1/*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 *          Jerome Glisse <jglisse@redhat.com>
25 *          Pauli Nieminen <suokkos@gmail.com>
26 */
27
28/* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33
34#define pr_fmt(fmt) "[TTM] " fmt
35
36#include <linux/list.h>
37#include <linux/spinlock.h>
38#include <linux/highmem.h>
39#include <linux/mm_types.h>
40#include <linux/module.h>
41#include <linux/mm.h>
42#include <linux/seq_file.h> /* for seq_printf */
43#include <linux/slab.h>
44#include <linux/dma-mapping.h>
45
46#include <linux/atomic.h>
47
48#include <drm/ttm/ttm_bo_driver.h>
49#include <drm/ttm/ttm_page_alloc.h>
50#include <drm/ttm/ttm_set_memory.h>
51
52#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
53#define SMALL_ALLOCATION		16
54#define FREE_ALL_PAGES			(~0U)
55/* times are in msecs */
56#define PAGE_FREE_INTERVAL		1000
57
58/**
59 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
60 *
61 * @lock: Protects the shared pool from concurrnet access. Must be used with
62 * irqsave/irqrestore variants because pool allocator maybe called from
63 * delayed work.
64 * @fill_lock: Prevent concurrent calls to fill.
65 * @list: Pool of free uc/wc pages for fast reuse.
66 * @gfp_flags: Flags to pass for alloc_page.
67 * @npages: Number of pages in pool.
68 */
69struct ttm_page_pool {
70	spinlock_t		lock;
71	bool			fill_lock;
72	struct list_head	list;
73	gfp_t			gfp_flags;
74	unsigned		npages;
75	char			*name;
76	unsigned long		nfrees;
77	unsigned long		nrefills;
78	unsigned int		order;
79};
80
81/**
82 * Limits for the pool. They are handled without locks because only place where
83 * they may change is in sysfs store. They won't have immediate effect anyway
84 * so forcing serialization to access them is pointless.
85 */
86
87struct ttm_pool_opts {
88	unsigned	alloc_size;
89	unsigned	max_size;
90	unsigned	small;
91};
92
93#define NUM_POOLS 6
94
95/**
96 * struct ttm_pool_manager - Holds memory pools for fst allocation
97 *
98 * Manager is read only object for pool code so it doesn't need locking.
99 *
100 * @free_interval: minimum number of jiffies between freeing pages from pool.
101 * @page_alloc_inited: reference counting for pool allocation.
102 * @work: Work that is used to shrink the pool. Work is only run when there is
103 * some pages to free.
104 * @small_allocation: Limit in number of pages what is small allocation.
105 *
106 * @pools: All pool objects in use.
107 **/
108struct ttm_pool_manager {
109	struct kobject		kobj;
110	struct shrinker		mm_shrink;
111	struct ttm_pool_opts	options;
112
113	union {
114		struct ttm_page_pool	pools[NUM_POOLS];
115		struct {
116			struct ttm_page_pool	wc_pool;
117			struct ttm_page_pool	uc_pool;
118			struct ttm_page_pool	wc_pool_dma32;
119			struct ttm_page_pool	uc_pool_dma32;
120			struct ttm_page_pool	wc_pool_huge;
121			struct ttm_page_pool	uc_pool_huge;
122		} ;
123	};
124};
125
126static struct attribute ttm_page_pool_max = {
127	.name = "pool_max_size",
128	.mode = S_IRUGO | S_IWUSR
129};
130static struct attribute ttm_page_pool_small = {
131	.name = "pool_small_allocation",
132	.mode = S_IRUGO | S_IWUSR
133};
134static struct attribute ttm_page_pool_alloc_size = {
135	.name = "pool_allocation_size",
136	.mode = S_IRUGO | S_IWUSR
137};
138
139static struct attribute *ttm_pool_attrs[] = {
140	&ttm_page_pool_max,
141	&ttm_page_pool_small,
142	&ttm_page_pool_alloc_size,
143	NULL
144};
145
146static void ttm_pool_kobj_release(struct kobject *kobj)
147{
148	struct ttm_pool_manager *m =
149		container_of(kobj, struct ttm_pool_manager, kobj);
150	kfree(m);
151}
152
153static ssize_t ttm_pool_store(struct kobject *kobj,
154		struct attribute *attr, const char *buffer, size_t size)
155{
156	struct ttm_pool_manager *m =
157		container_of(kobj, struct ttm_pool_manager, kobj);
158	int chars;
159	unsigned val;
160	chars = sscanf(buffer, "%u", &val);
161	if (chars == 0)
162		return size;
163
164	/* Convert kb to number of pages */
165	val = val / (PAGE_SIZE >> 10);
166
167	if (attr == &ttm_page_pool_max)
168		m->options.max_size = val;
169	else if (attr == &ttm_page_pool_small)
170		m->options.small = val;
171	else if (attr == &ttm_page_pool_alloc_size) {
