1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include <drm/ttm/ttm_bo_driver.h>
30#include <drm/ttm/ttm_placement.h>
31#include <drm/ttm/ttm_page_alloc.h>
32
33static const struct ttm_place vram_placement_flags = {
34	.fpfn = 0,
35	.lpfn = 0,
36	.mem_type = TTM_PL_VRAM,
37	.flags = TTM_PL_FLAG_CACHED
38};
39
40static const struct ttm_place vram_ne_placement_flags = {
41	.fpfn = 0,
42	.lpfn = 0,
43	.mem_type = TTM_PL_VRAM,
44	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
45};
46
47static const struct ttm_place sys_placement_flags = {
48	.fpfn = 0,
49	.lpfn = 0,
50	.mem_type = TTM_PL_SYSTEM,
51	.flags = TTM_PL_FLAG_CACHED
52};
53
54static const struct ttm_place sys_ne_placement_flags = {
55	.fpfn = 0,
56	.lpfn = 0,
57	.mem_type = TTM_PL_SYSTEM,
58	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
59};
60
61static const struct ttm_place gmr_placement_flags = {
62	.fpfn = 0,
63	.lpfn = 0,
64	.mem_type = VMW_PL_GMR,
65	.flags = TTM_PL_FLAG_CACHED
66};
67
68static const struct ttm_place gmr_ne_placement_flags = {
69	.fpfn = 0,
70	.lpfn = 0,
71	.mem_type = VMW_PL_GMR,
72	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
73};
74
75static const struct ttm_place mob_placement_flags = {
76	.fpfn = 0,
77	.lpfn = 0,
78	.mem_type = VMW_PL_MOB,
79	.flags = TTM_PL_FLAG_CACHED
80};
81
82static const struct ttm_place mob_ne_placement_flags = {
83	.fpfn = 0,
84	.lpfn = 0,
85	.mem_type = VMW_PL_MOB,
86	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
87};
88
89struct ttm_placement vmw_vram_placement = {
90	.num_placement = 1,
91	.placement = &vram_placement_flags,
92	.num_busy_placement = 1,
93	.busy_placement = &vram_placement_flags
94};
95
96static const struct ttm_place vram_gmr_placement_flags[] = {
97	{
98		.fpfn = 0,
99		.lpfn = 0,
100		.mem_type = TTM_PL_VRAM,
101		.flags = TTM_PL_FLAG_CACHED
102	}, {
103		.fpfn = 0,
104		.lpfn = 0,
105		.mem_type = VMW_PL_GMR,
106		.flags = TTM_PL_FLAG_CACHED
107	}
108};
109
110static const struct ttm_place gmr_vram_placement_flags[] = {
111	{
112		.fpfn = 0,
113		.lpfn = 0,
114		.mem_type = VMW_PL_GMR,
115		.flags = TTM_PL_FLAG_CACHED
116	}, {
117		.fpfn = 0,
118		.lpfn = 0,
119		.mem_type = TTM_PL_VRAM,
120		.flags = TTM_PL_FLAG_CACHED
121	}
122};
123
124struct ttm_placement vmw_vram_gmr_placement = {
125	.num_placement = 2,
126	.placement = vram_gmr_placement_flags,
127	.num_busy_placement = 1,
128	.busy_placement = &gmr_placement_flags
129};
130
131static const struct ttm_place vram_gmr_ne_placement_flags[] = {
132	{
133		.fpfn = 0,
134		.lpfn = 0,
135		.mem_type = TTM_PL_VRAM,
136		.flags = TTM_PL_FLAG_CACHED |
137			 TTM_PL_FLAG_NO_EVICT
138	}, {
139		.fpfn = 0,
140		.lpfn = 0,
141		.mem_type = VMW_PL_GMR,
142		.flags = TTM_PL_FLAG_CACHED |
143			 TTM_PL_FLAG_NO_EVICT
144	}
145};
146
147struct ttm_placement vmw_vram_gmr_ne_placement = {
148	.num_placement = 2,
149	.placement = vram_gmr_ne_placement_flags,
150	.num_busy_placement = 1,
151	.busy_placement = &gmr_ne_placement_flags
152};
153
154struct ttm_placement vmw_vram_sys_placement = {
