1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016 Broadcom
4 */
5
6/**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21#include <linux/clk-provider.h>
22#include <linux/clk.h>
23#include <linux/completion.h>
24#include <linux/component.h>
25#include <linux/dma-mapping.h>
26#include <linux/dmaengine.h>
27#include <linux/i2c.h>
28#include <linux/io.h>
29#include <linux/of_address.h>
30#include <linux/of_platform.h>
31#include <linux/pm_runtime.h>
32
33#include <drm/drm_atomic_helper.h>
34#include <drm/drm_bridge.h>
35#include <drm/drm_edid.h>
36#include <drm/drm_mipi_dsi.h>
37#include <drm/drm_of.h>
38#include <drm/drm_panel.h>
39#include <drm/drm_probe_helper.h>
40#include <drm/drm_simple_kms_helper.h>
41
42#include "vc4_drv.h"
43#include "vc4_regs.h"
44
45#define DSI_CMD_FIFO_DEPTH  16
46#define DSI_PIX_FIFO_DEPTH 256
47#define DSI_PIX_FIFO_WIDTH   4
48
49#define DSI0_CTRL		0x00
50
51/* Command packet control. */
52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
53#define DSI1_TXPKT1C		0x04
54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
58
59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
63/* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
65 */
66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
67/* Secondary display where cmdfifo provides part of the payload and
68 * pixfifo the rest.
69 */
70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
71
72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
74
75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
78# define DSI_TXPKT1C_CMD_CTRL_TX	0
79/* Command with BTA for either ack or read data. */
80# define DSI_TXPKT1C_CMD_CTRL_RX	1
81/* Trigger according to TRIG_CMD */
82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
83/* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
85 */
86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
87
88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
91# define DSI_TXPKT1C_CMD_EN		BIT(0)
92
93/* Command packet header. */
94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
95#define DSI1_TXPKT1H		0x08
96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
101# define DSI_TXPKT1H_BC_DT_SHIFT	0
102
103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
104#define DSI1_RXPKT1H		0x14
105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
106# define DSI_RXPKT1H_DET_ERR		BIT(30)
107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
108# define DSI_RXPKT1H_COR_ERR		BIT(28)
109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
121
122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
123#define DSI1_RXPKT2H		0x18
124# define DSI_RXPKT1H_DET_ERR		BIT(30)
125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
126# define DSI_RXPKT1H_COR_ERR		BIT(28)
127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
131# define DSI_RXPKT1H_DT_SHIFT		0
132
133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
134#define DSI1_TXPKT_CMD_FIFO	0x1c
135
136#define DSI0_DISP0_CTRL		0x18
137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
141# define DSI_DISP0_LP_STOP_DISABLE	0
142# define DSI_DISP0_LP_STOP_PERLINE	1
143# define DSI_DISP0_LP_STOP_PERFRAME	2
144
145/* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
147 */
148# define DSI_DISP_HACTIVE_NULL		BIT(10)
149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150# define DSI_DISP_VBLP_CTRL		BIT(9)
151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152# define DSI_DISP_HFP_CTRL		BIT(8)
153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154# define DSI_DISP_HBP_CTRL		BIT(7)
155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
156# define DSI_DISP0_CHANNEL_SHIFT	5
157/* Enables end events for HSYNC/VSYNC, not just start events. */
158# define DSI_DISP0_ST_END		BIT(4)
159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
160# define DSI_DISP0_PFORMAT_SHIFT	2
161# define DSI_PFORMAT_RGB565		0
162# define DSI_PFORMAT_RGB666_PACKED	1
163# define DSI_PFORMAT_RGB666		2
164# define DSI_PFORMAT_RGB888		3
165/* Default is VIDEO mode. */
166# define DSI_DISP0_COMMAND_MODE		BIT(1)
167# define DSI_DISP0_ENABLE		BIT(0)
168
169#define DSI0_DISP1_CTRL		0x1c
170#define DSI1_DISP1_CTRL		0x2c
171/* Format of the data written to TXPKT_PIX_FIFO. */
172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
173# define DSI_DISP1_PFORMAT_SHIFT	1
174# define DSI_DISP1_PFORMAT_16BIT	0
175# define DSI_DISP1_PFORMAT_24BIT	1
176# define DSI_DISP1_PFORMAT_32BIT_LE	2
177# define DSI_DISP1_PFORMAT_32BIT_BE	3
178
179/* DISP1 is always command mode. */
180# define DSI_DISP1_ENABLE		BIT(0)
181
182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
183
184#define DSI0_INT_STAT			0x24
185#define DSI0_INT_EN			0x28
186# define DSI0_INT_FIFO_ERR		BIT(25)
187# define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
188# define DSI0_INT_CMDC_DONE_SHIFT	23
189#  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
190#  define DSI0_INT_CMDC_DONE_REPEAT		3
191# define DSI0_INT_PHY_DIR_RTF		BIT(22)
192# define DSI0_INT_PHY_D1_ULPS		BIT(21)
193# define DSI0_INT_PHY_D1_STOP		BIT(20)
194# define DSI0_INT_PHY_RXLPDT		BIT(19)
195# define DSI0_INT_PHY_RXTRIG		BIT(18)
196# define DSI0_INT_PHY_D0_ULPS		BIT(17)
197# define DSI0_INT_PHY_D0_LPDT		BIT(16)
198# define DSI0_INT_PHY_D0_FTR		BIT(15)
199# define DSI0_INT_PHY_D0_STOP		BIT(14)
200/* Signaled when the clock lane enters the given state. */
201# define DSI0_INT_PHY_CLK_ULPS		BIT(13)
202# define DSI0_INT_PHY_CLK_HS		BIT(12)
203# define DSI0_INT_PHY_CLK_FTR		BIT(11)
204/* Signaled on timeouts */
205# define DSI0_INT_PR_TO			BIT(10)
206# define DSI0_INT_TA_TO			BIT(9)
207# define DSI0_INT_LPRX_TO		BIT(8)
208# define DSI0_INT_HSTX_TO		BIT(7)
209/* Contention on a line when trying to drive the line low */
210# define DSI0_INT_ERR_CONT_LP1		BIT(6)
211# define DSI0_INT_ERR_CONT_LP0		BIT(5)
212/* Control error: incorrect line state sequence on data lane 0. */
213# define DSI0_INT_ERR_CONTROL		BIT(4)
214# define DSI0_INT_ERR_SYNC_ESC		BIT(3)
215# define DSI0_INT_RX2_PKT		BIT(2)
216# define DSI0_INT_RX1_PKT		BIT(1)
217# define DSI0_INT_CMD_PKT		BIT(0)
218
219#define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
220					 DSI0_INT_ERR_CONTROL |	 \
221					 DSI0_INT_ERR_CONT_LP0 | \
222					 DSI0_INT_ERR_CONT_LP1 | \
223					 DSI0_INT_HSTX_TO |	 \
224					 DSI0_INT_LPRX_TO |	 \
225					 DSI0_INT_TA_TO |	 \
226					 DSI0_INT_PR_TO)
227
228# define DSI1_INT_PHY_D3_ULPS		BIT(30)
229# define DSI1_INT_PHY_D3_STOP		BIT(29)
230# define DSI1_INT_PHY_D2_ULPS		BIT(28)
231# define DSI1_INT_PHY_D2_STOP		BIT(27)
232# define DSI1_INT_PHY_D1_ULPS		BIT(26)
233# define DSI1_INT_PHY_D1_STOP		BIT(25)
234# define DSI1_INT_PHY_D0_ULPS		BIT(24)
235# define DSI1_INT_PHY_D0_STOP		BIT(23)
236# define DSI1_INT_FIFO_ERR		BIT(22)
237# define DSI1_INT_PHY_DIR_RTF		BIT(21)
238# define DSI1_INT_PHY_RXLPDT		BIT(20)
239# define DSI1_INT_PHY_RXTRIG		BIT(19)
240# define DSI1_INT_PHY_D0_LPDT		BIT(18)
241# define DSI1_INT_PHY_DIR_FTR		BIT(17)
242
243/* Signaled when the clock lane enters the given state. */
244# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
245# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
246# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
247
248/* Signaled on timeouts */
249# define DSI1_INT_PR_TO			BIT(13)
250# define DSI1_INT_TA_TO			BIT(12)
251# define DSI1_INT_LPRX_TO		BIT(11)
252# define DSI1_INT_HSTX_TO		BIT(10)
253
254/* Contention on a line when trying to drive the line low */
255# define DSI1_INT_ERR_CONT_LP1		BIT(9)
256# define DSI1_INT_ERR_CONT_LP0		BIT(8)
257
258/* Control error: incorrect line state sequence on data lane 0. */
259# define DSI1_INT_ERR_CONTROL		BIT(7)
260/* LPDT synchronization error (bits received not a multiple of 8. */
261
262# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
263/* Signaled after receiving an error packet from the display in
264 * response to a read.