172		if (val > NUM_PAGES_TO_ALLOC*8) {
173			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
174			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
175			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
176			return size;
177		} else if (val > NUM_PAGES_TO_ALLOC) {
178			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
179				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
180		}
181		m->options.alloc_size = val;
182	}
183
184	return size;
185}
186
187static ssize_t ttm_pool_show(struct kobject *kobj,
188		struct attribute *attr, char *buffer)
189{
190	struct ttm_pool_manager *m =
191		container_of(kobj, struct ttm_pool_manager, kobj);
192	unsigned val = 0;
193
194	if (attr == &ttm_page_pool_max)
195		val = m->options.max_size;
196	else if (attr == &ttm_page_pool_small)
197		val = m->options.small;
198	else if (attr == &ttm_page_pool_alloc_size)
199		val = m->options.alloc_size;
200
201	val = val * (PAGE_SIZE >> 10);
202
203	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
204}
205
206static const struct sysfs_ops ttm_pool_sysfs_ops = {
207	.show = &ttm_pool_show,
208	.store = &ttm_pool_store,
209};
210
211static struct kobj_type ttm_pool_kobj_type = {
212	.release = &ttm_pool_kobj_release,
213	.sysfs_ops = &ttm_pool_sysfs_ops,
214	.default_attrs = ttm_pool_attrs,
215};
216
217static struct ttm_pool_manager *_manager;
218
219/**
220 * Select the right pool or requested caching state and ttm flags. */
221static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
222					  enum ttm_caching_state cstate)
223{
224	int pool_index;
225
226	if (cstate == tt_cached)
227		return NULL;
228
229	if (cstate == tt_wc)
230		pool_index = 0x0;
231	else
232		pool_index = 0x1;
233
234	if (flags & TTM_PAGE_FLAG_DMA32) {
235		if (huge)
236			return NULL;
237		pool_index |= 0x2;
238
239	} else if (huge) {
240		pool_index |= 0x4;
241	}
242
243	return &_manager->pools[pool_index];
244}
245
246/* set memory back to wb and free the pages. */
247static void ttm_pages_put(struct page *pages[], unsigned npages,
248		unsigned int order)
249{
250	unsigned int i, pages_nr = (1 << order);
251
252	if (order == 0) {
253		if (ttm_set_pages_array_wb(pages, npages))
254			pr_err("Failed to set %d pages to wb!\n", npages);
255	}
256
257	for (i = 0; i < npages; ++i) {
258		if (order > 0) {
259			if (ttm_set_pages_wb(pages[i], pages_nr))
260				pr_err("Failed to set %d pages to wb!\n", pages_nr);
261		}
262		__free_pages(pages[i], order);
263	}
264}
265
266static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
267		unsigned freed_pages)
268{
269	pool->npages -= freed_pages;
270	pool->nfrees += freed_pages;
271}
272
273/**
274 * Free pages from pool.
275 *
276 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
277 * number of pages in one go.
278 *
279 * @pool: to free the pages from
280 * @free_all: If set to true will free all pages in pool
281 * @use_static: Safe to use static buffer
282 **/
283static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
284			      bool use_static)
285{
286	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
287	unsigned long irq_flags;
288	struct page *p;
289	struct page **pages_to_free;
290	unsigned freed_pages = 0,
291		 npages_to_free = nr_free;
292
293	if (NUM_PAGES_TO_ALLOC < nr_free)
294		npages_to_free = NUM_PAGES_TO_ALLOC;
295
296	if (use_static)
297		pages_to_free = static_buf;
298	else
299		pages_to_free = kmalloc_array(npages_to_free,
300					      sizeof(struct page *),
301					      GFP_KERNEL);
302	if (!pages_to_free) {
303		pr_debug("Failed to allocate memory for pool free operation\n");
304		return 0;
305	}
306
307restart:
308	spin_lock_irqsave(&pool->lock, irq_flags);
309
310	list_for_each_entry_reverse(p, &pool->list, lru) {
311		if (freed_pages >= npages_to_free)
312			break;
313
314		pages_to_free[freed_pages++] = p;
315		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
316		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
317			/* remove range of pages from the pool */
318			__list_del(p->lru.prev, &pool->list);
319
320			ttm_pool_update_free_locked(pool, freed_pages);
321			/**
322			 * Because changing page caching is costly
323			 * we unlock the pool to prevent stalling.
