1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6/** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21#include <linux/clk-provider.h> 22#include <linux/clk.h> 23#include <linux/completion.h> 24#include <linux/component.h> 25#include <linux/dma-mapping.h> 26#include <linux/dmaengine.h> 27#include <linux/i2c.h> 28#include <linux/io.h> 29#include <linux/of_address.h> 30#include <linux/of_platform.h> 31#include <linux/pm_runtime.h> 32 33#include <drm/drm_atomic_helper.h> 34#include <drm/drm_bridge.h> 35#include <drm/drm_edid.h> 36#include <drm/drm_mipi_dsi.h> 37#include <drm/drm_of.h> 38#include <drm/drm_panel.h> 39#include <drm/drm_probe_helper.h> 40#include <drm/drm_simple_kms_helper.h> 41 42#include "vc4_drv.h" 43#include "vc4_regs.h" 44 45#define DSI_CMD_FIFO_DEPTH 16 46#define DSI_PIX_FIFO_DEPTH 256 47#define DSI_PIX_FIFO_WIDTH 4 48 49#define DSI0_CTRL 0x00 50 51/* Command packet control. */ 52#define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53#define DSI1_TXPKT1C 0x04 54# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63/* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67/* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77/* Command only. Uses TXPKT1H and DISPLAY_NO */ 78# define DSI_TXPKT1C_CMD_CTRL_TX 0 79/* Command with BTA for either ack or read data. */ 80# define DSI_TXPKT1C_CMD_CTRL_RX 1 81/* Trigger according to TRIG_CMD */ 82# define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83/* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86# define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88# define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90# define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91# define DSI_TXPKT1C_CMD_EN BIT(0) 92 93/* Command packet header. */ 94#define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95#define DSI1_TXPKT1H 0x08 96# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99# define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101# define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104#define DSI1_RXPKT1H 0x14 105# define DSI_RXPKT1H_CRC_ERR BIT(31) 106# define DSI_RXPKT1H_DET_ERR BIT(30) 107# define DSI_RXPKT1H_ECC_ERR BIT(29) 108# define DSI_RXPKT1H_COR_ERR BIT(28) 109# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116# define DSI_RXPKT1H_SHORT_1_SHIFT 16 117# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118# define DSI_RXPKT1H_SHORT_0_SHIFT 8 119# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123#define DSI1_RXPKT2H 0x18 124# define DSI_RXPKT1H_DET_ERR BIT(30) 125# define DSI_RXPKT1H_ECC_ERR BIT(29) 126# define DSI_RXPKT1H_COR_ERR BIT(28) 127# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131# define DSI_RXPKT1H_DT_SHIFT 0 132 133#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134#define DSI1_TXPKT_CMD_FIFO 0x1c 135 136#define DSI0_DISP0_CTRL 0x18 137# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141# define DSI_DISP0_LP_STOP_DISABLE 0 142# define DSI_DISP0_LP_STOP_PERLINE 1 143# define DSI_DISP0_LP_STOP_PERFRAME 2 144 145/* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148# define DSI_DISP_HACTIVE_NULL BIT(10) 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150# define DSI_DISP_VBLP_CTRL BIT(9) 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152# define DSI_DISP_HFP_CTRL BIT(8) 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154# define DSI_DISP_HBP_CTRL BIT(7) 155# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156# define DSI_DISP0_CHANNEL_SHIFT 5 157/* Enables end events for HSYNC/VSYNC, not just start events. */ 158# define DSI_DISP0_ST_END BIT(4) 159# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160# define DSI_DISP0_PFORMAT_SHIFT 2 161# define DSI_PFORMAT_RGB565 0 162# define DSI_PFORMAT_RGB666_PACKED 1 163# define DSI_PFORMAT_RGB666 2 164# define DSI_PFORMAT_RGB888 3 165/* Default is VIDEO mode. */ 166# define DSI_DISP0_COMMAND_MODE BIT(1) 167# define DSI_DISP0_ENABLE BIT(0) 168 169#define DSI0_DISP1_CTRL 0x1c 170#define DSI1_DISP1_CTRL 0x2c 171/* Format of the data written to TXPKT_PIX_FIFO. */ 172# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173# define DSI_DISP1_PFORMAT_SHIFT 1 174# define DSI_DISP1_PFORMAT_16BIT 0 175# define DSI_DISP1_PFORMAT_24BIT 1 176# define DSI_DISP1_PFORMAT_32BIT_LE 2 177# define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179/* DISP1 is always command mode. */ 180# define DSI_DISP1_ENABLE BIT(0) 181 182#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184#define DSI0_INT_STAT 0x24 185#define DSI0_INT_EN 0x28 186# define DSI0_INT_FIFO_ERR BIT(25) 187# define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188# define DSI0_INT_CMDC_DONE_SHIFT 23 189# define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190# define DSI0_INT_CMDC_DONE_REPEAT 3 191# define DSI0_INT_PHY_DIR_RTF BIT(22) 192# define DSI0_INT_PHY_D1_ULPS BIT(21) 193# define DSI0_INT_PHY_D1_STOP BIT(20) 194# define DSI0_INT_PHY_RXLPDT BIT(19) 195# define DSI0_INT_PHY_RXTRIG BIT(18) 196# define DSI0_INT_PHY_D0_ULPS BIT(17) 197# define DSI0_INT_PHY_D0_LPDT BIT(16) 198# define DSI0_INT_PHY_D0_FTR BIT(15) 199# define DSI0_INT_PHY_D0_STOP BIT(14) 200/* Signaled when the clock lane enters the given state. */ 201# define DSI0_INT_PHY_CLK_ULPS BIT(13) 202# define DSI0_INT_PHY_CLK_HS BIT(12) 203# define DSI0_INT_PHY_CLK_FTR BIT(11) 204/* Signaled on timeouts */ 205# define DSI0_INT_PR_TO BIT(10) 206# define DSI0_INT_TA_TO BIT(9) 207# define DSI0_INT_LPRX_TO BIT(8) 208# define DSI0_INT_HSTX_TO BIT(7) 209/* Contention on a line when trying to drive the line low */ 210# define DSI0_INT_ERR_CONT_LP1 BIT(6) 211# define DSI0_INT_ERR_CONT_LP0 BIT(5) 212/* Control error: incorrect line state sequence on data lane 0. */ 213# define DSI0_INT_ERR_CONTROL BIT(4) 214# define DSI0_INT_ERR_SYNC_ESC BIT(3) 215# define DSI0_INT_RX2_PKT BIT(2) 216# define DSI0_INT_RX1_PKT BIT(1) 217# define DSI0_INT_CMD_PKT BIT(0) 218 219#define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228# define DSI1_INT_PHY_D3_ULPS BIT(30) 229# define DSI1_INT_PHY_D3_STOP BIT(29) 230# define DSI1_INT_PHY_D2_ULPS BIT(28) 231# define DSI1_INT_PHY_D2_STOP BIT(27) 232# define DSI1_INT_PHY_D1_ULPS BIT(26) 233# define DSI1_INT_PHY_D1_STOP BIT(25) 234# define DSI1_INT_PHY_D0_ULPS BIT(24) 235# define DSI1_INT_PHY_D0_STOP BIT(23) 236# define DSI1_INT_FIFO_ERR BIT(22) 237# define DSI1_INT_PHY_DIR_RTF BIT(21) 238# define DSI1_INT_PHY_RXLPDT BIT(20) 239# define DSI1_INT_PHY_RXTRIG BIT(19) 240# define DSI1_INT_PHY_D0_LPDT BIT(18) 241# define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243/* Signaled when the clock lane enters the given state. */ 244# define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245# define