265 */
266# define DSI1_INT_RXPKT2		BIT(5)
267/* Signaled after receiving a packet.  The header and optional short
268 * response will be in RXPKT1H, and a long response will be in the
269 * RXPKT_FIFO.
270 */
271# define DSI1_INT_RXPKT1		BIT(4)
272# define DSI1_INT_TXPKT2_DONE		BIT(3)
273# define DSI1_INT_TXPKT2_END		BIT(2)
274/* Signaled after all repeats of TXPKT1 are transferred. */
275# define DSI1_INT_TXPKT1_DONE		BIT(1)
276/* Signaled after each TXPKT1 repeat is scheduled. */
277# define DSI1_INT_TXPKT1_END		BIT(0)
278
279#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
280					 DSI1_INT_ERR_CONTROL |	 \
281					 DSI1_INT_ERR_CONT_LP0 | \
282					 DSI1_INT_ERR_CONT_LP1 | \
283					 DSI1_INT_HSTX_TO |	 \
284					 DSI1_INT_LPRX_TO |	 \
285					 DSI1_INT_TA_TO |	 \
286					 DSI1_INT_PR_TO)
287
288#define DSI0_STAT		0x2c
289#define DSI0_HSTX_TO_CNT	0x30
290#define DSI0_LPRX_TO_CNT	0x34
291#define DSI0_TA_TO_CNT		0x38
292#define DSI0_PR_TO_CNT		0x3c
293#define DSI0_PHYC		0x40
294# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
295# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
296# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
297# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
298# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
299# define DSI1_PHYC_CLANE_ULPS		BIT(17)
300# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
301# define DSI_PHYC_DLANE3_ULPS		BIT(13)
302# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
303# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
304# define DSI0_PHYC_CLANE_ULPS		BIT(9)
305# define DSI_PHYC_DLANE2_ULPS		BIT(9)
306# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
307# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
308# define DSI_PHYC_DLANE1_ULPS		BIT(5)
309# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
310# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
311# define DSI_PHYC_DLANE0_ULPS		BIT(1)
312# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
313
314#define DSI0_HS_CLT0		0x44
315#define DSI0_HS_CLT1		0x48
316#define DSI0_HS_CLT2		0x4c
317#define DSI0_HS_DLT3		0x50
318#define DSI0_HS_DLT4		0x54
319#define DSI0_HS_DLT5		0x58
320#define DSI0_HS_DLT6		0x5c
321#define DSI0_HS_DLT7		0x60
322
323#define DSI0_PHY_AFEC0		0x64
324# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
325# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
326# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
327# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
328# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
329# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
330# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
331# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
332# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
333# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
334# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
335# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
336# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
337# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
338# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
339# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
340# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
341# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
342# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
343# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
344# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
345# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
346# define DSI1_PHY_AFEC0_RESET			BIT(13)
347# define DSI1_PHY_AFEC0_PD			BIT(12)
348# define DSI0_PHY_AFEC0_RESET			BIT(11)
349# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
350# define DSI0_PHY_AFEC0_PD			BIT(10)
351# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
352# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
353# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
354# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
355# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
356# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
357# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
358# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
359# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
360
361#define DSI0_PHY_AFEC1		0x68
362# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
363# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
364# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
365# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
366# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
367# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
368
369#define DSI0_TST_SEL		0x6c
370#define DSI0_TST_MON		0x70
371#define DSI0_ID			0x74
372# define DSI_ID_VALUE		0x00647369
373
374#define DSI1_CTRL		0x00
375# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
376# define DSI_CTRL_HS_CLKC_SHIFT		14
377# define DSI_CTRL_HS_CLKC_BYTE		0
378# define DSI_CTRL_HS_CLKC_DDR2		1
379# define DSI_CTRL_HS_CLKC_DDR		2
380
381# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
382# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
383# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
384# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
385# define DSI_CTRL_CAL_BYTE		BIT(9)
386# define DSI_CTRL_INV_BYTE		BIT(8)
387# define DSI_CTRL_CLR_LDF		BIT(7)
388# define DSI0_CTRL_CLR_PBCF		BIT(6)
389# define DSI1_CTRL_CLR_RXF		BIT(6)
390# define DSI0_CTRL_CLR_CPBCF		BIT(5)
391# define DSI1_CTRL_CLR_PDF		BIT(5)
392# define DSI0_CTRL_CLR_PDF		BIT(4)
393# define DSI1_CTRL_CLR_CDF		BIT(4)
394# define DSI0_CTRL_CLR_CDF		BIT(3)
395# define DSI0_CTRL_CTRL2		BIT(2)
396# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
397# define DSI0_CTRL_CTRL1		BIT(1)
398# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
399# define DSI0_CTRL_CTRL0		BIT(0)
400# define DSI1_CTRL_EN			BIT(0)
401# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
402					 DSI0_CTRL_CLR_PBCF | \
403					 DSI0_CTRL_CLR_CPBCF |	\
404					 DSI0_CTRL_CLR_PDF | \
405					 DSI0_CTRL_CLR_CDF)
406# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
407					 DSI1_CTRL_CLR_RXF | \
408					 DSI1_CTRL_CLR_PDF | \
409					 DSI1_CTRL_CLR_CDF)
410
411#define DSI1_TXPKT2C		0x0c
412#define DSI1_TXPKT2H		0x10
413#define DSI1_TXPKT_PIX_FIFO	0x20
414#define DSI1_RXPKT_FIFO		0x24
415#define DSI1_DISP0_CTRL		0x28
416#define DSI1_INT_STAT		0x30
417#define DSI1_INT_EN		0x34
418/* State reporting bits.  These mostly behave like INT_STAT, where
419 * writing a 1 clears the bit.