324			 */
325			spin_unlock_irqrestore(&pool->lock, irq_flags);
326
327			ttm_pages_put(pages_to_free, freed_pages, pool->order);
328			if (likely(nr_free != FREE_ALL_PAGES))
329				nr_free -= freed_pages;
330
331			if (NUM_PAGES_TO_ALLOC >= nr_free)
332				npages_to_free = nr_free;
333			else
334				npages_to_free = NUM_PAGES_TO_ALLOC;
335
336			freed_pages = 0;
337
338			/* free all so restart the processing */
339			if (nr_free)
340				goto restart;
341
342			/* Not allowed to fall through or break because
343			 * following context is inside spinlock while we are
344			 * outside here.
345			 */
346			goto out;
347
348		}
349	}
350
351	/* remove range of pages from the pool */
352	if (freed_pages) {
353		__list_del(&p->lru, &pool->list);
354
355		ttm_pool_update_free_locked(pool, freed_pages);
356		nr_free -= freed_pages;
357	}
358
359	spin_unlock_irqrestore(&pool->lock, irq_flags);
360
361	if (freed_pages)
362		ttm_pages_put(pages_to_free, freed_pages, pool->order);
363out:
364	if (pages_to_free != static_buf)
365		kfree(pages_to_free);
366	return nr_free;
367}
368
369/**
370 * Callback for mm to request pool to reduce number of page held.
371 *
372 * XXX: (dchinner) Deadlock warning!
373 *
374 * This code is crying out for a shrinker per pool....
375 */
376static unsigned long
377ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
378{
379	static DEFINE_MUTEX(lock);
380	static unsigned start_pool;
381	unsigned i;
382	unsigned pool_offset;
383	struct ttm_page_pool *pool;
384	int shrink_pages = sc->nr_to_scan;
385	unsigned long freed = 0;
386	unsigned int nr_free_pool;
387
388	if (!mutex_trylock(&lock))
389		return SHRINK_STOP;
390	pool_offset = ++start_pool % NUM_POOLS;
391	/* select start pool in round robin fashion */
392	for (i = 0; i < NUM_POOLS; ++i) {
393		unsigned nr_free = shrink_pages;
394		unsigned page_nr;
395
396		if (shrink_pages == 0)
397			break;
398
399		pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
400		page_nr = (1 << pool->order);
401		/* OK to use static buffer since global mutex is held. */
402		nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
403		shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
404		freed += (nr_free_pool - shrink_pages) << pool->order;
405		if (freed >= sc->nr_to_scan)
406			break;
407		shrink_pages <<= pool->order;
408	}
409	mutex_unlock(&lock);
410	return freed;
411}
412
413
414static unsigned long
415ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
416{
417	unsigned i;
418	unsigned long count = 0;
419	struct ttm_page_pool *pool;
420
421	for (i = 0; i < NUM_POOLS; ++i) {
422		pool = &_manager->pools[i];
423		count += (pool->npages << pool->order);
424	}
425
426	return count;
427}
428
429static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
430{
431	manager->mm_shrink.count_objects = ttm_pool_shrink_count;
432	manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
433	manager->mm_shrink.seeks = 1;
434	return register_shrinker(&manager->mm_shrink);
435}
436
437static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
438{
439	unregister_shrinker(&manager->mm_shrink);
440}
441
442static int ttm_set_pages_caching(struct page **pages,
443		enum ttm_caching_state cstate, unsigned cpages)
444{
445	int r = 0;
446	/* Set page caching */
447	switch (cstate) {
448	case tt_uncached:
449		r = ttm_set_pages_array_uc(pages, cpages);
450		if (r)
451			pr_err("Failed to set %d pages to uc!\n", cpages);
452		break;
453	case tt_wc:
454		r = ttm_set_pages_array_wc(pages, cpages);
455		if (r)
456			pr_err("Failed to set %d pages to wc!\n", cpages);
457		break;
458	default:
459		break;
460	}
461	return r;
462}
463
464/**
465 * Free pages the pages that failed to change the caching state. If there is
466 * any pages that have changed their caching state already put them to the
467 * pool.