155	.num_placement = 1,
156	.placement = &vram_placement_flags,
157	.num_busy_placement = 1,
158	.busy_placement = &sys_placement_flags
159};
160
161struct ttm_placement vmw_vram_ne_placement = {
162	.num_placement = 1,
163	.placement = &vram_ne_placement_flags,
164	.num_busy_placement = 1,
165	.busy_placement = &vram_ne_placement_flags
166};
167
168struct ttm_placement vmw_sys_placement = {
169	.num_placement = 1,
170	.placement = &sys_placement_flags,
171	.num_busy_placement = 1,
172	.busy_placement = &sys_placement_flags
173};
174
175struct ttm_placement vmw_sys_ne_placement = {
176	.num_placement = 1,
177	.placement = &sys_ne_placement_flags,
178	.num_busy_placement = 1,
179	.busy_placement = &sys_ne_placement_flags
180};
181
182static const struct ttm_place evictable_placement_flags[] = {
183	{
184		.fpfn = 0,
185		.lpfn = 0,
186		.mem_type = TTM_PL_SYSTEM,
187		.flags = TTM_PL_FLAG_CACHED
188	}, {
189		.fpfn = 0,
190		.lpfn = 0,
191		.mem_type = TTM_PL_VRAM,
192		.flags = TTM_PL_FLAG_CACHED
193	}, {
194		.fpfn = 0,
195		.lpfn = 0,
196		.mem_type = VMW_PL_GMR,
197		.flags = TTM_PL_FLAG_CACHED
198	}, {
199		.fpfn = 0,
200		.lpfn = 0,
201		.mem_type = VMW_PL_MOB,
202		.flags = TTM_PL_FLAG_CACHED
203	}
204};
205
206static const struct ttm_place nonfixed_placement_flags[] = {
207	{
208		.fpfn = 0,
209		.lpfn = 0,
210		.mem_type = TTM_PL_SYSTEM,
211		.flags = TTM_PL_FLAG_CACHED
212	}, {
213		.fpfn = 0,
214		.lpfn = 0,
215		.mem_type = VMW_PL_GMR,
216		.flags = TTM_PL_FLAG_CACHED
217	}, {
218		.fpfn = 0,
219		.lpfn = 0,
220		.mem_type = VMW_PL_MOB,
221		.flags = TTM_PL_FLAG_CACHED
222	}
223};
224
225struct ttm_placement vmw_evictable_placement = {
226	.num_placement = 4,
227	.placement = evictable_placement_flags,
228	.num_busy_placement = 1,
229	.busy_placement = &sys_placement_flags
230};
231
232struct ttm_placement vmw_srf_placement = {
233	.num_placement = 1,
234	.num_busy_placement = 2,
235	.placement = &gmr_placement_flags,
236	.busy_placement = gmr_vram_placement_flags
237};
238
239struct ttm_placement vmw_mob_placement = {
240	.num_placement = 1,
241	.num_busy_placement = 1,
242	.placement = &mob_placement_flags,
243	.busy_placement = &mob_placement_flags
244};
245
246struct ttm_placement vmw_mob_ne_placement = {
247	.num_placement = 1,
248	.num_busy_placement = 1,
249	.placement = &mob_ne_placement_flags,
250	.busy_placement = &mob_ne_placement_flags
251};
252
253struct ttm_placement vmw_nonfixed_placement = {
254	.num_placement = 3,
255	.placement = nonfixed_placement_flags,
256	.num_busy_placement = 1,
257	.busy_placement = &sys_placement_flags
258};
259
260struct vmw_ttm_tt {
261	struct ttm_dma_tt dma_ttm;
262	struct vmw_private *dev_priv;
263	int gmr_id;
264	struct vmw_mob *mob;
265	int mem_type;
266	struct sg_table sgt;
267	struct vmw_sg_table vsgt;
268	uint64_t sg_alloc_size;
269	bool mapped;
270	bool bound;
271};
272
273const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
274
275/**
276 * Helper functions to advance a struct vmw_piter iterator.