420 */
421#define DSI1_STAT		0x38
422# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
423# define DSI1_STAT_PHY_D3_STOP		BIT(30)
424# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
425# define DSI1_STAT_PHY_D2_STOP		BIT(28)
426# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
427# define DSI1_STAT_PHY_D1_STOP		BIT(26)
428# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
429# define DSI1_STAT_PHY_D0_STOP		BIT(24)
430# define DSI1_STAT_FIFO_ERR		BIT(23)
431# define DSI1_STAT_PHY_RXLPDT		BIT(22)
432# define DSI1_STAT_PHY_RXTRIG		BIT(21)
433# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
434/* Set when in forward direction */
435# define DSI1_STAT_PHY_DIR		BIT(19)
436# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
437# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
438# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
439# define DSI1_STAT_PR_TO		BIT(15)
440# define DSI1_STAT_TA_TO		BIT(14)
441# define DSI1_STAT_LPRX_TO		BIT(13)
442# define DSI1_STAT_HSTX_TO		BIT(12)
443# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
444# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
445# define DSI1_STAT_ERR_CONTROL		BIT(9)
446# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
447# define DSI1_STAT_RXPKT2		BIT(7)
448# define DSI1_STAT_RXPKT1		BIT(6)
449# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
450# define DSI1_STAT_TXPKT2_DONE		BIT(4)
451# define DSI1_STAT_TXPKT2_END		BIT(3)
452# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
453# define DSI1_STAT_TXPKT1_DONE		BIT(1)
454# define DSI1_STAT_TXPKT1_END		BIT(0)
455
456#define DSI1_HSTX_TO_CNT	0x3c
457#define DSI1_LPRX_TO_CNT	0x40
458#define DSI1_TA_TO_CNT		0x44
459#define DSI1_PR_TO_CNT		0x48
460#define DSI1_PHYC		0x4c
461
462#define DSI1_HS_CLT0		0x50
463# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
464# define DSI_HS_CLT0_CZERO_SHIFT	18
465# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
466# define DSI_HS_CLT0_CPRE_SHIFT		9
467# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
468# define DSI_HS_CLT0_CPREP_SHIFT	0
469
470#define DSI1_HS_CLT1		0x54
471# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
472# define DSI_HS_CLT1_CTRAIL_SHIFT	9
473# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
474# define DSI_HS_CLT1_CPOST_SHIFT	0
475
476#define DSI1_HS_CLT2		0x58
477# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
478# define DSI_HS_CLT2_WUP_SHIFT		0
479
480#define DSI1_HS_DLT3		0x5c
481# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
482# define DSI_HS_DLT3_EXIT_SHIFT		18
483# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
484# define DSI_HS_DLT3_ZERO_SHIFT		9
485# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
486# define DSI_HS_DLT3_PRE_SHIFT		0
487
488#define DSI1_HS_DLT4		0x60
489# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
490# define DSI_HS_DLT4_ANLAT_SHIFT	18
491# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
492# define DSI_HS_DLT4_TRAIL_SHIFT	9
493# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
494# define DSI_HS_DLT4_LPX_SHIFT		0
495
496#define DSI1_HS_DLT5		0x64
497# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
498# define DSI_HS_DLT5_INIT_SHIFT		0
499
500#define DSI1_HS_DLT6		0x68
501# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
502# define DSI_HS_DLT6_TA_GET_SHIFT	24
503# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
504# define DSI_HS_DLT6_TA_SURE_SHIFT	16
505# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
506# define DSI_HS_DLT6_TA_GO_SHIFT	8
507# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
508# define DSI_HS_DLT6_LP_LPX_SHIFT	0
509
510#define DSI1_HS_DLT7		0x6c
511# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
512# define DSI_HS_DLT7_LP_WUP_SHIFT	0
513
514#define DSI1_PHY_AFEC0		0x70
515
516#define DSI1_PHY_AFEC1		0x74
517# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
518# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
519# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
520# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
521# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
522# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
523# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
524# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
525# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
526# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
527
528#define DSI1_TST_SEL		0x78
529#define DSI1_TST_MON		0x7c
530#define DSI1_PHY_TST1		0x80
531#define DSI1_PHY_TST2		0x84
532#define DSI1_PHY_FIFO_STAT	0x88
533/* Actually, all registers in the range that aren't otherwise claimed
534 * will return the ID.
535 */
536#define DSI1_ID			0x8c
537
538struct vc4_dsi_variant {
539	/* Whether we're on bcm2835's DSI0 or DSI1. */
540	unsigned int port;
541
542	bool broken_axi_workaround;
543
544	const char *debugfs_name;
545	const struct debugfs_reg32 *regs;
546	size_t nregs;
547
548};
549
550/* General DSI hardware state. */
551struct vc4_dsi {
552	struct platform_device *pdev;
553
554	struct mipi_dsi_host dsi_host;
555	struct drm_encoder *encoder;
556	struct drm_bridge *bridge;
557	struct list_head bridge_chain;
558
559	void __iomem *regs;
560
561	struct dma_chan *reg_dma_chan;
562	dma_addr_t reg_dma_paddr;
563	u32 *reg_dma_mem;
564	dma_addr_t reg_paddr;
565
566	const struct vc4_dsi_variant *variant;
567
568	/* DSI channel for the panel we're connected to. */
569	u32 channel;
570	u32 lanes;
571	u32 format;
572	u32 divider;
573	u32 mode_flags;
574
575	/* Input clock from CPRMAN to the digital PHY, for the DSI
576	 * escape clock.
577	 */
578	struct clk *escape_clock;
579
580	/* Input clock to the analog PHY, used to generate the DSI bit
581	 * clock.
582	 */
583	struct clk *pll_phy_clock;
584
585	/* HS Clocks generated within the DSI analog PHY. */
586	struct clk_fixed_factor phy_clocks[3];
587
588	struct clk_hw_onecell_data *clk_onecell;
589
590	/* Pixel clock output to the pixelvalve, generated from the HS
591	 * clock.