468 */
469static void ttm_handle_caching_state_failure(struct list_head *pages,
470		int ttm_flags, enum ttm_caching_state cstate,
471		struct page **failed_pages, unsigned cpages)
472{
473	unsigned i;
474	/* Failed pages have to be freed */
475	for (i = 0; i < cpages; ++i) {
476		list_del(&failed_pages[i]->lru);
477		__free_page(failed_pages[i]);
478	}
479}
480
481/**
482 * Allocate new pages with correct caching.
483 *
484 * This function is reentrant if caller updates count depending on number of
485 * pages returned in pages array.
486 */
487static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
488			       int ttm_flags, enum ttm_caching_state cstate,
489			       unsigned count, unsigned order)
490{
491	struct page **caching_array;
492	struct page *p;
493	int r = 0;
494	unsigned i, j, cpages;
495	unsigned npages = 1 << order;
496	unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
497
498	/* allocate array for page caching change */
499	caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
500				      GFP_KERNEL);
501
502	if (!caching_array) {
503		pr_debug("Unable to allocate table for new pages\n");
504		return -ENOMEM;
505	}
506
507	for (i = 0, cpages = 0; i < count; ++i) {
508		p = alloc_pages(gfp_flags, order);
509
510		if (!p) {
511			pr_debug("Unable to get page %u\n", i);
512
513			/* store already allocated pages in the pool after
514			 * setting the caching state */
515			if (cpages) {
516				r = ttm_set_pages_caching(caching_array,
517							  cstate, cpages);
518				if (r)
519					ttm_handle_caching_state_failure(pages,
520						ttm_flags, cstate,
521						caching_array, cpages);
522			}
523			r = -ENOMEM;
524			goto out;
525		}
526
527		list_add(&p->lru, pages);
528
529#ifdef CONFIG_HIGHMEM
530		/* gfp flags of highmem page should never be dma32 so we
531		 * we should be fine in such case
532		 */
533		if (PageHighMem(p))
534			continue;
535
536#endif
537		for (j = 0; j < npages; ++j) {
538			caching_array[cpages++] = p++;
539			if (cpages == max_cpages) {
540
541				r = ttm_set_pages_caching(caching_array,
542						cstate, cpages);
543				if (r) {
544					ttm_handle_caching_state_failure(pages,
545						ttm_flags, cstate,
546						caching_array, cpages);
547					goto out;
548				}
549				cpages = 0;
550			}
551		}
552	}
553
554	if (cpages) {
555		r = ttm_set_pages_caching(caching_array, cstate, cpages);
556		if (r)
557			ttm_handle_caching_state_failure(pages,
558					ttm_flags, cstate,
559					caching_array, cpages);
560	}
561out:
562	kfree(caching_array);
563
564	return r;
565}
566
567/**
568 * Fill the given pool if there aren't enough pages and the requested number of
569 * pages is small.
570 */
571static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
572				      enum ttm_caching_state cstate,
573				      unsigned count, unsigned long *irq_flags)
574{
575	struct page *p;
576	int r;
577	unsigned cpages = 0;
578	/**
579	 * Only allow one pool fill operation at a time.
580	 * If pool doesn't have enough pages for the allocation new pages are
581	 * allocated from outside of pool.
582	 */
583	if (pool->fill_lock)
584		return;
585
586	pool->fill_lock = true;
587
588	/* If allocation request is small and there are not enough
589	 * pages in a pool we fill the pool up first. */
590	if (count < _manager->options.small
591		&& count > pool->npages) {
592		struct list_head new_pages;
593		unsigned alloc_size = _manager->options.alloc_size;
594
595		/**
596		 * Can't change page caching if in irqsave context. We have to
597		 * drop the pool->lock.
