1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
4 *
5 * Queued image conversion support, with tiling and rotation.
6 */
7
8#include <linux/interrupt.h>
9#include <linux/dma-mapping.h>
10#include <video/imx-ipu-image-convert.h>
11#include "ipu-prv.h"
12
13/*
14 * The IC Resizer has a restriction that the output frame from the
15 * resizer must be 1024 or less in both width (pixels) and height
16 * (lines).
17 *
18 * The image converter attempts to split up a conversion when
19 * the desired output (converted) frame resolution exceeds the
20 * IC resizer limit of 1024 in either dimension.
21 *
22 * If either dimension of the output frame exceeds the limit, the
23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24 * of 4*4 or 16 tiles. A conversion is then carried out for each
25 * tile (but taking care to pass the full frame stride length to
26 * the DMA channel's parameter memory!). IDMA double-buffering is used
27 * to convert each tile back-to-back when possible (see note below
28 * when double_buffering boolean is set).
29 *
30 * Note that the input frame must be split up into the same number
31 * of tiles as the output frame:
32 *
33 *                       +---------+-----+
34 *   +-----+---+         |  A      | B   |
35 *   | A   | B |         |         |     |
36 *   +-----+---+   -->   +---------+-----+
37 *   | C   | D |         |  C      | D   |
38 *   +-----+---+         |         |     |
39 *                       +---------+-----+
40 *
41 * Clockwise 90° rotations are handled by first rescaling into a
42 * reusable temporary tile buffer and then rotating with the 8x8
43 * block rotator, writing to the correct destination:
44 *
45 *                                         +-----+-----+
46 *                                         |     |     |
47 *   +-----+---+         +---------+       | C   | A   |
48 *   | A   | B |         | A,B, |  |       |     |     |
49 *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50 *   | C   | D |         +---------+       +-----+-----+
51 *   +-----+---+                           | D   | B   |
52 *                                         |     |     |
53 *                                         +-----+-----+
54 *
55 * If the 8x8 block rotator is used, horizontal or vertical flipping
56 * is done during the rotation step, otherwise flipping is done
57 * during the scaling step.
58 * With rotation or flipping, tile order changes between input and
59 * output image. Tiles are numbered row major from top left to bottom
60 * right for both input and output image.
61 */
62
63#define MAX_STRIPES_W    4
64#define MAX_STRIPES_H    4
65#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66
67#define MIN_W     16
68#define MIN_H     8
69#define MAX_W     4096
70#define MAX_H     4096
71
72enum ipu_image_convert_type {
73	IMAGE_CONVERT_IN = 0,
74	IMAGE_CONVERT_OUT,
75};
76
77struct ipu_image_convert_dma_buf {
78	void          *virt;
79	dma_addr_t    phys;
80	unsigned long len;
81};
82
83struct ipu_image_convert_dma_chan {
84	int in;
85	int out;
86	int rot_in;
87	int rot_out;
88	int vdi_in_p;
89	int vdi_in;
90	int vdi_in_n;
91};
92
93/* dimensions of one tile */
94struct ipu_image_tile {
95	u32 width;
96	u32 height;
97	u32 left;
98	u32 top;
99	/* size and strides are in bytes */
100	u32 size;
101	u32 stride;
102	u32 rot_stride;
103	/* start Y or packed offset of this tile */
104	u32 offset;
105	/* offset from start to tile in U plane, for planar formats */
106	u32 u_off;
107	/* offset from start to tile in V plane, for planar formats */
108	u32 v_off;
109};
110
111struct ipu_image_convert_image {
112	struct ipu_image base;
113	enum ipu_image_convert_type type;
114
115	const struct ipu_image_pixfmt *fmt;
116	unsigned int stride;
117
118	/* # of rows (horizontal stripes) if dest height is > 1024 */
119	unsigned int num_rows;
120	/* # of columns (vertical stripes) if dest width is > 1024 */
121	unsigned int num_cols;
122
123	struct ipu_image_tile tile[MAX_TILES];
124};
125
126struct ipu_image_pixfmt {
127	u32	fourcc;        /* V4L2 fourcc */
128	int     bpp;           /* total bpp */
129	int     uv_width_dec;  /* decimation in width for U/V planes */
130	int     uv_height_dec; /* decimation in height for U/V planes */
131	bool    planar;        /* planar format */
132	bool    uv_swapped;    /* U and V planes are swapped */
133	bool    uv_packed;     /* partial planar (U and V in same plane) */
134};
135
136struct ipu_image_convert_ctx;
137struct ipu_image_convert_chan;
138struct ipu_image_convert_priv;
139
140enum eof_irq_mask {
141	EOF_IRQ_IN      = BIT(0),
142	EOF_IRQ_ROT_IN  = BIT(1),
143	EOF_IRQ_OUT     = BIT(2),
144	EOF_IRQ_ROT_OUT = BIT(3),
145};
146
147#define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148#define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |	\
149			      EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
150
151struct ipu_image_convert_ctx {
152	struct ipu_image_convert_chan *chan;
153
154	ipu_image_convert_cb_t complete;
155	void *complete_context;
156
157	/* Source/destination image data and rotation mode */
158	struct ipu_image_convert_image in;
159	struct ipu_image_convert_image out;
160	struct ipu_ic_csc csc;
161	enum ipu_rotate_mode rot_mode;
162	u32 downsize_coeff_h;
163	u32 downsize_coeff_v;
164	u32 image_resize_coeff_h;
165	u32 image_resize_coeff_v;
166	u32 resize_coeffs_h[MAX_STRIPES_W];
167	u32 resize_coeffs_v[MAX_STRIPES_H];
168
169	/* intermediate buffer for rotation */
170	struct ipu_image_convert_dma_buf rot_intermediate[2];
171
172	/* current buffer number for double buffering */
173	int cur_buf_num;
174
175	bool aborting;
176	struct completion aborted;
177
178	/* can we use double-buffering for this conversion operation? */
179	bool double_buffering;
180	/* num_rows * num_cols */
181	unsigned int num_tiles;
182	/* next tile to process */
183	unsigned int next_tile;
184	/* where to place converted tile in dest image */
185	unsigned int out_tile_map[MAX_TILES];
186
187	/* mask of completed EOF irqs at every tile conversion */
188	enum eof_irq_mask eof_mask;
189
190	struct list_head list;
191};
192
193struct ipu_image_convert_chan {
194	struct ipu_image_convert_priv *priv;
195
196	enum ipu_ic_task ic_task;
197	const struct ipu_image_convert_dma_chan *dma_ch;
198
199	struct ipu_ic *ic;
200	struct ipuv3_channel *in_chan;
201	struct ipuv3_channel *out_chan;
202	struct ipuv3_channel *rotation_in_chan;
203	struct ipuv3_channel *rotation_out_chan;
204
205	/* the IPU end-of-frame irqs */
206	int in_eof_irq;
207	int rot_in_eof_irq;
208	int out_eof_irq;
209	int rot_out_eof_irq;
210
211	spinlock_t irqlock;
212
213	/* list of convert contexts */
214	struct list_head ctx_list;
215	/* queue of conversion runs */
216	struct list_head pending_q;
217	/* queue of completed runs */
218	struct list_head done_q;
219
220	/* the current conversion run */
221	struct ipu_image_convert_run *current_run;
222};
223
224struct ipu_image_convert_priv {
225	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
226	struct ipu_soc *ipu;
227};
228
229static const struct ipu_image_convert_dma_chan
230image_convert_dma_chan[IC_NUM_TASKS] = {
231	[IC_TASK_VIEWFINDER] = {
232		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
239	},
240	[IC_TASK_POST_PROCESSOR] = {
241		.in = IPUV3_CHANNEL_MEM_IC_PP,
242		.out = IPUV3_CHANNEL_IC_PP_MEM,
243		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
245	},
246};
247
248static const struct ipu_image_pixfmt image_convert_formats[] = {
249	{
250		.fourcc	= V4L2_PIX_FMT_RGB565,
251		.bpp    = 16,
252	}, {
253		.fourcc	= V4L2_PIX_FMT_RGB24,
254		.bpp    = 24,
255	}, {
256		.fourcc	= V4L2_PIX_FMT_BGR24,
257		.bpp    = 24,
258	}, {
259		.fourcc	= V4L2_PIX_FMT_RGB32,
260		.bpp    = 32,
261	}, {
262		.fourcc	= V4L2_PIX_FMT_BGR32,
263		.bpp    = 32,
264	}, {
265		.fourcc	= V4L2_PIX_FMT_XRGB32,
266		.bpp    = 32,
267	}, {
268		.fourcc	= V4L2_PIX_FMT_XBGR32,
269		.bpp    = 32,
270	}, {
271		.fourcc	= V4L2_PIX_FMT_BGRX32,
272		.bpp    = 32,
273	}, {
274		.fourcc	= V4L2_PIX_FMT_RGBX32,
275		.bpp    = 32,
276	}, {
277		.fourcc	= V4L2_PIX_FMT_YUYV,
278		.bpp    = 16,
279		.uv_width_dec = 2,
280		.uv_height_dec = 1,
281	}, {
282		.fourcc	= V4L2_PIX_FMT_UYVY,
283		.bpp    = 16,
284		.uv_width_dec = 2,
285		.uv_height_dec = 1,
286	}, {
287		.fourcc	= V4L2_PIX_FMT_YUV420,
288		.bpp    = 12,
289		.planar = true,
290		.uv_width_dec = 2,
291		.uv_height_dec = 2,
292	}, {
293		.fourcc	= V4L2_PIX_FMT_YVU420,
294		.bpp    = 12,
295		.planar = true,
296		.uv_width_dec = 2,
297		.uv_height_dec = 2,
298		.uv_swapped = true,
299	}, {
300		.fourcc = V4L2_PIX_FMT_NV12,
301		.bpp    = 12,
302		.planar = true,
303		.uv_width_dec = 2,
304		.uv_height_dec = 2,
305		.uv_packed = true,
306	}, {
307		.fourcc = V4L2_PIX_FMT_YUV422P,
308		.bpp    = 16,
309		.planar = true,
310		.uv_width_dec = 2,
311		.uv_height_dec = 1,
312	}, {
313		.fourcc = V4L2_PIX_FMT_NV16,
314		.bpp    = 16,
315		.planar = true,
316		.uv_width_dec = 2,
317		.uv_height_dec = 1,
318		.uv_packed = true,
319	},
320};
321
322static const struct ipu_image_pixfmt *get_format(u32 fourcc)
323{
324	const struct ipu_image_pixfmt *ret = NULL;
325	unsigned int i;
326
327	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328		if (image_convert_formats[i].fourcc == fourcc) {
329			ret = &image_convert_formats[i];
330			break;
331		}
332	}
333
334	return ret;
335}
336
337static void dump_format(struct ipu_image_convert_ctx *ctx,
338			struct ipu_image_convert_image *ic_image)
339{
340	struct ipu_image_convert_chan *chan = ctx->chan;
341	struct ipu_image_convert_priv *priv = chan->priv;
342
343	dev_dbg(priv->ipu->dev,
344		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
345		chan->ic_task, ctx,
346		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347		ic_image->base.pix.width, ic_image->base.pix.height,
348		ic_image->num_cols, ic_image->num_rows,
349		ic_image->fmt->fourcc & 0xff,
350		(ic_image->fmt->fourcc >> 8) & 0xff,
351		(ic_image->fmt->fourcc >> 16) & 0xff,
352		(ic_image->fmt->fourcc >> 24) & 0xff);
353}
354
355int ipu_image_convert_enum_format(int index, u32 *fourcc)
356{
357	const struct ipu_image_pixfmt *fmt;
358
359	if (index >= (int)ARRAY_SIZE(image_convert_formats))
360		return -EINVAL;
361
362	/* Format found */
363	fmt = &image_convert_formats[index];
364	*fourcc = fmt->fourcc;
365	return 0;
366}
367EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
368
369static void free_dma_buf(struct ipu_image_convert_priv *priv,
370			 struct ipu_image_convert_dma_buf *buf)
371{
372	if (buf->virt)
373		dma_free_coherent(priv->ipu->dev,
374				  buf->len, buf->virt, buf->phys);
375	buf->virt = NULL;
376	buf->phys = 0;
377}
378
379static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380			 struct ipu_image_convert_dma_buf *buf,
381			 int size)
382{
383	buf->len = PAGE_ALIGN(size);
384	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385				       GFP_DMA | GFP_KERNEL);
386	if (!buf->virt) {
387		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
388		return -ENOMEM;
389	}
390
391	return 0;
392}
393
394static inline int num_stripes(int dim)
395{
396	return (dim - 1) / 1024 + 1;
397}
398
399/*
400 * Calculate downsizing coefficients, which are the same for all tiles,
401 * and initial bilinear resizing coefficients, which are used to find the
402 * best seam positions.
