1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC.  The PV generates video timings from the
11 * encoder's clock plus its configuration.  It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it.  As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21 * image domain can feed either HDMI or the SDTV controller.  The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock.  Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32#include <linux/clk.h>
33#include <linux/component.h>
34#include <linux/of_device.h>
35
36#include <drm/drm_atomic.h>
37#include <drm/drm_atomic_helper.h>
38#include <drm/drm_atomic_uapi.h>
39#include <drm/drm_fb_cma_helper.h>
40#include <drm/drm_print.h>
41#include <drm/drm_probe_helper.h>
42#include <drm/drm_vblank.h>
43
44#include "vc4_drv.h"
45#include "vc4_regs.h"
46
47#define HVS_FIFO_LATENCY_PIX	6
48
49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51
52static const struct debugfs_reg32 crtc_regs[] = {
53	VC4_REG32(PV_CONTROL),
54	VC4_REG32(PV_V_CONTROL),
55	VC4_REG32(PV_VSYNCD_EVEN),
56	VC4_REG32(PV_HORZA),
57	VC4_REG32(PV_HORZB),
58	VC4_REG32(PV_VERTA),
59	VC4_REG32(PV_VERTB),
60	VC4_REG32(PV_VERTA_EVEN),
61	VC4_REG32(PV_VERTB_EVEN),
62	VC4_REG32(PV_INTEN),
63	VC4_REG32(PV_INTSTAT),
64	VC4_REG32(PV_STAT),
65	VC4_REG32(PV_HACT_ACT),
66};
67
68static unsigned int
69vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70{
71	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72	/* Top/base are supposed to be 4-pixel aligned, but the
73	 * Raspberry Pi firmware fills the low bits (which are
74	 * presumably ignored).
75	 */
76	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78
79	return top - base + 4;
80}
81
82static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83					  bool in_vblank_irq,
84					  int *vpos, int *hpos,
85					  ktime_t *stime, ktime_t *etime,
86					  const struct drm_display_mode *mode)
87{
88	struct drm_device *dev = crtc->dev;
89	struct vc4_dev *vc4 = to_vc4_dev(dev);
90	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92	unsigned int cob_size;
93	u32 val;
94	int fifo_lines;
95	int vblank_lines;
96	bool ret = false;
97
98	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99
100	/* Get optional system timestamp before query. */
101	if (stime)
102		*stime = ktime_get();
103
104	/*
105	 * Read vertical scanline which is currently composed for our
106	 * pixelvalve by the HVS, and also the scaler status.
107	 */
108	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109
110	/* Get optional system timestamp after query. */
111	if (etime)
112		*etime = ktime_get();
113
114	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115
116	/* Vertical position of hvs composed scanline. */
117	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118	*hpos = 0;
119
120	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121		*vpos /= 2;
122
123		/* Use hpos to correct for field offset in interlaced mode. */
124		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125			*hpos += mode->crtc_htotal / 2;
126	}
127
128	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129	/* This is the offset we need for translating hvs -> pv scanout pos. */
130	fifo_lines = cob_size / mode->crtc_hdisplay;
131
132	if (fifo_lines > 0)
133		ret = true;
134
135	/* HVS more than fifo_lines into frame for compositing? */
136	if (*vpos > fifo_lines) {
137		/*
138		 * We are in active scanout and can get some meaningful results
139		 * from HVS. The actual PV scanout can not trail behind more
140		 * than fifo_lines as that is the fifo's capacity. Assume that
141		 * in active scanout the HVS and PV work in lockstep wrt. HVS
142		 * refilling the fifo and PV consuming from the fifo, ie.
143		 * whenever the PV consumes and frees up a scanline in the
144		 * fifo, the HVS will immediately refill it, therefore
145		 * incrementing vpos. Therefore we choose HVS read position -
146		 * fifo size in scanlines as a estimate of the real scanout
147		 * position of the PV.
148		 */
149		*vpos -= fifo_lines + 1;
150
151		return ret;
152	}
153
154	/*
155	 * Less: This happens when we are in vblank and the HVS, after getting
156	 * the VSTART restart signal from the PV, just started refilling its
157	 * fifo with new lines from the top-most lines of the new framebuffers.
158	 * The PV does not scan out in vblank, so does not remove lines from
159	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160	 * We can't get meaningful readings wrt. scanline position of the PV
161	 * and need to make things up in a approximative but consistent way.