277 *
278 * @viter: Pointer to the iterator.
279 *
280 * These functions return false if past the end of the list,
281 * true otherwise. Functions are selected depending on the current
282 * DMA mapping mode.
283 */
284static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
285{
286	return ++(viter->i) < viter->num_pages;
287}
288
289static bool __vmw_piter_sg_next(struct vmw_piter *viter)
290{
291	bool ret = __vmw_piter_non_sg_next(viter);
292
293	return __sg_page_iter_dma_next(&viter->iter) && ret;
294}
295
296
297/**
298 * Helper functions to return a pointer to the current page.
299 *
300 * @viter: Pointer to the iterator
301 *
302 * These functions return a pointer to the page currently
303 * pointed to by @viter. Functions are selected depending on the
304 * current mapping mode.
305 */
306static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
307{
308	return viter->pages[viter->i];
309}
310
311/**
312 * Helper functions to return the DMA address of the current page.
313 *
314 * @viter: Pointer to the iterator
315 *
316 * These functions return the DMA address of the page currently
317 * pointed to by @viter. Functions are selected depending on the
318 * current mapping mode.
319 */
320static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
321{
322	return page_to_phys(viter->pages[viter->i]);
323}
324
325static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
326{
327	return viter->addrs[viter->i];
328}
329
330static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
331{
332	return sg_page_iter_dma_address(&viter->iter);
333}
334
335
336/**
337 * vmw_piter_start - Initialize a struct vmw_piter.
338 *
339 * @viter: Pointer to the iterator to initialize
340 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
341 *
342 * Note that we're following the convention of __sg_page_iter_start, so that
343 * the iterator doesn't point to a valid page after initialization; it has
344 * to be advanced one step first.
345 */
346void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
347		     unsigned long p_offset)
348{
349	viter->i = p_offset - 1;
350	viter->num_pages = vsgt->num_pages;
351	viter->page = &__vmw_piter_non_sg_page;
352	viter->pages = vsgt->pages;
353	switch (vsgt->mode) {
354	case vmw_dma_phys:
355		viter->next = &__vmw_piter_non_sg_next;
356		viter->dma_address = &__vmw_piter_phys_addr;
357		break;
358	case vmw_dma_alloc_coherent:
359		viter->next = &__vmw_piter_non_sg_next;
360		viter->dma_address = &__vmw_piter_dma_addr;
361		viter->addrs = vsgt->addrs;
362		break;
363	case vmw_dma_map_populate:
364	case vmw_dma_map_bind:
365		viter->next = &__vmw_piter_sg_next;
366		viter->dma_address = &__vmw_piter_sg_addr;
367		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
368				     vsgt->sgt->orig_nents, p_offset);
369		break;
370	default:
371		BUG();
372	}
373}
374
375/**
376 * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
377 * TTM pages
378 *
379 * @vmw_tt: Pointer to a struct vmw_ttm_backend
380 *
381 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
382 */
383static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
384{
385	struct device *dev = vmw_tt->dev_priv->dev->dev;
386
387	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
388	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
389}
390
391/**
392 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
393 *
394 * @vmw_tt: Pointer to a struct vmw_ttm_backend
395 *
396 * This function is used to get device addresses from the kernel DMA layer.
397 * However, it's violating the DMA API in that when this operation has been
398 * performed, it's illegal for the CPU to write to the pages without first
399 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
400 * therefore only legal to call this function if we know that the function
401 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
402 * a CPU write buffer flush.
403 */
404static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
405{
406	struct device *dev = vmw_tt->dev_priv->dev->dev;
407
408	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
409}
410
411/**
412 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
413 *
414 * @vmw_tt: Pointer to a struct vmw_ttm_tt
415 *
416 * Select the correct function for and make sure the TTM pages are
417 * visible to the device. Allocate storage for the device mappings.