403 * Also determine the number of tiles necessary to guarantee that no tile
404 * is larger than 1024 pixels in either dimension at the output and between
405 * IC downsizing and main processing sections.
406 */
407static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408					  struct ipu_image *in,
409					  struct ipu_image *out)
410{
411	u32 downsized_width = in->rect.width;
412	u32 downsized_height = in->rect.height;
413	u32 downsize_coeff_v = 0;
414	u32 downsize_coeff_h = 0;
415	u32 resized_width = out->rect.width;
416	u32 resized_height = out->rect.height;
417	u32 resize_coeff_h;
418	u32 resize_coeff_v;
419	u32 cols;
420	u32 rows;
421
422	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423		resized_width = out->rect.height;
424		resized_height = out->rect.width;
425	}
426
427	/* Do not let invalid input lead to an endless loop below */
428	if (WARN_ON(resized_width == 0 || resized_height == 0))
429		return -EINVAL;
430
431	while (downsized_width >= resized_width * 2) {
432		downsized_width >>= 1;
433		downsize_coeff_h++;
434	}
435
436	while (downsized_height >= resized_height * 2) {
437		downsized_height >>= 1;
438		downsize_coeff_v++;
439	}
440
441	/*
442	 * Calculate the bilinear resizing coefficients that could be used if
443	 * we were converting with a single tile. The bottom right output pixel
444	 * should sample as close as possible to the bottom right input pixel
445	 * out of the decimator, but not overshoot it:
446	 */
447	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
449
450	/*
451	 * Both the output of the IC downsizing section before being passed to
452	 * the IC main processing section and the final output of the IC main
453	 * processing section must be <= 1024 pixels in both dimensions.
454	 */
455	cols = num_stripes(max_t(u32, downsized_width, resized_width));
456	rows = num_stripes(max_t(u32, downsized_height, resized_height));
457
458	dev_dbg(ctx->chan->priv->ipu->dev,
459		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461		resize_coeff_v, cols, rows);
462
463	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
464	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
465		return -EINVAL;
466
467	ctx->downsize_coeff_h = downsize_coeff_h;
468	ctx->downsize_coeff_v = downsize_coeff_v;
469	ctx->image_resize_coeff_h = resize_coeff_h;
470	ctx->image_resize_coeff_v = resize_coeff_v;
471	ctx->in.num_cols = cols;
472	ctx->in.num_rows = rows;
473
474	return 0;
475}
476
477#define round_closest(x, y) round_down((x) + (y)/2, (y))
478
479/*
480 * Find the best aligned seam position for the given column / row index.
481 * Rotation and image offsets are out of scope.
482 *
483 * @index: column / row index, used to calculate valid interval
484 * @in_edge: input right / bottom edge
485 * @out_edge: output right / bottom edge
486 * @in_align: input alignment, either horizontal 8-byte line start address
487 *            alignment, or pixel alignment due to image format
488 * @out_align: output alignment, either horizontal 8-byte line start address
489 *             alignment, or pixel alignment due to image format or rotator
490 *             block size
491 * @in_burst: horizontal input burst size in case of horizontal flip
492 * @out_burst: horizontal output burst size or rotator block size
493 * @downsize_coeff: downsizing section coefficient
494 * @resize_coeff: main processing section resizing coefficient
495 * @_in_seam: aligned input seam position return value
496 * @_out_seam: aligned output seam position return value
497 */
498static void find_best_seam(struct ipu_image_convert_ctx *ctx,
499			   unsigned int index,
500			   unsigned int in_edge,
501			   unsigned int out_edge,
502			   unsigned int in_align,
503			   unsigned int out_align,
504			   unsigned int in_burst,
505			   unsigned int out_burst,
506			   unsigned int downsize_coeff,
507			   unsigned int resize_coeff,
508			   u32 *_in_seam,
509			   u32 *_out_seam)
510{
511	struct device *dev = ctx->chan->priv->ipu->dev;
512	unsigned int out_pos;
513	/* Input / output seam position candidates */
514	unsigned int out_seam = 0;
515	unsigned int in_seam = 0;
516	unsigned int min_diff = UINT_MAX;
517	unsigned int out_start;
518	unsigned int out_end;
519	unsigned int in_start;
520	unsigned int in_end;
521
522	/* Start within 1024 pixels of the right / bottom edge */
523	out_start = max_t(int, index * out_align, out_edge - 1024);
524	/* End before having to add more columns to the left / rows above */
525	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
526
527	/*
528	 * Limit input seam position to make sure that the downsized input tile
529	 * to the right or bottom does not exceed 1024 pixels.
530	 */
531	in_start = max_t(int, index * in_align,
532			 in_edge - (1024 << downsize_coeff));
533	in_end = min_t(unsigned int, in_edge,
534		       index * (1024 << downsize_coeff) + 1);
535
536	/*
537	 * Output tiles must start at a multiple of 8 bytes horizontally and
538	 * possibly at an even line horizontally depending on the pixel format.
539	 * Only consider output aligned positions for the seam.
540	 */
541	out_start = round_up(out_start, out_align);
542	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
543		unsigned int in_pos;
544		unsigned int in_pos_aligned;
545		unsigned int in_pos_rounded;
546		unsigned int abs_diff;
547
548		/*
549		 * Tiles in the right row / bottom column may not be allowed to
550		 * overshoot horizontally / vertically. out_burst may be the
551		 * actual DMA burst size, or the rotator block size.
552		 */
553		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
554			continue;
555
556		/*
557		 * Input sample position, corresponding to out_pos, 19.13 fixed
558		 * point.
559		 */
560		in_pos = (out_pos * resize_coeff) << downsize_coeff;
561		/*
562		 * The closest input sample position that we could actually
563		 * start the input tile at, 19.13 fixed point.
564		 */
565		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566		/* Convert 19.13 fixed point to integer */
567		in_pos_rounded = in_pos_aligned / 8192U;
568
569		if (in_pos_rounded < in_start)
570			continue;
571		if (in_pos_rounded >= in_end)
572			break;
573
574		if ((in_burst > 1) &&
575		    (in_edge - in_pos_rounded) % in_burst)
576			continue;
577
578		if (in_pos < in_pos_aligned)
579			abs_diff = in_pos_aligned - in_pos;
580		else
581			abs_diff = in_pos - in_pos_aligned;
582
583		if (abs_diff < min_diff) {
584			in_seam = in_pos_rounded;
585			out_seam = out_pos;
586			min_diff = abs_diff;
587		}
588	}
589
590	*_out_seam = out_seam;
591	*_in_seam = in_seam;
592
593	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594		__func__, out_seam, out_align, out_start, out_end,
595		in_seam, in_align, in_start, in_end, min_diff / 8192,
596		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
597}
598
599/*
600 * Tile left edges are required to be aligned to multiples of 8 bytes
601 * by the IDMAC.
602 */
603static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
604{
605	if (fmt->planar)
606		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
607	else
608		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
609}
610
611/*
612 * Tile top edge alignment is only limited by chroma subsampling.
