_suspend(struct hv_device *hv_dev)
1769{
1770	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1771
1772	tasklet_disable(&hv_dev->channel->callback_event);
1773
1774	cancel_work_sync(&dm->balloon_wrk.wrk);
1775	cancel_work_sync(&dm->ha_wrk.wrk);
1776
1777	if (dm->thread) {
1778		kthread_stop(dm->thread);
1779		dm->thread = NULL;
1780		vmbus_close(hv_dev->channel);
1781	}
1782
1783	tasklet_enable(&hv_dev->channel->callback_event);
1784
1785	return 0;
1786
1787}
1788
1789static int balloon_resume(struct hv_device *dev)
1790{
1791	int ret;
1792
1793	dm_device.state = DM_INITIALIZING;
1794
1795	ret = balloon_connect_vsp(dev);
1796
1797	if (ret != 0)
1798		goto out;
1799
1800	dm_device.thread =
1801		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1802	if (IS_ERR(dm_device.thread)) {
1803		ret = PTR_ERR(dm_device.thread);
1804		dm_device.thread = NULL;
1805		goto close_channel;
1806	}
1807
1808	dm_device.state = DM_INITIALIZED;
1809	return 0;
1810close_channel:
1811	vmbus_close(dev->channel);
1812out:
1813	dm_device.state = DM_INIT_ERROR;
1814#ifdef CONFIG_MEMORY_HOTPLUG
1815	unregister_memory_notifier(&hv_memory_nb);
1816	restore_online_page_callback(&hv_online_page);
1817#endif
1818	return ret;
1819}
1820
1821static const struct hv_vmbus_device_id id_table[] = {
1822	/* Dynamic Memory Class ID */
1823	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1824	{ HV_DM_GUID, },
1825	{ },
1826};
1827
1828MODULE_DEVICE_TABLE(vmbus, id_table);
1829
1830static  struct hv_driver balloon_drv = {
1831	.name = "hv_balloon",
1832	.id_table = id_table,
1833	.probe =  balloon_probe,
1834	.remove =  balloon_remove,
1835	.suspend = balloon_suspend,
1836	.resume = balloon_resume,
1837	.driver = {
1838		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1839	},
1840};
1841
1842static int __init init_balloon_drv(void)
1843{
1844
1845	return vmbus_driver_register(&balloon_drv);
1846}
1847
1848module_init(init_balloon_drv);
1849
1850MODULE_DESCRIPTION("Hyper-V Balloon");
1851MODULE_LICENSE("GPL");
1852