162	 */
163	vblank_lines = mode->vtotal - mode->vdisplay;
164
165	if (in_vblank_irq) {
166		/*
167		 * Assume the irq handler got called close to first
168		 * line of vblank, so PV has about a full vblank
169		 * scanlines to go, and as a base timestamp use the
170		 * one taken at entry into vblank irq handler, so it
171		 * is not affected by random delays due to lock
172		 * contention on event_lock or vblank_time lock in
173		 * the core.
174		 */
175		*vpos = -vblank_lines;
176
177		if (stime)
178			*stime = vc4_crtc->t_vblank;
179		if (etime)
180			*etime = vc4_crtc->t_vblank;
181
182		/*
183		 * If the HVS fifo is not yet full then we know for certain
184		 * we are at the very beginning of vblank, as the hvs just
185		 * started refilling, and the stime and etime timestamps
186		 * truly correspond to start of vblank.
187		 *
188		 * Unfortunately there's no way to report this to upper levels
189		 * and make it more useful.
190		 */
191	} else {
192		/*
193		 * No clue where we are inside vblank. Return a vpos of zero,
194		 * which will cause calling code to just return the etime
195		 * timestamp uncorrected. At least this is no worse than the
196		 * standard fallback.
197		 */
198		*vpos = 0;
199	}
200
201	return ret;
202}
203
204void vc4_crtc_destroy(struct drm_crtc *crtc)
205{
206	drm_crtc_cleanup(crtc);
207}
208
209static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210{
211	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214	u32 fifo_len_bytes = pv_data->fifo_depth;
215
216	/*
217	 * Pixels are pulled from the HVS if the number of bytes is
218	 * lower than the FIFO full level.
219	 *
220	 * The latency of the pixel fetch mechanism is 6 pixels, so we
221	 * need to convert those 6 pixels in bytes, depending on the
222	 * format, and then subtract that from the length of the FIFO
223	 * to make sure we never end up in a situation where the FIFO
224	 * is full.
225	 */
226	switch (format) {
227	case PV_CONTROL_FORMAT_DSIV_16:
228	case PV_CONTROL_FORMAT_DSIC_16:
229		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230	case PV_CONTROL_FORMAT_DSIV_18:
231		return fifo_len_bytes - 14;
232	case PV_CONTROL_FORMAT_24:
233	case PV_CONTROL_FORMAT_DSIV_24:
234	default:
235		/*
236		 * For some reason, the pixelvalve4 doesn't work with
237		 * the usual formula and will only work with 32.
238		 */
239		if (crtc_data->hvs_output == 5)
240			return 32;
241
242		/*
243		 * It looks like in some situations, we will overflow
244		 * the PixelValve FIFO (with the bit 10 of PV stat being
245		 * set) and stall the HVS / PV, eventually resulting in
246		 * a page flip timeout.
247		 *
248		 * Displaying the video overlay during a playback with
249		 * Kodi on an RPi3 seems to be a great solution with a
250		 * failure rate around 50%.
251		 *
252		 * Removing 1 from the FIFO full level however
253		 * seems to completely remove that issue.
254		 */
255		if (!vc4->hvs->hvs5)
256			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257
258		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259	}
260}
261
262static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263					     u32 format)
264{
265	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266	u32 ret = 0;
267
268	ret |= VC4_SET_FIELD((level >> 6),
269			     PV5_CONTROL_FIFO_LEVEL_HIGH);
270
271	return ret | VC4_SET_FIELD(level & 0x3f,
272				   PV_CONTROL_FIFO_LEVEL);
273}
274
275/*
276 * Returns the encoder attached to the CRTC.
277 *
278 * VC4 can only scan out to one encoder at a time, while the DRM core
279 * allows drivers to push pixels to more than one encoder from the
280 * same CRTC.