DSI1_INT_PHY_CLOCK_HS BIT(15) 246# define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248/* Signaled on timeouts */ 249# define DSI1_INT_PR_TO BIT(13) 250# define DSI1_INT_TA_TO BIT(12) 251# define DSI1_INT_LPRX_TO BIT(11) 252# define DSI1_INT_HSTX_TO BIT(10) 253 254/* Contention on a line when trying to drive the line low */ 255# define DSI1_INT_ERR_CONT_LP1 BIT(9) 256# define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258/* Control error: incorrect line state sequence on data lane 0. */ 259# define DSI1_INT_ERR_CONTROL BIT(7) 260/* LPDT synchronization error (bits received not a multiple of 8. */ 261 262# define DSI1_INT_ERR_SYNC_ESC BIT(6) 263/* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266# define DSI1_INT_RXPKT2 BIT(5) 267/* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271# define DSI1_INT_RXPKT1 BIT(4) 272# define DSI1_INT_TXPKT2_DONE BIT(3) 273# define DSI1_INT_TXPKT2_END BIT(2) 274/* Signaled after all repeats of TXPKT1 are transferred. */ 275# define DSI1_INT_TXPKT1_DONE BIT(1) 276/* Signaled after each TXPKT1 repeat is scheduled. */ 277# define DSI1_INT_TXPKT1_END BIT(0) 278 279#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288#define DSI0_STAT 0x2c 289#define DSI0_HSTX_TO_CNT 0x30 290#define DSI0_LPRX_TO_CNT 0x34 291#define DSI0_TA_TO_CNT 0x38 292#define DSI0_PR_TO_CNT 0x3c 293#define DSI0_PHYC 0x40 294# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299# define DSI1_PHYC_CLANE_ULPS BIT(17) 300# define DSI1_PHYC_CLANE_ENABLE BIT(16) 301# define DSI_PHYC_DLANE3_ULPS BIT(13) 302# define DSI_PHYC_DLANE3_ENABLE BIT(12) 303# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304# define DSI0_PHYC_CLANE_ULPS BIT(9) 305# define DSI_PHYC_DLANE2_ULPS BIT(9) 306# define DSI0_PHYC_CLANE_ENABLE BIT(8) 307# define DSI_PHYC_DLANE2_ENABLE BIT(8) 308# define DSI_PHYC_DLANE1_ULPS BIT(5) 309# define DSI_PHYC_DLANE1_ENABLE BIT(4) 310# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311# define DSI_PHYC_DLANE0_ULPS BIT(1) 312# define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314#define DSI0_HS_CLT0 0x44 315#define DSI0_HS_CLT1 0x48 316#define DSI0_HS_CLT2 0x4c 317#define DSI0_HS_DLT3 0x50 318#define DSI0_HS_DLT4 0x54 319#define DSI0_HS_DLT5 0x58 320#define DSI0_HS_DLT6 0x5c 321#define DSI0_HS_DLT7 0x60 322 323#define DSI0_PHY_AFEC0 0x64 324# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346# define DSI1_PHY_AFEC0_RESET BIT(13) 347# define DSI1_PHY_AFEC0_PD BIT(12) 348# define DSI0_PHY_AFEC0_RESET BIT(11) 349# define DSI1_PHY_AFEC0_PD_BG BIT(11) 350# define DSI0_PHY_AFEC0_PD BIT(10) 351# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 352# define DSI0_PHY_AFEC0_PD_BG BIT(9) 353# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 356# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361#define DSI0_PHY_AFEC1 0x68 362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369#define DSI0_TST_SEL 0x6c 370#define DSI0_TST_MON 0x70 371#define DSI0_ID 0x74 372# define DSI_ID_VALUE 0x00647369 373 374#define DSI1_CTRL 0x00 375# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376# define DSI_CTRL_HS_CLKC_SHIFT 14 377# define DSI_CTRL_HS_CLKC_BYTE 0 378# define DSI_CTRL_HS_CLKC_DDR2 1 379# define DSI_CTRL_HS_CLKC_DDR 2 380 381# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384# define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385# define DSI_CTRL_CAL_BYTE BIT(9) 386# define DSI_CTRL_INV_BYTE BIT(8) 387# define DSI_CTRL_CLR_LDF BIT(7) 388# define DSI0_CTRL_CLR_PBCF BIT(6) 389# define DSI1_CTRL_CLR_RXF BIT(6) 390# define DSI0_CTRL_CLR_CPBCF BIT(5) 391# define DSI1_CTRL_CLR_PDF BIT(5) 392# define DSI0_CTRL_CLR_PDF BIT(4) 393# define DSI1_CTRL_CLR_CDF BIT(4) 394# define DSI0_CTRL_CLR_CDF BIT(3) 395# define DSI0_CTRL_CTRL2 BIT(2) 396# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397# define DSI0_CTRL_CTRL1 BIT(1) 398# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399# define DSI0_CTRL_CTRL0 BIT(0) 400# define DSI1_CTRL_EN BIT(0) 401# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411#define DSI1_TXPKT2C 0x0c 412#define DSI1_TXPKT2H 0x10 413#define DSI1_TXPKT_PIX_FIFO 0x20 414#define DSI1_RXPKT_FIFO 0x24 415#define DSI1_DISP0_CTRL 0x28 416#define DSI1_INT_STAT 0x30 417#define DSI1_INT_EN 0x34 418/* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421#define DSI1_STAT 0x38 422# define DSI1_STAT_PHY_D3_ULPS BIT(31) 423# define DSI1_STAT_PHY_D3_STOP BIT(30) 424# define DSI1_STAT_PHY_D2_ULPS BIT(29) 425# define DSI1_STAT_PHY_D2_STOP BIT(28) 426# define DSI1_STAT_PHY_D1_ULPS BIT(27) 427# define DSI1_STAT_PHY_D1_STOP BIT(26) 428# define DSI1_STAT_PHY_D0_ULPS BIT(25) 429# define DSI1_STAT_PHY_D0_STOP BIT(24) 430# define DSI1_STAT_FIFO_ERR BIT(23) 431# define DSI1_STAT_PHY_RXLPDT BIT(22) 432# define DSI1_STAT_PHY_RXTRIG BIT(21) 433# define DSI1_STAT_PHY_D0_LPDT BIT(20) 434/* Set when in forward direction */ 435# define DSI1_STAT_PHY_DIR BIT(19) 436# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437# define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438# define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439# define DSI1_STAT_PR_TO BIT(15) 440# define DSI1_STAT_TA_TO BIT(14) 441# define DSI1_STAT_LPRX_TO BIT(13) 442# define DSI1_STAT_HSTX_TO BIT(12) 443# define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444# define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445# define DSI1_STAT_ERR_CONTROL BIT(9) 446# define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447# define DSI1_STAT_RXPKT2 BIT(7) 448# define DSI1_STAT_RXPKT1 BIT(6) 449# define DSI1_STAT_TXPKT2_BUSY BIT(5) 450# define DSI1_STAT_TXPKT2_DONE BIT(4) 451# define DSI1_STAT_TXPKT2_END BIT(3) 452# define DSI1_STAT_TXPKT1_BUSY BIT(2) 453# define DSI1_STAT_TXPKT1_DONE BIT(1) 454# define DSI1_STAT_TXPKT1_END BIT(0) 455 456#define DSI1_HSTX_TO_CNT 0x3c 457#define DSI1_LPRX_TO_CNT 0x40 458#define DSI1_TA_TO_CNT 0x44 459#define DSI1_PR_TO_CNT 0x48 460#define DSI1_PHYC 0x4c 461 462#define DSI1_HS_CLT0 0x50 463# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464# define DSI_HS_CLT0_CZERO_SHIFT 18 465# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466# define DSI_HS_CLT0_CPRE_SHIFT 9 467# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468# define DSI_HS_CLT0_CPREP_SHIFT 0 469 470#define DSI1_HS_CLT1 0x54 471# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472# define DSI_HS_CLT1_CTRAIL_SHIFT 9 473# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474# define DSI_HS_CLT1_CPOST_SHIFT 0 475 476#define DSI1_HS_CLT2 0x58 477# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478# define DSI_HS_CLT2_WUP_SHIFT 0 479 480#define DSI1_HS_DLT3 