613 */
614static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
615{
616	return fmt->uv_height_dec > 1 ? 2 : 1;
617}
618
619static inline u32 tile_width_align(enum ipu_image_convert_type type,
620				   const struct ipu_image_pixfmt *fmt,
621				   enum ipu_rotate_mode rot_mode)
622{
623	if (type == IMAGE_CONVERT_IN) {
624		/*
625		 * The IC burst reads 8 pixels at a time. Reading beyond the
626		 * end of the line is usually acceptable. Those pixels are
627		 * ignored, unless the IC has to write the scaled line in
628		 * reverse.
629		 */
630		return (!ipu_rot_mode_is_irt(rot_mode) &&
631			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
632	}
633
634	/*
635	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636	 * formats to guarantee 8-byte aligned line start addresses in the
637	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638	 * for all other formats.
639	 */
640	return (ipu_rot_mode_is_irt(rot_mode) &&
641		fmt->planar && !fmt->uv_packed) ?
642		8 * fmt->uv_width_dec : 8;
643}
644
645static inline u32 tile_height_align(enum ipu_image_convert_type type,
646				    const struct ipu_image_pixfmt *fmt,
647				    enum ipu_rotate_mode rot_mode)
648{
649	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
650		return 2;
651
652	/*
653	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654	 * formats to guarantee 8-byte aligned line start addresses in the
655	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656	 * for all other formats.
657	 */
658	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
659}
660
661/*
662 * Fill in left position and width and for all tiles in an input column, and
663 * for all corresponding output tiles. If the 90° rotator is used, the output
664 * tiles are in a row, and output tile top position and height are set.
665 */
666static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
667			     unsigned int col,
668			     struct ipu_image_convert_image *in,
669			     unsigned int in_left, unsigned int in_width,
670			     struct ipu_image_convert_image *out,
671			     unsigned int out_left, unsigned int out_width)
672{
673	unsigned int row, tile_idx;
674	struct ipu_image_tile *in_tile, *out_tile;
675
676	for (row = 0; row < in->num_rows; row++) {
677		tile_idx = in->num_cols * row + col;
678		in_tile = &in->tile[tile_idx];
679		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
680
681		in_tile->left = in_left;
682		in_tile->width = in_width;
683
684		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685			out_tile->top = out_left;
686			out_tile->height = out_width;
687		} else {
688			out_tile->left = out_left;
689			out_tile->width = out_width;
690		}
691	}
692}
693
694/*
695 * Fill in top position and height and for all tiles in an input row, and
696 * for all corresponding output tiles. If the 90° rotator is used, the output
697 * tiles are in a column, and output tile left position and width are set.
698 */
699static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700			  struct ipu_image_convert_image *in,
701			  unsigned int in_top, unsigned int in_height,
702			  struct ipu_image_convert_image *out,
703			  unsigned int out_top, unsigned int out_height)
704{
705	unsigned int col, tile_idx;
706	struct ipu_image_tile *in_tile, *out_tile;
707
708	for (col = 0; col < in->num_cols; col++) {
709		tile_idx = in->num_cols * row + col;
710		in_tile = &in->tile[tile_idx];
711		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
712
713		in_tile->top = in_top;
714		in_tile->height = in_height;
715
716		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717			out_tile->left = out_top;
718			out_tile->width = out_height;
719		} else {
720			out_tile->top = out_top;
721			out_tile->height = out_height;
722		}
723	}
724}
725
726/*
727 * Find the best horizontal and vertical seam positions to split into tiles.
728 * Minimize the fractional part of the input sampling position for the
729 * top / left pixels of each tile.
730 */
731static void find_seams(struct ipu_image_convert_ctx *ctx,
732		       struct ipu_image_convert_image *in,
733		       struct ipu_image_convert_image *out)
734{
735	struct device *dev = ctx->chan->priv->ipu->dev;
736	unsigned int resized_width = out->base.rect.width;
737	unsigned int resized_height = out->base.rect.height;
738	unsigned int col;
739	unsigned int row;
740	unsigned int in_left_align = tile_left_align(in->fmt);
741	unsigned int in_top_align = tile_top_align(in->fmt);
742	unsigned int out_left_align = tile_left_align(out->fmt);
743	unsigned int out_top_align = tile_top_align(out->fmt);
744	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
745							ctx->rot_mode);
746	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
747							  ctx->rot_mode);
748	unsigned int in_right = in->base.rect.width;
749	unsigned int in_bottom = in->base.rect.height;
750	unsigned int out_right = out->base.rect.width;
751	unsigned int out_bottom = out->base.rect.height;
752	unsigned int flipped_out_left;
753	unsigned int flipped_out_top;
754
755	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756		/* Switch width/height and align top left to IRT block size */
757		resized_width = out->base.rect.height;
758		resized_height = out->base.rect.width;
759		out_left_align = out_height_align;
760		out_top_align = out_width_align;
761		out_width_align = out_left_align;
762		out_height_align = out_top_align;
763		out_right = out->base.rect.height;
764		out_bottom = out->base.rect.width;
765	}
766
767	for (col = in->num_cols - 1; col > 0; col--) {
768		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770		bool allow_out_overshoot = (col < in->num_cols - 1) &&
771					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772		unsigned int in_left;
773		unsigned int out_left;
774
775		/*
776		 * Align input width to burst length if the scaling step flips
777		 * horizontally.
778		 */
779
780		find_best_seam(ctx, col,
781			       in_right, out_right,
782			       in_left_align, out_left_align,
783			       allow_in_overshoot ? 1 : 8 /* burst length */,
784			       allow_out_overshoot ? 1 : out_width_align,
785			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786			       &in_left, &out_left);
787
788		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789			flipped_out_left = resized_width - out_right;
790		else
791			flipped_out_left = out_left;
792
793		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794				 out, flipped_out_left, out_right - out_left);
795
796		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797			in_left, in_right - in_left,
798			flipped_out_left, out_right - out_left);
799
800		in_right = in_left;
801		out_right = out_left;
802	}
803
804	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805			   resized_width - out_right : 0;
806
807	fill_tile_column(ctx, 0, in, 0, in_right,
808			 out, flipped_out_left, out_right);
809
810	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811		in_right, flipped_out_left, out_right);
812
813	for (row = in->num_rows - 1; row > 0; row--) {
814		bool allow_overshoot = row < in->num_rows - 1;
815		unsigned int in_top;
816		unsigned int out_top;
817
818		find_best_seam(ctx, row,
819			       in_bottom, out_bottom,
820			       in_top_align, out_top_align,
821			       1, allow_overshoot ? 1 : out_height_align,
822			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
823			       &in_top, &out_top);
824
825		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826		    ipu_rot_mode_is_irt(ctx->rot_mode))
827			flipped_out_top = resized_height - out_bottom;
828		else
829			flipped_out_top = out_top;
830
831		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832			      out, flipped_out_top, out_bottom - out_top);
833
834		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835			in_top, in_bottom - in_top,
836			flipped_out_top, out_bottom - out_top);
837
838		in_bottom = in_top;
839		out_bottom = out_top;
840	}
841
842	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843	    ipu_rot_mode_is_irt(ctx->rot_mode))
844		flipped_out_top = resized_height - out_bottom;
845	else
846		flipped_out_top = 0;
847
848	fill_tile_row(ctx, 0, in, 0, in_bottom,
849		      out, flipped_out_top, out_bottom);
850
851	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852		in_bottom, flipped_out_top, out_bottom);
853}
854
855static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856				struct ipu_image_convert_image *image)
857{
858	struct ipu_image_convert_chan *chan = ctx->chan;
859	struct ipu_image_convert_priv *priv = chan->priv;
860	unsigned int max_width = 1024;
861	unsigned int max_height = 1024;
862	unsigned int i;
863
864	if (image->type == IMAGE_CONVERT_IN) {
865		/* Up to 4096x4096 input tile size */
866		max_width <<= ctx->downsize_coeff_h;
867		max_height <<= ctx->downsize_coeff_v;
868	}
869
870	for (i = 0; i < ctx->num_tiles; i++) {
871		struct ipu_image_tile *tile;
872		const unsigned int row = i / image->num_cols;
873		const unsigned int col = i % image->num_cols;
874
875		if (image->type == IMAGE_CONVERT_OUT)
876			tile = &image->tile[ctx->out_tile_map[i]];
877		else
878			tile = &image->tile[i];
879
880		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
881			tile->width;
882
883		if (image->fmt->planar) {
884			tile->stride = tile->width;
885			tile->rot_stride = tile->height;
886		} else {
887			tile->stride =
888				(image->fmt->bpp * tile->width) >> 3;
889			tile->rot_stride =
890				(image->fmt->bpp * tile->height) >> 3;
891		}
892
893		dev_dbg(priv->ipu->dev,
894			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895			chan->ic_task, ctx,
896			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
897			row, col,
898			tile->width, tile->height, tile->left, tile->top);
899
900		if (!tile->width || tile->width > max_width ||
901		    !tile->height || tile->height > max_height) {
902			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903				image->type == IMAGE_CONVERT_IN ? "input" :
904				"output", tile->width, tile->height);
905			return -EINVAL;
906		}
907	}
908
909	return 0;
910}
911
912/*
913 * Use the rotation transformation to find the tile coordinates
914 * (row, col) of a tile in the destination frame that corresponds
915 * to the given tile coordinates of a source frame. The destination
916 * coordinate is then converted to a tile index.
917 */
918static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919				int src_row, int src_col)
920{
921	struct ipu_image_convert_chan *chan = ctx->chan;
922	struct ipu_image_convert_priv *priv = chan->priv;
923	struct ipu_image_convert_image *s_image = &ctx->in;
924	struct ipu_image_convert_image *d_image = &ctx->out;
925	int dst_row, dst_col;
926
927	/* with no rotation it's a 1:1 mapping */
928	if (ctx->rot_mode == IPU_ROTATE_NONE)
929		return src_row * s_image->num_cols + src_col;
930
931	/*
932	 * before doing the transform, first we have to translate
933	 * source row,col for an origin in the center of s_image
934	 */
935	src_row = src_row * 2 - (s_image->num_rows - 1);
936	src_col = src_col * 2 - (s_image->num_cols - 1);
937
938	/* do the rotation transform */
939	if (ctx->rot_mode & IPU_ROT_BIT_90) {
940		dst_col = -src_row;
941		dst_row = src_col;
942	} else {
943		dst_col = src_col;
944		dst_row = src_row;
945	}
946
947	/* apply flip */
948	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
949		dst_col = -dst_col;
950	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
951		dst_row = -dst_row;
952
953	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
955
956	/*
957	 * finally translate dest row,col using an origin in upper
958	 * left of d_image
959	 */
960	dst_row += d_image->num_rows - 1;
961	dst_col += d_image->num_cols - 1;
962	dst_row /= 2;
963	dst_col /= 2;
964
965	return dst_row * d_image->num_cols + dst_col;
966}
967
968/*
969 * Fill the out_tile_map[] with transformed destination tile indeces.
