xref: /kernel/linux/linux-5.10/drivers/gpu/drm/tegra/dc.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5 */
6
7#include <linux/clk.h>
8#include <linux/debugfs.h>
9#include <linux/delay.h>
10#include <linux/iommu.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/pm_runtime.h>
14#include <linux/reset.h>
15
16#include <soc/tegra/pmc.h>
17
18#include <drm/drm_atomic.h>
19#include <drm/drm_atomic_helper.h>
20#include <drm/drm_debugfs.h>
21#include <drm/drm_fourcc.h>
22#include <drm/drm_plane_helper.h>
23#include <drm/drm_vblank.h>
24
25#include "dc.h"
26#include "drm.h"
27#include "gem.h"
28#include "hub.h"
29#include "plane.h"
30
31static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32					    struct drm_crtc_state *state);
33
34static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35{
36	stats->frames = 0;
37	stats->vblank = 0;
38	stats->underflow = 0;
39	stats->overflow = 0;
40}
41
42/* Reads the active copy of a register. */
43static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44{
45	u32 value;
46
47	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48	value = tegra_dc_readl(dc, offset);
49	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51	return value;
52}
53
54static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55					      unsigned int offset)
56{
57	if (offset >= 0x500 && offset <= 0x638) {
58		offset = 0x000 + (offset - 0x500);
59		return plane->offset + offset;
60	}
61
62	if (offset >= 0x700 && offset <= 0x719) {
63		offset = 0x180 + (offset - 0x700);
64		return plane->offset + offset;
65	}
66
67	if (offset >= 0x800 && offset <= 0x839) {
68		offset = 0x1c0 + (offset - 0x800);
69		return plane->offset + offset;
70	}
71
72	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74	return plane->offset + offset;
75}
76
77static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78				    unsigned int offset)
79{
80	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81}
82
83static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84				      unsigned int offset)
85{
86	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87}
88
89bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90{
91	struct device_node *np = dc->dev->of_node;
92	struct of_phandle_iterator it;
93	int err;
94
95	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96		if (it.node == dev->of_node)
97			return true;
98
99	return false;
100}
101
102/*
103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105 * Latching happens mmediately if the display controller is in STOP mode or
106 * on the next frame boundary otherwise.
107 *
108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111 * into the ACTIVE copy, either immediately if the display controller is in
112 * STOP mode, or at the next frame boundary otherwise.
113 */
114void tegra_dc_commit(struct tegra_dc *dc)
115{
116	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118}
119
120static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121				  unsigned int bpp)
122{
123	fixed20_12 outf = dfixed_init(out);
124	fixed20_12 inf = dfixed_init(in);
125	u32 dda_inc;
126	int max;
127
128	if (v)
129		max = 15;
130	else {
131		switch (bpp) {
132		case 2:
133			max = 8;
134			break;
135
136		default:
137			WARN_ON_ONCE(1);
138			fallthrough;
139		case 4:
140			max = 4;
141			break;
142		}
143	}
144
145	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146	inf.full -= dfixed_const(1);
147
148	dda_inc = dfixed_div(inf, outf);
149	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151	return dda_inc;
152}
153
154static inline u32 compute_initial_dda(unsigned int in)
155{
156	fixed20_12 inf = dfixed_init(in);
157	return dfixed_frac(inf);
158}
159
160static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161{
162	u32 background[3] = {
163		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166	};
167	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168			 BLEND_COLOR_KEY_NONE;
169	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170	struct tegra_plane_state *state;
171	u32 blending[2];
172	unsigned int i;
173
174	/* disable blending for non-overlapping case */
175	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178	state = to_tegra_plane_state(plane->base.state);
179
180	if (state->opaque) {
181		/*
182		 * Since custom fix-weight blending isn't utilized and weight
183		 * of top window is set to max, we can enforce dependent
184		 * blending which in this case results in transparent bottom
185		 * window if top window is opaque and if top window enables
186		 * alpha blending, then bottom window is getting alpha value
187		 * of 1 minus the sum of alpha components of the overlapping
188		 * plane.
189		 */
190		background[0] |= BLEND_CONTROL_DEPENDENT;
191		background[1] |= BLEND_CONTROL_DEPENDENT;
192
193		/*
194		 * The region where three windows overlap is the intersection
195		 * of the two regions where two windows overlap. It contributes
196		 * to the area if all of the windows on top of it have an alpha
197		 * component.
198		 */
199		switch (state->base.normalized_zpos) {
200		case 0:
201			if (state->blending[0].alpha &&
202			    state->blending[1].alpha)
203				background[2] |= BLEND_CONTROL_DEPENDENT;
204			break;
205
206		case 1:
207			background[2] |= BLEND_CONTROL_DEPENDENT;
208			break;
209		}
210	} else {
211		/*
212		 * Enable alpha blending if pixel format has an alpha
213		 * component.
214		 */
215		foreground |= BLEND_CONTROL_ALPHA;
216
217		/*
218		 * If any of the windows on top of this window is opaque, it
219		 * will completely conceal this window within that area. If
220		 * top window has an alpha component, it is blended over the
221		 * bottom window.
222		 */
223		for (i = 0; i < 2; i++) {
224			if (state->blending[i].alpha &&
225			    state->blending[i].top)
226				background[i] |= BLEND_CONTROL_DEPENDENT;
227		}
228
229		switch (state->base.normalized_zpos) {
230		case 0:
231			if (state->blending[0].alpha &&
232			    state->blending[1].alpha)
233				background[2] |= BLEND_CONTROL_DEPENDENT;
234			break;
235
236		case 1:
237			/*
238			 * When both middle and topmost windows have an alpha,
239			 * these windows a mixed together and then the result
240			 * is blended over the bottom window.
241			 */
242			if (state->blending[0].alpha &&
243			    state->blending[0].top)
244				background[2] |= BLEND_CONTROL_ALPHA;
245
246			if (state->blending[1].alpha &&
247			    state->blending[1].top)
248				background[2] |= BLEND_CONTROL_ALPHA;
249			break;
250		}
251	}
252
253	switch (state->base.normalized_zpos) {
254	case 0:
255		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258		break;
259
260	case 1:
261		/*
262		 * If window B / C is topmost, then X / Y registers are
263		 * matching the order of blending[...] state indices,
264		 * otherwise a swap is required.
265		 */
266		if (!state->blending[0].top && state->blending[1].top) {
267			blending[0] = foreground;
268			blending[1] = background[1];
269		} else {
270			blending[0] = background[0];
271			blending[1] = foreground;
272		}
273
274		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277		break;
278
279	case 2:
280		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283		break;
284	}
285}
286
287static void tegra_plane_setup_blending(struct tegra_plane *plane,
288				       const struct tegra_dc_window *window)
289{
290	u32 value;
291
292	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304}
305
306static bool
307tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308				     const struct tegra_dc_window *window)
309{
310	struct tegra_dc *dc = plane->dc;
311
312	if (window->src.w == window->dst.w)
313		return false;
314
315	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316		return false;
317
318	return true;
319}
320
321static bool
322tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323				   const struct tegra_dc_window *window)
324{
325	struct tegra_dc *dc = plane->dc;
326
327	if (window->src.h == window->dst.h)
328		return false;
329
330	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331		return false;
332
333	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334		return false;
335
336	return true;
337}
338
339static void tegra_dc_setup_window(struct tegra_plane *plane,
340				  const struct tegra_dc_window *window)
341{
342	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343	struct tegra_dc *dc = plane->dc;
344	bool yuv, planar;
345	u32 value;
346
347	/*
348	 * For YUV planar modes, the number of bytes per pixel takes into
349	 * account only the luma component and therefore is 1.