0x5c 481# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482# define DSI_HS_DLT3_EXIT_SHIFT 18 483# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484# define DSI_HS_DLT3_ZERO_SHIFT 9 485# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486# define DSI_HS_DLT3_PRE_SHIFT 0 487 488#define DSI1_HS_DLT4 0x60 489# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490# define DSI_HS_DLT4_ANLAT_SHIFT 18 491# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492# define DSI_HS_DLT4_TRAIL_SHIFT 9 493# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494# define DSI_HS_DLT4_LPX_SHIFT 0 495 496#define DSI1_HS_DLT5 0x64 497# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498# define DSI_HS_DLT5_INIT_SHIFT 0 499 500#define DSI1_HS_DLT6 0x68 501# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502# define DSI_HS_DLT6_TA_GET_SHIFT 24 503# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504# define DSI_HS_DLT6_TA_SURE_SHIFT 16 505# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506# define DSI_HS_DLT6_TA_GO_SHIFT 8 507# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508# define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510#define DSI1_HS_DLT7 0x6c 511# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512# define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514#define DSI1_PHY_AFEC0 0x70 515 516#define DSI1_PHY_AFEC1 0x74 517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528#define DSI1_TST_SEL 0x78 529#define DSI1_TST_MON 0x7c 530#define DSI1_PHY_TST1 0x80 531#define DSI1_PHY_TST2 0x84 532#define DSI1_PHY_FIFO_STAT 0x88 533/* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536#define DSI1_ID 0x8c 537 538struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548}; 549 550/* General DSI hardware state. */ 551struct vc4_dsi { 552 struct platform_device *pdev; 553 554 struct mipi_dsi_host dsi_host; 555 struct drm_encoder *encoder; 556 struct drm_bridge *bridge; 557 struct list_head bridge_chain; 558 559 void __iomem *regs; 560 561 struct dma_chan *reg_dma_chan; 562 dma_addr_t reg_dma_paddr; 563 u32 *reg_dma_mem; 564 dma_addr_t reg_paddr; 565 566 const struct vc4_dsi_variant *variant; 567 568 /* DSI channel for the panel we're connected to. */ 569 u32 channel; 570 u32 lanes; 571 u32 format; 572 u32 divider; 573 u32 mode_flags; 574 575 /* Input clock from CPRMAN to the digital PHY, for the DSI 576 * escape clock. 577 */ 578 struct clk *escape_clock; 579 580 /* Input clock to the analog PHY, used to generate the DSI bit 581 * clock. 582 */ 583 struct clk *pll_phy_clock; 584 585 /* HS Clocks generated within the DSI analog PHY. */ 586 struct clk_fixed_factor phy_clocks[3]; 587 588 struct clk_hw_onecell_data *clk_onecell; 589 590 /* Pixel clock output to the pixelvalve, generated from the HS 591 * clock. 592 */ 593 struct clk *pixel_clock; 594 595 struct completion xfer_completion; 596 int xfer_result; 597 598 struct debugfs_regset32 regset; 599}; 600 601#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 602 603static inline void 604dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 605{ 606 struct dma_chan *chan = dsi->reg_dma_chan; 607 struct dma_async_tx_descriptor *tx; 608 dma_cookie_t cookie; 609 int ret; 610 611 /* DSI0 should be able to write normally. */ 612 if (!chan) { 613 writel(val, dsi->regs + offset); 614 return; 615 } 616 617 *dsi->reg_dma_mem = val; 618 619 tx = chan->device->device_prep_dma_memcpy(chan, 620 dsi->reg_paddr + offset, 621 dsi->reg_dma_paddr, 622 4, 0); 623 if (!tx) { 624 DRM_ERROR("Failed to set up DMA register write\n"); 625 return; 626 } 627 628 cookie = tx->tx_submit(tx); 629 ret = dma_submit_error(cookie); 630 if (ret) { 631 DRM_ERROR("Failed to submit DMA: %d\n", ret); 632 return; 633 } 634 ret = dma_sync_wait(chan, cookie); 635 if (ret) 636 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 637} 638 639#define DSI_READ(offset) readl(dsi->regs + (offset)) 640#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 641#define DSI_PORT_READ(offset) \ 642 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 643#define DSI_PORT_WRITE(offset, val) \ 644 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 645#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 646 647/* VC4 DSI encoder KMS struct */ 648struct vc4_dsi_encoder { 649 struct vc4_encoder base; 650 struct vc4_dsi *dsi; 651}; 652 653static inline struct vc4_dsi_encoder * 654to_vc4_dsi_encoder(struct drm_encoder *encoder) 655{ 656 return container_of(encoder, struct vc4_dsi_encoder, base.base); 657} 658 659static const struct debugfs_reg32 dsi0_regs[] = { 660 VC4_REG32(DSI0_CTRL), 661 VC4_REG32(DSI0_STAT), 662 VC4_REG32(DSI0_HSTX_TO_CNT), 663 VC4_REG32(DSI0_LPRX_TO_CNT), 664 VC4_REG32(DSI0_TA_TO_CNT), 665 VC4_REG32(DSI0_PR_TO_CNT), 666 VC4_REG32(DSI0_DISP0_CTRL), 667 VC4_REG32(DSI0_DISP1_CTRL), 668 VC4_REG32(DSI0_INT_STAT), 669 VC4_REG32(DSI0_INT_EN), 670 VC4_REG32(DSI0_PHYC), 671 VC4_REG32(DSI0_HS_CLT0), 672 VC4_REG32(DSI0_HS_CLT1), 673 VC4_REG32(DSI0_HS_CLT2), 674 VC4_REG32(DSI0_HS_DLT3), 675 VC4_REG32(DSI0_HS_DLT4), 676 VC4_REG32(DSI0_HS_DLT5), 677 VC4_REG32(DSI0_HS_DLT6), 678 VC4_REG32(DSI0_HS_DLT7), 679 VC4_REG32(DSI0_PHY_AFEC0), 680 VC4_REG32(DSI0_PHY_AFEC1), 681 VC4_REG32(DSI0_ID), 682}; 683 684static const struct debugfs_reg32 dsi1_regs[] = { 685 VC4_REG32(DSI1_CTRL), 686 VC4_REG32(DSI1_STAT), 687 VC4_REG32(DSI1_HSTX_TO_CNT), 688 VC4_REG32(DSI1_LPRX_TO_CNT), 689 VC4_REG32(DSI1_TA_TO_CNT), 690 VC4_REG32(DSI1_PR_TO_CNT), 691 VC4_REG32(DSI1_DISP0_CTRL), 692 VC4_REG32(DSI1_DISP1_CTRL), 693 VC4_REG32(DSI1_INT_STAT), 694 VC4_REG32(DSI1_INT_EN), 695 VC4_REG32(DSI1_PHYC), 696 VC4_REG32(DSI1_HS_CLT0), 697 VC4_REG32(DSI1_HS_CLT1), 698 VC4_REG32(DSI1_HS_CLT2), 699 VC4_REG32(DSI1_HS_DLT3), 700 VC4_REG32(DSI1_HS_DLT4), 701 VC4_REG32(DSI1_HS_DLT5), 702 VC4_REG32(DSI1_HS_DLT6), 703 VC4_REG32(DSI1_HS_DLT7), 704 VC4_REG32(DSI1_PHY_AFEC0), 705 VC4_REG32(DSI1_PHY_AFEC1), 706 VC4_REG32(DSI1_ID), 707}; 708 709static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 710{ 711 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 712 713 if (latch) 714 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 715 else 716 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 717 718 DSI_PORT_WRITE(PHY_AFEC0, afec0); 719} 720 721/* Enters or exits Ultra Low Power State. */ 722static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 723{ 724 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 725 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 726 DSI_PHYC_DLANE0_ULPS | 727 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 728 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 729 