970 */
971static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
972{
973	struct ipu_image_convert_image *s_image = &ctx->in;
974	unsigned int row, col, tile = 0;
975
976	for (row = 0; row < s_image->num_rows; row++) {
977		for (col = 0; col < s_image->num_cols; col++) {
978			ctx->out_tile_map[tile] =
979				transform_tile_index(ctx, row, col);
980			tile++;
981		}
982	}
983}
984
985static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986				    struct ipu_image_convert_image *image)
987{
988	struct ipu_image_convert_chan *chan = ctx->chan;
989	struct ipu_image_convert_priv *priv = chan->priv;
990	const struct ipu_image_pixfmt *fmt = image->fmt;
991	unsigned int row, col, tile = 0;
992	u32 H, top, y_stride, uv_stride;
993	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
994	u32 y_row_off, y_col_off, y_off;
995	u32 y_size, uv_size;
996
997	/* setup some convenience vars */
998	H = image->base.pix.height;
999
1000	y_stride = image->stride;
1001	uv_stride = y_stride / fmt->uv_width_dec;
1002	if (fmt->uv_packed)
1003		uv_stride *= 2;
1004
1005	y_size = H * y_stride;
1006	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1007
1008	for (row = 0; row < image->num_rows; row++) {
1009		top = image->tile[tile].top;
1010		y_row_off = top * y_stride;
1011		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1012
1013		for (col = 0; col < image->num_cols; col++) {
1014			y_col_off = image->tile[tile].left;
1015			uv_col_off = y_col_off / fmt->uv_width_dec;
1016			if (fmt->uv_packed)
1017				uv_col_off *= 2;
1018
1019			y_off = y_row_off + y_col_off;
1020			uv_off = uv_row_off + uv_col_off;
1021
1022			u_off = y_size - y_off + uv_off;
1023			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024			if (fmt->uv_swapped) {
1025				tmp = u_off;
1026				u_off = v_off;
1027				v_off = tmp;
1028			}
1029
1030			image->tile[tile].offset = y_off;
1031			image->tile[tile].u_off = u_off;
1032			image->tile[tile++].v_off = v_off;
1033
1034			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1035				dev_err(priv->ipu->dev,
1036					"task %u: ctx %p: %s@[%d,%d]: "
1037					"y_off %08x, u_off %08x, v_off %08x\n",
1038					chan->ic_task, ctx,
1039					image->type == IMAGE_CONVERT_IN ?
1040					"Input" : "Output", row, col,
1041					y_off, u_off, v_off);
1042				return -EINVAL;
1043			}
1044		}
1045	}
1046
1047	return 0;
1048}
1049
1050static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1051				    struct ipu_image_convert_image *image)
1052{
1053	struct ipu_image_convert_chan *chan = ctx->chan;
1054	struct ipu_image_convert_priv *priv = chan->priv;
1055	const struct ipu_image_pixfmt *fmt = image->fmt;
1056	unsigned int row, col, tile = 0;
1057	u32 bpp, stride, offset;
1058	u32 row_off, col_off;
1059
1060	/* setup some convenience vars */
1061	stride = image->stride;
1062	bpp = fmt->bpp;
1063
1064	for (row = 0; row < image->num_rows; row++) {
1065		row_off = image->tile[tile].top * stride;
1066
1067		for (col = 0; col < image->num_cols; col++) {
1068			col_off = (image->tile[tile].left * bpp) >> 3;
1069
1070			offset = row_off + col_off;
1071
1072			image->tile[tile].offset = offset;
1073			image->tile[tile].u_off = 0;
1074			image->tile[tile++].v_off = 0;
1075
1076			if (offset & 0x7) {
1077				dev_err(priv->ipu->dev,
1078					"task %u: ctx %p: %s@[%d,%d]: "
1079					"phys %08x\n",
1080					chan->ic_task, ctx,
1081					image->type == IMAGE_CONVERT_IN ?
1082					"Input" : "Output", row, col,
1083					row_off + col_off);
1084				return -EINVAL;
1085			}
1086		}
1087	}
1088
1089	return 0;
1090}
1091
1092static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1093			      struct ipu_image_convert_image *image)
1094{
1095	if (image->fmt->planar)
1096		return calc_tile_offsets_planar(ctx, image);
1097
1098	return calc_tile_offsets_packed(ctx, image);
1099}
1100
1101/*
1102 * Calculate the resizing ratio for the IC main processing section given input
1103 * size, fixed downsizing coefficient, and output size.
1104 * Either round to closest for the next tile's first pixel to minimize seams
1105 * and distortion (for all but right column / bottom row), or round down to
1106 * avoid sampling beyond the edges of the input image for this tile's last
1107 * pixel.
1108 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1109 */
1110static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1111			     u32 output_size, bool allow_overshoot)
1112{
1113	u32 downsized = input_size >> downsize_coeff;
1114
1115	if (allow_overshoot)
1116		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1117	else
1118		return 8192 * (downsized - 1) / (output_size - 1);
1119}
1120
1121/*
1122 * Slightly modify resize coefficients per tile to hide the bilinear
1123 * interpolator reset at tile borders, shifting the right / bottom edge
1124 * by up to a half input pixel. This removes noticeable seams between
1125 * tiles at higher upscaling factors.
1126 */
1127static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1128{
1129	struct ipu_image_convert_chan *chan = ctx->chan;
1130	struct ipu_image_convert_priv *priv = chan->priv;
1131	struct ipu_image_tile *in_tile, *out_tile;
1132	unsigned int col, row, tile_idx;
1133	unsigned int last_output;
1134
1135	for (col = 0; col < ctx->in.num_cols; col++) {
1136		bool closest = (col < ctx->in.num_cols - 1) &&
1137			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1138		u32 resized_width;
1139		u32 resize_coeff_h;
1140		u32 in_width;
1141
1142		tile_idx = col;
1143		in_tile = &ctx->in.tile[tile_idx];
1144		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1145
1146		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1147			resized_width = out_tile->height;
1148		else
1149			resized_width = out_tile->width;
1150
1151		resize_coeff_h = calc_resize_coeff(in_tile->width,
1152						   ctx->downsize_coeff_h,
1153						   resized_width, closest);
1154
1155		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1156			__func__, col, resize_coeff_h);
1157
1158		/*
1159		 * With the horizontal scaling factor known, round up resized
1160		 * width (output width or height) to burst size.
1161		 */
1162		resized_width = round_up(resized_width, 8);
1163
1164		/*
1165		 * Calculate input width from the last accessed input pixel
1166		 * given resized width and scaling coefficients. Round up to
1167		 * burst size.
1168		 */
1169		last_output = resized_width - 1;
1170		if (closest && ((last_output * resize_coeff_h) % 8192))
1171			last_output++;
1172		in_width = round_up(
1173			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1174			<< ctx->downsize_coeff_h, 8);
1175
1176		for (row = 0; row < ctx->in.num_rows; row++) {
1177			tile_idx = row * ctx->in.num_cols + col;
1178			in_tile = &ctx->in.tile[tile_idx];
1179			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1180
1181			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1182				out_tile->height = resized_width;
1183			else
1184				out_tile->width = resized_width;
1185
1186			in_tile->width = in_width;
1187		}
1188
1189		ctx->resize_coeffs_h[col] = resize_coeff_h;
1190	}
1191
1192	for (row = 0; row < ctx->in.num_rows; row++) {
1193		bool closest = (row < ctx->in.num_rows - 1) &&
1194			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1195		u32 resized_height;
1196		u32 resize_coeff_v;
1197		u32 in_height;
1198
1199		tile_idx = row * ctx->in.num_cols;
1200		in_tile = &ctx->in.tile[tile_idx];
1201		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1202
1203		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1204			resized_height = out_tile->width;
1205		else
1206			resized_height = out_tile->height;
1207
1208		resize_coeff_v = calc_resize_coeff(in_tile->height,
1209						   ctx->downsize_coeff_v,
1210						   resized_height, closest);
1211
1212		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1213			__func__, row, resize_coeff_v);
1214
1215		/*
1216		 * With the vertical scaling factor known, round up resized
1217		 * height (output width or height) to IDMAC limitations.
1218		 */
1219		resized_height = round_up(resized_height, 2);
1220
1221		/*
1222		 * Calculate input width from the last accessed input pixel
1223		 * given resized height and scaling coefficients. Align to
1224		 * IDMAC restrictions.
1225		 */
1226		last_output = resized_height - 1;
1227		if (closest && ((last_output * resize_coeff_v) % 8192))
1228			last_output++;
1229		in_height = round_up(
1230			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1231			<< ctx->downsize_coeff_v, 2);
1232
1233		for (col = 0; col < ctx->in.num_cols; col++) {
1234			tile_idx = row * ctx->in.num_cols + col;
1235			in_tile = &ctx->in.tile[tile_idx];
1236			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1237
1238			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1239				out_tile->width = resized_height;
1240			else
1241				out_tile->height = resized_height;
1242
1243			in_tile->height = in_height;
1244		}
1245
1246		ctx->resize_coeffs_v[row] = resize_coeff_v;
1247	}
1248}
1249
1250/*
1251 * return the number of runs in given queue (pending_q or done_q)
1252 * for this context. hold irqlock when calling.