281 */
282static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
283{
284	struct drm_connector *connector;
285	struct drm_connector_list_iter conn_iter;
286
287	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
288	drm_for_each_connector_iter(connector, &conn_iter) {
289		if (connector->state->crtc == crtc) {
290			drm_connector_list_iter_end(&conn_iter);
291			return connector->encoder;
292		}
293	}
294	drm_connector_list_iter_end(&conn_iter);
295
296	return NULL;
297}
298
299static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300{
301	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302
303	/* The PV needs to be disabled before it can be flushed */
304	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306}
307
308static void vc4_crtc_config_pv(struct drm_crtc *crtc)
309{
310	struct drm_device *dev = crtc->dev;
311	struct vc4_dev *vc4 = to_vc4_dev(dev);
312	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
313	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316	struct drm_crtc_state *state = crtc->state;
317	struct drm_display_mode *mode = &state->adjusted_mode;
318	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
323	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
324	u8 ppc = pv_data->pixels_per_clock;
325	bool debug_dump_regs = false;
326
327	if (debug_dump_regs) {
328		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
329		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
330			 drm_crtc_index(crtc));
331		drm_print_regset32(&p, &vc4_crtc->regset);
332	}
333
334	vc4_crtc_pixelvalve_reset(crtc);
335
336	CRTC_WRITE(PV_HORZA,
337		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
338				 PV_HORZA_HBP) |
339		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
340				 PV_HORZA_HSYNC));
341
342	CRTC_WRITE(PV_HORZB,
343		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
344				 PV_HORZB_HFP) |
345		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
346				 PV_HORZB_HACTIVE));
347
348	CRTC_WRITE(PV_VERTA,
349		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
350				 interlace,
351				 PV_VERTA_VBP) |
352		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
353				 PV_VERTA_VSYNC));
354	CRTC_WRITE(PV_VERTB,
355		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
356				 PV_VERTB_VFP) |
357		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
358
359	if (interlace) {
360		CRTC_WRITE(PV_VERTA_EVEN,
361			   VC4_SET_FIELD(mode->crtc_vtotal -
362					 mode->crtc_vsync_end,
363					 PV_VERTA_VBP) |
364			   VC4_SET_FIELD(mode->crtc_vsync_end -
365					 mode->crtc_vsync_start,
366					 PV_VERTA_VSYNC));
367		CRTC_WRITE(PV_VERTB_EVEN,
368			   VC4_SET_FIELD(mode->crtc_vsync_start -
369					 mode->crtc_vdisplay,
370					 PV_VERTB_VFP) |
371			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
372
373		/* We set up first field even mode for HDMI.  VEC's
374		 * NTSC mode would want first field odd instead, once
375		 * we support it (to do so, set ODD_FIRST and put the
376		 * delay in VSYNCD_EVEN instead).
377		 */
378		CRTC_WRITE(PV_V_CONTROL,
379			   PV_VCONTROL_CONTINUOUS |
380			   (is_dsi ? PV_VCONTROL_DSI : 0) |
381			   PV_VCONTROL_INTERLACE |
382			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
383					 PV_VCONTROL_ODD_DELAY));
384		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
385	} else {
386		CRTC_WRITE(PV_V_CONTROL,
387			   PV_VCONTROL_CONTINUOUS |
388			   (is_dsi ? PV_VCONTROL_DSI : 0));
389	}
390
391	if (is_dsi)
392		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
393
394	if (vc4->hvs->hvs5)
395		CRTC_WRITE(PV_MUX_CFG,
396			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
397					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
398
399	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
400		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
401		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
402		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
403		   PV_CONTROL_CLR_AT_START |
404		   PV_CONTROL_TRIGGER_UNDERFLOW |
405		   PV_CONTROL_WAIT_HSTART |
406		   VC4_SET_FIELD(vc4_encoder->clock_select,
407				 PV_CONTROL_CLK_SELECT));
408
409	if (debug_dump_regs) {
410		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
411		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
412			 drm_crtc_index(crtc));
413		drm_print_regset32(&p, &vc4_crtc->regset);
414	}
415}
416
417static void require_hvs_enabled(struct drm_device *dev)
418{
419	struct vc4_dev *vc4 = to_vc4_dev(dev);
420
421	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
422		     SCALER_DISPCTRL_ENABLE);
423}
424
425static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
426{
427	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
428	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
429	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
430	struct drm_device *dev = crtc->dev;
431	int ret;
432
433	CRTC_WRITE(PV_V_CONTROL,
434		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
435	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
436	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
437
438	/*
439	 * This delay is needed to avoid to get a pixel stuck in an
440	 * unflushable FIFO between the pixelvalve and the HDMI
441	 * controllers on the BCM2711.
442	 *
443	 * Timing is fairly sensitive here, so mdelay is the safest
444	 * approach.
445	 *
446	 * If it was to be reworked, the stuck pixel happens on a
447	 * BCM2711 when changing mode with a good probability, so a
448	 * script that changes mode on a regular basis should trigger
449	 * the bug after less than 10 attempts. It manifests itself with
450	 * every pixels being shifted by one to the right, and thus the
451	 * last pixel of a line actually being displayed as the first
452	 * pixel on the next line.