592	 */
593	struct clk *pixel_clock;
594
595	struct completion xfer_completion;
596	int xfer_result;
597
598	struct debugfs_regset32 regset;
599};
600
601#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
602
603static inline void
604dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
605{
606	struct dma_chan *chan = dsi->reg_dma_chan;
607	struct dma_async_tx_descriptor *tx;
608	dma_cookie_t cookie;
609	int ret;
610
611	/* DSI0 should be able to write normally. */
612	if (!chan) {
613		writel(val, dsi->regs + offset);
614		return;
615	}
616
617	*dsi->reg_dma_mem = val;
618
619	tx = chan->device->device_prep_dma_memcpy(chan,
620						  dsi->reg_paddr + offset,
621						  dsi->reg_dma_paddr,
622						  4, 0);
623	if (!tx) {
624		DRM_ERROR("Failed to set up DMA register write\n");
625		return;
626	}
627
628	cookie = tx->tx_submit(tx);
629	ret = dma_submit_error(cookie);
630	if (ret) {
631		DRM_ERROR("Failed to submit DMA: %d\n", ret);
632		return;
633	}
634	ret = dma_sync_wait(chan, cookie);
635	if (ret)
636		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
637}
638
639#define DSI_READ(offset) readl(dsi->regs + (offset))
640#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
641#define DSI_PORT_READ(offset) \
642	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
643#define DSI_PORT_WRITE(offset, val) \
644	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
645#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
646
647/* VC4 DSI encoder KMS struct */
648struct vc4_dsi_encoder {
649	struct vc4_encoder base;
650	struct vc4_dsi *dsi;
651};
652
653static inline struct vc4_dsi_encoder *
654to_vc4_dsi_encoder(struct drm_encoder *encoder)
655{
656	return container_of(encoder, struct vc4_dsi_encoder, base.base);
657}
658
659static const struct debugfs_reg32 dsi0_regs[] = {
660	VC4_REG32(DSI0_CTRL),
661	VC4_REG32(DSI0_STAT),
662	VC4_REG32(DSI0_HSTX_TO_CNT),
663	VC4_REG32(DSI0_LPRX_TO_CNT),
664	VC4_REG32(DSI0_TA_TO_CNT),
665	VC4_REG32(DSI0_PR_TO_CNT),
666	VC4_REG32(DSI0_DISP0_CTRL),
667	VC4_REG32(DSI0_DISP1_CTRL),
668	VC4_REG32(DSI0_INT_STAT),
669	VC4_REG32(DSI0_INT_EN),
670	VC4_REG32(DSI0_PHYC),
671	VC4_REG32(DSI0_HS_CLT0),
672	VC4_REG32(DSI0_HS_CLT1),
673	VC4_REG32(DSI0_HS_CLT2),
674	VC4_REG32(DSI0_HS_DLT3),
675	VC4_REG32(DSI0_HS_DLT4),
676	VC4_REG32(DSI0_HS_DLT5),
677	VC4_REG32(DSI0_HS_DLT6),
678	VC4_REG32(DSI0_HS_DLT7),
679	VC4_REG32(DSI0_PHY_AFEC0),
680	VC4_REG32(DSI0_PHY_AFEC1),
681	VC4_REG32(DSI0_ID),
682};
683
684static const struct debugfs_reg32 dsi1_regs[] = {
685	VC4_REG32(DSI1_CTRL),
686	VC4_REG32(DSI1_STAT),
687	VC4_REG32(DSI1_HSTX_TO_CNT),
688	VC4_REG32(DSI1_LPRX_TO_CNT),
689	VC4_REG32(DSI1_TA_TO_CNT),
690	VC4_REG32(DSI1_PR_TO_CNT),
691	VC4_REG32(DSI1_DISP0_CTRL),
692	VC4_REG32(DSI1_DISP1_CTRL),
693	VC4_REG32(DSI1_INT_STAT),
694	VC4_REG32(DSI1_INT_EN),
695	VC4_REG32(DSI1_PHYC),
696	VC4_REG32(DSI1_HS_CLT0),
697	VC4_REG32(DSI1_HS_CLT1),
698	VC4_REG32(DSI1_HS_CLT2),
699	VC4_REG32(DSI1_HS_DLT3),
700	VC4_REG32(DSI1_HS_DLT4),
701	VC4_REG32(DSI1_HS_DLT5),
702	VC4_REG32(DSI1_HS_DLT6),
703	VC4_REG32(DSI1_HS_DLT7),
704	VC4_REG32(DSI1_PHY_AFEC0),
705	VC4_REG32(DSI1_PHY_AFEC1),
706	VC4_REG32(DSI1_ID),
707};
708
709static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
710{
711	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
712
713	if (latch)
714		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
715	else
716		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
717
718	DSI_PORT_WRITE(PHY_AFEC0, afec0);
719}
720
721/* Enters or exits Ultra Low Power State. */
722static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
723{
724	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
725	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
726			 DSI_PHYC_DLANE0_ULPS |
727			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
728			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
729			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
730	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
731			 DSI1_STAT_PHY_D0_ULPS |
732			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
733			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
734			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
735	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
736			 DSI1_STAT_PHY_D0_STOP |
737			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
738			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
739			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
740	int ret;
741	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
742				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
743
744	if (ulps == ulps_currently_enabled)
745		return;
746
747	DSI_PORT_WRITE(STAT, stat_ulps);
748	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
749	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
750	if (ret) {
751		dev_warn(&dsi->pdev->dev,
752			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
753			 DSI_PORT_READ(STAT));
754		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
755		vc4_dsi_latch_ulps(dsi, false);
756		return;
757	}
758
759	/* The DSI module can't be disabled while the module is
760	 * generating ULPS state.  So, to be able to disable the
761	 * module, we have the AFE latch the ULPS state and continue
762	 * on to having the module enter STOP.
763	 */
764	vc4_dsi_latch_ulps(dsi, ulps);
765
766	DSI_PORT_WRITE(STAT, stat_stop);
767	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
768	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
769	if (ret) {
770		dev_warn(&dsi->pdev->dev,
771			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
772			 DSI_PORT_READ(STAT));
773		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
774		return;
775	}
776}
777
778static u32
779dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
780{
781	/* The HS timings have to be rounded up to a multiple of 8
782	 * because we're using the byte clock.
783	 */
784	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
785}
786
787/* ESC always runs at 100Mhz. */
788#define ESC_TIME_NS 10
789
790static u32
791dsi_esc_timing(u32 ns)
792{
793	return DIV_ROUND_UP(ns, ESC_TIME_NS);
794}
795
796static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
797{
798	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
799	struct vc4_dsi *dsi = vc4_encoder->dsi;
800	struct device *dev = &dsi->pdev->dev;
801	struct drm_bridge *iter;
802
803	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
804		if (iter->funcs->disable)
805			iter->funcs->disable(iter);
806
807		if (iter == dsi->bridge)
808			break;
809	}
810
811	vc4_dsi_ulps(dsi, true);
812
813	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
814		if (iter->funcs->post_disable)
815			iter->funcs->post_disable(iter);
816	}
817
818	clk_disable_unprepare(dsi->pll_phy_clock);
819	clk_disable_unprepare(dsi->escape_clock);
820	clk_disable_unprepare(dsi->pixel_clock);
821
822	pm_runtime_put(dev);
823}
824
825/* Extends the mode's blank intervals to handle BCM2835's integer-only
826 * DSI PLL divider.
827 *
828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
829 * driver since most peripherals are hanging off of the PLLD_PER
830 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
831 * the pixel clock), only has an integer divider off of DSI.
832 *
833 * To get our panel mode to refresh at the expected 60Hz, we need to
834 * extend the horizontal blank time.  This means we drive a
835 * higher-than-expected clock rate to the panel, but that's what the
836 * firmware does too.