598		 */
599		spin_unlock_irqrestore(&pool->lock, *irq_flags);
600
601		INIT_LIST_HEAD(&new_pages);
602		r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
603					cstate, alloc_size, 0);
604		spin_lock_irqsave(&pool->lock, *irq_flags);
605
606		if (!r) {
607			list_splice(&new_pages, &pool->list);
608			++pool->nrefills;
609			pool->npages += alloc_size;
610		} else {
611			pr_debug("Failed to fill pool (%p)\n", pool);
612			/* If we have any pages left put them to the pool. */
613			list_for_each_entry(p, &new_pages, lru) {
614				++cpages;
615			}
616			list_splice(&new_pages, &pool->list);
617			pool->npages += cpages;
618		}
619
620	}
621	pool->fill_lock = false;
622}
623
624/**
625 * Allocate pages from the pool and put them on the return list.
626 *
627 * @return zero for success or negative error code.
628 */
629static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
630				   struct list_head *pages,
631				   int ttm_flags,
632				   enum ttm_caching_state cstate,
633				   unsigned count, unsigned order)
634{
635	unsigned long irq_flags;
636	struct list_head *p;
637	unsigned i;
638	int r = 0;
639
640	spin_lock_irqsave(&pool->lock, irq_flags);
641	if (!order)
642		ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
643					  &irq_flags);
644
645	if (count >= pool->npages) {
646		/* take all pages from the pool */
647		list_splice_init(&pool->list, pages);
648		count -= pool->npages;
649		pool->npages = 0;
650		goto out;
651	}
652	/* find the last pages to include for requested number of pages. Split
653	 * pool to begin and halve it to reduce search space. */
654	if (count <= pool->npages/2) {
655		i = 0;
656		list_for_each(p, &pool->list) {
657			if (++i == count)
658				break;
659		}
660	} else {
661		i = pool->npages + 1;
662		list_for_each_prev(p, &pool->list) {
663			if (--i == count)
664				break;
665		}
666	}
667	/* Cut 'count' number of pages from the pool */
668	list_cut_position(pages, &pool->list, p);
669	pool->npages -= count;
670	count = 0;
671out:
672	spin_unlock_irqrestore(&pool->lock, irq_flags);
673
674	/* clear the pages coming from the pool if requested */
675	if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
676		struct page *page;
677
678		list_for_each_entry(page, pages, lru) {
679			if (PageHighMem(page))
680				clear_highpage(page);
681			else
682				clear_page(page_address(page));
683		}
684	}
685
686	/* If pool didn't have enough pages allocate new one. */
687	if (count) {
688		gfp_t gfp_flags = pool->gfp_flags;
689
690		/* set zero flag for page allocation if required */
691		if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
692			gfp_flags |= __GFP_ZERO;
693
694		if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
695			gfp_flags |= __GFP_RETRY_MAYFAIL;
696
697		/* ttm_alloc_new_pages doesn't reference pool so we can run
698		 * multiple requests in parallel.
699		 **/
700		r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
701					count, order);
702	}
703
704	return r;
705}
706
707/* Put all pages in pages list to correct pool to wait for reuse */
708static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
709			  enum ttm_caching_state cstate)
710{
711	struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
712#ifdef CONFIG_TRANSPARENT_HUGEPAGE
713	struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
714#endif
715	unsigned long irq_flags;
716	unsigned i;
717
718	if (pool == NULL) {
719		/* No pool for this memory type so free the pages */
720		i = 0;
721		while (i < npages) {
722#ifdef CONFIG_TRANSPARENT_HUGEPAGE
723			struct page *p = pages[i];
724#endif
725			unsigned order = 0, j;
726
727			if (!pages[i]) {
728				++i;
729				continue;
730			}
731
732#ifdef CONFIG_TRANSPARENT_HUGEPAGE
733			if (!(flags & TTM_PAGE_FLAG_DMA32) &&
734			    (npages - i) >= HPAGE_PMD_NR) {
735				for (j = 1; j < HPAGE_PMD_NR; ++j)
736					if (++p != pages[i + j])