453	 */
454	mdelay(20);
455
456	if (vc4_encoder && vc4_encoder->post_crtc_disable)
457		vc4_encoder->post_crtc_disable(encoder);
458
459	vc4_crtc_pixelvalve_reset(crtc);
460	vc4_hvs_stop_channel(dev, channel);
461
462	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
463		vc4_encoder->post_crtc_powerdown(encoder);
464
465	return 0;
466}
467
468int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
469{
470	struct drm_device *drm = crtc->dev;
471	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472	int channel;
473
474	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
475				      "brcm,bcm2711-pixelvalve2") ||
476	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
477				      "brcm,bcm2711-pixelvalve4")))
478		return 0;
479
480	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
481		return 0;
482
483	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
484		return 0;
485
486	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
487	if (channel < 0)
488		return 0;
489
490	return vc4_crtc_disable(crtc, channel);
491}
492
493static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
494				    struct drm_crtc_state *old_state)
495{
496	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
497	struct drm_device *dev = crtc->dev;
498
499	require_hvs_enabled(dev);
500
501	/* Disable vblank irq handling before crtc is disabled. */
502	drm_crtc_vblank_off(crtc);
503
504	vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
505
506	/*
507	 * Make sure we issue a vblank event after disabling the CRTC if
508	 * someone was waiting it.
509	 */
510	if (crtc->state->event) {
511		unsigned long flags;
512
513		spin_lock_irqsave(&dev->event_lock, flags);
514		drm_crtc_send_vblank_event(crtc, crtc->state->event);
515		crtc->state->event = NULL;
516		spin_unlock_irqrestore(&dev->event_lock, flags);
517	}
518}
519
520static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
521				   struct drm_crtc_state *old_state)
522{
523	struct drm_device *dev = crtc->dev;
524	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
525	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
526	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
527
528	require_hvs_enabled(dev);
529
530	/* Enable vblank irq handling before crtc is started otherwise
531	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
532	 */
533	drm_crtc_vblank_on(crtc);
534
535	vc4_hvs_atomic_enable(crtc, old_state);
536
537	if (vc4_encoder->pre_crtc_configure)
538		vc4_encoder->pre_crtc_configure(encoder);
539
540	vc4_crtc_config_pv(crtc);
541
542	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
543
544	if (vc4_encoder->pre_crtc_enable)
545		vc4_encoder->pre_crtc_enable(encoder);
546
547	/* When feeding the transposer block the pixelvalve is unneeded and
548	 * should not be enabled.
549	 */
550	CRTC_WRITE(PV_V_CONTROL,
551		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552
553	if (vc4_encoder->post_crtc_enable)
554		vc4_encoder->post_crtc_enable(encoder);
555}
556
557static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
558						const struct drm_display_mode *mode)
559{
560	/* Do not allow doublescan modes from user space */
561	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
562		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
563			      crtc->base.id);
564		return MODE_NO_DBLESCAN;
565	}
566
567	return MODE_OK;
568}
569
570void vc4_crtc_get_margins(struct drm_crtc_state *state,
571			  unsigned int *left, unsigned int *right,
572			  unsigned int *top, unsigned int *bottom)
573{
574	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575	struct drm_connector_state *conn_state;
576	struct drm_connector *conn;
577	int i;
578
579	*left = vc4_state->margins.left;
580	*right = vc4_state->margins.right;
581	*top = vc4_state->margins.top;
582	*bottom = vc4_state->margins.bottom;
583
584	/* We have to interate over all new connector states because
585	 * vc4_crtc_get_margins() might be called before
586	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
587	 * might be outdated.
