xref: /kernel/linux/linux-5.10/drivers/gpu/drm/tegra/rgb.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5 */
6
7#include <linux/clk.h>
8
9#include <drm/drm_atomic_helper.h>
10#include <drm/drm_bridge_connector.h>
11#include <drm/drm_simple_kms_helper.h>
12
13#include "drm.h"
14#include "dc.h"
15
16struct tegra_rgb {
17	struct tegra_output output;
18	struct tegra_dc *dc;
19
20	struct clk *clk_parent;
21	struct clk *clk;
22};
23
24static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
25{
26	return container_of(output, struct tegra_rgb, output);
27}
28
29struct reg_entry {
30	unsigned long offset;
31	unsigned long value;
32};
33
34static const struct reg_entry rgb_enable[] = {
35	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x00000000 },
36	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x00000000 },
37	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x00000000 },
38	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x00000000 },
39	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
40	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
41	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
42	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
43	{ DC_COM_PIN_OUTPUT_DATA(0),     0x00000000 },
44	{ DC_COM_PIN_OUTPUT_DATA(1),     0x00000000 },
45	{ DC_COM_PIN_OUTPUT_DATA(2),     0x00000000 },
46	{ DC_COM_PIN_OUTPUT_DATA(3),     0x00000000 },
47	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
48	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
49	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
50	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
51	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00210222 },
52	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00002200 },
53	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00020000 },
54};
55
56static const struct reg_entry rgb_disable[] = {
57	{ DC_COM_PIN_OUTPUT_SELECT(6),   0x00000000 },
58	{ DC_COM_PIN_OUTPUT_SELECT(5),   0x00000000 },
59	{ DC_COM_PIN_OUTPUT_SELECT(4),   0x00000000 },
60	{ DC_COM_PIN_OUTPUT_SELECT(3),   0x00000000 },
61	{ DC_COM_PIN_OUTPUT_SELECT(2),   0x00000000 },
62	{ DC_COM_PIN_OUTPUT_SELECT(1),   0x00000000 },
63	{ DC_COM_PIN_OUTPUT_SELECT(0),   0x00000000 },
64	{ DC_COM_PIN_OUTPUT_DATA(3),     0xaaaaaaaa },
65	{ DC_COM_PIN_OUTPUT_DATA(2),     0xaaaaaaaa },
66	{ DC_COM_PIN_OUTPUT_DATA(1),     0xaaaaaaaa },
67	{ DC_COM_PIN_OUTPUT_DATA(0),     0xaaaaaaaa },
68	{ DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
69	{ DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
70	{ DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
71	{ DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
72	{ DC_COM_PIN_OUTPUT_ENABLE(3),   0x55555555 },
73	{ DC_COM_PIN_OUTPUT_ENABLE(2),   0x55555555 },
74	{ DC_COM_PIN_OUTPUT_ENABLE(1),   0x55150005 },
75	{ DC_COM_PIN_OUTPUT_ENABLE(0),   0x55555555 },
76};
77
78static void tegra_dc_write_regs(struct tegra_dc *dc,
79				const struct reg_entry *table,
80				unsigned int num)
81{
82	unsigned int i;
83
84	for (i = 0; i < num; i++)
85		tegra_dc_writel(dc, table[i].value, table[i].offset);
86}
87
88static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
89{
90	struct tegra_output *output = encoder_to_output(encoder);
91	struct tegra_rgb *rgb = to_rgb(output);
92
93	tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
94	tegra_dc_commit(rgb->dc);
95}
96
97static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
98{
99	struct tegra_output *output = encoder_to_output(encoder);
100	struct tegra_rgb *rgb = to_rgb(output);
101	u32 value;
102
103	tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
104
105	value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
106	tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
107
108	/* XXX: parameterize? */
109	value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
110	value &= ~LVS_OUTPUT_POLARITY_LOW;
111	value &= ~LHS_OUTPUT_POLARITY_LOW;
112	tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
113
114	/* XXX: parameterize? */
115	value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
116		DISP_ORDER_RED_BLUE;
117	tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
118
119	/* XXX: parameterize? */
120	value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
121	tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
122
123	tegra_dc_commit(rgb->dc);
124}
125
126static int
127tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
128			       struct drm_crtc_state *crtc_state,
129			       struct drm_connector_state *conn_state)
130{
131	struct tegra_output *output = encoder_to_output(encoder);
132	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
133	unsigned long pclk = crtc_state->mode.clock * 1000;
134	struct tegra_rgb *rgb = to_rgb(output);
135	unsigned int div;
136	int err;
137
138	/*
139	 * We may not want to change the frequency of the parent clock, since
140	 * it may be a parent for other peripherals. This is due to the fact
141	 * that on Tegra20 there's only a single clock dedicated to display
142	 * (pll_d_out0), whereas later generations have a second one that can
143	 * be used to independently drive a second output (pll_d2_out0).
144	 *
145	 * As a way to support multiple outputs on Tegra20 as well, pll_p is
146	 * typically used as the parent clock for the display controllers.