1253 */
1254static int get_run_count(struct ipu_image_convert_ctx *ctx,
1255			 struct list_head *q)
1256{
1257	struct ipu_image_convert_run *run;
1258	int count = 0;
1259
1260	lockdep_assert_held(&ctx->chan->irqlock);
1261
1262	list_for_each_entry(run, q, list) {
1263		if (run->ctx == ctx)
1264			count++;
1265	}
1266
1267	return count;
1268}
1269
1270static void convert_stop(struct ipu_image_convert_run *run)
1271{
1272	struct ipu_image_convert_ctx *ctx = run->ctx;
1273	struct ipu_image_convert_chan *chan = ctx->chan;
1274	struct ipu_image_convert_priv *priv = chan->priv;
1275
1276	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1277		__func__, chan->ic_task, ctx, run);
1278
1279	/* disable IC tasks and the channels */
1280	ipu_ic_task_disable(chan->ic);
1281	ipu_idmac_disable_channel(chan->in_chan);
1282	ipu_idmac_disable_channel(chan->out_chan);
1283
1284	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1285		ipu_idmac_disable_channel(chan->rotation_in_chan);
1286		ipu_idmac_disable_channel(chan->rotation_out_chan);
1287		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1288	}
1289
1290	ipu_ic_disable(chan->ic);
1291}
1292
1293static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1294			       struct ipuv3_channel *channel,
1295			       struct ipu_image_convert_image *image,
1296			       enum ipu_rotate_mode rot_mode,
1297			       bool rot_swap_width_height,
1298			       unsigned int tile)
1299{
1300	struct ipu_image_convert_chan *chan = ctx->chan;
1301	unsigned int burst_size;
1302	u32 width, height, stride;
1303	dma_addr_t addr0, addr1 = 0;
1304	struct ipu_image tile_image;
1305	unsigned int tile_idx[2];
1306
1307	if (image->type == IMAGE_CONVERT_OUT) {
1308		tile_idx[0] = ctx->out_tile_map[tile];
1309		tile_idx[1] = ctx->out_tile_map[1];
1310	} else {
1311		tile_idx[0] = tile;
1312		tile_idx[1] = 1;
1313	}
1314
1315	if (rot_swap_width_height) {
1316		width = image->tile[tile_idx[0]].height;
1317		height = image->tile[tile_idx[0]].width;
1318		stride = image->tile[tile_idx[0]].rot_stride;
1319		addr0 = ctx->rot_intermediate[0].phys;
1320		if (ctx->double_buffering)
1321			addr1 = ctx->rot_intermediate[1].phys;
1322	} else {
1323		width = image->tile[tile_idx[0]].width;
1324		height = image->tile[tile_idx[0]].height;
1325		stride = image->stride;
1326		addr0 = image->base.phys0 +
1327			image->tile[tile_idx[0]].offset;
1328		if (ctx->double_buffering)
1329			addr1 = image->base.phys0 +
1330				image->tile[tile_idx[1]].offset;
1331	}
1332
1333	ipu_cpmem_zero(channel);
1334
1335	memset(&tile_image, 0, sizeof(tile_image));
1336	tile_image.pix.width = tile_image.rect.width = width;
1337	tile_image.pix.height = tile_image.rect.height = height;
1338	tile_image.pix.bytesperline = stride;
1339	tile_image.pix.pixelformat =  image->fmt->fourcc;
1340	tile_image.phys0 = addr0;
1341	tile_image.phys1 = addr1;
1342	if (image->fmt->planar && !rot_swap_width_height) {
1343		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1344		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1345	}
1346
1347	ipu_cpmem_set_image(channel, &tile_image);
1348
1349	if (rot_mode)
1350		ipu_cpmem_set_rotation(channel, rot_mode);
1351
1352	/*
1353	 * Skip writing U and V components to odd rows in the output
1354	 * channels for planar 4:2:0.
1355	 */
1356	if ((channel == chan->out_chan ||
1357	     channel == chan->rotation_out_chan) &&
1358	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1359		ipu_cpmem_skip_odd_chroma_rows(channel);
1360
1361	if (channel == chan->rotation_in_chan ||
1362	    channel == chan->rotation_out_chan) {
1363		burst_size = 8;
1364		ipu_cpmem_set_block_mode(channel);
1365	} else
1366		burst_size = (width % 16) ? 8 : 16;
1367
1368	ipu_cpmem_set_burstsize(channel, burst_size);
1369
1370	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1371			      burst_size, rot_mode);
1372
1373	/*
1374	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1375	 * only do this when there is no PRG present.
1376	 */
1377	if (!channel->ipu->prg_priv)
1378		ipu_cpmem_set_axi_id(channel, 1);
1379
1380	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1381}
1382
1383static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1384{
1385	struct ipu_image_convert_ctx *ctx = run->ctx;
1386	struct ipu_image_convert_chan *chan = ctx->chan;
1387	struct ipu_image_convert_priv *priv = chan->priv;
1388	struct ipu_image_convert_image *s_image = &ctx->in;
1389	struct ipu_image_convert_image *d_image = &ctx->out;
1390	unsigned int dst_tile = ctx->out_tile_map[tile];
1391	unsigned int dest_width, dest_height;
1392	unsigned int col, row;
1393	u32 rsc;
1394	int ret;
1395
1396	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1397		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1398
1399	/* clear EOF irq mask */
1400	ctx->eof_mask = 0;
1401
1402	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1403		/* swap width/height for resizer */
1404		dest_width = d_image->tile[dst_tile].height;
1405		dest_height = d_image->tile[dst_tile].width;
1406	} else {
1407		dest_width = d_image->tile[dst_tile].width;
1408		dest_height = d_image->tile[dst_tile].height;
1409	}
1410
1411	row = tile / s_image->num_cols;
1412	col = tile % s_image->num_cols;
1413
1414	rsc =  (ctx->downsize_coeff_v << 30) |
1415	       (ctx->resize_coeffs_v[row] << 16) |
1416	       (ctx->downsize_coeff_h << 14) |
1417	       (ctx->resize_coeffs_h[col]);
1418
1419	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1420		__func__, s_image->tile[tile].width,
1421		s_image->tile[tile].height, dest_width, dest_height, rsc);
1422
1423	/* setup the IC resizer and CSC */
1424	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1425				   s_image->tile[tile].width,
1426				   s_image->tile[tile].height,
1427				   dest_width,
1428				   dest_height,
1429				   rsc);
1430	if (ret) {
1431		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1432		return ret;
1433	}
1434
1435	/* init the source MEM-->IC PP IDMAC channel */
1436	init_idmac_channel(ctx, chan->in_chan, s_image,
1437			   IPU_ROTATE_NONE, false, tile);
1438
1439	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1440		/* init the IC PP-->MEM IDMAC channel */
1441		init_idmac_channel(ctx, chan->out_chan, d_image,
1442				   IPU_ROTATE_NONE, true, tile);
1443
1444		/* init the MEM-->IC PP ROT IDMAC channel */
1445		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1446				   ctx->rot_mode, true, tile);
1447
1448		/* init the destination IC PP ROT-->MEM IDMAC channel */
1449		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1450				   IPU_ROTATE_NONE, false, tile);
1451
1452		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1453		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1454	} else {
1455		/* init the destination IC PP-->MEM IDMAC channel */
1456		init_idmac_channel(ctx, chan->out_chan, d_image,
1457				   ctx->rot_mode, false, tile);
1458	}
1459
1460	/* enable the IC */
1461	ipu_ic_enable(chan->ic);
1462
1463	/* set buffers ready */
1464	ipu_idmac_select_buffer(chan->in_chan, 0);
1465	ipu_idmac_select_buffer(chan->out_chan, 0);
1466	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1467		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1468	if (ctx->double_buffering) {
1469		ipu_idmac_select_buffer(chan->in_chan, 1);
1470		ipu_idmac_select_buffer(chan->out_chan, 1);
1471		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1472			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1473	}
1474
1475	/* enable the channels! */
1476	ipu_idmac_enable_channel(chan->in_chan);
1477	ipu_idmac_enable_channel(chan->out_chan);
1478	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1479		ipu_idmac_enable_channel(chan->rotation_in_chan);
1480		ipu_idmac_enable_channel(chan->rotation_out_chan);
1481	}
1482
1483	ipu_ic_task_enable(chan->ic);
1484
1485	ipu_cpmem_dump(chan->in_chan);
1486	ipu_cpmem_dump(chan->out_chan);
1487	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1488		ipu_cpmem_dump(chan->rotation_in_chan);
1489		ipu_cpmem_dump(chan->rotation_out_chan);
1490	}
1491
1492	ipu_dump(priv->ipu);
1493
1494	return 0;
1495}
1496
1497/* hold irqlock when calling */
1498static int do_run(struct ipu_image_convert_run *run)
1499{
1500	struct ipu_image_convert_ctx *ctx = run->ctx;
1501	struct ipu_image_convert_chan *chan = ctx->chan;
1502
1503	lockdep_assert_held(&chan->irqlock);
1504
1505	ctx->in.base.phys0 = run->in_phys;
1506	ctx->out.base.phys0 = run->out_phys;
1507
1508	ctx->cur_buf_num = 0;
1509	ctx->next_tile = 1;
1510
1511	/* remove run from pending_q and set as current */
1512	list_del(&run->list);
1513	chan->current_run = run;
1514
1515	return convert_start(run, 0);
1516}
1517
1518/* hold irqlock when calling */
1519static void run_next(struct ipu_image_convert_chan *chan)
1520{
1521	struct ipu_image_convert_priv *priv = chan->priv;
1522	struct ipu_image_convert_run *run, *tmp;
1523	int ret;
1524
1525	lockdep_assert_held(&chan->irqlock);
1526
1527	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1528		/* skip contexts that are aborting */
1529		if (run->ctx->aborting) {
1530			dev_dbg(priv->ipu->dev,
1531				"%s: task %u: skipping aborting ctx %p run %p\n",
1532				__func__, chan->ic_task, run->ctx, run);
1533			continue;
1534		}
1535
1536		ret = do_run(run);
1537		if (!ret)
1538			break;
1539
1540		/*
1541		 * something went wrong with start, add the run
1542		 * to done q and continue to the next run in the
1543		 * pending q.