588	 */
589	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
590		if (conn_state->crtc != state->crtc)
591			continue;
592
593		*left = conn_state->tv.margins.left;
594		*right = conn_state->tv.margins.right;
595		*top = conn_state->tv.margins.top;
596		*bottom = conn_state->tv.margins.bottom;
597		break;
598	}
599}
600
601static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
602				 struct drm_crtc_state *state)
603{
604	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
605	struct drm_connector *conn;
606	struct drm_connector_state *conn_state;
607	int ret, i;
608
609	ret = vc4_hvs_atomic_check(crtc, state);
610	if (ret)
611		return ret;
612
613	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614		if (conn_state->crtc != crtc)
615			continue;
616
617		vc4_state->margins.left = conn_state->tv.margins.left;
618		vc4_state->margins.right = conn_state->tv.margins.right;
619		vc4_state->margins.top = conn_state->tv.margins.top;
620		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
621		break;
622	}
623
624	return 0;
625}
626
627static int vc4_enable_vblank(struct drm_crtc *crtc)
628{
629	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
630
631	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
632
633	return 0;
634}
635
636static void vc4_disable_vblank(struct drm_crtc *crtc)
637{
638	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
639
640	CRTC_WRITE(PV_INTEN, 0);
641}
642
643static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
644{
645	struct drm_crtc *crtc = &vc4_crtc->base;
646	struct drm_device *dev = crtc->dev;
647	struct vc4_dev *vc4 = to_vc4_dev(dev);
648	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
649	u32 chan = vc4_state->assigned_channel;
650	unsigned long flags;
651
652	spin_lock_irqsave(&dev->event_lock, flags);
653	if (vc4_crtc->event &&
654	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
655	     vc4_state->feed_txp)) {
656		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
657		vc4_crtc->event = NULL;
658		drm_crtc_vblank_put(crtc);
659
660		/* Wait for the page flip to unmask the underrun to ensure that
661		 * the display list was updated by the hardware. Before that
662		 * happens, the HVS will be using the previous display list with
663		 * the CRTC and encoder already reconfigured, leading to
664		 * underruns. This can be seen when reconfiguring the CRTC.
665		 */
666		vc4_hvs_unmask_underrun(dev, chan);
667	}
668	spin_unlock_irqrestore(&dev->event_lock, flags);
669}
670
671void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
672{
673	crtc->t_vblank = ktime_get();
674	drm_crtc_handle_vblank(&crtc->base);
675	vc4_crtc_handle_page_flip(crtc);
676}
677
678static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
679{
680	struct vc4_crtc *vc4_crtc = data;
681	u32 stat = CRTC_READ(PV_INTSTAT);
682	irqreturn_t ret = IRQ_NONE;
683
684	if (stat & PV_INT_VFP_START) {
685		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
686		vc4_crtc_handle_vblank(vc4_crtc);
687		ret = IRQ_HANDLED;
688	}
689
690	return ret;
691}
692
693struct vc4_async_flip_state {
694	struct drm_crtc *crtc;
695	struct drm_framebuffer *fb;
696	struct drm_framebuffer *old_fb;
697	struct drm_pending_vblank_event *event;
698
699	struct vc4_seqno_cb cb;
700};
701
702/* Called when the V3D execution for the BO being flipped to is done, so that
703 * we can actually update the plane's address to point to it.
704 */
705static void
706vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
707{
708	struct vc4_async_flip_state *flip_state =
709		container_of(cb, struct vc4_async_flip_state, cb);
710	struct drm_crtc *crtc = flip_state->crtc;
711	struct drm_device *dev = crtc->dev;
712	struct vc4_dev *vc4 = to_vc4_dev(dev);
713	struct drm_plane *plane = crtc->primary;
714
715	vc4_plane_async_set_fb(plane, flip_state->fb);
716	if (flip_state->event) {
717		unsigned long flags;
718
719		spin_lock_irqsave(&dev->event_lock, flags);
720		drm_crtc_send_vblank_event(crtc, flip_state->event);
721		spin_unlock_irqrestore(&dev->event_lock, flags);
722	}
723
724	drm_crtc_vblank_put(crtc);
725	drm_framebuffer_put(flip_state->fb);
726
727	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
728	 * when the planes are updated through the async update path.
729	 * FIXME: we should move to generic async-page-flip when it's
730	 * available, so that we can get rid of this hand-made cleanup_fb()
731	 * logic.
732	 */
733	if (flip_state->old_fb) {
734		struct drm_gem_cma_object *cma_bo;
735		struct vc4_bo *bo;
736
737		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
738		bo = to_vc4_bo(&cma_bo->base);
739		vc4_bo_dec_usecnt(bo);
740		drm_framebuffer_put(flip_state->old_fb);
741	}
742
743	kfree(flip_state);
744
745	up(&vc4->async_modeset);
746}
747
748/* Implements async (non-vblank-synced) page flips.
749 *
750 * The page flip ioctl needs to return immediately, so we grab the
751 * modeset semaphore on the pipe, and queue the address update for
752 * when V3D is done with the BO being flipped to.
753 */
754static int vc4_async_page_flip(struct drm_crtc *crtc,
755			       struct drm_framebuffer *fb,
756			       struct drm_pending_vblank_event *event,
757			       uint32_t flags)
758{
759	struct drm_device *dev = crtc->dev;
760	struct vc4_dev *vc4 = to_vc4_dev(dev);
761	struct drm_plane *plane = crtc->primary;
762	int ret = 0;
763	struct vc4_async_flip_state *flip_state;
764	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
765	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
766
767	/* Increment the BO usecnt here, so that we never end up with an
768	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
769	 * plane is later updated through the non-async path.