350	 */
351	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352	if (!yuv)
353		bpp = window->bits_per_pixel / 8;
354	else
355		bpp = planar ? 1 : 2;
356
357	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366	h_offset = window->src.x * bpp;
367	v_offset = window->src.y;
368	h_size = window->src.w * bpp;
369	v_size = window->src.h;
370
371	if (window->reflect_x)
372		h_offset += (window->src.w - 1) * bpp;
373
374	if (window->reflect_y)
375		v_offset += window->src.h - 1;
376
377	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379
380	/*
381	 * For DDA computations the number of bytes per pixel for YUV planar
382	 * modes needs to take into account all Y, U and V components.
383	 */
384	if (yuv && planar)
385		bpp = 2;
386
387	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389
390	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392
393	h_dda = compute_initial_dda(window->src.x);
394	v_dda = compute_initial_dda(window->src.y);
395
396	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398
399	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401
402	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403
404	if (yuv && planar) {
405		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407		value = window->stride[1] << 16 | window->stride[0];
408		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409	} else {
410		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411	}
412
413	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415
416	if (dc->soc->supports_block_linear) {
417		unsigned long height = window->tiling.value;
418
419		switch (window->tiling.mode) {
420		case TEGRA_BO_TILING_MODE_PITCH:
421			value = DC_WINBUF_SURFACE_KIND_PITCH;
422			break;
423
424		case TEGRA_BO_TILING_MODE_TILED:
425			value = DC_WINBUF_SURFACE_KIND_TILED;
426			break;
427
428		case TEGRA_BO_TILING_MODE_BLOCK:
429			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430				DC_WINBUF_SURFACE_KIND_BLOCK;
431			break;
432		}
433
434		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435	} else {
436		switch (window->tiling.mode) {
437		case TEGRA_BO_TILING_MODE_PITCH:
438			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440			break;
441
442		case TEGRA_BO_TILING_MODE_TILED:
443			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444				DC_WIN_BUFFER_ADDR_MODE_TILE;
445			break;
446
447		case TEGRA_BO_TILING_MODE_BLOCK:
448			/*
449			 * No need to handle this here because ->atomic_check
450			 * will already have filtered it out.
451			 */
452			break;
453		}
454
455		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456	}
457
458	value = WIN_ENABLE;
459
460	if (yuv) {
461		/* setup default colorspace conversion coefficients */
462		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470
471		value |= CSC_ENABLE;
472	} else if (window->bits_per_pixel < 24) {
473		value |= COLOR_EXPAND;
474	}
475
476	if (window->reflect_x)
477		value |= H_DIRECTION;
478
479	if (window->reflect_y)
480		value |= V_DIRECTION;
481
482	if (tegra_plane_use_horizontal_filtering(plane, window)) {
483		/*
484		 * Enable horizontal 6-tap filter and set filtering
485		 * coefficients to the default values defined in TRM.
486		 */
487		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503
504		value |= H_FILTER;
505	}
506
507	if (tegra_plane_use_vertical_filtering(plane, window)) {
508		unsigned int i, k;
509
510		/*
511		 * Enable vertical 2-tap filter and set filtering
512		 * coefficients to the default values defined in TRM.
513		 */
514		for (i = 0, k = 128; i < 16; i++, k -= 8)
515			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516
517		value |= V_FILTER;
518	}
519
520	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521
522	if (dc->soc->has_legacy_blending)
523		tegra_plane_setup_blending_legacy(plane);
524	else
525		tegra_plane_setup_blending(plane, window);
526}
527
528static const u32 tegra20_primary_formats[] = {
529	DRM_FORMAT_ARGB4444,
530	DRM_FORMAT_ARGB1555,
531	DRM_FORMAT_RGB565,
532	DRM_FORMAT_RGBA5551,
533	DRM_FORMAT_ABGR8888,
534	DRM_FORMAT_ARGB8888,
535	/* non-native formats */
536	DRM_FORMAT_XRGB1555,
537	DRM_FORMAT_RGBX5551,
538	DRM_FORMAT_XBGR8888,
539	DRM_FORMAT_XRGB8888,
540};
541
542static const u64 tegra20_modifiers[] = {
543	DRM_FORMAT_MOD_LINEAR,
544	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545	DRM_FORMAT_MOD_INVALID
546};
547
548static const u32 tegra114_primary_formats[] = {
549	DRM_FORMAT_ARGB4444,
550	DRM_FORMAT_ARGB1555,
551	DRM_FORMAT_RGB565,
552	DRM_FORMAT_RGBA5551,
553	DRM_FORMAT_ABGR8888,
554	DRM_FORMAT_ARGB8888,
555	/* new on Tegra114 */
556	DRM_FORMAT_ABGR4444,
557	DRM_FORMAT_ABGR1555,
558	DRM_FORMAT_BGRA5551,
559	DRM_FORMAT_XRGB1555,
560	DRM_FORMAT_RGBX5551,
561	DRM_FORMAT_XBGR1555,
562	DRM_FORMAT_BGRX5551,
563	DRM_FORMAT_BGR565,
564	DRM_FORMAT_BGRA8888,
565	DRM_FORMAT_RGBA8888,
566	DRM_FORMAT_XRGB8888,
567	DRM_FORMAT_XBGR8888,
568};
569
570static const u32 tegra124_primary_formats[] = {
571	DRM_FORMAT_ARGB4444,
572	DRM_FORMAT_ARGB1555,
573	DRM_FORMAT_RGB565,
574	DRM_FORMAT_RGBA5551,
575	DRM_FORMAT_ABGR8888,
576	DRM_FORMAT_ARGB8888,
577	/* new on Tegra114 */
578	DRM_FORMAT_ABGR4444,
579	DRM_FORMAT_ABGR1555,
580	DRM_FORMAT_BGRA5551,
581	DRM_FORMAT_XRGB1555,
582	DRM_FORMAT_RGBX5551,
583	DRM_FORMAT_XBGR1555,
584	DRM_FORMAT_BGRX5551,
585	DRM_FORMAT_BGR565,
586	DRM_FORMAT_BGRA8888,
587	DRM_FORMAT_RGBA8888,
588	DRM_FORMAT_XRGB8888,
589	DRM_FORMAT_XBGR8888,
590	/* new on Tegra124 */
591	DRM_FORMAT_RGBX8888,
592	DRM_FORMAT_BGRX8888,
593};
594
595static const u64 tegra124_modifiers[] = {
596	DRM_FORMAT_MOD_LINEAR,
597	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603	DRM_FORMAT_MOD_INVALID
604};
605
606static int tegra_plane_atomic_check(struct drm_plane *plane,
607				    struct drm_plane_state *state)
608{
609	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
610	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
611					  DRM_MODE_REFLECT_X |
612					  DRM_MODE_REFLECT_Y;
613	unsigned int rotation = state->rotation;
614	struct tegra_bo_tiling *tiling = &plane_state->tiling;
615	struct tegra_plane *tegra = to_tegra_plane(plane);
616	struct tegra_dc *dc = to_tegra_dc(state->crtc);
617	int err;
618
619	/* no need for further checks if the plane is being disabled */
620	if (!state->crtc)
621		return 0;
622
623	err = tegra_plane_format(state->fb->format->format,
624				 &plane_state->format,
625				 &plane_state->swap);
626	if (err < 0)
627		return err;
628
629	/*
630	 * Tegra20 and Tegra30 are special cases here because they support
631	 * only variants of specific formats with an alpha component, but not
632	 * the corresponding opaque formats. However, the opaque formats can
633	 * be emulated by disabling alpha blending for the plane.