1544		 */
1545		run->status = ret;
1546		list_add_tail(&run->list, &chan->done_q);
1547		chan->current_run = NULL;
1548	}
1549}
1550
1551static void empty_done_q(struct ipu_image_convert_chan *chan)
1552{
1553	struct ipu_image_convert_priv *priv = chan->priv;
1554	struct ipu_image_convert_run *run;
1555	unsigned long flags;
1556
1557	spin_lock_irqsave(&chan->irqlock, flags);
1558
1559	while (!list_empty(&chan->done_q)) {
1560		run = list_entry(chan->done_q.next,
1561				 struct ipu_image_convert_run,
1562				 list);
1563
1564		list_del(&run->list);
1565
1566		dev_dbg(priv->ipu->dev,
1567			"%s: task %u: completing ctx %p run %p with %d\n",
1568			__func__, chan->ic_task, run->ctx, run, run->status);
1569
1570		/* call the completion callback and free the run */
1571		spin_unlock_irqrestore(&chan->irqlock, flags);
1572		run->ctx->complete(run, run->ctx->complete_context);
1573		spin_lock_irqsave(&chan->irqlock, flags);
1574	}
1575
1576	spin_unlock_irqrestore(&chan->irqlock, flags);
1577}
1578
1579/*
1580 * the bottom half thread clears out the done_q, calling the
1581 * completion handler for each.
1582 */
1583static irqreturn_t do_bh(int irq, void *dev_id)
1584{
1585	struct ipu_image_convert_chan *chan = dev_id;
1586	struct ipu_image_convert_priv *priv = chan->priv;
1587	struct ipu_image_convert_ctx *ctx;
1588	unsigned long flags;
1589
1590	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1591		chan->ic_task);
1592
1593	empty_done_q(chan);
1594
1595	spin_lock_irqsave(&chan->irqlock, flags);
1596
1597	/*
1598	 * the done_q is cleared out, signal any contexts
1599	 * that are aborting that abort can complete.
1600	 */
1601	list_for_each_entry(ctx, &chan->ctx_list, list) {
1602		if (ctx->aborting) {
1603			dev_dbg(priv->ipu->dev,
1604				"%s: task %u: signaling abort for ctx %p\n",
1605				__func__, chan->ic_task, ctx);
1606			complete_all(&ctx->aborted);
1607		}
1608	}
1609
1610	spin_unlock_irqrestore(&chan->irqlock, flags);
1611
1612	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1613		chan->ic_task);
1614
1615	return IRQ_HANDLED;
1616}
1617
1618static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1619{
1620	unsigned int cur_tile = ctx->next_tile - 1;
1621	unsigned int next_tile = ctx->next_tile;
1622
1623	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1624	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1625	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1626	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1627	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1628	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1629	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1630	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1631		return true;
1632
1633	return false;
1634}
1635
1636/* hold irqlock when calling */
1637static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1638{
1639	struct ipu_image_convert_ctx *ctx = run->ctx;
1640	struct ipu_image_convert_chan *chan = ctx->chan;
1641	struct ipu_image_tile *src_tile, *dst_tile;
1642	struct ipu_image_convert_image *s_image = &ctx->in;
1643	struct ipu_image_convert_image *d_image = &ctx->out;
1644	struct ipuv3_channel *outch;
1645	unsigned int dst_idx;
1646
1647	lockdep_assert_held(&chan->irqlock);
1648
1649	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1650		chan->rotation_out_chan : chan->out_chan;
1651
1652	/*
1653	 * It is difficult to stop the channel DMA before the channels
1654	 * enter the paused state. Without double-buffering the channels
1655	 * are always in a paused state when the EOF irq occurs, so it
1656	 * is safe to stop the channels now. For double-buffering we
1657	 * just ignore the abort until the operation completes, when it
1658	 * is safe to shut down.
1659	 */
1660	if (ctx->aborting && !ctx->double_buffering) {
1661		convert_stop(run);
1662		run->status = -EIO;
1663		goto done;
1664	}
1665
1666	if (ctx->next_tile == ctx->num_tiles) {
1667		/*
1668		 * the conversion is complete
1669		 */
1670		convert_stop(run);
1671		run->status = 0;
1672		goto done;
1673	}
1674
1675	/*
1676	 * not done, place the next tile buffers.
1677	 */
1678	if (!ctx->double_buffering) {
1679		if (ic_settings_changed(ctx)) {
1680			convert_stop(run);
1681			convert_start(run, ctx->next_tile);
1682		} else {
1683			src_tile = &s_image->tile[ctx->next_tile];
1684			dst_idx = ctx->out_tile_map[ctx->next_tile];
1685			dst_tile = &d_image->tile[dst_idx];
1686
1687			ipu_cpmem_set_buffer(chan->in_chan, 0,
1688					     s_image->base.phys0 +
1689					     src_tile->offset);
1690			ipu_cpmem_set_buffer(outch, 0,
1691					     d_image->base.phys0 +
1692					     dst_tile->offset);
1693			if (s_image->fmt->planar)
1694				ipu_cpmem_set_uv_offset(chan->in_chan,
1695							src_tile->u_off,
1696							src_tile->v_off);
1697			if (d_image->fmt->planar)
1698				ipu_cpmem_set_uv_offset(outch,
1699							dst_tile->u_off,
1700							dst_tile->v_off);
1701
1702			ipu_idmac_select_buffer(chan->in_chan, 0);
1703			ipu_idmac_select_buffer(outch, 0);
1704		}
1705	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1706
1707		src_tile = &s_image->tile[ctx->next_tile + 1];
1708		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1709		dst_tile = &d_image->tile[dst_idx];
1710
1711		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1712				     s_image->base.phys0 + src_tile->offset);
1713		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1714				     d_image->base.phys0 + dst_tile->offset);
1715
1716		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1717		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1718
1719		ctx->cur_buf_num ^= 1;
1720	}
1721
1722	ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1723	ctx->next_tile++;
1724	return IRQ_HANDLED;
1725done:
1726	list_add_tail(&run->list, &chan->done_q);
1727	chan->current_run = NULL;
1728	run_next(chan);
1729	return IRQ_WAKE_THREAD;
1730}
1731
1732static irqreturn_t eof_irq(int irq, void *data)
1733{
1734	struct ipu_image_convert_chan *chan = data;
1735	struct ipu_image_convert_priv *priv = chan->priv;
1736	struct ipu_image_convert_ctx *ctx;
1737	struct ipu_image_convert_run *run;
1738	irqreturn_t ret = IRQ_HANDLED;
1739	bool tile_complete = false;
1740	unsigned long flags;
1741
1742	spin_lock_irqsave(&chan->irqlock, flags);
1743
1744	/* get current run and its context */
1745	run = chan->current_run;
1746	if (!run) {
1747		ret = IRQ_NONE;
1748		goto out;
1749	}
1750
1751	ctx = run->ctx;
1752
1753	if (irq == chan->in_eof_irq) {
1754		ctx->eof_mask |= EOF_IRQ_IN;
1755	} else if (irq == chan->out_eof_irq) {
1756		ctx->eof_mask |= EOF_IRQ_OUT;
1757	} else if (irq == chan->rot_in_eof_irq ||
1758		   irq == chan->rot_out_eof_irq) {
1759		if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1760			/* this was NOT a rotation op, shouldn't happen */
1761			dev_err(priv->ipu->dev,
1762				"Unexpected rotation interrupt\n");
1763			goto out;
1764		}
1765		ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1766			EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1767	} else {
1768		dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1769		ret = IRQ_NONE;
1770		goto out;
1771	}
1772
1773	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1774		tile_complete =	(ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1775	else
1776		tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1777
1778	if (tile_complete)
1779		ret = do_tile_complete(run);
1780out:
1781	spin_unlock_irqrestore(&chan->irqlock, flags);
1782	return ret;
1783}
1784
1785/*
1786 * try to force the completion of runs for this ctx. Called when
1787 * abort wait times out in ipu_image_convert_abort().