770	 * FIXME: we should move to generic async-page-flip when it's
771	 * available, so that we can get rid of this hand-made prepare_fb()
772	 * logic.
773	 */
774	ret = vc4_bo_inc_usecnt(bo);
775	if (ret)
776		return ret;
777
778	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
779	if (!flip_state) {
780		vc4_bo_dec_usecnt(bo);
781		return -ENOMEM;
782	}
783
784	drm_framebuffer_get(fb);
785	flip_state->fb = fb;
786	flip_state->crtc = crtc;
787	flip_state->event = event;
788
789	/* Make sure all other async modesetes have landed. */
790	ret = down_interruptible(&vc4->async_modeset);
791	if (ret) {
792		drm_framebuffer_put(fb);
793		vc4_bo_dec_usecnt(bo);
794		kfree(flip_state);
795		return ret;
796	}
797
798	/* Save the current FB before it's replaced by the new one in
799	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
800	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
801	 * it consistent.
802	 * FIXME: we should move to generic async-page-flip when it's
803	 * available, so that we can get rid of this hand-made cleanup_fb()
804	 * logic.
805	 */
806	flip_state->old_fb = plane->state->fb;
807	if (flip_state->old_fb)
808		drm_framebuffer_get(flip_state->old_fb);
809
810	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
811
812	/* Immediately update the plane's legacy fb pointer, so that later
813	 * modeset prep sees the state that will be present when the semaphore
814	 * is released.
815	 */
816	drm_atomic_set_fb_for_plane(plane->state, fb);
817
818	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
819			   vc4_async_page_flip_complete);
820
821	/* Driver takes ownership of state on successful async commit. */
822	return 0;
823}
824
825int vc4_page_flip(struct drm_crtc *crtc,
826		  struct drm_framebuffer *fb,
827		  struct drm_pending_vblank_event *event,
828		  uint32_t flags,
829		  struct drm_modeset_acquire_ctx *ctx)
830{
831	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
832		return vc4_async_page_flip(crtc, fb, event, flags);
833	else
834		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
835}
836
837struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
838{
839	struct vc4_crtc_state *vc4_state, *old_vc4_state;
840
841	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
842	if (!vc4_state)
843		return NULL;
844
845	old_vc4_state = to_vc4_crtc_state(crtc->state);
846	vc4_state->feed_txp = old_vc4_state->feed_txp;
847	vc4_state->margins = old_vc4_state->margins;
848	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
849
850	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
851	return &vc4_state->base;
852}
853
854void vc4_crtc_destroy_state(struct drm_crtc *crtc,
855			    struct drm_crtc_state *state)
856{
857	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
858	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
859
860	if (drm_mm_node_allocated(&vc4_state->mm)) {
861		unsigned long flags;
862
863		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
864		drm_mm_remove_node(&vc4_state->mm);
865		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
866
867	}
868
869	drm_atomic_helper_crtc_destroy_state(crtc, state);
870}
871
872void vc4_crtc_reset(struct drm_crtc *crtc)
873{
874	struct vc4_crtc_state *vc4_crtc_state;
875
876	if (crtc->state)
877		vc4_crtc_destroy_state(crtc, crtc->state);
878
879	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
880	if (!vc4_crtc_state) {
881		crtc->state = NULL;
882		return;
883	}
884
885	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
886	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
887}
888
889static const struct drm_crtc_funcs vc4_crtc_funcs = {
890	.set_config = drm_atomic_helper_set_config,
891	.destroy = vc4_crtc_destroy,
892	.page_flip = vc4_page_flip,
893	.set_property = NULL,
894	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
895	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
896	.reset = vc4_crtc_reset,
897	.atomic_duplicate_state = vc4_crtc_duplicate_state,
898	.atomic_destroy_state = vc4_crtc_destroy_state,
899	.gamma_set = drm_atomic_helper_legacy_gamma_set,
900	.enable_vblank = vc4_enable_vblank,
901	.disable_vblank = vc4_disable_vblank,
902	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
903};
904
905static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
906	.mode_valid = vc4_crtc_mode_valid,
907	.atomic_check = vc4_crtc_atomic_check,
908	.atomic_flush = vc4_hvs_atomic_flush,
909	.atomic_enable = vc4_crtc_atomic_enable,
910	.atomic_disable = vc4_crtc_atomic_disable,
911	.get_scanout_position = vc4_crtc_get_scanout_position,
912};
913
914static const struct vc4_pv_data bcm2835_pv0_data = {
915	.base = {