634	 */
635	if (dc->soc->has_legacy_blending) {
636		err = tegra_plane_setup_legacy_state(tegra, plane_state);
637		if (err < 0)
638			return err;
639	}
640
641	err = tegra_fb_get_tiling(state->fb, tiling);
642	if (err < 0)
643		return err;
644
645	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
646	    !dc->soc->supports_block_linear) {
647		DRM_ERROR("hardware doesn't support block linear mode\n");
648		return -EINVAL;
649	}
650
651	/*
652	 * Older userspace used custom BO flag in order to specify the Y
653	 * reflection, while modern userspace uses the generic DRM rotation
654	 * property in order to achieve the same result.  The legacy BO flag
655	 * duplicates the DRM rotation property when both are set.
656	 */
657	if (tegra_fb_is_bottom_up(state->fb))
658		rotation |= DRM_MODE_REFLECT_Y;
659
660	rotation = drm_rotation_simplify(rotation, supported_rotation);
661
662	if (rotation & DRM_MODE_REFLECT_X)
663		plane_state->reflect_x = true;
664	else
665		plane_state->reflect_x = false;
666
667	if (rotation & DRM_MODE_REFLECT_Y)
668		plane_state->reflect_y = true;
669	else
670		plane_state->reflect_y = false;
671
672	/*
673	 * Tegra doesn't support different strides for U and V planes so we
674	 * error out if the user tries to display a framebuffer with such a
675	 * configuration.
676	 */
677	if (state->fb->format->num_planes > 2) {
678		if (state->fb->pitches[2] != state->fb->pitches[1]) {
679			DRM_ERROR("unsupported UV-plane configuration\n");
680			return -EINVAL;
681		}
682	}
683
684	err = tegra_plane_state_add(tegra, state);
685	if (err < 0)
686		return err;
687
688	return 0;
689}
690
691static void tegra_plane_atomic_disable(struct drm_plane *plane,
692				       struct drm_plane_state *old_state)
693{
694	struct tegra_plane *p = to_tegra_plane(plane);
695	u32 value;
696
697	/* rien ne va plus */
698	if (!old_state || !old_state->crtc)
699		return;
700
701	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
702	value &= ~WIN_ENABLE;
703	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
704}
705
706static void tegra_plane_atomic_update(struct drm_plane *plane,
707				      struct drm_plane_state *old_state)
708{
709	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
710	struct drm_framebuffer *fb = plane->state->fb;
711	struct tegra_plane *p = to_tegra_plane(plane);
712	struct tegra_dc_window window;
713	unsigned int i;
714
715	/* rien ne va plus */
716	if (!plane->state->crtc || !plane->state->fb)
717		return;
718
719	if (!plane->state->visible)
720		return tegra_plane_atomic_disable(plane, old_state);
721
722	memset(&window, 0, sizeof(window));
723	window.src.x = plane->state->src.x1 >> 16;
724	window.src.y = plane->state->src.y1 >> 16;
725	window.src.w = drm_rect_width(&plane->state->src) >> 16;
726	window.src.h = drm_rect_height(&plane->state->src) >> 16;
727	window.dst.x = plane->state->dst.x1;
728	window.dst.y = plane->state->dst.y1;
729	window.dst.w = drm_rect_width(&plane->state->dst);
730	window.dst.h = drm_rect_height(&plane->state->dst);
731	window.bits_per_pixel = fb->format->cpp[0] * 8;
732	window.reflect_x = state->reflect_x;
733	window.reflect_y = state->reflect_y;
734
735	/* copy from state */
736	window.zpos = plane->state->normalized_zpos;
737	window.tiling = state->tiling;
738	window.format = state->format;
739	window.swap = state->swap;
740
741	for (i = 0; i < fb->format->num_planes; i++) {
742		window.base[i] = state->iova[i] + fb->offsets[i];
743
744		/*
745		 * Tegra uses a shared stride for UV planes. Framebuffers are
746		 * already checked for this in the tegra_plane_atomic_check()
747		 * function, so it's safe to ignore the V-plane pitch here.
748		 */
749		if (i < 2)
750			window.stride[i] = fb->pitches[i];
751	}
752
753	tegra_dc_setup_window(p, &window);
754}
755
756static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
757	.prepare_fb = tegra_plane_prepare_fb,
758	.cleanup_fb = tegra_plane_cleanup_fb,
759	.atomic_check = tegra_plane_atomic_check,
760	.atomic_disable = tegra_plane_atomic_disable,
761	.atomic_update = tegra_plane_atomic_update,
762};
763
764static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
765{
766	/*
767	 * Ideally this would use drm_crtc_mask(), but that would require the
768	 * CRTC to already be in the mode_config's list of CRTCs. However, it
769	 * will only be added to that list in the drm_crtc_init_with_planes()
770	 * (in tegra_dc_init()), which in turn requires registration of these
771	 * planes. So we have ourselves a nice little chicken and egg problem
772	 * here.
773	 *
774	 * We work around this by manually creating the mask from the number
775	 * of CRTCs that have been registered, and should therefore always be
776	 * the same as drm_crtc_index() after registration.
777	 */
778	return 1 << drm->mode_config.num_crtc;
779}
780
781static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
782						    struct tegra_dc *dc)
783{
784	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
785	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
786	struct tegra_plane *plane;
787	unsigned int num_formats;
788	const u64 *modifiers;
789	const u32 *formats;
790	int err;
791
792	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
793	if (!plane)
794		return ERR_PTR(-ENOMEM);
795
796	/* Always use window A as primary window */
797	plane->offset = 0xa00;
798	plane->index = 0;
799	plane->dc = dc;
800
801	num_formats = dc->soc->num_primary_formats;
802	formats = dc->soc->primary_formats;
803	modifiers = dc->soc->modifiers;
804
805	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
806				       &tegra_plane_funcs, formats,
807				       num_formats, modifiers, type, NULL);
808	if (err < 0) {
809		kfree(plane);
810		return ERR_PTR(err);
811	}
812
813	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
814	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
815
816	err = drm_plane_create_rotation_property(&plane->base,
817						 DRM_MODE_ROTATE_0,
818						 DRM_MODE_ROTATE_0 |
819						 DRM_MODE_ROTATE_180 |
820						 DRM_MODE_REFLECT_X |
821						 DRM_MODE_REFLECT_Y);
822	if (err < 0)
823		dev_err(dc->dev, "failed to create rotation property: %d\n",
824			err);
825
826	return &plane->base;
827}
828
829static const u32 tegra_cursor_plane_formats[] = {
830	DRM_FORMAT_RGBA8888,
831};
832
833static int tegra_cursor_atomic_check(struct drm_plane *plane,
834				     struct drm_plane_state *state)
835{
836	struct tegra_plane *tegra = to_tegra_plane(plane);
837	int err;
838
839	/* no need for further checks if the plane is being disabled */
840	if (!state->crtc)
841		return 0;
842
843	/* scaling not supported for cursor */
844	if ((state->src_w >> 16 != state->crtc_w) ||
845	    (state->src_h >> 16 != state->crtc_h))
846		return -EINVAL;
847
848	/* only square cursors supported */
849	if (state->src_w != state->src_h)
850		return -EINVAL;
851
852	if (state->crtc_w != 32 && state->crtc_w != 64 &&
853	    state->crtc_w != 128 && state->crtc_w != 256)
854		return -EINVAL;
855
856	err = tegra_plane_state_add(tegra, state);
857	if (err < 0)
858		return err;
859
860	return 0;
861}
862
863static void tegra_cursor_atomic_update(struct drm_plane *plane,
864				       struct drm_plane_state *old_state)
865{
866	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
867	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
868	u32 value = CURSOR_CLIP_DISPLAY;
869
870	/* rien ne va plus */
871	if (!plane->state->crtc || !plane->state->fb)
872		return;
873
874	switch (plane->state->crtc_w) {
875	case 32:
876		value |= CURSOR_SIZE_32x32;
877		break;
878
879	case 64:
880		value |= CURSOR_SIZE_64x64;
881		break;
882
883	case 128:
884		value |= CURSOR_SIZE_128x128;
885		break;
886
887	case 256:
888		value |= CURSOR_SIZE_256x256;
889		break;
890
891	default:
892		WARN(1, "cursor size %ux%u not supported\n",
893		     plane->state->crtc_w, plane->state->crtc_h);
894		return;
895	}
896
897	value |= (state->iova[0] >> 10) & 0x3fffff;
898	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
899
900#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
901	value = (state->iova[0] >> 32) & 0x3;
902	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
903#endif
904
905	/* enable cursor and set blend mode */
906	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907	value |= CURSOR_ENABLE;
908	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909
910	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
911	value &= ~CURSOR_DST_BLEND_MASK;
912	value &= ~CURSOR_SRC_BLEND_MASK;
913	value |= CURSOR_MODE_NORMAL;
914	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
915	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
916	value |= CURSOR_ALPHA;
917	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
918
919	/* position the cursor */
920	value = (plane->state->crtc_y & 0x3fff) << 16 |
921		(plane->state->crtc_x & 0x3fff);
922	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
923}
924
925static void tegra_cursor_atomic_disable(struct drm_plane *plane,
926					struct drm_plane_state *old_state)
927{
928	struct tegra_dc *dc;
929	u32 value;
930
931	/* rien ne va plus */
932	if (!old_state || !old_state->crtc)
933		return;
934
935	dc = to_tegra_dc(old_state->crtc);
936
937	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
938	value &= ~CURSOR_ENABLE;
939	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
940}
941
942static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
943	.prepare_fb = tegra_plane_prepare_fb,
944	.cleanup_fb = tegra_plane_cleanup_fb,
945	.atomic_check = tegra_cursor_atomic_check,
946	.atomic_update = tegra_cursor_atomic_update,
947	.atomic_disable = tegra_cursor_atomic_disable,
948};
949
950static const uint64_t linear_modifiers[] = {
951	DRM_FORMAT_MOD_LINEAR,
952	DRM_FORMAT_MOD_INVALID
953};
954
955static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
956						      struct tegra_dc *dc)
957{
958	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
959	struct tegra_plane *plane;
960	unsigned int num_formats;
961	const u32 *formats;
962	int err;
963
964	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
965	if (!plane)
966		return ERR_PTR(-ENOMEM);
967
968	/*
969	 * This index is kind of fake. The cursor isn't a regular plane, but
970	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
971	 * use the same programming. Setting this fake index here allows the
972	 * code in tegra_add_plane_state() to do the right thing without the
973	 * need to special-casing the cursor plane.
974	 */
975	plane->index = 6;
976	plane->dc = dc;
977
978	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
979	formats = tegra_cursor_plane_formats;
980
981	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
982				       &tegra_plane_funcs, formats,
983				       num_formats, linear_modifiers,
984				       DRM_PLANE_TYPE_CURSOR, NULL);
985	if (err < 0) {
986		kfree(plane);
987		return ERR_PTR(err);
988	}
989
990	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
991	drm_plane_create_zpos_immutable_property(&plane->base, 255);
992
993	return &plane->base;
994}
995
996static const u32 tegra20_overlay_formats[] = {
997	DRM_FORMAT_ARGB4444,
998	DRM_FORMAT_ARGB1555,
999	DRM_FORMAT_RGB565,
1000	DRM_FORMAT_RGBA5551,
1001	DRM_FORMAT_ABGR8888,
1002	DRM_FORMAT_ARGB8888,
1003	/* non-native formats */
1004	DRM_FORMAT_XRGB1555,
1005	DRM_FORMAT_RGBX5551,
1006	DRM_FORMAT_XBGR8888,
1007	DRM_FORMAT_XRGB8888,
1008	/* planar formats */
1009	DRM_FORMAT_UYVY,
1010	DRM_FORMAT_YUYV,
1011	DRM_FORMAT_YUV420,
1012	DRM_FORMAT_YUV422,
1013};
1014
1015static const u32 tegra114_overlay_formats[] = {
1016	DRM_FORMAT_ARGB4444,
1017	DRM_FORMAT_ARGB1555,
1018	DRM_FORMAT_RGB565,
1019	DRM_FORMAT_RGBA5551,
1020	DRM_FORMAT_ABGR8888,
1021	DRM_FORMAT_ARGB8888,
1022	/* new on Tegra114 */
1023	DRM_FORMAT_ABGR4444,
1024	DRM_FORMAT_ABGR1555,
1025	DRM_FORMAT_BGRA5551,
1026	DRM_FORMAT_XRGB1555,
1027	DRM_FORMAT_RGBX5551,
1028	DRM_FORMAT_XBGR1555,
1029	DRM_FORMAT_BGRX5551,
1030	DRM_FORMAT_BGR565,
1031	DRM_FORMAT_BGRA8888,
1032	DRM_FORMAT_RGBA8888,
1033	DRM_FORMAT_XRGB8888,
1034	DRM_FORMAT_XBGR8888,
1035	/* planar formats */
1036	DRM_FORMAT_UYVY,
1037	DRM_FORMAT_YUYV,
1038	DRM_FORMAT_YUV420,
1039	DRM_FORMAT_YUV422,
1040};
1041
1042static const u32 tegra124_overlay_formats[] = {
1043	DRM_FORMAT_ARGB4444,
1044	DRM_FORMAT_ARGB1555,
1045	DRM_FORMAT_RGB565,
1046	DRM_FORMAT_RGBA5551,
1047	DRM_FORMAT_ABGR8888,
1048	DRM_FORMAT_ARGB8888,
1049	/* new on Tegra114 */
1050	DRM_FORMAT_ABGR4444,
1051	DRM_FORMAT_ABGR1555,
1052	DRM_FORMAT_BGRA5551,
1053	DRM_FORMAT_XRGB1555,
1054	DRM_FORMAT_RGBX5551,
1055	DRM_FORMAT_XBGR1555,
1056	DRM_FORMAT_BGRX5551,
1057	DRM_FORMAT_BGR565,
1058	DRM_FORMAT_BGRA8888,
1059	DRM_FORMAT_RGBA8888,
1060	DRM_FORMAT_XRGB8888,
1061	DRM_FORMAT_XBGR8888,
1062	/* new on Tegra124 */
1063	DRM_FORMAT_RGBX8888,
1064	DRM_FORMAT_BGRX8888,
1065	/* planar formats */
1066	DRM_FORMAT_UYVY,
1067	DRM_FORMAT_YUYV,
1068	DRM_FORMAT_YUV420,
1069	DRM_FORMAT_YUV422,
1070};
1071
1072static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1073						       struct tegra_dc *dc,
1074						       unsigned int index,
1075						       bool cursor)
1076{
1077	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1078	struct tegra_plane *plane;
1079	unsigned int num_formats;
1080	enum drm_plane_type type;
1081	const u32 *formats;
1082	int err;
1083
1084	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1085	if (!plane)
1086		return ERR_PTR(-ENOMEM);
1087
1088	plane->offset = 0xa00 + 0x200 * index;
1089	plane->index = index;
1090	plane->dc = dc;
1091
1092	num_formats = dc->soc->num_overlay_formats;
1093	formats = dc->soc->overlay_formats;
1094
1095	if (!cursor)
1096		type = DRM_PLANE_TYPE_OVERLAY;
1097	else
1098		type = DRM_PLANE_TYPE_CURSOR;
1099
1100	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1101				       &tegra_plane_funcs, formats,
1102				       num_formats, linear_modifiers,
1103				       type, NULL);
1104	if (err < 0) {
1105		kfree(plane);
1106		return ERR_PTR(err);
1107	}
1108
1109	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1110	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1111
1112	err = drm_plane_create_rotation_property(&plane->base,
1113						 DRM_MODE_ROTATE_0,
1114						 DRM_MODE_ROTATE_0 |
1115						 DRM_MODE_ROTATE_180 |
1116						 DRM_MODE_REFLECT_X |
1117						 DRM_MODE_REFLECT_Y);
1118	if (err < 0)
1119		dev_err(dc->dev, "failed to create rotation property: %d\n",
1120			err);
1121
1122	return &plane->base;
1123}
1124
1125static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1126						    struct tegra_dc *dc)
1127{
1128	struct drm_plane *plane, *primary = NULL;
1129	unsigned int i, j;
1130
1131	for (i = 0; i < dc->soc->num_wgrps; i++) {
1132		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1133
1134		if (wgrp->dc == dc->pipe) {
1135			for (j = 0; j < wgrp->num_windows; j++) {
1136				unsigned int index = wgrp->windows[j];
1137
1138				plane = tegra_shared_plane_create(drm, dc,
1139								  wgrp->index,
1140								  index);
1141				if (IS_ERR(plane))
1142					return plane;
1143
1144				/*
1145				 * Choose the first shared plane owned by this
1146				 * head as the primary plane.