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 730 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 731 DSI1_STAT_PHY_D0_ULPS | 732 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 733 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 734 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 735 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 736 DSI1_STAT_PHY_D0_STOP | 737 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 738 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 739 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 740 int ret; 741 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 742 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 743 744 if (ulps == ulps_currently_enabled) 745 return; 746 747 DSI_PORT_WRITE(STAT, stat_ulps); 748 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 749 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 750 if (ret) { 751 dev_warn(&dsi->pdev->dev, 752 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 753 DSI_PORT_READ(STAT)); 754 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 755 vc4_dsi_latch_ulps(dsi, false); 756 return; 757 } 758 759 /* The DSI module can't be disabled while the module is 760 * generating ULPS state. So, to be able to disable the 761 * module, we have the AFE latch the ULPS state and continue 762 * on to having the module enter STOP. 763 */ 764 vc4_dsi_latch_ulps(dsi, ulps); 765 766 DSI_PORT_WRITE(STAT, stat_stop); 767 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 768 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 769 if (ret) { 770 dev_warn(&dsi->pdev->dev, 771 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 772 DSI_PORT_READ(STAT)); 773 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 774 return; 775 } 776} 777 778static u32 779dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 780{ 781 /* The HS timings have to be rounded up to a multiple of 8 782 * because we're using the byte clock. 783 */ 784 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 785} 786 787/* ESC always runs at 100Mhz. */ 788#define ESC_TIME_NS 10 789 790static u32 791dsi_esc_timing(u32 ns) 792{ 793 return DIV_ROUND_UP(ns, ESC_TIME_NS); 794} 795 796static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 797{ 798 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 799 struct vc4_dsi *dsi = vc4_encoder->dsi; 800 struct device *dev = &dsi->pdev->dev; 801 struct drm_bridge *iter; 802 803 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 804 if (iter->funcs->disable) 805 iter->funcs->disable(iter); 806 807 if (iter == dsi->bridge) 808 break; 809 } 810 811 vc4_dsi_ulps(dsi, true); 812 813 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 814 if (iter->funcs->post_disable) 815 iter->funcs->post_disable(iter); 816 } 817 818 clk_disable_unprepare(dsi->pll_phy_clock); 819 clk_disable_unprepare(dsi->escape_clock); 820 clk_disable_unprepare(dsi->pixel_clock); 821 822 pm_runtime_put(dev); 823} 824 825/* Extends the mode's blank intervals to handle BCM2835's integer-only 826 * DSI PLL divider. 827 * 828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 829 * driver since most peripherals are hanging off of the PLLD_PER 830 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 831 * the pixel clock), only has an integer divider off of DSI. 832 * 833 * To get our panel mode to refresh at the expected 60Hz, we need to 834 * extend the horizontal blank time. This means we drive a 835 * higher-than-expected clock rate to the panel, but that's what the 836 * firmware does too. 837 */ 838static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 839 const struct drm_display_mode *mode, 840 struct drm_display_mode *adjusted_mode) 841{ 842 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 843 struct vc4_dsi *dsi = vc4_encoder->dsi; 844 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 845 unsigned long parent_rate = clk_get_rate(phy_parent); 846 unsigned long pixel_clock_hz = mode->clock * 1000; 847 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 848 int divider; 849 850 /* Find what divider gets us a faster clock than the requested 851 * pixel clock. 852 */ 853 for (divider = 1; divider < 255; divider++) { 854 if (parent_rate / (divider + 1) < pll_clock) 855 break; 856 } 857 858 /* Now that we've picked a PLL divider, calculate back to its 859 * pixel clock. 860 */ 861 pll_clock = parent_rate / divider; 862 pixel_clock_hz = pll_clock / dsi->divider; 863 864 adjusted_mode->clock = pixel_clock_hz / 1000; 865 866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 867 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 868 mode->clock; 869 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 870 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 871 872 return true; 873} 874 875static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 876{ 877 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 878 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 879 struct vc4_dsi *dsi = vc4_encoder->dsi; 880 struct device *dev = &dsi->pdev->dev; 881 bool debug_dump_regs = false; 882 struct drm_bridge *iter; 883 unsigned long hs_clock; 884 u32 ui_ns; 885 /* Minimum LP state duration in escape clock cycles. */ 886 u32 lpx = dsi_esc_timing(60); 887 unsigned long pixel_clock_hz = mode->clock * 1000; 888 unsigned long dsip_clock; 889 unsigned long phy_clock; 890 int ret; 891 892 ret = pm_runtime_resume_and_get(dev); 893 if (ret) { 894 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 895 return; 896 } 897 898 if (debug_dump_regs) { 899 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 900 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 901 drm_print_regset32(&p, &dsi->regset); 902 } 903 904 /* Round up the clk_set_rate() request slightly, since 905 * PLLD_DSI1 is an integer divider and its rate selection will 906 * never round up. 907 */ 908 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 909 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 910 if (ret) { 911 dev_err(&dsi->pdev->dev, 912 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 913 } 914 915 /* Reset the DSI and all its fifos. */ 916 DSI_PORT_WRITE(CTRL, 917 DSI_CTRL_SOFT_RESET_CFG | 918 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 919 920 DSI_PORT_WRITE(CTRL, 921 DSI_CTRL_HSDT_EOT_DISABLE | 922 DSI_CTRL_RX_LPDT_EOT_DISABLE); 923 924 /* Clear all stat bits so we see what has happened during enable. */ 925 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 926 927 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 928 if (dsi->variant->port == 0) { 929 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 930 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 