916		.hvs_available_channels = BIT(0),
917		.hvs_output = 0,
918	},
919	.debugfs_name = "crtc0_regs",
920	.fifo_depth = 64,
921	.pixels_per_clock = 1,
922	.encoder_types = {
923		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
924		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
925	},
926};
927
928static const struct vc4_pv_data bcm2835_pv1_data = {
929	.base = {
930		.hvs_available_channels = BIT(2),
931		.hvs_output = 2,
932	},
933	.debugfs_name = "crtc1_regs",
934	.fifo_depth = 64,
935	.pixels_per_clock = 1,
936	.encoder_types = {
937		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
938		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
939	},
940};
941
942static const struct vc4_pv_data bcm2835_pv2_data = {
943	.base = {
944		.hvs_available_channels = BIT(1),
945		.hvs_output = 1,
946	},
947	.debugfs_name = "crtc2_regs",
948	.fifo_depth = 64,
949	.pixels_per_clock = 1,
950	.encoder_types = {
951		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
952		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
953	},
954};
955
956static const struct vc4_pv_data bcm2711_pv0_data = {
957	.base = {
958		.hvs_available_channels = BIT(0),
959		.hvs_output = 0,
960	},
961	.debugfs_name = "crtc0_regs",
962	.fifo_depth = 64,
963	.pixels_per_clock = 1,
964	.encoder_types = {
965		[0] = VC4_ENCODER_TYPE_DSI0,
966		[1] = VC4_ENCODER_TYPE_DPI,
967	},
968};
969
970static const struct vc4_pv_data bcm2711_pv1_data = {
971	.base = {
972		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
973		.hvs_output = 3,
974	},
975	.debugfs_name = "crtc1_regs",
976	.fifo_depth = 64,
977	.pixels_per_clock = 1,
978	.encoder_types = {
979		[0] = VC4_ENCODER_TYPE_DSI1,
980		[1] = VC4_ENCODER_TYPE_SMI,
981	},
982};
983
984static const struct vc4_pv_data bcm2711_pv2_data = {
985	.base = {
986		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
987		.hvs_output = 4,
988	},
989	.debugfs_name = "crtc2_regs",
990	.fifo_depth = 256,
991	.pixels_per_clock = 2,
992	.encoder_types = {
993		[0] = VC4_ENCODER_TYPE_HDMI0,
994	},
995};
996
997static const struct vc4_pv_data bcm2711_pv3_data = {
998	.base = {
999		.hvs_available_channels = BIT(1),
1000		.hvs_output = 1,
1001	},
1002	.debugfs_name = "crtc3_regs",
1003	.fifo_depth = 64,
1004	.pixels_per_clock = 1,
1005	.encoder_types = {
1006		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1007	},
1008};
1009
1010static const struct vc4_pv_data bcm2711_pv4_data = {
1011	.base = {
1012		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1013		.hvs_output = 5,
1014	},
1015	.debugfs_name = "crtc4_regs",
1016	.fifo_depth = 64,
1017	.pixels_per_clock = 2,
1018	.encoder_types = {
1019		[0] = VC4_ENCODER_TYPE_HDMI1,
1020	},
1021};
1022
1023static const struct of_device_id vc4_crtc_dt_match[] = {
1024	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1025	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1026	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1027	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1028	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1029	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1030	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1031	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1032	{}
1033};
1034
1035static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1036					struct drm_crtc *crtc)
1037{
1038	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1039	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1040	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1041	struct drm_encoder *encoder;
1042
1043	drm_for_each_encoder(encoder, drm) {
1044		struct vc4_encoder *vc4_encoder;
1045		int i;
1046
1047		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1048			continue;
1049
1050		vc4_encoder = to_vc4_encoder(encoder);
1051		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1052			if (vc4_encoder->type == encoder_types[i]) {
1053				vc4_encoder->clock_select = i;
1054				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1055				break;
1056			}
1057		}
1058	}
1059}
1060
1061int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1062		  const struct drm_crtc_funcs *crtc_funcs,
1063		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1064{
1065	struct vc4_dev *vc4 = to_vc4_dev(drm);
1066	struct drm_crtc *crtc = &vc4_crtc->base;
1067	struct drm_plane *primary_plane;
1068	unsigned int i;
1069
1070	/* For now, we create just the primary and the legacy cursor
1071	 * planes.  We should be able to stack more planes on easily,
1072	 * but to do that we would need to compute the bandwidth
1073	 * requirement of the plane configuration, and reject ones
1074	 * that will take too much.