1147				 */
1148				if (!primary) {
1149					plane->type = DRM_PLANE_TYPE_PRIMARY;
1150					primary = plane;
1151				}
1152			}
1153		}
1154	}
1155
1156	return primary;
1157}
1158
1159static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1160					     struct tegra_dc *dc)
1161{
1162	struct drm_plane *planes[2], *primary;
1163	unsigned int planes_num;
1164	unsigned int i;
1165	int err;
1166
1167	primary = tegra_primary_plane_create(drm, dc);
1168	if (IS_ERR(primary))
1169		return primary;
1170
1171	if (dc->soc->supports_cursor)
1172		planes_num = 2;
1173	else
1174		planes_num = 1;
1175
1176	for (i = 0; i < planes_num; i++) {
1177		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1178							  false);
1179		if (IS_ERR(planes[i])) {
1180			err = PTR_ERR(planes[i]);
1181
1182			while (i--)
1183				tegra_plane_funcs.destroy(planes[i]);
1184
1185			tegra_plane_funcs.destroy(primary);
1186			return ERR_PTR(err);
1187		}
1188	}
1189
1190	return primary;
1191}
1192
1193static void tegra_dc_destroy(struct drm_crtc *crtc)
1194{
1195	drm_crtc_cleanup(crtc);
1196}
1197
1198static void tegra_crtc_reset(struct drm_crtc *crtc)
1199{
1200	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1201
1202	if (crtc->state)
1203		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1204
1205	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1206}
1207
1208static struct drm_crtc_state *
1209tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1210{
1211	struct tegra_dc_state *state = to_dc_state(crtc->state);
1212	struct tegra_dc_state *copy;
1213
1214	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1215	if (!copy)
1216		return NULL;
1217
1218	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1219	copy->clk = state->clk;
1220	copy->pclk = state->pclk;
1221	copy->div = state->div;
1222	copy->planes = state->planes;
1223
1224	return &copy->base;
1225}
1226
1227static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1228					    struct drm_crtc_state *state)
1229{
1230	__drm_atomic_helper_crtc_destroy_state(state);
1231	kfree(state);
1232}
1233
1234#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1235
1236static const struct debugfs_reg32 tegra_dc_regs[] = {
1237	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1238	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1239	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1240	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1241	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1242	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1243	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1244	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1245	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1246	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1247	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1248	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1249	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1250	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1251	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1252	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1253	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1254	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1255	DEBUGFS_REG32(DC_CMD_INT_MASK),
1256	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1257	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1258	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1259	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1260	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1261	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1262	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1263	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1264	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1265	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1266	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1267	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1268	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1269	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1270	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1271	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1272	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1273	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1274	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1275	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1276	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1277	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1278	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1279	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1280	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1281	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1282	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1283	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1284	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1285	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1286	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1287	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1288	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1289	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1290	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1291	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1292	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1293	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1294	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1295	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1296	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1297	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1298	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1299	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1300	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1301	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1302	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1303	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1304	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1305	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1306	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1307	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1308	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1309	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1310	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1311	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1312	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1313	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1314	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1315	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1316	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1317	DEBUGFS_REG32(DC_DISP_ACTIVE),
1318	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1319	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1320	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1321	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1322	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1323	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1324	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1325	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1326	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1327	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1328	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1329	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1330	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1331	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1332	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1333	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1334	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1335	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1336	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1337	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1338	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1339	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1340	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1341	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1342	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1343	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1344	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1345	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1346	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1347	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1348	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1349	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1350	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1351	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1352	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1353	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1354	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1355	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1356	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1357	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1358	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1359	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1360	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1361	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1362	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1363	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1364	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1365	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1366	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1367	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1368	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1369	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1370	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1371	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1372	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1373	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1374	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1375	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1376	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1377	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1378	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1379	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1380	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1381	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1382	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1383	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1384	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1385	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1386	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1387	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1388	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1389	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1390	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1391	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1392	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1393	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1394	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1395	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1396	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1397	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1398	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1399	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1400	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1401	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1402	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1403	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1404	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1405	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1406	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1407	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1408	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1409	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1410	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1411	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1412	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1413	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1414	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1415	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1416	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1417	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1418	DEBUGFS_REG32(DC_WIN_POSITION),