837 */
838static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
839				       const struct drm_display_mode *mode,
840				       struct drm_display_mode *adjusted_mode)
841{
842	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
843	struct vc4_dsi *dsi = vc4_encoder->dsi;
844	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
845	unsigned long parent_rate = clk_get_rate(phy_parent);
846	unsigned long pixel_clock_hz = mode->clock * 1000;
847	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
848	int divider;
849
850	/* Find what divider gets us a faster clock than the requested
851	 * pixel clock.
852	 */
853	for (divider = 1; divider < 255; divider++) {
854		if (parent_rate / (divider + 1) < pll_clock)
855			break;
856	}
857
858	/* Now that we've picked a PLL divider, calculate back to its
859	 * pixel clock.
860	 */
861	pll_clock = parent_rate / divider;
862	pixel_clock_hz = pll_clock / dsi->divider;
863
864	adjusted_mode->clock = pixel_clock_hz / 1000;
865
866	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
867	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
868				mode->clock;
869	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
870	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
871
872	return true;
873}
874
875static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
876{
877	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
878	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
879	struct vc4_dsi *dsi = vc4_encoder->dsi;
880	struct device *dev = &dsi->pdev->dev;
881	bool debug_dump_regs = false;
882	struct drm_bridge *iter;
883	unsigned long hs_clock;
884	u32 ui_ns;
885	/* Minimum LP state duration in escape clock cycles. */
886	u32 lpx = dsi_esc_timing(60);
887	unsigned long pixel_clock_hz = mode->clock * 1000;
888	unsigned long dsip_clock;
889	unsigned long phy_clock;
890	int ret;
891
892	ret = pm_runtime_resume_and_get(dev);
893	if (ret) {
894		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
895		return;
896	}
897
898	if (debug_dump_regs) {
899		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
900		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
901		drm_print_regset32(&p, &dsi->regset);
902	}
903
904	/* Round up the clk_set_rate() request slightly, since
905	 * PLLD_DSI1 is an integer divider and its rate selection will
906	 * never round up.
907	 */
908	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
909	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
910	if (ret) {
911		dev_err(&dsi->pdev->dev,
912			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
913	}
914
915	/* Reset the DSI and all its fifos. */
916	DSI_PORT_WRITE(CTRL,
917		       DSI_CTRL_SOFT_RESET_CFG |
918		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
919
920	DSI_PORT_WRITE(CTRL,
921		       DSI_CTRL_HSDT_EOT_DISABLE |
922		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
923
924	/* Clear all stat bits so we see what has happened during enable. */
925	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
926
927	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
928	if (dsi->variant->port == 0) {
929		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
930			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
931
932		if (dsi->lanes < 2)
933			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
934
935		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
936			afec0 |= DSI0_PHY_AFEC0_RESET;
937
938		DSI_PORT_WRITE(PHY_AFEC0, afec0);
939
940		/* AFEC reset hold time */
941		mdelay(1);
942
943		DSI_PORT_WRITE(PHY_AFEC1,
944			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
945			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
946			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
947	} else {
948		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
949			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
950			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
951			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
952			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
953			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
954			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
955
956		if (dsi->lanes < 4)
957			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
958		if (dsi->lanes < 3)
959			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
960		if (dsi->lanes < 2)
961			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
962
963		afec0 |= DSI1_PHY_AFEC0_RESET;
964
965		DSI_PORT_WRITE(PHY_AFEC0, afec0);
966
967		DSI_PORT_WRITE(PHY_AFEC1, 0);
968
969		/* AFEC reset hold time */
970		mdelay(1);
971	}
972
973	ret = clk_prepare_enable(dsi->escape_clock);
974	if (ret) {
975		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
976		return;
977	}
978
979	ret = clk_prepare_enable(dsi->pll_phy_clock);
980	if (ret) {
981		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
982		return;
983	}
984
985	hs_clock = clk_get_rate(dsi->pll_phy_clock);
986
987	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
988	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
989	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
990	 * that rate.  Separately, a value derived from PIX_CLK_DIV
991	 * and HS_CLKC is fed into the PV to divide down to the actual
992	 * pixel clock for pushing pixels into DSI.
993	 */
994	dsip_clock = phy_clock / 8;
995	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
996	if (ret) {
997		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
998			dsip_clock, ret);
999	}
1000
1001	ret = clk_prepare_enable(dsi->pixel_clock);
1002	if (ret) {
1003		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1004		return;
1005	}
1006
1007	/* How many ns one DSI unit interval is.  Note that the clock
1008	 * is DDR, so there's an extra divide by 2.
1009	 */
1010	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1011
1012	DSI_PORT_WRITE(HS_CLT0,
1013		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1014				     DSI_HS_CLT0_CZERO) |
1015		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1016				     DSI_HS_CLT0_CPRE) |
1017		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1018				     DSI_HS_CLT0_CPREP));
1019
1020	DSI_PORT_WRITE(HS_CLT1,
1021		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1022				     DSI_HS_CLT1_CTRAIL) |
1023		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1024				     DSI_HS_CLT1_CPOST));
1025
1026	DSI_PORT_WRITE(HS_CLT2,
1027		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1028				     DSI_HS_CLT2_WUP));
1029
1030	DSI_PORT_WRITE(HS_DLT3,
1031		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1032				     DSI_HS_DLT3_EXIT) |
1033		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1034				     DSI_HS_DLT3_ZERO) |
1035		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1036				     DSI_HS_DLT3_PRE));
1037
1038	DSI_PORT_WRITE(HS_DLT4,
1039		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1040				     DSI_HS_DLT4_LPX) |
1041		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1042					 dsi_hs_timing(ui_ns, 60, 4)),
1043				     DSI_HS_DLT4_TRAIL) |
1044		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1045
1046	/* T_INIT is how long STOP is driven after power-up to
1047	 * indicate to the slave (also coming out of power-up) that
1048	 * master init is complete, and should be greater than the
1049	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1050	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1051	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1052	 * greater minimums.  The vc4 firmware uses an extremely
1053	 * conservative 5ms, and we maintain that here.
1054	 */
1055	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1056							    5 * 1000 * 1000, 0),
1057					      DSI_HS_DLT5_INIT));
1058
1059	DSI_PORT_WRITE(HS_DLT6,
1060		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1061		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1062		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1063		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1064
1065	DSI_PORT_WRITE(HS_DLT7,
1066		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1067				     DSI_HS_DLT7_LP_WUP));
1068
1069	DSI_PORT_WRITE(PHYC,
1070		       DSI_PHYC_DLANE0_ENABLE |
1071		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1072		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1073		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1074		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1075		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1076			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1077		       (dsi->variant->port == 0 ?
1078			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1079			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1080
1081	DSI_PORT_WRITE(CTRL,
1082		       DSI_PORT_READ(CTRL) |
1083		       DSI_CTRL_CAL_BYTE);
1084
1085	/* HS timeout in HS clock cycles: disabled. */
1086	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1087	/* LP receive timeout in HS clocks. */
1088	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1089	/* Bus turnaround timeout */
1090	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1091	/* Display reset sequence timeout */
1092	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1093
1094	/* Set up DISP1 for transferring long command payloads through
1095	 * the pixfifo.