1075	 */
1076	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1077	if (IS_ERR(primary_plane)) {
1078		dev_err(drm->dev, "failed to construct primary plane\n");
1079		return PTR_ERR(primary_plane);
1080	}
1081
1082	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1083				  crtc_funcs, NULL);
1084	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1085
1086	if (!vc4->hvs->hvs5) {
1087		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1088
1089		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1090
1091		/* We support CTM, but only for one CRTC at a time. It's therefore
1092		 * implemented as private driver state in vc4_kms, not here.
1093		 */
1094		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1095	}
1096
1097	for (i = 0; i < crtc->gamma_size; i++) {
1098		vc4_crtc->lut_r[i] = i;
1099		vc4_crtc->lut_g[i] = i;
1100		vc4_crtc->lut_b[i] = i;
1101	}
1102
1103	return 0;
1104}
1105
1106static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1107{
1108	struct platform_device *pdev = to_platform_device(dev);
1109	struct drm_device *drm = dev_get_drvdata(master);
1110	const struct vc4_pv_data *pv_data;
1111	struct vc4_crtc *vc4_crtc;
1112	struct drm_crtc *crtc;
1113	struct drm_plane *destroy_plane, *temp;
1114	int ret;
1115
1116	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1117	if (!vc4_crtc)
1118		return -ENOMEM;
1119	crtc = &vc4_crtc->base;
1120
1121	pv_data = of_device_get_match_data(dev);
1122	if (!pv_data)
1123		return -ENODEV;
1124	vc4_crtc->data = &pv_data->base;
1125	vc4_crtc->pdev = pdev;
1126
1127	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1128	if (IS_ERR(vc4_crtc->regs))
1129		return PTR_ERR(vc4_crtc->regs);
1130
1131	vc4_crtc->regset.base = vc4_crtc->regs;
1132	vc4_crtc->regset.regs = crtc_regs;
1133	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1134
1135	ret = vc4_crtc_init(drm, vc4_crtc,
1136			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1137	if (ret)
1138		return ret;
1139	vc4_set_crtc_possible_masks(drm, crtc);
1140
1141	CRTC_WRITE(PV_INTEN, 0);
1142	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1143	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1144			       vc4_crtc_irq_handler,
1145			       IRQF_SHARED,
1146			       "vc4 crtc", vc4_crtc);
1147	if (ret)
1148		goto err_destroy_planes;
1149
1150	platform_set_drvdata(pdev, vc4_crtc);
1151
1152	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1153				 &vc4_crtc->regset);
1154
1155	return 0;
1156
1157err_destroy_planes:
1158	list_for_each_entry_safe(destroy_plane, temp,
1159				 &drm->mode_config.plane_list, head) {
1160		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1161		    destroy_plane->funcs->destroy(destroy_plane);
1162	}
1163
1164	return ret;
1165}
1166
1167static void vc4_crtc_unbind(struct device *dev, struct device *master,
1168			    void *data)
1169{
1170	struct platform_device *pdev = to_platform_device(dev);
1171	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1172
1173	vc4_crtc_destroy(&vc4_crtc->base);
1174
1175	CRTC_WRITE(PV_INTEN, 0);
1176
1177	platform_set_drvdata(pdev, NULL);
1178}
1179
1180static const struct component_ops vc4_crtc_ops = {
1181	.bind   = vc4_crtc_bind,
1182	.unbind = vc4_crtc_unbind,
1183};
1184
1185static int vc4_crtc_dev_probe(struct platform_device *pdev)
1186{
1187	return component_add(&pdev->dev, &vc4_crtc_ops);
1188}
1189
1190static int vc4_crtc_dev_remove(struct platform_device *pdev)
1191{
1192	component_del(&pdev->dev, &vc4_crtc_ops);
1193	return 0;
1194}
1195
1196struct platform_driver vc4_crtc_driver = {
1197	.probe = vc4_crtc_dev_probe,
1198	.remove = vc4_crtc_dev_remove,
1199	.driver = {
1200		.name = "vc4_crtc",
1201		.of_match_table = vc4_crtc_dt_match,
1202	},
1203};
1204