1788 */
1789static void force_abort(struct ipu_image_convert_ctx *ctx)
1790{
1791	struct ipu_image_convert_chan *chan = ctx->chan;
1792	struct ipu_image_convert_run *run;
1793	unsigned long flags;
1794
1795	spin_lock_irqsave(&chan->irqlock, flags);
1796
1797	run = chan->current_run;
1798	if (run && run->ctx == ctx) {
1799		convert_stop(run);
1800		run->status = -EIO;
1801		list_add_tail(&run->list, &chan->done_q);
1802		chan->current_run = NULL;
1803		run_next(chan);
1804	}
1805
1806	spin_unlock_irqrestore(&chan->irqlock, flags);
1807
1808	empty_done_q(chan);
1809}
1810
1811static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1812{
1813	if (chan->in_eof_irq >= 0)
1814		free_irq(chan->in_eof_irq, chan);
1815	if (chan->rot_in_eof_irq >= 0)
1816		free_irq(chan->rot_in_eof_irq, chan);
1817	if (chan->out_eof_irq >= 0)
1818		free_irq(chan->out_eof_irq, chan);
1819	if (chan->rot_out_eof_irq >= 0)
1820		free_irq(chan->rot_out_eof_irq, chan);
1821
1822	if (!IS_ERR_OR_NULL(chan->in_chan))
1823		ipu_idmac_put(chan->in_chan);
1824	if (!IS_ERR_OR_NULL(chan->out_chan))
1825		ipu_idmac_put(chan->out_chan);
1826	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1827		ipu_idmac_put(chan->rotation_in_chan);
1828	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1829		ipu_idmac_put(chan->rotation_out_chan);
1830	if (!IS_ERR_OR_NULL(chan->ic))
1831		ipu_ic_put(chan->ic);
1832
1833	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1834		chan->rotation_out_chan = NULL;
1835	chan->in_eof_irq = -1;
1836	chan->rot_in_eof_irq = -1;
1837	chan->out_eof_irq = -1;
1838	chan->rot_out_eof_irq = -1;
1839}
1840
1841static int get_eof_irq(struct ipu_image_convert_chan *chan,
1842		       struct ipuv3_channel *channel)
1843{
1844	struct ipu_image_convert_priv *priv = chan->priv;
1845	int ret, irq;
1846
1847	irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1848
1849	ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1850	if (ret < 0) {
1851		dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1852		return ret;
1853	}
1854
1855	return irq;
1856}
1857
1858static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1859{
1860	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1861	struct ipu_image_convert_priv *priv = chan->priv;
1862	int ret;
1863
1864	/* get IC */
1865	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1866	if (IS_ERR(chan->ic)) {
1867		dev_err(priv->ipu->dev, "could not acquire IC\n");
1868		ret = PTR_ERR(chan->ic);
1869		goto err;
1870	}
1871
1872	/* get IDMAC channels */
1873	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1874	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1875	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1876		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1877		ret = -EBUSY;
1878		goto err;
1879	}
1880
1881	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1882	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1883	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1884		dev_err(priv->ipu->dev,
1885			"could not acquire idmac rotation channels\n");
1886		ret = -EBUSY;
1887		goto err;
1888	}
1889
1890	/* acquire the EOF interrupts */
1891	ret = get_eof_irq(chan, chan->in_chan);
1892	if (ret < 0) {
1893		chan->in_eof_irq = -1;
1894		goto err;
1895	}
1896	chan->in_eof_irq = ret;
1897
1898	ret = get_eof_irq(chan, chan->rotation_in_chan);
1899	if (ret < 0) {
1900		chan->rot_in_eof_irq = -1;
1901		goto err;
1902	}
1903	chan->rot_in_eof_irq = ret;
1904
1905	ret = get_eof_irq(chan, chan->out_chan);
1906	if (ret < 0) {
1907		chan->out_eof_irq = -1;
1908		goto err;
1909	}
1910	chan->out_eof_irq = ret;
1911
1912	ret = get_eof_irq(chan, chan->rotation_out_chan);
1913	if (ret < 0) {
1914		chan->rot_out_eof_irq = -1;
1915		goto err;
1916	}
1917	chan->rot_out_eof_irq = ret;
1918
1919	return 0;
1920err:
1921	release_ipu_resources(chan);
1922	return ret;
1923}
1924
1925static int fill_image(struct ipu_image_convert_ctx *ctx,
1926		      struct ipu_image_convert_image *ic_image,
1927		      struct ipu_image *image,
1928		      enum ipu_image_convert_type type)
1929{
1930	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1931
1932	ic_image->base = *image;
1933	ic_image->type = type;
1934
1935	ic_image->fmt = get_format(image->pix.pixelformat);
1936	if (!ic_image->fmt) {
1937		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1938			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1939		return -EINVAL;
1940	}
1941
1942	if (ic_image->fmt->planar)
1943		ic_image->stride = ic_image->base.pix.width;
1944	else
1945		ic_image->stride  = ic_image->base.pix.bytesperline;
1946
1947	return 0;
1948}
1949
1950/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1951static unsigned int clamp_align(unsigned int x, unsigned int min,
1952				unsigned int max, unsigned int align)
1953{
1954	/* Bits that must be zero to be aligned */
1955	unsigned int mask = ~((1 << align) - 1);
1956
1957	/* Clamp to aligned min and max */
1958	x = clamp(x, (min + ~mask) & mask, max & mask);
1959
1960	/* Round to nearest aligned value */
1961	if (align)
1962		x = (x + (1 << (align - 1))) & mask;
1963
1964	return x;
1965}
1966
1967/* Adjusts input/output images to IPU restrictions */
1968void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1969			      enum ipu_rotate_mode rot_mode)
1970{
1971	const struct ipu_image_pixfmt *infmt, *outfmt;
1972	u32 w_align_out, h_align_out;
1973	u32 w_align_in, h_align_in;
1974
1975	infmt = get_format(in->pix.pixelformat);
1976	outfmt = get_format(out->pix.pixelformat);
1977
1978	/* set some default pixel formats if needed */
1979	if (!infmt) {
1980		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981		infmt = get_format(V4L2_PIX_FMT_RGB24);
1982	}
1983	if (!outfmt) {
1984		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1985		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1986	}
1987
1988	/* image converter does not handle fields */
1989	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1990
1991	/* resizer cannot downsize more than 4:1 */
1992	if (ipu_rot_mode_is_irt(rot_mode)) {
1993		out->pix.height = max_t(__u32, out->pix.height,
1994					in->pix.width / 4);
1995		out->pix.width = max_t(__u32, out->pix.width,
1996				       in->pix.height / 4);
1997	} else {
1998		out->pix.width = max_t(__u32, out->pix.width,
1999				       in->pix.width / 4);
2000		out->pix.height = max_t(__u32, out->pix.height,
2001					in->pix.height / 4);
2002	}
2003
2004	/* align input width/height */
2005	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2006					    rot_mode));
2007	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2008					     rot_mode));
2009	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2010				    w_align_in);
2011	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2012				     h_align_in);
2013
2014	/* align output width/height */
2015	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2016					     rot_mode));
2017	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2018					      rot_mode));
2019	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2020				     w_align_out);
2021	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2022				      h_align_out);
2023
2024	/* set input/output strides and image sizes */
2025	in->pix.bytesperline = infmt->planar ?
2026		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2027			    w_align_in) :
2028		clamp_align((in->pix.width * infmt->bpp) >> 3,
2029			    ((2 << w_align_in) * infmt->bpp) >> 3,
2030			    (MAX_W * infmt->bpp) >> 3,
2031			    w_align_in);
2032	in->pix.sizeimage = infmt->planar ?
2033		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2034		in->pix.height * in->pix.bytesperline;
2035	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2036		(out->pix.width * outfmt->bpp) >> 3;
2037	out->pix.sizeimage = outfmt->planar ?
2038		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2039		out->pix.height * out->pix.bytesperline;
2040}
2041EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2042
2043/*
2044 * this is used by ipu_image_convert_prepare() to verify set input and
2045 * output images are valid before starting the conversion. Clients can
2046 * also call it before calling ipu_image_convert_prepare().
2047 */
2048int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2049			     enum ipu_rotate_mode rot_mode)
2050{
2051	struct ipu_image testin, testout;
2052
2053	testin = *in;
2054	testout = *out;
2055
2056	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2057
2058	if (testin.pix.width != in->pix.width ||
2059	    testin.pix.height != in->pix.height ||
2060	    testout.pix.width != out->pix.width ||
2061	    testout.pix.height != out->pix.height)
2062		return -EINVAL;
2063
2064	return 0;
2065}
2066EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2067
2068/*
2069 * Call ipu_image_convert_prepare() to prepare for the conversion of
2070 * given images and rotation mode. Returns a new conversion context.
2071 */
2072struct ipu_image_convert_ctx *
2073ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2074			  struct ipu_image *in, struct ipu_image *out,
2075			  enum ipu_rotate_mode rot_mode,
2076			  ipu_image_convert_cb_t complete,
2077			  void *complete_context)
2078{
2079	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2080	struct ipu_image_convert_image *s_image, *d_image;
2081	struct ipu_image_convert_chan *chan;
2082	struct ipu_image_convert_ctx *ctx;
2083	unsigned long flags;
2084	unsigned int i;
2085	bool get_res;
2086	int ret;
2087
2088	if (!in || !out || !complete ||
2089	    (ic_task != IC_TASK_VIEWFINDER &&
2090	     ic_task != IC_TASK_POST_PROCESSOR))
2091		return ERR_PTR(-EINVAL);
2092
2093	/* verify the in/out images before continuing */
2094	ret = ipu_image_convert_verify(in, out, rot_mode);
2095	if (ret) {
2096		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2097			__func__);
2098		return ERR_PTR(ret);
2099	}
2100
2101	chan = &priv->chan[ic_task];
2102
2103	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2104	if (!ctx)
2105		return ERR_PTR(-ENOMEM);
2106
2107	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2108		chan->ic_task, ctx);
2109
2110	ctx->chan = chan;
2111	init_completion(&ctx->aborted);
2112
2113	ctx->rot_mode = rot_mode;
2114
2115	/* Sets ctx->in.num_rows/cols as well */
2116	ret = calc_image_resize_coefficients(ctx, in, out);
2117	if (ret)
2118		goto out_free;
2119
2120	s_image = &ctx->in;
2121	d_image = &ctx->out;
2122
2123	/* set tiling and rotation */
2124	if (ipu_rot_mode_is_irt(rot_mode)) {
2125		d_image->num_rows = s_image->num_cols;
2126		d_image->num_cols = s_image->num_rows;
2127	} else {
2128		d_image->num_rows = s_image->num_rows;
2129		d_image->num_cols = s_image->num_cols;
2130	}
2131
2132	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2133
2134	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2135	if (ret)
2136		goto out_free;
2137	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2138	if (ret)
2139		goto out_free;
2140
2141	calc_out_tile_map(ctx);
2142
2143	find_seams(ctx, s_image, d_image);
2144
2145	ret = calc_tile_dimensions(ctx, s_image);
2146	if (ret)
2147		goto out_free;
2148
2149	ret = calc_tile_offsets(ctx, s_image);
2150	if (ret)
2151		goto out_free;
2152
2153	calc_tile_dimensions(ctx, d_image);
2154	ret = calc_tile_offsets(ctx, d_image);
2155	if (ret)
2156		goto out_free;
2157
2158	calc_tile_resize_coefficients(ctx);
2159
2160	ret = ipu_ic_calc_csc(&ctx->csc,
2161			s_image->base.pix.ycbcr_enc,
2162			s_image->base.pix.quantization,
2163			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2164			d_image->base.pix.ycbcr_enc,
2165			d_image->base.pix.quantization,
2166			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2167	if (ret)
2168		goto out_free;
2169
2170	dump_format(ctx, s_image);
2171	dump_format(ctx, d_image);
2172
2173	ctx->complete = complete;
2174	ctx->complete_context = complete_context;
2175
2176	/*
2177	 * Can we use double-buffering for this operation? If there is
2178	 * only one tile (the whole image can be converted in a single
2179	 * operation) there's no point in using double-buffering. Also,
2180	 * the IPU's IDMAC channels allow only a single U and V plane
2181	 * offset shared between both buffers, but these offsets change
2182	 * for every tile, and therefore would have to be updated for
2183	 * each buffer which is not possible. So double-buffering is
2184	 * impossible when either the source or destination images are
2185	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2186	 * sized tiles or different resizing coefficients per tile
2187	 * prevent double-buffering as well.