737					    break;
738
739				if (j == HPAGE_PMD_NR)
740					order = HPAGE_PMD_ORDER;
741			}
742#endif
743
744			if (page_count(pages[i]) != 1)
745				pr_err("Erroneous page count. Leaking pages.\n");
746			__free_pages(pages[i], order);
747
748			j = 1 << order;
749			while (j) {
750				pages[i++] = NULL;
751				--j;
752			}
753		}
754		return;
755	}
756
757	i = 0;
758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
759	if (huge) {
760		unsigned max_size, n2free;
761
762		spin_lock_irqsave(&huge->lock, irq_flags);
763		while ((npages - i) >= HPAGE_PMD_NR) {
764			struct page *p = pages[i];
765			unsigned j;
766
767			if (!p)
768				break;
769
770			for (j = 1; j < HPAGE_PMD_NR; ++j)
771				if (++p != pages[i + j])
772				    break;
773
774			if (j != HPAGE_PMD_NR)
775				break;
776
777			list_add_tail(&pages[i]->lru, &huge->list);
778
779			for (j = 0; j < HPAGE_PMD_NR; ++j)
780				pages[i++] = NULL;
781			huge->npages++;
782		}
783
784		/* Check that we don't go over the pool limit */
785		max_size = _manager->options.max_size;
786		max_size /= HPAGE_PMD_NR;
787		if (huge->npages > max_size)
788			n2free = huge->npages - max_size;
789		else
790			n2free = 0;
791		spin_unlock_irqrestore(&huge->lock, irq_flags);
792		if (n2free)
793			ttm_page_pool_free(huge, n2free, false);
794	}
795#endif
796
797	spin_lock_irqsave(&pool->lock, irq_flags);
798	while (i < npages) {
799		if (pages[i]) {
800			if (page_count(pages[i]) != 1)
801				pr_err("Erroneous page count. Leaking pages.\n");
802			list_add_tail(&pages[i]->lru, &pool->list);
803			pages[i] = NULL;
804			pool->npages++;
805		}
806		++i;
807	}
808	/* Check that we don't go over the pool limit */
809	npages = 0;
810	if (pool->npages > _manager->options.max_size) {
811		npages = pool->npages - _manager->options.max_size;
812		/* free at least NUM_PAGES_TO_ALLOC number of pages
813		 * to reduce calls to set_memory_wb */
814		if (npages < NUM_PAGES_TO_ALLOC)
815			npages = NUM_PAGES_TO_ALLOC;
816	}
817	spin_unlock_irqrestore(&pool->lock, irq_flags);
818	if (npages)
819		ttm_page_pool_free(pool, npages, false);
820}
821
822/*
823 * On success pages list will hold count number of correctly
824 * cached pages.
825 */
826static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
827			 enum ttm_caching_state cstate)
828{
829	struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
830#ifdef CONFIG_TRANSPARENT_HUGEPAGE
831	struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
832#endif
833	struct list_head plist;
834	struct page *p = NULL;
835	unsigned count, first;
836	int r;
837
838	/* No pool for cached pages */
839	if (pool == NULL) {
840		gfp_t gfp_flags = GFP_USER;
841		unsigned i;
842#ifdef CONFIG_TRANSPARENT_HUGEPAGE
843		unsigned j;
844#endif
845
846		/* set zero flag for page allocation if required */
847		if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
848			gfp_flags |= __GFP_ZERO;
849
850		if (flags & TTM_PAGE_FLAG_NO_RETRY)
851			gfp_flags |= __GFP_RETRY_MAYFAIL;
852
853		if (flags & TTM_PAGE_FLAG_DMA32)
854			gfp_flags |= GFP_DMA32;
855		else
856			gfp_flags |= GFP_HIGHUSER;
857
858		i = 0;
859#ifdef CONFIG_TRANSPARENT_HUGEPAGE
860		if (!(gfp_flags & GFP_DMA32)) {
861			while (npages >= HPAGE_PMD_NR) {
862				gfp_t huge_flags = gfp_flags;
863
864				huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
865					__GFP_KSWAPD_RECLAIM;
866				huge_flags &= ~__GFP_MOVABLE;
867				huge_flags &= ~__GFP_COMP;
868				p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
869				if (!p)
870					break;
871
872				for (j = 0; j < HPAGE_PMD_NR; ++j)
873					pages[i++] = p++;
874
875				npages -= HPAGE_PMD_NR;
876			}
877		}
878#endif
879
880		first = i;
881		while (npages) {
882			p = alloc_page(gfp_flags);
883			if (!p) {
884				pr_debug("Unable to allocate page\n");
885				return -ENOMEM;
886			}
887
888			/* Swap the pages if we detect consecutive order */