1096	 */
1097	DSI_PORT_WRITE(DISP1_CTRL,
1098		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1099				     DSI_DISP1_PFORMAT) |
1100		       DSI_DISP1_ENABLE);
1101
1102	/* Ungate the block. */
1103	if (dsi->variant->port == 0)
1104		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1105	else
1106		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1107
1108	/* Bring AFE out of reset. */
1109	DSI_PORT_WRITE(PHY_AFEC0,
1110		       DSI_PORT_READ(PHY_AFEC0) &
1111		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1112
1113	vc4_dsi_ulps(dsi, false);
1114
1115	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1116		if (iter->funcs->pre_enable)
1117			iter->funcs->pre_enable(iter);
1118	}
1119
1120	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1121		DSI_PORT_WRITE(DISP0_CTRL,
1122			       VC4_SET_FIELD(dsi->divider,
1123					     DSI_DISP0_PIX_CLK_DIV) |
1124			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1125			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1126					     DSI_DISP0_LP_STOP_CTRL) |
1127			       DSI_DISP0_ST_END |
1128			       DSI_DISP0_ENABLE);
1129	} else {
1130		DSI_PORT_WRITE(DISP0_CTRL,
1131			       DSI_DISP0_COMMAND_MODE |
1132			       DSI_DISP0_ENABLE);
1133	}
1134
1135	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1136		if (iter->funcs->enable)
1137			iter->funcs->enable(iter);
1138	}
1139
1140	if (debug_dump_regs) {
1141		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1142		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1143		drm_print_regset32(&p, &dsi->regset);
1144	}
1145}
1146
1147static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1148				     const struct mipi_dsi_msg *msg)
1149{
1150	struct vc4_dsi *dsi = host_to_dsi(host);
1151	struct mipi_dsi_packet packet;
1152	u32 pkth = 0, pktc = 0;
1153	int i, ret;
1154	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1155	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1156
1157	mipi_dsi_create_packet(&packet, msg);
1158
1159	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1160	pkth |= VC4_SET_FIELD(packet.header[1] |
1161			      (packet.header[2] << 8),
1162			      DSI_TXPKT1H_BC_PARAM);
1163	if (is_long) {
1164		/* Divide data across the various FIFOs we have available.
1165		 * The command FIFO takes byte-oriented data, but is of
1166		 * limited size. The pixel FIFO (never actually used for
1167		 * pixel data in reality) is word oriented, and substantially
1168		 * larger. So, we use the pixel FIFO for most of the data,
1169		 * sending the residual bytes in the command FIFO at the start.
1170		 *
1171		 * With this arrangement, the command FIFO will never get full.
1172		 */
1173		if (packet.payload_length <= 16) {
1174			cmd_fifo_len = packet.payload_length;
1175			pix_fifo_len = 0;
1176		} else {
1177			cmd_fifo_len = (packet.payload_length %
1178					DSI_PIX_FIFO_WIDTH);
1179			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1180					DSI_PIX_FIFO_WIDTH);
1181		}
1182
1183		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1184
1185		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1186	}
1187
1188	if (msg->rx_len) {
1189		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1190				      DSI_TXPKT1C_CMD_CTRL);
1191	} else {
1192		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1193				      DSI_TXPKT1C_CMD_CTRL);
1194	}
1195
1196	for (i = 0; i < cmd_fifo_len; i++)
1197		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1198	for (i = 0; i < pix_fifo_len; i++) {
1199		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1200
1201		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1202			       pix[0] |
1203			       pix[1] << 8 |
1204			       pix[2] << 16 |
1205			       pix[3] << 24);
1206	}
1207
1208	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1209		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1210	if (is_long)
1211		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1212
1213	/* Send one copy of the packet.  Larger repeats are used for pixel
1214	 * data in command mode.
1215	 */
1216	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1217
1218	pktc |= DSI_TXPKT1C_CMD_EN;
1219	if (pix_fifo_len) {
1220		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1221				      DSI_TXPKT1C_DISPLAY_NO);
1222	} else {
1223		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1224				      DSI_TXPKT1C_DISPLAY_NO);
1225	}
1226
1227	/* Enable the appropriate interrupt for the transfer completion. */
1228	dsi->xfer_result = 0;
1229	reinit_completion(&dsi->xfer_completion);
1230	if (dsi->variant->port == 0) {
1231		DSI_PORT_WRITE(INT_STAT,
1232			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1233		if (msg->rx_len) {
1234			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1235						DSI0_INT_PHY_DIR_RTF));
1236		} else {
1237			DSI_PORT_WRITE(INT_EN,
1238				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1239					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1240						      DSI0_INT_CMDC_DONE)));
1241		}
1242	} else {
1243		DSI_PORT_WRITE(INT_STAT,
1244			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1245		if (msg->rx_len) {
1246			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1247						DSI1_INT_PHY_DIR_RTF));
1248		} else {
1249			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1250						DSI1_INT_TXPKT1_DONE));
1251		}
1252	}
1253
1254	/* Send the packet. */
1255	DSI_PORT_WRITE(TXPKT1H, pkth);
1256	DSI_PORT_WRITE(TXPKT1C, pktc);
1257
1258	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1259					 msecs_to_jiffies(1000))) {
1260		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1261		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1262			DSI_PORT_READ(INT_STAT));
1263		ret = -ETIMEDOUT;
1264	} else {
1265		ret = dsi->xfer_result;
1266	}
1267
1268	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1269
1270	if (ret)
1271		goto reset_fifo_and_return;
1272
1273	if (ret == 0 && msg->rx_len) {
1274		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1275		u8 *msg_rx = msg->rx_buf;
1276
1277		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1278			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1279						  DSI_RXPKT1H_BC_PARAM);
1280
1281			if (rxlen != msg->rx_len) {
1282				DRM_ERROR("DSI returned %db, expecting %db\n",
1283					  rxlen, (int)msg->rx_len);
1284				ret = -ENXIO;
1285				goto reset_fifo_and_return;
1286			}
1287
1288			for (i = 0; i < msg->rx_len; i++)
1289				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1290		} else {
1291			/* FINISHME: Handle AWER */
1292
1293			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1294						  DSI_RXPKT1H_SHORT_0);
1295			if (msg->rx_len > 1) {
1296				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1297							  DSI_RXPKT1H_SHORT_1);
1298			}
1299		}
1300	}
1301
1302	return ret;
1303
1304reset_fifo_and_return:
1305	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1306
1307	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1308	udelay(1);
1309	DSI_PORT_WRITE(CTRL,
1310		       DSI_PORT_READ(CTRL) |
1311		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1312
1313	DSI_PORT_WRITE(TXPKT1C, 0);
1314	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1315	return ret;
1316}
1317