1419	DEBUGFS_REG32(DC_WIN_SIZE),
1420	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1421	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1422	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1423	DEBUGFS_REG32(DC_WIN_DDA_INC),
1424	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1425	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1426	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1427	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1428	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1429	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1430	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1431	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1432	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1433	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1434	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1435	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1436	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1437	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1438	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1439	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1440	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1441	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1442	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1443	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1444	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1445	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1446	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1447	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1448	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1449};
1450
1451static int tegra_dc_show_regs(struct seq_file *s, void *data)
1452{
1453	struct drm_info_node *node = s->private;
1454	struct tegra_dc *dc = node->info_ent->data;
1455	unsigned int i;
1456	int err = 0;
1457
1458	drm_modeset_lock(&dc->base.mutex, NULL);
1459
1460	if (!dc->base.state->active) {
1461		err = -EBUSY;
1462		goto unlock;
1463	}
1464
1465	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1466		unsigned int offset = tegra_dc_regs[i].offset;
1467
1468		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1469			   offset, tegra_dc_readl(dc, offset));
1470	}
1471
1472unlock:
1473	drm_modeset_unlock(&dc->base.mutex);
1474	return err;
1475}
1476
1477static int tegra_dc_show_crc(struct seq_file *s, void *data)
1478{
1479	struct drm_info_node *node = s->private;
1480	struct tegra_dc *dc = node->info_ent->data;
1481	int err = 0;
1482	u32 value;
1483
1484	drm_modeset_lock(&dc->base.mutex, NULL);
1485
1486	if (!dc->base.state->active) {
1487		err = -EBUSY;
1488		goto unlock;
1489	}
1490
1491	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1492	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1493	tegra_dc_commit(dc);
1494
1495	drm_crtc_wait_one_vblank(&dc->base);
1496	drm_crtc_wait_one_vblank(&dc->base);
1497
1498	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1499	seq_printf(s, "%08x\n", value);
1500
1501	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1502
1503unlock:
1504	drm_modeset_unlock(&dc->base.mutex);
1505	return err;
1506}
1507
1508static int tegra_dc_show_stats(struct seq_file *s, void *data)
1509{
1510	struct drm_info_node *node = s->private;
1511	struct tegra_dc *dc = node->info_ent->data;
1512
1513	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1514	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1515	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1516	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1517
1518	return 0;
1519}
1520
1521static struct drm_info_list debugfs_files[] = {
1522	{ "regs", tegra_dc_show_regs, 0, NULL },
1523	{ "crc", tegra_dc_show_crc, 0, NULL },
1524	{ "stats", tegra_dc_show_stats, 0, NULL },
1525};
1526
1527static int tegra_dc_late_register(struct drm_crtc *crtc)
1528{
1529	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1530	struct drm_minor *minor = crtc->dev->primary;
1531	struct dentry *root;
1532	struct tegra_dc *dc = to_tegra_dc(crtc);
1533
1534#ifdef CONFIG_DEBUG_FS
1535	root = crtc->debugfs_entry;
1536#else
1537	root = NULL;
1538#endif
1539
1540	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1541				    GFP_KERNEL);
1542	if (!dc->debugfs_files)
1543		return -ENOMEM;
1544
1545	for (i = 0; i < count; i++)
1546		dc->debugfs_files[i].data = dc;
1547
1548	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1549
1550	return 0;
1551}
1552
1553static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1554{
1555	unsigned int count = ARRAY_SIZE(debugfs_files);
1556	struct drm_minor *minor = crtc->dev->primary;
1557	struct tegra_dc *dc = to_tegra_dc(crtc);
1558
1559	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1560	kfree(dc->debugfs_files);
1561	dc->debugfs_files = NULL;
1562}
1563
1564static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1565{
1566	struct tegra_dc *dc = to_tegra_dc(crtc);
1567
1568	/* XXX vblank syncpoints don't work with nvdisplay yet */
1569	if (dc->syncpt && !dc->soc->has_nvdisplay)
1570		return host1x_syncpt_read(dc->syncpt);
1571
1572	/* fallback to software emulated VBLANK counter */
1573	return (u32)drm_crtc_vblank_count(&dc->base);
1574}
1575
1576static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1577{
1578	struct tegra_dc *dc = to_tegra_dc(crtc);
1579	u32 value;
1580
1581	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1582	value |= VBLANK_INT;
1583	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1584
1585	return 0;
1586}
1587
1588static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1589{
1590	struct tegra_dc *dc = to_tegra_dc(crtc);
1591	u32 value;
1592
1593	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1594	value &= ~VBLANK_INT;
1595	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1596}
1597
1598static const struct drm_crtc_funcs tegra_crtc_funcs = {
1599	.page_flip = drm_atomic_helper_page_flip,
1600	.set_config = drm_atomic_helper_set_config,
1601	.destroy = tegra_dc_destroy,
1602	.reset = tegra_crtc_reset,
1603	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1604	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1605	.late_register = tegra_dc_late_register,
1606	.early_unregister = tegra_dc_early_unregister,
1607	.get_vblank_counter = tegra_dc_get_vblank_counter,
1608	.enable_vblank = tegra_dc_enable_vblank,
1609	.disable_vblank = tegra_dc_disable_vblank,
1610};
1611
1612static int tegra_dc_set_timings(struct tegra_dc *dc,
1613				struct drm_display_mode *mode)
1614{
1615	unsigned int h_ref_to_sync = 1;
1616	unsigned int v_ref_to_sync = 1;
1617	unsigned long value;
1618
1619	if (!dc->soc->has_nvdisplay) {
1620		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1621
1622		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1623		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1624	}
1625
1626	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1627		((mode->hsync_end - mode->hsync_start) <<  0);
1628	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1629
1630	value = ((mode->vtotal - mode->vsync_end) << 16) |
1631		((mode->htotal - mode->hsync_end) <<  0);
1632	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1633
1634	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1635		((mode->hsync_start - mode->hdisplay) <<  0);
1636	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1637
1638	value = (mode->vdisplay << 16) | mode->hdisplay;
1639	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1640
1641	return 0;
1642}
1643
1644/**
1645 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1646 *     state
1647 * @dc: display controller
1648 * @crtc_state: CRTC atomic state
1649 * @clk: parent clock for display controller
1650 * @pclk: pixel clock
1651 * @div: shift clock divider
1652 *
1653 * Returns:
1654 * 0 on success or a negative error-code on failure.
1655 */
1656int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1657			       struct drm_crtc_state *crtc_state,
1658			       struct clk *clk, unsigned long pclk,
1659			       unsigned int div)
1660{
1661	struct tegra_dc_state *state = to_dc_state(crtc_state);
1662
1663	if (!clk_has_parent(dc->clk, clk))
1664		return -EINVAL;
1665
1666	state->clk = clk;
1667	state->pclk = pclk;
1668	state->div = div;
1669
1670	return 0;
1671}
1672
1673static void tegra_dc_commit_state(struct tegra_dc *dc,
1674				  struct tegra_dc_state *state)
1675{
1676	u32 value;
1677	int err;
1678
1679	err = clk_set_parent(dc->clk, state->clk);
1680	if (err < 0)
1681		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1682
1683	/*
1684	 * Outputs may not want to change the parent clock rate. This is only
1685	 * relevant to Tegra20 where only a single display PLL is available.
1686	 * Since that PLL would typically be used for HDMI, an internal LVDS
1687	 * panel would need to be driven by some other clock such as PLL_P
1688	 * which is shared with other peripherals. Changing the clock rate
1689	 * should therefore be avoided.
1690	 */
1691	if (state->pclk > 0) {
1692		err = clk_set_rate(state->clk, state->pclk);
1693		if (err < 0)
1694			dev_err(dc->dev,
1695				"failed to set clock rate to %lu Hz\n",
1696				state->pclk);
1697
1698		err = clk_set_rate(dc->clk, state->pclk);
1699		if (err < 0)
1700			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1701				dc->clk, state->pclk, err);
1702	}
1703
1704	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1705		      state->div);
1706	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1707
1708	if (!dc->soc->has_nvdisplay) {
1709		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1710		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1711	}
1712}
1713
1714static void tegra_dc_stop(struct tegra_dc *dc)
1715{
1716	u32 value;
1717
1718	/* stop the display controller */
1719	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1720	value &= ~DISP_CTRL_MODE_MASK;
1721	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1722
1723	tegra_dc_commit(dc);
1724}
1725
1726static bool tegra_dc_idle(struct tegra_dc *dc)
1727{
1728	u32 value;
1729
1730	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1731
1732	return (value & DISP_CTRL_MODE_MASK) == 0;
1733}
1734
1735static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1736{
1737	timeout = jiffies + msecs_to_jiffies(timeout);
1738
1739	while (time_before(jiffies, timeout)) {
1740		if (tegra_dc_idle(dc))
1741			return 0;
1742
1743		usleep_range(1000, 2000);
1744	}
1745
1746	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1747	return -ETIMEDOUT;
1748}
1749
1750static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1751				      struct drm_crtc_state *old_state)
1752{
1753	struct tegra_dc *dc = to_tegra_dc(crtc);
1754	u32 value;
1755	int err;
1756
1757	if (!tegra_dc_idle(dc)) {
1758		tegra_dc_stop(dc);
1759
1760		/*
1761		 * Ignore the return value, there isn't anything useful to do
1762		 * in case this fails.
1763		 */
1764		tegra_dc_wait_idle(dc, 100);
1765	}
1766
1767	/*
1768	 * This should really be part of the RGB encoder driver, but clearing
1769	 * these bits has the side-effect of stopping the display controller.
1770	 * When that happens no VBLANK interrupts will be raised. At the same
1771	 * time the encoder is disabled before the display controller, so the
1772	 * above code is always going to timeout waiting for the controller
1773	 * to go idle.