889			if (i > first && pages[i - 1] == p - 1)
890				swap(p, pages[i - 1]);
891
892			pages[i++] = p;
893			--npages;
894		}
895		return 0;
896	}
897
898	count = 0;
899
900#ifdef CONFIG_TRANSPARENT_HUGEPAGE
901	if (huge && npages >= HPAGE_PMD_NR) {
902		INIT_LIST_HEAD(&plist);
903		ttm_page_pool_get_pages(huge, &plist, flags, cstate,
904					npages / HPAGE_PMD_NR,
905					HPAGE_PMD_ORDER);
906
907		list_for_each_entry(p, &plist, lru) {
908			unsigned j;
909
910			for (j = 0; j < HPAGE_PMD_NR; ++j)
911				pages[count++] = &p[j];
912		}
913	}
914#endif
915
916	INIT_LIST_HEAD(&plist);
917	r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
918				    npages - count, 0);
919
920	first = count;
921	list_for_each_entry(p, &plist, lru) {
922		struct page *tmp = p;
923
924		/* Swap the pages if we detect consecutive order */
925		if (count > first && pages[count - 1] == tmp - 1)
926			swap(tmp, pages[count - 1]);
927		pages[count++] = tmp;
928	}
929
930	if (r) {
931		/* If there is any pages in the list put them back to
932		 * the pool.
933		 */
934		pr_debug("Failed to allocate extra pages for large request\n");
935		ttm_put_pages(pages, count, flags, cstate);
936		return r;
937	}
938
939	return 0;
940}
941
942static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
943		char *name, unsigned int order)
944{
945	spin_lock_init(&pool->lock);
946	pool->fill_lock = false;
947	INIT_LIST_HEAD(&pool->list);
948	pool->npages = pool->nfrees = 0;
949	pool->gfp_flags = flags;
950	pool->name = name;
951	pool->order = order;
952}
953
954int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
955{
956	int ret;
957#ifdef CONFIG_TRANSPARENT_HUGEPAGE
958	unsigned order = HPAGE_PMD_ORDER;
959#else
960	unsigned order = 0;
961#endif
962
963	WARN_ON(_manager);
964
965	pr_info("Initializing pool allocator\n");
966
967	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
968	if (!_manager)
969		return -ENOMEM;
970
971	ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
972
973	ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
974
975	ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
976				  GFP_USER | GFP_DMA32, "wc dma", 0);
977
978	ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
979				  GFP_USER | GFP_DMA32, "uc dma", 0);
980
981	ttm_page_pool_init_locked(&_manager->wc_pool_huge,
982				  (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
983				   __GFP_KSWAPD_RECLAIM) &
984				  ~(__GFP_MOVABLE | __GFP_COMP),
985				  "wc huge", order);
986
987	ttm_page_pool_init_locked(&_manager->uc_pool_huge,
988				  (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
989				   __GFP_KSWAPD_RECLAIM) &
990				  ~(__GFP_MOVABLE | __GFP_COMP)
991				  , "uc huge", order);
992
993	_manager->options.max_size = max_pages;
994	_manager->options.small = SMALL_ALLOCATION;
995	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
996
997	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
998				   &glob->kobj, "pool");
999	if (unlikely(ret != 0))
1000		goto error;
1001
1002	ret = ttm_pool_mm_shrink_init(_manager);
1003	if (unlikely(ret != 0))
1004		goto error;
1005	return 0;
1006
1007error:
1008	kobject_put(&_manager->kobj);
1009	_manager = NULL;
1010	return ret;
1011}
1012
1013void ttm_page_alloc_fini(void)
1014{
1015	int i;
1016
1017	pr_info("Finalizing pool allocator\n");
1018	ttm_pool_mm_shrink_fini(_manager);
1019
1020	/* OK to use static buffer since global mutex is no longer used. */
1021	for (i = 0; i < NUM_POOLS; ++i)
1022		ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1023
1024	kobject_put(&_manager->kobj);
1025	_manager = NULL;
1026}
1027
1028static void
1029ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
1030{
1031	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1032	unsigned i;
1033
1034	if (mem_count_update == 0)
1035		goto put_pages;
1036
1037	for (i = 0; i < mem_count_update; ++i) {