1318static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1319			       struct mipi_dsi_device *device)
1320{
1321	struct vc4_dsi *dsi = host_to_dsi(host);
1322
1323	dsi->lanes = device->lanes;
1324	dsi->channel = device->channel;
1325	dsi->mode_flags = device->mode_flags;
1326
1327	switch (device->format) {
1328	case MIPI_DSI_FMT_RGB888:
1329		dsi->format = DSI_PFORMAT_RGB888;
1330		dsi->divider = 24 / dsi->lanes;
1331		break;
1332	case MIPI_DSI_FMT_RGB666:
1333		dsi->format = DSI_PFORMAT_RGB666;
1334		dsi->divider = 24 / dsi->lanes;
1335		break;
1336	case MIPI_DSI_FMT_RGB666_PACKED:
1337		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1338		dsi->divider = 18 / dsi->lanes;
1339		break;
1340	case MIPI_DSI_FMT_RGB565:
1341		dsi->format = DSI_PFORMAT_RGB565;
1342		dsi->divider = 16 / dsi->lanes;
1343		break;
1344	default:
1345		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1346			dsi->format);
1347		return 0;
1348	}
1349
1350	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1351		dev_err(&dsi->pdev->dev,
1352			"Only VIDEO mode panels supported currently.\n");
1353		return 0;
1354	}
1355
1356	return 0;
1357}
1358
1359static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1360			       struct mipi_dsi_device *device)
1361{
1362	return 0;
1363}
1364
1365static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1366	.attach = vc4_dsi_host_attach,
1367	.detach = vc4_dsi_host_detach,
1368	.transfer = vc4_dsi_host_transfer,
1369};
1370
1371static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1372	.disable = vc4_dsi_encoder_disable,
1373	.enable = vc4_dsi_encoder_enable,
1374	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1375};
1376
1377static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1378	.port			= 1,
1379	.broken_axi_workaround	= true,
1380	.debugfs_name		= "dsi1_regs",
1381	.regs			= dsi1_regs,
1382	.nregs			= ARRAY_SIZE(dsi1_regs),
1383};
1384
1385static const struct of_device_id vc4_dsi_dt_match[] = {
1386	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1387	{}
1388};
1389
1390static void dsi_handle_error(struct vc4_dsi *dsi,
1391			     irqreturn_t *ret, u32 stat, u32 bit,
1392			     const char *type)
1393{
1394	if (!(stat & bit))
1395		return;
1396
1397	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1398	*ret = IRQ_HANDLED;
1399}
1400
1401/*
1402 * Initial handler for port 1 where we need the reg_dma workaround.
1403 * The register DMA writes sleep, so we can't do it in the top half.
1404 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1405 * parent interrupt contrller until our interrupt thread is done.
1406 */
1407static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1408{
1409	struct vc4_dsi *dsi = data;
1410	u32 stat = DSI_PORT_READ(INT_STAT);
1411
1412	if (!stat)
1413		return IRQ_NONE;
1414
1415	return IRQ_WAKE_THREAD;
1416}
1417
1418/*
1419 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1420 * 1 where we need the reg_dma workaround.
1421 */
1422static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1423{
1424	struct vc4_dsi *dsi = data;
1425	u32 stat = DSI_PORT_READ(INT_STAT);
1426	irqreturn_t ret = IRQ_NONE;
1427
1428	DSI_PORT_WRITE(INT_STAT, stat);
1429
1430	dsi_handle_error(dsi, &ret, stat,
1431			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1432	dsi_handle_error(dsi, &ret, stat,
1433			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1434	dsi_handle_error(dsi, &ret, stat,
1435			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1436	dsi_handle_error(dsi, &ret, stat,
1437			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1438	dsi_handle_error(dsi, &ret, stat,
1439			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1440	dsi_handle_error(dsi, &ret, stat,
1441			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1442	dsi_handle_error(dsi, &ret, stat,
1443			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1444	dsi_handle_error(dsi, &ret, stat,
1445			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1446
1447	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1448					  DSI0_INT_CMDC_DONE_MASK) |
1449		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1450		complete(&dsi->xfer_completion);
1451		ret = IRQ_HANDLED;
1452	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1453		complete(&dsi->xfer_completion);
1454		dsi->xfer_result = -ETIMEDOUT;
1455		ret = IRQ_HANDLED;
1456	}
1457
1458	return ret;
1459}
1460
1461/**
1462 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1463 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1464 * @dsi: DSI encoder
1465 */
1466static int
1467vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1468{
1469	struct device *dev = &dsi->pdev->dev;
1470	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1471	static const struct {
1472		const char *name;
1473		int div;
1474	} phy_clocks[] = {
1475		{ "byte", 8 },
1476		{ "ddr2", 4 },
1477		{ "ddr", 2 },
1478	};
1479	int i;
1480
1481	dsi->clk_onecell = devm_kzalloc(dev,
1482					sizeof(*dsi->clk_onecell) +
1483					ARRAY_SIZE(phy_clocks) *
1484					sizeof(struct clk_hw *),
1485					GFP_KERNEL);
1486	if (!dsi->clk_onecell)
1487		return -ENOMEM;
1488	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1489
1490	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1491		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1492		struct clk_init_data init;
1493		char clk_name[16];
1494		int ret;
1495
1496		snprintf(clk_name, sizeof(clk_name),
1497			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1498
1499		/* We just use core fixed factor clock ops for the PHY
1500		 * clocks.  The clocks are actually gated by the
1501		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1502		 * setting if we use the DDR/DDR2 clocks.  However,
1503		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1504		 * setting both our parent DSI PLL's rate and this
1505		 * clock's rate, so it knows if DDR/DDR2 are going to
1506		 * be used and could enable the gates itself.
1507		 */
1508		fix->mult = 1;
1509		fix->div = phy_clocks[i].div;
1510		fix->hw.init = &init;
1511
1512		memset(&init, 0, sizeof(init));
1513		init.parent_names = &parent_name;
1514		init.num_parents = 1;
1515		init.name = clk_name;
1516		init.ops = &clk_fixed_factor_ops;
1517
1518		ret = devm_clk_hw_register(dev, &fix->hw);
1519		if (ret)
1520			return ret;
1521
1522		dsi->clk_onecell->hws[i] = &fix->hw;
1523	}
1524
1525	return of_clk_add_hw_provider(dev->of_node,
1526				      of_clk_hw_onecell_get,
1527				      dsi->clk_onecell);
1528}
1529
1530static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1531{
1532	struct platform_device *pdev = to_platform_device(dev);
1533	struct drm_device *drm = dev_get_drvdata(master);
1534	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1535	struct vc4_dsi_encoder *vc4_dsi_encoder;
1536	struct drm_panel *panel;
1537	const struct of_device_id *match;
1538	dma_cap_mask_t dma_mask;
1539	int ret;
1540
1541	match = of_match_device(vc4_dsi_dt_match, dev);
1542	if (!match)
1543		return -ENODEV;
1544
1545	dsi->variant = match->data;
1546
1547	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1548				       GFP_KERNEL);
1549	if (!vc4_dsi_encoder)
1550		return -ENOMEM;
1551
1552	INIT_LIST_HEAD(&dsi->bridge_chain);
1553	vc4_dsi_encoder->base.type = dsi->variant->port ?