931 932 if (dsi->lanes < 2) 933 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 934 935 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 936 afec0 |= DSI0_PHY_AFEC0_RESET; 937 938 DSI_PORT_WRITE(PHY_AFEC0, afec0); 939 940 /* AFEC reset hold time */ 941 mdelay(1); 942 943 DSI_PORT_WRITE(PHY_AFEC1, 944 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 945 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 946 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 947 } else { 948 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 949 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 950 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 951 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 952 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 953 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 954 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 955 956 if (dsi->lanes < 4) 957 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 958 if (dsi->lanes < 3) 959 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 960 if (dsi->lanes < 2) 961 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 962 963 afec0 |= DSI1_PHY_AFEC0_RESET; 964 965 DSI_PORT_WRITE(PHY_AFEC0, afec0); 966 967 DSI_PORT_WRITE(PHY_AFEC1, 0); 968 969 /* AFEC reset hold time */ 970 mdelay(1); 971 } 972 973 ret = clk_prepare_enable(dsi->escape_clock); 974 if (ret) { 975 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 976 return; 977 } 978 979 ret = clk_prepare_enable(dsi->pll_phy_clock); 980 if (ret) { 981 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 982 return; 983 } 984 985 hs_clock = clk_get_rate(dsi->pll_phy_clock); 986 987 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 988 * not the pixel clock rate. DSIxP take from the APHY's byte, 989 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 990 * that rate. Separately, a value derived from PIX_CLK_DIV 991 * and HS_CLKC is fed into the PV to divide down to the actual 992 * pixel clock for pushing pixels into DSI. 993 */ 994 dsip_clock = phy_clock / 8; 995 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 996 if (ret) { 997 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 998 dsip_clock, ret); 999 } 1000 1001 ret = clk_prepare_enable(dsi->pixel_clock); 1002 if (ret) { 1003 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1004 return; 1005 } 1006 1007 /* How many ns one DSI unit interval is. Note that the clock 1008 * is DDR, so there's an extra divide by 2. 1009 */ 1010 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1011 1012 DSI_PORT_WRITE(HS_CLT0, 1013 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1014 DSI_HS_CLT0_CZERO) | 1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1016 DSI_HS_CLT0_CPRE) | 1017 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1018 DSI_HS_CLT0_CPREP)); 1019 1020 DSI_PORT_WRITE(HS_CLT1, 1021 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1022 DSI_HS_CLT1_CTRAIL) | 1023 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1024 DSI_HS_CLT1_CPOST)); 1025 1026 DSI_PORT_WRITE(HS_CLT2, 1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1028 DSI_HS_CLT2_WUP)); 1029 1030 DSI_PORT_WRITE(HS_DLT3, 1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1032 DSI_HS_DLT3_EXIT) | 1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1034 DSI_HS_DLT3_ZERO) | 1035 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1036 DSI_HS_DLT3_PRE)); 1037 1038 DSI_PORT_WRITE(HS_DLT4, 1039 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1040 DSI_HS_DLT4_LPX) | 1041 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1042 dsi_hs_timing(ui_ns, 60, 4)), 1043 DSI_HS_DLT4_TRAIL) | 1044 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1045 1046 /* T_INIT is how long STOP is driven after power-up to 1047 * indicate to the slave (also coming out of power-up) that 1048 * master init is complete, and should be greater than the 1049 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1050 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1051 * T_INIT,SLAVE, while allowing protocols on top of it to give 1052 * greater minimums. The vc4 firmware uses an extremely 1053 * conservative 5ms, and we maintain that here. 1054 */ 1055 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1056 5 * 1000 * 1000, 0), 1057 DSI_HS_DLT5_INIT)); 1058 1059 DSI_PORT_WRITE(HS_DLT6, 1060 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1061 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1062 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1063 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1064 1065 DSI_PORT_WRITE(HS_DLT7, 1066 VC4_SET_FIELD(dsi_esc_timing(1000000), 1067 DSI_HS_DLT7_LP_WUP)); 1068 1069 DSI_PORT_WRITE(PHYC, 1070 DSI_PHYC_DLANE0_ENABLE | 1071 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1072 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1073 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1074 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1075 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1076 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1077 (dsi->variant->port == 0 ? 1078 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1079 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1080 1081 DSI_PORT_WRITE(CTRL, 1082 DSI_PORT_READ(CTRL) | 1083 DSI_CTRL_CAL_BYTE); 1084 1085 /* HS timeout in HS clock cycles: disabled. */ 1086 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1087 /* LP receive timeout in HS clocks. */ 1088 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1089 /* Bus turnaround timeout */ 1090 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1091 /* Display reset sequence timeout */ 1092 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1093 1094 /* Set up DISP1 for transferring long command payloads through 1095 * the pixfifo. 