1774	 *
1775	 * Given the close coupling between the RGB encoder and the display
1776	 * controller doing it here is still kind of okay. None of the other
1777	 * encoder drivers require these bits to be cleared.
1778	 *
1779	 * XXX: Perhaps given that the display controller is switched off at
1780	 * this point anyway maybe clearing these bits isn't even useful for
1781	 * the RGB encoder?
1782	 */
1783	if (dc->rgb) {
1784		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1785		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1786			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1787		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1788	}
1789
1790	tegra_dc_stats_reset(&dc->stats);
1791	drm_crtc_vblank_off(crtc);
1792
1793	spin_lock_irq(&crtc->dev->event_lock);
1794
1795	if (crtc->state->event) {
1796		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1797		crtc->state->event = NULL;
1798	}
1799
1800	spin_unlock_irq(&crtc->dev->event_lock);
1801
1802	err = host1x_client_suspend(&dc->client);
1803	if (err < 0)
1804		dev_err(dc->dev, "failed to suspend: %d\n", err);
1805}
1806
1807static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1808				     struct drm_crtc_state *old_state)
1809{
1810	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1811	struct tegra_dc_state *state = to_dc_state(crtc->state);
1812	struct tegra_dc *dc = to_tegra_dc(crtc);
1813	u32 value;
1814	int err;
1815
1816	err = host1x_client_resume(&dc->client);
1817	if (err < 0) {
1818		dev_err(dc->dev, "failed to resume: %d\n", err);
1819		return;
1820	}
1821
1822	/* initialize display controller */
1823	if (dc->syncpt) {
1824		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1825
1826		if (dc->soc->has_nvdisplay)
1827			enable = 1 << 31;
1828		else
1829			enable = 1 << 8;
1830
1831		value = SYNCPT_CNTRL_NO_STALL;
1832		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1833
1834		value = enable | syncpt;
1835		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1836	}
1837
1838	if (dc->soc->has_nvdisplay) {
1839		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1840			DSC_OBUF_UF_INT;
1841		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1842
1843		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1844			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1845			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1846			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1847			VBLANK_INT | FRAME_END_INT;
1848		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1849
1850		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1851			FRAME_END_INT;
1852		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1853
1854		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1855		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1856
1857		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1858	} else {
1859		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1860			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1861		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1862
1863		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1864			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1865		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1866
1867		/* initialize timer */
1868		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1869			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1870		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1871
1872		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1873			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1874		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1875
1876		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1877			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1878		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1879
1880		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1881			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1882		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1883	}
1884
1885	if (dc->soc->supports_background_color)
1886		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1887	else
1888		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1889
1890	/* apply PLL and pixel clock changes */
1891	tegra_dc_commit_state(dc, state);
1892
1893	/* program display mode */
1894	tegra_dc_set_timings(dc, mode);
1895
1896	/* interlacing isn't supported yet, so disable it */
1897	if (dc->soc->supports_interlacing) {
1898		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1899		value &= ~INTERLACE_ENABLE;
1900		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1901	}
1902
1903	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1904	value &= ~DISP_CTRL_MODE_MASK;
1905	value |= DISP_CTRL_MODE_C_DISPLAY;
1906	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1907
1908	if (!dc->soc->has_nvdisplay) {
1909		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1910		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1911			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1912		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1913	}
1914
1915	/* enable underflow reporting and display red for missing pixels */
1916	if (dc->soc->has_nvdisplay) {
1917		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1918		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1919	}
1920
1921	tegra_dc_commit(dc);
1922
1923	drm_crtc_vblank_on(crtc);
1924}
1925
1926static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1927				    struct drm_crtc_state *old_crtc_state)
1928{
1929	unsigned long flags;
1930
1931	if (crtc->state->event) {
1932		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1933
1934		if (drm_crtc_vblank_get(crtc) != 0)
1935			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1936		else
1937			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1938
1939		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1940
1941		crtc->state->event = NULL;
1942	}
1943}
1944
1945static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1946				    struct drm_crtc_state *old_crtc_state)
1947{
1948	struct tegra_dc_state *state = to_dc_state(crtc->state);
1949	struct tegra_dc *dc = to_tegra_dc(crtc);
1950	u32 value;
1951
1952	value = state->planes << 8 | GENERAL_UPDATE;
1953	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1954	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1955
1956	value = state->planes | GENERAL_ACT_REQ;
1957	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1958	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1959}
1960
1961static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1962	.atomic_begin = tegra_crtc_atomic_begin,
1963	.atomic_flush = tegra_crtc_atomic_flush,
1964	.atomic_enable = tegra_crtc_atomic_enable,
1965	.atomic_disable = tegra_crtc_atomic_disable,
1966};
1967
1968static irqreturn_t tegra_dc_irq(int irq, void *data)
1969{
1970	struct tegra_dc *dc = data;
1971	unsigned long status;
1972
1973	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1974	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1975
1976	if (status & FRAME_END_INT) {
1977		/*
1978		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1979		*/
1980		dc->stats.frames++;
1981	}
1982
1983	if (status & VBLANK_INT) {
1984		/*
1985		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1986		*/
1987		drm_crtc_handle_vblank(&dc->base);
1988		dc->stats.vblank++;
1989	}
1990
1991	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1992		/*
1993		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1994		*/
1995		dc->stats.underflow++;
1996	}
1997
1998	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1999		/*
2000		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2001		*/
2002		dc->stats.overflow++;
2003	}
2004
2005	if (status & HEAD_UF_INT) {
2006		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2007		dc->stats.underflow++;
2008	}
2009
2010	return IRQ_HANDLED;
2011}
2012
2013static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2014{
2015	unsigned int i;
2016
2017	if (!dc->soc->wgrps)
2018		return true;
2019
2020	for (i = 0; i < dc->soc->num_wgrps; i++) {
2021		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2022
2023		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2024			return true;
2025	}
2026
2027	return false;
2028}
2029
2030static int tegra_dc_init(struct host1x_client *client)
2031{
2032	struct drm_device *drm = dev_get_drvdata(client->host);
2033	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2034	struct tegra_dc *dc = host1x_client_to_dc(client);
2035	struct tegra_drm *tegra = drm->dev_private;
2036	struct drm_plane *primary = NULL;
2037	struct drm_plane *cursor = NULL;
2038	int err;
2039
2040	/*
2041	 * XXX do not register DCs with no window groups because we cannot
2042	 * assign a primary plane to them, which in turn will cause KMS to
2043	 * crash.
2044	 */
2045	if (!tegra_dc_has_window_groups(dc))
2046		return 0;
2047
2048	/*
2049	 * Set the display hub as the host1x client parent for the display
2050	 * controller. This is needed for the runtime reference counting that
2051	 * ensures the display hub is always powered when any of the display
2052	 * controllers are.
2053	 */
2054	if (dc->soc->has_nvdisplay)
2055		client->parent = &tegra->hub->client;
2056
2057	dc->syncpt = host1x_syncpt_request(client, flags);
2058	if (!dc->syncpt)
2059		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2060
2061	err = host1x_client_iommu_attach(client);
2062	if (err < 0 && err != -ENODEV) {
2063		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2064		return err;
2065	}
2066
2067	if (dc->soc->wgrps)
2068		primary = tegra_dc_add_shared_planes(drm, dc);
2069	else
2070		primary = tegra_dc_add_planes(drm, dc);
2071
2072	if (IS_ERR(primary)) {
2073		err = PTR_ERR(primary);
2074		goto cleanup;
2075	}
2076
2077	if (dc->soc->supports_cursor) {
2078		cursor = tegra_dc_cursor_plane_create(drm, dc);
2079		if (IS_ERR(cursor)) {
2080			err = PTR_ERR(cursor);
2081			goto cleanup;
2082		}
2083	} else {
2084		/* dedicate one overlay to mouse cursor */
2085		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2086		if (IS_ERR(cursor)) {
2087			err = PTR_ERR(cursor);
2088			goto cleanup;
2089		}
2090	}
2091
2092	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2093					&tegra_crtc_funcs, NULL);
2094	if (err < 0)
2095		goto cleanup;
2096
2097	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2098
2099	/*
2100	 * Keep track of the minimum pitch alignment across all display
2101	 * controllers.