1554			VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1555	vc4_dsi_encoder->dsi = dsi;
1556	dsi->encoder = &vc4_dsi_encoder->base.base;
1557
1558	dsi->regs = vc4_ioremap_regs(pdev, 0);
1559	if (IS_ERR(dsi->regs))
1560		return PTR_ERR(dsi->regs);
1561
1562	dsi->regset.base = dsi->regs;
1563	dsi->regset.regs = dsi->variant->regs;
1564	dsi->regset.nregs = dsi->variant->nregs;
1565
1566	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1567		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1568			DSI_PORT_READ(ID), DSI_ID_VALUE);
1569		return -ENODEV;
1570	}
1571
1572	/* DSI1 has a broken AXI slave that doesn't respond to writes
1573	 * from the ARM.  It does handle writes from the DMA engine,
1574	 * so set up a channel for talking to it.
1575	 */
1576	if (dsi->variant->broken_axi_workaround) {
1577		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1578						      &dsi->reg_dma_paddr,
1579						      GFP_KERNEL);
1580		if (!dsi->reg_dma_mem) {
1581			DRM_ERROR("Failed to get DMA memory\n");
1582			return -ENOMEM;
1583		}
1584
1585		dma_cap_zero(dma_mask);
1586		dma_cap_set(DMA_MEMCPY, dma_mask);
1587		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1588		if (IS_ERR(dsi->reg_dma_chan)) {
1589			ret = PTR_ERR(dsi->reg_dma_chan);
1590			if (ret != -EPROBE_DEFER)
1591				DRM_ERROR("Failed to get DMA channel: %d\n",
1592					  ret);
1593			return ret;
1594		}
1595
1596		/* Get the physical address of the device's registers.  The
1597		 * struct resource for the regs gives us the bus address
1598		 * instead.
1599		 */
1600		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1601							     0, NULL, NULL));
1602	}
1603
1604	init_completion(&dsi->xfer_completion);
1605	/* At startup enable error-reporting interrupts and nothing else. */
1606	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1607	/* Clear any existing interrupt state. */
1608	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1609
1610	if (dsi->reg_dma_mem)
1611		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1612						vc4_dsi_irq_defer_to_thread_handler,
1613						vc4_dsi_irq_handler,
1614						IRQF_ONESHOT,
1615						"vc4 dsi", dsi);
1616	else
1617		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1618				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1619	if (ret) {
1620		if (ret != -EPROBE_DEFER)
1621			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1622		return ret;
1623	}
1624
1625	dsi->escape_clock = devm_clk_get(dev, "escape");
1626	if (IS_ERR(dsi->escape_clock)) {
1627		ret = PTR_ERR(dsi->escape_clock);
1628		if (ret != -EPROBE_DEFER)
1629			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1630		return ret;
1631	}
1632
1633	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1634	if (IS_ERR(dsi->pll_phy_clock)) {
1635		ret = PTR_ERR(dsi->pll_phy_clock);
1636		if (ret != -EPROBE_DEFER)
1637			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1638		return ret;
1639	}
1640
1641	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1642	if (IS_ERR(dsi->pixel_clock)) {
1643		ret = PTR_ERR(dsi->pixel_clock);
1644		if (ret != -EPROBE_DEFER)
1645			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1646		return ret;
1647	}
1648
1649	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1650					  &panel, &dsi->bridge);
1651	if (ret) {
1652		/* If the bridge or panel pointed by dev->of_node is not
1653		 * enabled, just return 0 here so that we don't prevent the DRM
1654		 * dev from being registered. Of course that means the DSI
1655		 * encoder won't be exposed, but that's not a problem since
1656		 * nothing is connected to it.
1657		 */
1658		if (ret == -ENODEV)
1659			return 0;
1660
1661		return ret;
1662	}
1663
1664	if (panel) {
1665		dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
1666							      DRM_MODE_CONNECTOR_DSI);
1667		if (IS_ERR(dsi->bridge))
1668			return PTR_ERR(dsi->bridge);
1669	}
1670
1671	/* The esc clock rate is supposed to always be 100Mhz. */
1672	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1673	if (ret) {
1674		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1675		return ret;
1676	}
1677
1678	ret = vc4_dsi_init_phy_clocks(dsi);
1679	if (ret)
1680		return ret;
1681
1682	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
1683	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1684
1685	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
1686	if (ret) {
1687		dev_err(dev, "bridge attach failed: %d\n", ret);
1688		return ret;
1689	}
1690	/* Disable the atomic helper calls into the bridge.  We
1691	 * manually call the bridge pre_enable / enable / etc. calls
1692	 * from our driver, since we need to sequence them within the
1693	 * encoder's enable/disable paths.
1694	 */
1695	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
1696
1697	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1698
1699	pm_runtime_enable(dev);
1700
1701	return 0;
1702}
1703
1704static void vc4_dsi_unbind(struct device *dev, struct device *master,
1705			   void *data)
1706{
1707	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1708
1709	if (dsi->bridge)
1710		pm_runtime_disable(dev);
1711
1712	/*
1713	 * Restore the bridge_chain so the bridge detach procedure can happen
1714	 * normally.
1715	 */
1716	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
1717	drm_encoder_cleanup(dsi->encoder);
1718}
1719
1720static const struct component_ops vc4_dsi_ops = {
1721	.bind   = vc4_dsi_bind,
1722	.unbind = vc4_dsi_unbind,
1723};
1724
1725static int vc4_dsi_dev_probe(struct platform_device *pdev)
1726{
1727	struct device *dev = &pdev->dev;
1728	struct vc4_dsi *dsi;
1729	int ret;
1730
1731	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1732	if (!dsi)
1733		return -ENOMEM;
1734	dev_set_drvdata(dev, dsi);
1735
1736	dsi->pdev = pdev;
1737
1738	/* Note, the initialization sequence for DSI and panels is
1739	 * tricky.  The component bind above won't get past its
1740	 * -EPROBE_DEFER until the panel/bridge probes.  The
1741	 * panel/bridge will return -EPROBE_DEFER until it has a
1742	 * mipi_dsi_host to register its device to.  So, we register
1743	 * the host during pdev probe time, so vc4 as a whole can then
1744	 * -EPROBE_DEFER its component bind process until the panel
1745	 * successfully attaches.
1746	 */
1747	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1748	dsi->dsi_host.dev = dev;
1749	mipi_dsi_host_register(&dsi->dsi_host);
1750
1751	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1752	if (ret) {
1753		mipi_dsi_host_unregister(&dsi->dsi_host);
1754		return ret;
1755	}
1756
1757	return 0;
1758}
1759
1760static int vc4_dsi_dev_remove(struct platform_device *pdev)
1761{
1762	struct device *dev = &pdev->dev;
1763	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1764
1765	component_del(&pdev->dev, &vc4_dsi_ops);
1766	mipi_dsi_host_unregister(&dsi->dsi_host);
1767
1768	return 0;
1769}
1770
1771struct platform_driver vc4_dsi_driver = {
1772	.probe = vc4_dsi_dev_probe,
1773	.remove = vc4_dsi_dev_remove,
1774	.driver = {
1775		.name = "vc4_dsi",
1776		.of_match_table = vc4_dsi_dt_match,
1777	},
1778};
1779