1096 */ 1097 DSI_PORT_WRITE(DISP1_CTRL, 1098 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1099 DSI_DISP1_PFORMAT) | 1100 DSI_DISP1_ENABLE); 1101 1102 /* Ungate the block. */ 1103 if (dsi->variant->port == 0) 1104 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1105 else 1106 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1107 1108 /* Bring AFE out of reset. */ 1109 DSI_PORT_WRITE(PHY_AFEC0, 1110 DSI_PORT_READ(PHY_AFEC0) & 1111 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1112 1113 vc4_dsi_ulps(dsi, false); 1114 1115 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1116 if (iter->funcs->pre_enable) 1117 iter->funcs->pre_enable(iter); 1118 } 1119 1120 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1121 DSI_PORT_WRITE(DISP0_CTRL, 1122 VC4_SET_FIELD(dsi->divider, 1123 DSI_DISP0_PIX_CLK_DIV) | 1124 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1125 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1126 DSI_DISP0_LP_STOP_CTRL) | 1127 DSI_DISP0_ST_END | 1128 DSI_DISP0_ENABLE); 1129 } else { 1130 DSI_PORT_WRITE(DISP0_CTRL, 1131 DSI_DISP0_COMMAND_MODE | 1132 DSI_DISP0_ENABLE); 1133 } 1134 1135 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1136 if (iter->funcs->enable) 1137 iter->funcs->enable(iter); 1138 } 1139 1140 if (debug_dump_regs) { 1141 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1142 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1143 drm_print_regset32(&p, &dsi->regset); 1144 } 1145} 1146 1147static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1148 const struct mipi_dsi_msg *msg) 1149{ 1150 struct vc4_dsi *dsi = host_to_dsi(host); 1151 struct mipi_dsi_packet packet; 1152 u32 pkth = 0, pktc = 0; 1153 int i, ret; 1154 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1155 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1156 1157 mipi_dsi_create_packet(&packet, msg); 1158 1159 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1160 pkth |= VC4_SET_FIELD(packet.header[1] | 1161 (packet.header[2] << 8), 1162 DSI_TXPKT1H_BC_PARAM); 1163 if (is_long) { 1164 /* Divide data across the various FIFOs we have available. 1165 * The command FIFO takes byte-oriented data, but is of 1166 * limited size. The pixel FIFO (never actually used for 1167 * pixel data in reality) is word oriented, and substantially 1168 * larger. So, we use the pixel FIFO for most of the data, 1169 * sending the residual bytes in the command FIFO at the start. 1170 * 1171 * With this arrangement, the command FIFO will never get full. 1172 */ 1173 if (packet.payload_length <= 16) { 1174 cmd_fifo_len = packet.payload_length; 1175 pix_fifo_len = 0; 1176 } else { 1177 cmd_fifo_len = (packet.payload_length % 1178 DSI_PIX_FIFO_WIDTH); 1179 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1180 DSI_PIX_FIFO_WIDTH); 1181 } 1182 1183 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1184 1185 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1186 } 1187 1188 if (msg->rx_len) { 1189 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1190 DSI_TXPKT1C_CMD_CTRL); 1191 } else { 1192 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1193 DSI_TXPKT1C_CMD_CTRL); 1194 } 1195 1196 for (i = 0; i < cmd_fifo_len; i++) 1197 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1198 for (i = 0; i < pix_fifo_len; i++) { 1199 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1200 1201 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1202 pix[0] | 1203 pix[1] << 8 | 1204 pix[2] << 16 | 1205 pix[3] << 24); 1206 } 1207 1208 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1209 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1210 if (is_long) 1211 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1212 1213 /* Send one copy of the packet. Larger repeats are used for pixel 1214 * data in command mode. 1215 */ 1216 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1217 1218 pktc |= DSI_TXPKT1C_CMD_EN; 1219 if (pix_fifo_len) { 1220 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1221 DSI_TXPKT1C_DISPLAY_NO); 1222 } else { 1223 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1224 DSI_TXPKT1C_DISPLAY_NO); 1225 } 1226 1227 /* Enable the appropriate interrupt for the transfer completion. */ 1228 dsi->xfer_result = 0; 1229 reinit_completion(&dsi->xfer_completion); 1230 if (dsi->variant->port == 0) { 1231 DSI_PORT_WRITE(INT_STAT, 1232 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1233 if (msg->rx_len) { 1234 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1235 DSI0_INT_PHY_DIR_RTF)); 1236 } else { 1237 DSI_PORT_WRITE(INT_EN, 1238 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1239 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1240 DSI0_INT_CMDC_DONE))); 1241 } 1242 } else { 1243 DSI_PORT_WRITE(INT_STAT, 1244 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1245 if (msg->rx_len) { 1246 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1247 DSI1_INT_PHY_DIR_RTF)); 1248 } else { 1249 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1250 DSI1_INT_TXPKT1_DONE)); 1251 } 1252 } 1253 1254 /* Send the packet. */ 1255 DSI_PORT_WRITE(TXPKT1H, pkth); 1256 DSI_PORT_WRITE(TXPKT1C, pktc); 1257 1258 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1259 msecs_to_jiffies(1000))) { 1260 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1261 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1262 DSI_PORT_READ(INT_STAT)); 1263 ret = -ETIMEDOUT; 1264 } else { 1265 ret = dsi->xfer_result; 1266 } 1267 1268 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1269 1270 if (ret) 1271 goto reset_fifo_and_return; 1272 1273 if (ret == 0 && msg->rx_len) { 1274 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1275 u8 *msg_rx = msg->rx_buf; 1276 1277 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1278 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1279 DSI_RXPKT1H_BC_PARAM); 1280 1281 if (rxlen != msg->rx_len) { 1282 DRM_ERROR("DSI returned %db, expecting %db\n", 1283 rxlen, (int)msg->rx_len); 1284 ret = -ENXIO; 1285 goto reset_fifo_and_return; 1286 } 1287 1288 for (i = 0; i < msg->rx_len; i++) 1289 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1290 } else { 1291 /* FINISHME: Handle AWER */ 1292 1293 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1294 DSI_RXPKT1H_SHORT_0); 1295 if (msg->rx_len > 1) { 1296 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1297 DSI_RXPKT1H_SHORT_1); 1298 } 1299 } 1300 } 1301 1302 return ret; 1303 1304reset_fifo_and_return: 1305 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1306 1307 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1308 udelay(1); 1309 DSI_PORT_WRITE(CTRL, 1310 DSI_PORT_READ(CTRL) | 1311 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1312 1313 DSI_PORT_WRITE(TXPKT1C, 0); 1314 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1315 return ret; 1316} 1317 1318static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1319 struct mipi_dsi_device *device) 1320{ 1321 struct vc4_dsi *dsi = host_to_dsi(host); 1322 1323 dsi->lanes = device->lanes; 1324 dsi->channel = device->channel; 1325 dsi->mode_flags = device->mode_flags; 1326 1327 switch (device->format) { 1328 case MIPI_DSI_FMT_RGB888: 1329 dsi->format = DSI_PFORMAT_RGB888; 1330 dsi->divider = 24 / dsi->lanes; 1331 break; 1332 case MIPI_DSI_FMT_RGB666: 1333 dsi->format = DSI_PFORMAT_RGB666; 1334 dsi->divider = 24 / dsi->lanes; 1335 break; 1336 case MIPI_DSI_FMT_RGB666_PACKED: 1337 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1338 dsi->divider = 18 / dsi->lanes; 1339 break; 1340 case MIPI_DSI_FMT_RGB565: 1341 dsi->format = DSI_PFORMAT_RGB565; 1342 dsi->divider = 16 / dsi->lanes; 1343 break; 1344 default: 1345 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1346 dsi->format); 1347 return 0; 1348 } 1349 1350 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1351 dev_err(&dsi->pdev->dev, 1352 "Only VIDEO mode panels supported currently.