147	 * But this comes at a cost: pll_p is the parent of several other
148	 * peripherals, so its frequency shouldn't change out of the blue.
149	 *
150	 * The best we can do at this point is to use the shift clock divider
151	 * and hope that the desired frequency can be matched (or at least
152	 * matched sufficiently close that the panel will still work).
153	 */
154	div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
155	pclk = 0;
156
157	err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
158					 pclk, div);
159	if (err < 0) {
160		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
161		return err;
162	}
163
164	return err;
165}
166
167static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
168	.disable = tegra_rgb_encoder_disable,
169	.enable = tegra_rgb_encoder_enable,
170	.atomic_check = tegra_rgb_encoder_atomic_check,
171};
172
173int tegra_dc_rgb_probe(struct tegra_dc *dc)
174{
175	struct device_node *np;
176	struct tegra_rgb *rgb;
177	int err;
178
179	np = of_get_child_by_name(dc->dev->of_node, "rgb");
180	if (!np || !of_device_is_available(np))
181		return -ENODEV;
182
183	rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
184	if (!rgb)
185		return -ENOMEM;
186
187	rgb->output.dev = dc->dev;
188	rgb->output.of_node = np;
189	rgb->dc = dc;
190
191	err = tegra_output_probe(&rgb->output);
192	if (err < 0)
193		return err;
194
195	rgb->clk = devm_clk_get(dc->dev, NULL);
196	if (IS_ERR(rgb->clk)) {
197		dev_err(dc->dev, "failed to get clock\n");
198		return PTR_ERR(rgb->clk);
199	}
200
201	rgb->clk_parent = devm_clk_get(dc->dev, "parent");
202	if (IS_ERR(rgb->clk_parent)) {
203		dev_err(dc->dev, "failed to get parent clock\n");
204		return PTR_ERR(rgb->clk_parent);
205	}
206
207	err = clk_set_parent(rgb->clk, rgb->clk_parent);
208	if (err < 0) {
209		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
210		return err;
211	}
212
213	dc->rgb = &rgb->output;
214
215	return 0;
216}
217
218int tegra_dc_rgb_remove(struct tegra_dc *dc)
219{
220	if (!dc->rgb)
221		return 0;
222
223	tegra_output_remove(dc->rgb);
224	dc->rgb = NULL;
225
226	return 0;
227}
228
229int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
230{
231	struct tegra_output *output = dc->rgb;
232	struct drm_connector *connector;
233	int err;
234
235	if (!dc->rgb)
236		return -ENODEV;
237
238	drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
239	drm_encoder_helper_add(&output->encoder,
240			       &tegra_rgb_encoder_helper_funcs);
241
242	/*
243	 * Wrap directly-connected panel into DRM bridge in order to let
244	 * DRM core to handle panel for us.
245	 */
246	if (output->panel) {
247		output->bridge = devm_drm_panel_bridge_add(output->dev,
248							   output->panel);
249		if (IS_ERR(output->bridge)) {
250			dev_err(output->dev,
251				"failed to wrap panel into bridge: %pe\n",
252				output->bridge);
253			return PTR_ERR(output->bridge);
254		}
255
256		output->panel = NULL;
257	}
258
259	/*
260	 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
261	 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
262	 * go to display panel's receiver.
263	 *
264	 * Encoder usually have a power-down control which needs to be enabled
265	 * in order to transmit data to the panel.  Historically devices that
266	 * use an older device-tree version didn't model the bridge, assuming
267	 * that encoder is turned ON by default, while today's DRM allows us
268	 * to model LVDS encoder properly.
269	 *
270	 * Newer device-trees utilize LVDS encoder bridge, which provides
271	 * us with a connector and handles the display panel.
272	 *
273	 * For older device-trees we wrapped panel into the panel-bridge.
274	 */
275	if (output->bridge) {
276		err = drm_bridge_attach(&output->encoder, output->bridge,
277					NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
278		if (err) {
279			dev_err(output->dev, "failed to attach bridge: %d\n",
280				err);
281			return err;
282		}
283
284		connector = drm_bridge_connector_init(drm, &output->encoder);
285		if (IS_ERR(connector)) {
286			dev_err(output->dev,
287				"failed to initialize bridge connector: %pe\n",
288				connector);
289			return PTR_ERR(connector);
290		}
291
292		drm_connector_attach_encoder(connector, &output->encoder);
293	}
294
295	err = tegra_output_init(drm, output);
296	if (err < 0) {
297		dev_err(output->dev, "failed to initialize output: %d\n", err);
298		return err;
299	}
300
301	/*
302	 * Other outputs can be attached to either display controller. The RGB
303	 * outputs are an exception and work only with their parent display
304	 * controller.
305	 */
306	output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
307
308	return 0;
309}
310
311int tegra_dc_rgb_exit(struct tegra_dc *dc)
312{
313	if (dc->rgb)
314		tegra_output_exit(dc->rgb);
315
316	return 0;
317}
318