418 * If a mapping has already been performed, indicated by the storage
419 * pointer being non NULL, the function returns success.
420 */
421static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
422{
423	struct vmw_private *dev_priv = vmw_tt->dev_priv;
424	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
425	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
426	struct ttm_operation_ctx ctx = {
427		.interruptible = true,
428		.no_wait_gpu = false
429	};
430	struct vmw_piter iter;
431	dma_addr_t old;
432	int ret = 0;
433	static size_t sgl_size;
434	static size_t sgt_size;
435	struct scatterlist *sg;
436
437	if (vmw_tt->mapped)
438		return 0;
439
440	vsgt->mode = dev_priv->map_mode;
441	vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
442	vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
443	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
444	vsgt->sgt = &vmw_tt->sgt;
445
446	switch (dev_priv->map_mode) {
447	case vmw_dma_map_bind:
448	case vmw_dma_map_populate:
449		if (unlikely(!sgl_size)) {
450			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
451			sgt_size = ttm_round_pot(sizeof(struct sg_table));
452		}
453		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
454		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
455		if (unlikely(ret != 0))
456			return ret;
457
458		sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
459				vsgt->num_pages, 0,
460				(unsigned long) vsgt->num_pages << PAGE_SHIFT,
461				dma_get_max_seg_size(dev_priv->dev->dev),
462				NULL, 0, GFP_KERNEL);
463		if (IS_ERR(sg)) {
464			ret = PTR_ERR(sg);
465			goto out_sg_alloc_fail;
466		}
467
468		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
469			uint64_t over_alloc =
470				sgl_size * (vsgt->num_pages -
471					    vmw_tt->sgt.orig_nents);
472
473			ttm_mem_global_free(glob, over_alloc);
474			vmw_tt->sg_alloc_size -= over_alloc;
475		}
476
477		ret = vmw_ttm_map_for_dma(vmw_tt);
478		if (unlikely(ret != 0))
479			goto out_map_fail;
480
481		break;
482	default:
483		break;
484	}
485
486	old = ~((dma_addr_t) 0);
487	vmw_tt->vsgt.num_regions = 0;
488	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
489		dma_addr_t cur = vmw_piter_dma_addr(&iter);
490
491		if (cur != old + PAGE_SIZE)
492			vmw_tt->vsgt.num_regions++;
493		old = cur;
494	}
495
496	vmw_tt->mapped = true;
497	return 0;
498
499out_map_fail:
500	sg_free_table(vmw_tt->vsgt.sgt);
501	vmw_tt->vsgt.sgt = NULL;
502out_sg_alloc_fail:
503	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
504	return ret;
505}
506
507/**
508 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
509 *
510 * @vmw_tt: Pointer to a struct vmw_ttm_tt
511 *
512 * Tear down any previously set up device DMA mappings and free
513 * any storage space allocated for them. If there are no mappings set up,
514 * this function is a NOP.
515 */
516static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
517{
518	struct vmw_private *dev_priv = vmw_tt->dev_priv;
519
520	if (!vmw_tt->vsgt.sgt)
521		return;
522
523	switch (dev_priv->map_mode) {
524	case vmw_dma_map_bind:
525	case vmw_dma_map_populate:
526		vmw_ttm_unmap_from_dma(vmw_tt);
527		sg_free_table(vmw_tt->vsgt.sgt);
528		vmw_tt->vsgt.sgt = NULL;
529		ttm_mem_global_free(vmw_mem_glob(dev_priv),
530				    vmw_tt->sg_alloc_size);
531		break;
532	default:
533		break;
534	}
535	vmw_tt->mapped = false;
536}
537
538/**
539 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
540 * TTM buffer object
541 *
542 * @bo: Pointer to a struct ttm_buffer_object
543 *
544 * Returns a pointer to a struct vmw_sg_table object. The object should
545 * not be freed after use.