\n"); 1353 return 0; 1354 } 1355 1356 return 0; 1357} 1358 1359static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1360 struct mipi_dsi_device *device) 1361{ 1362 return 0; 1363} 1364 1365static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1366 .attach = vc4_dsi_host_attach, 1367 .detach = vc4_dsi_host_detach, 1368 .transfer = vc4_dsi_host_transfer, 1369}; 1370 1371static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1372 .disable = vc4_dsi_encoder_disable, 1373 .enable = vc4_dsi_encoder_enable, 1374 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1375}; 1376 1377static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1378 .port = 1, 1379 .broken_axi_workaround = true, 1380 .debugfs_name = "dsi1_regs", 1381 .regs = dsi1_regs, 1382 .nregs = ARRAY_SIZE(dsi1_regs), 1383}; 1384 1385static const struct of_device_id vc4_dsi_dt_match[] = { 1386 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1387 {} 1388}; 1389 1390static void dsi_handle_error(struct vc4_dsi *dsi, 1391 irqreturn_t *ret, u32 stat, u32 bit, 1392 const char *type) 1393{ 1394 if (!(stat & bit)) 1395 return; 1396 1397 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1398 *ret = IRQ_HANDLED; 1399} 1400 1401/* 1402 * Initial handler for port 1 where we need the reg_dma workaround. 1403 * The register DMA writes sleep, so we can't do it in the top half. 1404 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1405 * parent interrupt contrller until our interrupt thread is done. 1406 */ 1407static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1408{ 1409 struct vc4_dsi *dsi = data; 1410 u32 stat = DSI_PORT_READ(INT_STAT); 1411 1412 if (!stat) 1413 return IRQ_NONE; 1414 1415 return IRQ_WAKE_THREAD; 1416} 1417 1418/* 1419 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1420 * 1 where we need the reg_dma workaround. 1421 */ 1422static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1423{ 1424 struct vc4_dsi *dsi = data; 1425 u32 stat = DSI_PORT_READ(INT_STAT); 1426 irqreturn_t ret = IRQ_NONE; 1427 1428 DSI_PORT_WRITE(INT_STAT, stat); 1429 1430 dsi_handle_error(dsi, &ret, stat, 1431 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1432 dsi_handle_error(dsi, &ret, stat, 1433 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1434 dsi_handle_error(dsi, &ret, stat, 1435 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1436 dsi_handle_error(dsi, &ret, stat, 1437 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1438 dsi_handle_error(dsi, &ret, stat, 1439 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1440 dsi_handle_error(dsi, &ret, stat, 1441 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1442 dsi_handle_error(dsi, &ret, stat, 1443 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1444 dsi_handle_error(dsi, &ret, stat, 1445 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1446 1447 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1448 DSI0_INT_CMDC_DONE_MASK) | 1449 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1450 complete(&dsi->xfer_completion); 1451 ret = IRQ_HANDLED; 1452 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1453 complete(&dsi->xfer_completion); 1454 dsi->xfer_result = -ETIMEDOUT; 1455 ret = IRQ_HANDLED; 1456 } 1457 1458 return ret; 1459} 1460 1461/** 1462 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1463 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1464 * @dsi: DSI encoder 1465 */ 1466static int 1467vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1468{ 1469 struct device *dev = &dsi->pdev->dev; 1470 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1471 static const struct { 1472 const char *name; 1473 int div; 1474 } phy_clocks[] = { 1475 { "byte", 8 }, 1476 { "ddr2", 4 }, 1477 { "ddr", 2 }, 1478 }; 1479 int i; 1480 1481 dsi->clk_onecell = devm_kzalloc(dev, 1482 sizeof(*dsi->clk_onecell) + 1483 ARRAY_SIZE(phy_clocks) * 1484 sizeof(struct clk_hw *), 1485 GFP_KERNEL); 1486 if (!dsi->clk_onecell) 1487 return -ENOMEM; 1488 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1489 1490 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1491 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1492 struct clk_init_data init; 1493 char clk_name[16]; 1494 int ret; 1495 1496 snprintf(clk_name, sizeof(clk_name), 1497 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1498 1499 /* We just use core fixed factor clock ops for the PHY 1500 * clocks. The clocks are actually gated by the 1501 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1502 * setting if we use the DDR/DDR2 clocks. However, 1503 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1504 * setting both our parent DSI PLL's rate and this 1505 * clock's rate, so it knows if DDR/DDR2 are going to 1506 * be used and could enable the gates itself. 1507 */ 1508 fix->mult = 1; 1509 fix->div = phy_clocks[i].div; 1510 fix->hw.init = &init; 1511 1512 memset(&init, 0, sizeof(init)); 1513 init.parent_names = &parent_name; 1514 init.num_parents = 1; 1515 init.name = clk_name; 1516 init.ops = &clk_fixed_factor_ops; 1517 1518 ret = devm_clk_hw_register(dev, &fix->hw); 1519 if (ret) 1520 return ret; 1521 1522 dsi->clk_onecell->hws[i] = &fix->hw; 1523 } 1524 1525 return of_clk_add_hw_provider(dev->of_node, 1526 of_clk_hw_onecell_get, 1527 dsi->clk_onecell); 1528} 1529 1530static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1531{ 1532 struct platform_device *pdev = to_platform_device(dev); 1533 struct drm_device *drm = dev_get_drvdata(master); 1534 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1535 struct vc4_dsi_encoder *vc4_dsi_encoder; 1536 struct drm_panel *panel; 1537 const struct of_device_id *match; 1538 dma_cap_mask_t dma_mask; 1539 int ret; 1540 1541 match = of_match_device(vc4_dsi_dt_match, dev); 1542 if (!match) 1543 return -ENODEV; 1544 1545 dsi->variant = match->data; 1546 1547 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1548 GFP_KERNEL); 1549 if (!vc4_dsi_encoder) 1550 return -ENOMEM; 1551 1552 INIT_LIST_HEAD(&dsi->bridge_chain); 1553 vc4_dsi_encoder->base.type = dsi->variant->port ? 