2188	 */
2189	ctx->double_buffering = (ctx->num_tiles > 1 &&
2190				 !s_image->fmt->planar &&
2191				 !d_image->fmt->planar);
2192	for (i = 1; i < ctx->num_tiles; i++) {
2193		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2194		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2195		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2196		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2197			ctx->double_buffering = false;
2198			break;
2199		}
2200	}
2201	for (i = 1; i < ctx->in.num_cols; i++) {
2202		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2203			ctx->double_buffering = false;
2204			break;
2205		}
2206	}
2207	for (i = 1; i < ctx->in.num_rows; i++) {
2208		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2209			ctx->double_buffering = false;
2210			break;
2211		}
2212	}
2213
2214	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2215		unsigned long intermediate_size = d_image->tile[0].size;
2216
2217		for (i = 1; i < ctx->num_tiles; i++) {
2218			if (d_image->tile[i].size > intermediate_size)
2219				intermediate_size = d_image->tile[i].size;
2220		}
2221
2222		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2223				    intermediate_size);
2224		if (ret)
2225			goto out_free;
2226		if (ctx->double_buffering) {
2227			ret = alloc_dma_buf(priv,
2228					    &ctx->rot_intermediate[1],
2229					    intermediate_size);
2230			if (ret)
2231				goto out_free_dmabuf0;
2232		}
2233	}
2234
2235	spin_lock_irqsave(&chan->irqlock, flags);
2236
2237	get_res = list_empty(&chan->ctx_list);
2238
2239	list_add_tail(&ctx->list, &chan->ctx_list);
2240
2241	spin_unlock_irqrestore(&chan->irqlock, flags);
2242
2243	if (get_res) {
2244		ret = get_ipu_resources(chan);
2245		if (ret)
2246			goto out_free_dmabuf1;
2247	}
2248
2249	return ctx;
2250
2251out_free_dmabuf1:
2252	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2253	spin_lock_irqsave(&chan->irqlock, flags);
2254	list_del(&ctx->list);
2255	spin_unlock_irqrestore(&chan->irqlock, flags);
2256out_free_dmabuf0:
2257	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2258out_free:
2259	kfree(ctx);
2260	return ERR_PTR(ret);
2261}
2262EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2263
2264/*
2265 * Carry out a single image conversion run. Only the physaddr's of the input
2266 * and output image buffers are needed. The conversion context must have
2267 * been created previously with ipu_image_convert_prepare().
2268 */
2269int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2270{
2271	struct ipu_image_convert_chan *chan;
2272	struct ipu_image_convert_priv *priv;
2273	struct ipu_image_convert_ctx *ctx;
2274	unsigned long flags;
2275	int ret = 0;
2276
2277	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2278		return -EINVAL;
2279
2280	ctx = run->ctx;
2281	chan = ctx->chan;
2282	priv = chan->priv;
2283
2284	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2285		chan->ic_task, ctx, run);
2286
2287	INIT_LIST_HEAD(&run->list);
2288
2289	spin_lock_irqsave(&chan->irqlock, flags);
2290
2291	if (ctx->aborting) {
2292		ret = -EIO;
2293		goto unlock;
2294	}
2295
2296	list_add_tail(&run->list, &chan->pending_q);
2297
2298	if (!chan->current_run) {
2299		ret = do_run(run);
2300		if (ret)
2301			chan->current_run = NULL;
2302	}
2303unlock:
2304	spin_unlock_irqrestore(&chan->irqlock, flags);
2305	return ret;
2306}
2307EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2308
2309/* Abort any active or pending conversions for this context */
2310static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2311{
2312	struct ipu_image_convert_chan *chan = ctx->chan;
2313	struct ipu_image_convert_priv *priv = chan->priv;
2314	struct ipu_image_convert_run *run, *active_run, *tmp;
2315	unsigned long flags;
2316	int run_count, ret;
2317
2318	spin_lock_irqsave(&chan->irqlock, flags);
2319
2320	/* move all remaining pending runs in this context to done_q */
2321	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2322		if (run->ctx != ctx)
2323			continue;
2324		run->status = -EIO;
2325		list_move_tail(&run->list, &chan->done_q);
2326	}
2327
2328	run_count = get_run_count(ctx, &chan->done_q);
2329	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2330		chan->current_run : NULL;
2331
2332	if (active_run)
2333		reinit_completion(&ctx->aborted);
2334
2335	ctx->aborting = true;
2336
2337	spin_unlock_irqrestore(&chan->irqlock, flags);
2338
2339	if (!run_count && !active_run) {
2340		dev_dbg(priv->ipu->dev,
2341			"%s: task %u: no abort needed for ctx %p\n",
2342			__func__, chan->ic_task, ctx);
2343		return;
2344	}
2345
2346	if (!active_run) {
2347		empty_done_q(chan);
2348		return;
2349	}
2350
2351	dev_dbg(priv->ipu->dev,
2352		"%s: task %u: wait for completion: %d runs\n",
2353		__func__, chan->ic_task, run_count);
2354
2355	ret = wait_for_completion_timeout(&ctx->aborted,
2356					  msecs_to_jiffies(10000));
2357	if (ret == 0) {
2358		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2359		force_abort(ctx);
2360	}
2361}
2362
2363void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2364{
2365	__ipu_image_convert_abort(ctx);
2366	ctx->aborting = false;
2367}
2368EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2369
2370/* Unprepare image conversion context */
2371void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2372{
2373	struct ipu_image_convert_chan *chan = ctx->chan;
2374	struct ipu_image_convert_priv *priv = chan->priv;
2375	unsigned long flags;
2376	bool put_res;
2377
2378	/* make sure no runs are hanging around */
2379	__ipu_image_convert_abort(ctx);
2380
2381	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2382		chan->ic_task, ctx);
2383
2384	spin_lock_irqsave(&chan->irqlock, flags);
2385
2386	list_del(&ctx->list);
2387
2388	put_res = list_empty(&chan->ctx_list);
2389
2390	spin_unlock_irqrestore(&chan->irqlock, flags);
2391
2392	if (put_res)
2393		release_ipu_resources(chan);
2394
2395	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2396	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2397
2398	kfree(ctx);
2399}
2400EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2401
2402/*
2403 * "Canned" asynchronous single image conversion. Allocates and returns
2404 * a new conversion run.  On successful return the caller must free the
2405 * run and call ipu_image_convert_unprepare() after conversion completes.
2406 */
2407struct ipu_image_convert_run *
2408ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2409		  struct ipu_image *in, struct ipu_image *out,
2410		  enum ipu_rotate_mode rot_mode,
2411		  ipu_image_convert_cb_t complete,
2412		  void *complete_context)
2413{
2414	struct ipu_image_convert_ctx *ctx;
2415	struct ipu_image_convert_run *run;
2416	int ret;
2417
2418	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2419					complete, complete_context);
2420	if (IS_ERR(ctx))
2421		return ERR_CAST(ctx);
2422
2423	run = kzalloc(sizeof(*run), GFP_KERNEL);
2424	if (!run) {
2425		ipu_image_convert_unprepare(ctx);
2426		return ERR_PTR(-ENOMEM);
2427	}
2428
2429	run->ctx = ctx;
2430	run->in_phys = in->phys0;
2431	run->out_phys = out->phys0;
2432
2433	ret = ipu_image_convert_queue(run);
2434	if (ret) {
2435		ipu_image_convert_unprepare(ctx);
2436		kfree(run);
2437		return ERR_PTR(ret);
2438	}
2439
2440	return run;
2441}
2442EXPORT_SYMBOL_GPL(ipu_image_convert);
2443
2444/* "Canned" synchronous single image conversion */
2445static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2446					void *data)
2447{
2448	struct completion *comp = data;
2449
2450	complete(comp);
2451}
2452
2453int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2454			   struct ipu_image *in, struct ipu_image *out,
2455			   enum ipu_rotate_mode rot_mode)
2456{
2457	struct ipu_image_convert_run *run;
2458	struct completion comp;
2459	int ret;
2460
2461	init_completion(&comp);
2462
2463	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2464				image_convert_sync_complete, &comp);
2465	if (IS_ERR(run))
2466		return PTR_ERR(run);
2467
2468	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2469	ret = (ret == 0) ? -ETIMEDOUT : 0;
2470
2471	ipu_image_convert_unprepare(run->ctx);
2472	kfree(run);
2473
2474	return ret;
2475}
2476EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2477
2478int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2479{
2480	struct ipu_image_convert_priv *priv;
2481	int i;
2482
2483	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2484	if (!priv)
2485		return -ENOMEM;
2486
2487	ipu->image_convert_priv = priv;
2488	priv->ipu = ipu;
2489
2490	for (i = 0; i < IC_NUM_TASKS; i++) {
2491		struct ipu_image_convert_chan *chan = &priv->chan[i];
2492
2493		chan->ic_task = i;
2494		chan->priv = priv;
2495		chan->dma_ch = &image_convert_dma_chan[i];
2496		chan->in_eof_irq = -1;
2497		chan->rot_in_eof_irq = -1;
2498		chan->out_eof_irq = -1;
2499		chan->rot_out_eof_irq = -1;
2500
2501		spin_lock_init(&chan->irqlock);
2502		INIT_LIST_HEAD(&chan->ctx_list);
2503		INIT_LIST_HEAD(&chan->pending_q);
2504		INIT_LIST_HEAD(&chan->done_q);
2505	}
2506
2507	return 0;
2508}
2509
2510void ipu_image_convert_exit(struct ipu_soc *ipu)
2511{
2512}
2513