546 * Note that for the device addresses to be valid, the buffer object must
547 * either be reserved or pinned.
548 */
549const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
550{
551	struct vmw_ttm_tt *vmw_tt =
552		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
553
554	return &vmw_tt->vsgt;
555}
556
557
558static int vmw_ttm_bind(struct ttm_bo_device *bdev,
559			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
560{
561	struct vmw_ttm_tt *vmw_be =
562		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
563	int ret = 0;
564
565	if (!bo_mem)
566		return -EINVAL;
567
568	if (vmw_be->bound)
569		return 0;
570
571	ret = vmw_ttm_map_dma(vmw_be);
572	if (unlikely(ret != 0))
573		return ret;
574
575	vmw_be->gmr_id = bo_mem->start;
576	vmw_be->mem_type = bo_mem->mem_type;
577
578	switch (bo_mem->mem_type) {
579	case VMW_PL_GMR:
580		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
581				    ttm->num_pages, vmw_be->gmr_id);
582		break;
583	case VMW_PL_MOB:
584		if (unlikely(vmw_be->mob == NULL)) {
585			vmw_be->mob =
586				vmw_mob_create(ttm->num_pages);
587			if (unlikely(vmw_be->mob == NULL))
588				return -ENOMEM;
589		}
590
591		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
592				    &vmw_be->vsgt, ttm->num_pages,
593				    vmw_be->gmr_id);
594		break;
595	default:
596		BUG();
597	}
598	vmw_be->bound = true;
599	return ret;
600}
601
602static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
603			   struct ttm_tt *ttm)
604{
605	struct vmw_ttm_tt *vmw_be =
606		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
607
608	if (!vmw_be->bound)
609		return;
610
611	switch (vmw_be->mem_type) {
612	case VMW_PL_GMR:
613		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
614		break;
615	case VMW_PL_MOB:
616		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
617		break;
618	default:
619		BUG();
620	}
621
622	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
623		vmw_ttm_unmap_dma(vmw_be);
624	vmw_be->bound = false;
625}
626
627
628static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
629{
630	struct vmw_ttm_tt *vmw_be =
631		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
632
633	vmw_ttm_unbind(bdev, ttm);
634	ttm_tt_destroy_common(bdev, ttm);
635	vmw_ttm_unmap_dma(vmw_be);
636	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
637		ttm_dma_tt_fini(&vmw_be->dma_ttm);
638	else
639		ttm_tt_fini(ttm);
640
641	if (vmw_be->mob)
642		vmw_mob_destroy(vmw_be->mob);
643
644	kfree(vmw_be);
645}
646
647
648static int vmw_ttm_populate(struct ttm_bo_device *bdev,
649			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
650{
651	struct vmw_ttm_tt *vmw_tt =
652		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
653	struct vmw_private *dev_priv = vmw_tt->dev_priv;
654	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
655	int ret;
656
657	if (ttm_tt_is_populated(ttm))
658		return 0;
659
660	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
661		size_t size =
662			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
663		ret = ttm_mem_global_alloc(glob, size, ctx);
664		if (unlikely(ret != 0))
665			return ret;
666
667		ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
668					ctx);
669		if (unlikely(ret != 0))
670			ttm_mem_global_free(glob, size);
671	} else
672		ret = ttm_pool_populate(ttm, ctx);
673
674	return ret;
675}
676
677static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
678			       struct ttm_tt *ttm)
679{
680	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
681						 dma_ttm.ttm);
682	struct vmw_private *dev_priv = vmw_tt->dev_priv;
683	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
684
685
686	if (vmw_tt->mob) {
687		vmw_mob_destroy(vmw_tt->mob);
688		vmw_tt->mob = NULL;
689	}
690
691	vmw_ttm_unmap_dma(vmw_tt);
692	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
693		size_t size =
694			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