1038		if (!ttm->pages[i])
1039			continue;
1040
1041		ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
1042	}
1043
1044put_pages:
1045	ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1046		      ttm->caching_state);
1047	ttm_tt_set_unpopulated(ttm);
1048}
1049
1050int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1051{
1052	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1053	unsigned i;
1054	int ret;
1055
1056	if (ttm_tt_is_populated(ttm))
1057		return 0;
1058
1059	if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
1060		return -ENOMEM;
1061
1062	ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1063			    ttm->caching_state);
1064	if (unlikely(ret != 0)) {
1065		ttm_pool_unpopulate_helper(ttm, 0);
1066		return ret;
1067	}
1068
1069	for (i = 0; i < ttm->num_pages; ++i) {
1070		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1071						PAGE_SIZE, ctx);
1072		if (unlikely(ret != 0)) {
1073			ttm_pool_unpopulate_helper(ttm, i);
1074			return -ENOMEM;
1075		}
1076	}
1077
1078	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1079		ret = ttm_tt_swapin(ttm);
1080		if (unlikely(ret != 0)) {
1081			ttm_pool_unpopulate(ttm);
1082			return ret;
1083		}
1084	}
1085
1086	ttm_tt_set_populated(ttm);
1087	return 0;
1088}
1089EXPORT_SYMBOL(ttm_pool_populate);
1090
1091void ttm_pool_unpopulate(struct ttm_tt *ttm)
1092{
1093	ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
1094}
1095EXPORT_SYMBOL(ttm_pool_unpopulate);
1096
1097int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
1098					struct ttm_operation_ctx *ctx)
1099{
1100	unsigned i, j;
1101	int r;
1102
1103	r = ttm_pool_populate(&tt->ttm, ctx);
1104	if (r)
1105		return r;
1106
1107	for (i = 0; i < tt->ttm.num_pages; ++i) {
1108		struct page *p = tt->ttm.pages[i];
1109		size_t num_pages = 1;
1110
1111		for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1112			if (++p != tt->ttm.pages[j])
1113				break;
1114
1115			++num_pages;
1116		}
1117
1118		tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1119						  0, num_pages * PAGE_SIZE,
1120						  DMA_BIDIRECTIONAL);
1121		if (dma_mapping_error(dev, tt->dma_address[i])) {
1122			while (i--) {
1123				dma_unmap_page(dev, tt->dma_address[i],
1124					       PAGE_SIZE, DMA_BIDIRECTIONAL);
1125				tt->dma_address[i] = 0;
1126			}
1127			ttm_pool_unpopulate(&tt->ttm);
1128			return -EFAULT;
1129		}
1130
1131		for (j = 1; j < num_pages; ++j) {
1132			tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1133			++i;
1134		}
1135	}
1136	return 0;
1137}
1138EXPORT_SYMBOL(ttm_populate_and_map_pages);
1139
1140void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1141{
1142	unsigned i, j;
1143
1144	for (i = 0; i < tt->ttm.num_pages;) {
1145		struct page *p = tt->ttm.pages[i];
1146		size_t num_pages = 1;
1147
1148		if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1149			++i;
1150			continue;
1151		}
1152
1153		for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1154			if (++p != tt->ttm.pages[j])
1155				break;
1156
1157			++num_pages;
1158		}
1159
1160		dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1161			       DMA_BIDIRECTIONAL);
1162
1163		i += num_pages;
1164	}
1165	ttm_pool_unpopulate(&tt->ttm);
1166}
1167EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1168
1169int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1170{
1171	struct ttm_page_pool *p;
1172	unsigned i;
1173	char *h[] = {"pool", "refills", "pages freed", "size"};
1174	if (!_manager) {
1175		seq_printf(m, "No pool allocator running.\n");
1176		return 0;
1177	}
1178	seq_printf(m, "%7s %12s %13s %8s\n",
1179			h[0], h[1], h[2], h[3]);
1180	for (i = 0; i < NUM_POOLS; ++i) {
1181		p = &_manager->pools[i];
1182
1183		seq_printf(m, "%7s %12ld %13ld %8d\n",
1184				p->name, p->nrefills,
1185				p->nfrees, p->npages);
1186	}
1187	return 0;
1188}
1189EXPORT_SYMBOL(ttm_page_alloc_debugfs);
1190