1554 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1555 vc4_dsi_encoder->dsi = dsi; 1556 dsi->encoder = &vc4_dsi_encoder->base.base; 1557 1558 dsi->regs = vc4_ioremap_regs(pdev, 0); 1559 if (IS_ERR(dsi->regs)) 1560 return PTR_ERR(dsi->regs); 1561 1562 dsi->regset.base = dsi->regs; 1563 dsi->regset.regs = dsi->variant->regs; 1564 dsi->regset.nregs = dsi->variant->nregs; 1565 1566 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1567 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1568 DSI_PORT_READ(ID), DSI_ID_VALUE); 1569 return -ENODEV; 1570 } 1571 1572 /* DSI1 has a broken AXI slave that doesn't respond to writes 1573 * from the ARM. It does handle writes from the DMA engine, 1574 * so set up a channel for talking to it. 1575 */ 1576 if (dsi->variant->broken_axi_workaround) { 1577 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1578 &dsi->reg_dma_paddr, 1579 GFP_KERNEL); 1580 if (!dsi->reg_dma_mem) { 1581 DRM_ERROR("Failed to get DMA memory\n"); 1582 return -ENOMEM; 1583 } 1584 1585 dma_cap_zero(dma_mask); 1586 dma_cap_set(DMA_MEMCPY, dma_mask); 1587 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1588 if (IS_ERR(dsi->reg_dma_chan)) { 1589 ret = PTR_ERR(dsi->reg_dma_chan); 1590 if (ret != -EPROBE_DEFER) 1591 DRM_ERROR("Failed to get DMA channel: %d\n", 1592 ret); 1593 return ret; 1594 } 1595 1596 /* Get the physical address of the device's registers. The 1597 * struct resource for the regs gives us the bus address 1598 * instead. 1599 */ 1600 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1601 0, NULL, NULL)); 1602 } 1603 1604 init_completion(&dsi->xfer_completion); 1605 /* At startup enable error-reporting interrupts and nothing else. */ 1606 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1607 /* Clear any existing interrupt state. */ 1608 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1609 1610 if (dsi->reg_dma_mem) 1611 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1612 vc4_dsi_irq_defer_to_thread_handler, 1613 vc4_dsi_irq_handler, 1614 IRQF_ONESHOT, 1615 "vc4 dsi", dsi); 1616 else 1617 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1618 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1619 if (ret) { 1620 if (ret != -EPROBE_DEFER) 1621 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1622 return ret; 1623 } 1624 1625 dsi->escape_clock = devm_clk_get(dev, "escape"); 1626 if (IS_ERR(dsi->escape_clock)) { 1627 ret = PTR_ERR(dsi->escape_clock); 1628 if (ret != -EPROBE_DEFER) 1629 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1630 return ret; 1631 } 1632 1633 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1634 if (IS_ERR(dsi->pll_phy_clock)) { 1635 ret = PTR_ERR(dsi->pll_phy_clock); 1636 if (ret != -EPROBE_DEFER) 1637 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1638 return ret; 1639 } 1640 1641 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1642 if (IS_ERR(dsi->pixel_clock)) { 1643 ret = PTR_ERR(dsi->pixel_clock); 1644 if (ret != -EPROBE_DEFER) 1645 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1646 return ret; 1647 } 1648 1649 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1650 &panel, &dsi->bridge); 1651 if (ret) { 1652 /* If the bridge or panel pointed by dev->of_node is not 1653 * enabled, just return 0 here so that we don't prevent the DRM 1654 * dev from being registered. Of course that means the DSI 1655 * encoder won't be exposed, but that's not a problem since 1656 * nothing is connected to it. 1657 */ 1658 if (ret == -ENODEV) 1659 return 0; 1660 1661 return ret; 1662 } 1663 1664 if (panel) { 1665 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, 1666 DRM_MODE_CONNECTOR_DSI); 1667 if (IS_ERR(dsi->bridge)) 1668 return PTR_ERR(dsi->bridge); 1669 } 1670 1671 /* The esc clock rate is supposed to always be 100Mhz. */ 1672 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1673 if (ret) { 1674 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1675 return ret; 1676 } 1677 1678 ret = vc4_dsi_init_phy_clocks(dsi); 1679 if (ret) 1680 return ret; 1681 1682 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); 1683 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1684 1685 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); 1686 if (ret) { 1687 dev_err(dev, "bridge attach failed: %d\n", ret); 1688 return ret; 1689 } 1690 /* Disable the atomic helper calls into the bridge. We 1691 * manually call the bridge pre_enable / enable / etc. calls 1692 * from our driver, since we need to sequence them within the 1693 * encoder's enable/disable paths. 1694 */ 1695 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1696 1697 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1698 1699 pm_runtime_enable(dev); 1700 1701 return 0; 1702} 1703 1704static void vc4_dsi_unbind(struct device *dev, struct device *master, 1705 void *data) 1706{ 1707 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1708 1709 if (dsi->bridge) 1710 pm_runtime_disable(dev); 1711 1712 /* 1713 * Restore the bridge_chain so the bridge detach procedure can happen 1714 * normally. 1715 */ 1716 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1717 drm_encoder_cleanup(dsi->encoder); 1718} 1719 1720static const struct component_ops vc4_dsi_ops = { 1721 .bind = vc4_dsi_bind, 1722 .unbind = vc4_dsi_unbind, 1723}; 1724 1725static int vc4_dsi_dev_probe(struct platform_device *pdev) 1726{ 1727 struct device *dev = &pdev->dev; 1728 struct vc4_dsi *dsi; 1729 int ret; 1730 1731 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1732 if (!dsi) 1733 return -ENOMEM; 1734 dev_set_drvdata(dev, dsi); 1735 1736 dsi->pdev = pdev; 1737 1738 /* Note, the initialization sequence for DSI and panels is 1739 * tricky. The component bind above won't get past its 1740 * -EPROBE_DEFER until the panel/bridge probes. The 1741 * panel/bridge will return -EPROBE_DEFER until it has a 1742 * mipi_dsi_host to register its device to. So, we register 1743 * the host during pdev probe time, so vc4 as a whole can then 1744 * -EPROBE_DEFER its component bind process until the panel 1745 * successfully attaches. 1746 */ 1747 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1748 dsi->dsi_host.dev = dev; 1749 mipi_dsi_host_register(&dsi->dsi_host); 1750 1751 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1752 if (ret) { 1753 mipi_dsi_host_unregister(&dsi->dsi_host); 1754 return ret; 1755 } 1756 1757 return 0; 1758} 1759 1760static int vc4_dsi_dev_remove(struct platform_device *pdev) 1761{ 1762 struct device *dev = &pdev->dev; 1763 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1764 1765 component_del(&pdev->dev, &vc4_dsi_ops); 1766 mipi_dsi_host_unregister(&dsi->dsi_host); 1767 1768 return 0; 1769} 1770 1771struct platform_driver vc4_dsi_driver = { 1772 .probe = vc4_dsi_dev_probe, 1773 .remove = vc4_dsi_dev_remove, 1774 .driver = { 1775 .name = "vc4_dsi", 1776 .of_match_table = vc4_dsi_dt_match, 1777 }, 1778}; 1779