695
696		ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
697		ttm_mem_global_free(glob, size);
698	} else
699		ttm_pool_unpopulate(ttm);
700}
701
702static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
703					uint32_t page_flags)
704{
705	struct vmw_ttm_tt *vmw_be;
706	int ret;
707
708	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
709	if (!vmw_be)
710		return NULL;
711
712	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
713	vmw_be->mob = NULL;
714
715	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
716		ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
717	else
718		ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
719	if (unlikely(ret != 0))
720		goto out_no_init;
721
722	return &vmw_be->dma_ttm.ttm;
723out_no_init:
724	kfree(vmw_be);
725	return NULL;
726}
727
728static void vmw_evict_flags(struct ttm_buffer_object *bo,
729		     struct ttm_placement *placement)
730{
731	*placement = vmw_sys_placement;
732}
733
734static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
735{
736	struct ttm_object_file *tfile =
737		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
738
739	return vmw_user_bo_verify_access(bo, tfile);
740}
741
742static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
743{
744	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
745
746	switch (mem->mem_type) {
747	case TTM_PL_SYSTEM:
748	case VMW_PL_GMR:
749	case VMW_PL_MOB:
750		return 0;
751	case TTM_PL_VRAM:
752		mem->bus.offset = (mem->start << PAGE_SHIFT) +
753			dev_priv->vram_start;
754		mem->bus.is_iomem = true;
755		break;
756	default:
757		return -EINVAL;
758	}
759	return 0;
760}
761
762/**
763 * vmw_move_notify - TTM move_notify_callback
764 *
765 * @bo: The TTM buffer object about to move.
766 * @mem: The struct ttm_resource indicating to what memory
767 *       region the move is taking place.
768 *
769 * Calls move_notify for all subsystems needing it.
770 * (currently only resources).
771 */
772static void vmw_move_notify(struct ttm_buffer_object *bo,
773			    bool evict,
774			    struct ttm_resource *mem)
775{
776	vmw_bo_move_notify(bo, mem);
777	vmw_query_move_notify(bo, mem);
778}
779
780
781/**
782 * vmw_swap_notify - TTM move_notify_callback
783 *
784 * @bo: The TTM buffer object about to be swapped out.
785 */
786static void vmw_swap_notify(struct ttm_buffer_object *bo)
787{
788	vmw_bo_swap_notify(bo);
789	(void) ttm_bo_wait(bo, false, false);
790}
791
792
793struct ttm_bo_driver vmw_bo_driver = {
794	.ttm_tt_create = &vmw_ttm_tt_create,
795	.ttm_tt_populate = &vmw_ttm_populate,
796	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
797	.ttm_tt_bind = &vmw_ttm_bind,
798	.ttm_tt_unbind = &vmw_ttm_unbind,
799	.ttm_tt_destroy = &vmw_ttm_destroy,
800	.eviction_valuable = ttm_bo_eviction_valuable,
801	.evict_flags = vmw_evict_flags,
802	.move = NULL,
803	.verify_access = vmw_verify_access,
804	.move_notify = vmw_move_notify,
805	.swap_notify = vmw_swap_notify,
806	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
807};
808
809int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
810			       unsigned long bo_size,
811			       struct ttm_buffer_object **bo_p)
812{
813	struct ttm_operation_ctx ctx = {
814		.interruptible = false,
815		.no_wait_gpu = false
816	};
817	struct ttm_buffer_object *bo;
818	int ret;
819
820	ret = ttm_bo_create(&dev_priv->bdev, bo_size,
821			    ttm_bo_type_device,
822			    &vmw_sys_ne_placement,
823			    0, false, &bo);
824
825	if (unlikely(ret != 0))
826		return ret;
827
828	ret = ttm_bo_reserve(bo, false, true, NULL);
829	BUG_ON(ret != 0);
830	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
831	if (likely(ret == 0)) {
832		struct vmw_ttm_tt *vmw_tt =
833			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
834		ret = vmw_ttm_map_dma(vmw_tt);
835	}
836
837	ttm_bo_unreserve(bo);
838
839	if (likely(ret == 0))
840		*bo_p = bo;
841	return ret;
842}
843