2102	 */
2103	if (dc->soc->pitch_align > tegra->pitch_align)
2104		tegra->pitch_align = dc->soc->pitch_align;
2105
2106	err = tegra_dc_rgb_init(drm, dc);
2107	if (err < 0 && err != -ENODEV) {
2108		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2109		goto cleanup;
2110	}
2111
2112	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2113			       dev_name(dc->dev), dc);
2114	if (err < 0) {
2115		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2116			err);
2117		goto cleanup;
2118	}
2119
2120	/*
2121	 * Inherit the DMA parameters (such as maximum segment size) from the
2122	 * parent host1x device.
2123	 */
2124	client->dev->dma_parms = client->host->dma_parms;
2125
2126	return 0;
2127
2128cleanup:
2129	if (!IS_ERR_OR_NULL(cursor))
2130		drm_plane_cleanup(cursor);
2131
2132	if (!IS_ERR(primary))
2133		drm_plane_cleanup(primary);
2134
2135	host1x_client_iommu_detach(client);
2136	host1x_syncpt_free(dc->syncpt);
2137
2138	return err;
2139}
2140
2141static int tegra_dc_exit(struct host1x_client *client)
2142{
2143	struct tegra_dc *dc = host1x_client_to_dc(client);
2144	int err;
2145
2146	if (!tegra_dc_has_window_groups(dc))
2147		return 0;
2148
2149	/* avoid a dangling pointer just in case this disappears */
2150	client->dev->dma_parms = NULL;
2151
2152	devm_free_irq(dc->dev, dc->irq, dc);
2153
2154	err = tegra_dc_rgb_exit(dc);
2155	if (err) {
2156		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2157		return err;
2158	}
2159
2160	host1x_client_iommu_detach(client);
2161	host1x_syncpt_free(dc->syncpt);
2162
2163	return 0;
2164}
2165
2166static int tegra_dc_runtime_suspend(struct host1x_client *client)
2167{
2168	struct tegra_dc *dc = host1x_client_to_dc(client);
2169	struct device *dev = client->dev;
2170	int err;
2171
2172	err = reset_control_assert(dc->rst);
2173	if (err < 0) {
2174		dev_err(dev, "failed to assert reset: %d\n", err);
2175		return err;
2176	}
2177
2178	if (dc->soc->has_powergate)
2179		tegra_powergate_power_off(dc->powergate);
2180
2181	clk_disable_unprepare(dc->clk);
2182	pm_runtime_put_sync(dev);
2183
2184	return 0;
2185}
2186
2187static int tegra_dc_runtime_resume(struct host1x_client *client)
2188{
2189	struct tegra_dc *dc = host1x_client_to_dc(client);
2190	struct device *dev = client->dev;
2191	int err;
2192
2193	err = pm_runtime_resume_and_get(dev);
2194	if (err < 0) {
2195		dev_err(dev, "failed to get runtime PM: %d\n", err);
2196		return err;
2197	}
2198
2199	if (dc->soc->has_powergate) {
2200		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2201							dc->rst);
2202		if (err < 0) {
2203			dev_err(dev, "failed to power partition: %d\n", err);
2204			goto put_rpm;
2205		}
2206	} else {
2207		err = clk_prepare_enable(dc->clk);
2208		if (err < 0) {
2209			dev_err(dev, "failed to enable clock: %d\n", err);
2210			goto put_rpm;
2211		}
2212
2213		err = reset_control_deassert(dc->rst);
2214		if (err < 0) {
2215			dev_err(dev, "failed to deassert reset: %d\n", err);
2216			goto disable_clk;
2217		}
2218	}
2219
2220	return 0;
2221
2222disable_clk:
2223	clk_disable_unprepare(dc->clk);
2224put_rpm:
2225	pm_runtime_put_sync(dev);
2226	return err;
2227}
2228
2229static const struct host1x_client_ops dc_client_ops = {
2230	.init = tegra_dc_init,
2231	.exit = tegra_dc_exit,
2232	.suspend = tegra_dc_runtime_suspend,
2233	.resume = tegra_dc_runtime_resume,
2234};
2235
2236static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2237	.supports_background_color = false,
2238	.supports_interlacing = false,
2239	.supports_cursor = false,
2240	.supports_block_linear = false,
2241	.has_legacy_blending = true,
2242	.pitch_align = 8,
2243	.has_powergate = false,
2244	.coupled_pm = true,
2245	.has_nvdisplay = false,
2246	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2247	.primary_formats = tegra20_primary_formats,
2248	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2249	.overlay_formats = tegra20_overlay_formats,
2250	.modifiers = tegra20_modifiers,
2251	.has_win_a_without_filters = true,
2252	.has_win_c_without_vert_filter = true,
2253};
2254
2255static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2256	.supports_background_color = false,
2257	.supports_interlacing = false,
2258	.supports_cursor = false,
2259	.supports_block_linear = false,
2260	.has_legacy_blending = true,
2261	.pitch_align = 8,
2262	.has_powergate = false,
2263	.coupled_pm = false,
2264	.has_nvdisplay = false,
2265	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2266	.primary_formats = tegra20_primary_formats,
2267	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2268	.overlay_formats = tegra20_overlay_formats,
2269	.modifiers = tegra20_modifiers,
2270	.has_win_a_without_filters = false,
2271	.has_win_c_without_vert_filter = false,
2272};
2273
2274static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2275	.supports_background_color = false,
2276	.supports_interlacing = false,
2277	.supports_cursor = false,
2278	.supports_block_linear = false,
2279	.has_legacy_blending = true,
2280	.pitch_align = 64,
2281	.has_powergate = true,
2282	.coupled_pm = false,
2283	.has_nvdisplay = false,
2284	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2285	.primary_formats = tegra114_primary_formats,
2286	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2287	.overlay_formats = tegra114_overlay_formats,
2288	.modifiers = tegra20_modifiers,
2289	.has_win_a_without_filters = false,
2290	.has_win_c_without_vert_filter = false,
2291};
2292
2293static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2294	.supports_background_color = true,
2295	.supports_interlacing = true,
2296	.supports_cursor = true,
2297	.supports_block_linear = true,
2298	.has_legacy_blending = false,
2299	.pitch_align = 64,
2300	.has_powergate = true,
2301	.coupled_pm = false,
2302	.has_nvdisplay = false,
2303	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2304	.primary_formats = tegra124_primary_formats,
2305	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2306	.overlay_formats = tegra124_overlay_formats,
2307	.modifiers = tegra124_modifiers,
2308	.has_win_a_without_filters = false,
2309	.has_win_c_without_vert_filter = false,
2310};
2311
2312static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2313	.supports_background_color = true,
2314	.supports_interlacing = true,
2315	.supports_cursor = true,
2316	.supports_block_linear = true,
2317	.has_legacy_blending = false,
2318	.pitch_align = 64,
2319	.has_powergate = true,
2320	.coupled_pm = false,
2321	.has_nvdisplay = false,
2322	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2323	.primary_formats = tegra114_primary_formats,
2324	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2325	.overlay_formats = tegra114_overlay_formats,
2326	.modifiers = tegra124_modifiers,
2327	.has_win_a_without_filters = false,
2328	.has_win_c_without_vert_filter = false,
2329};
2330
2331static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2332	{
2333		.index = 0,
2334		.dc = 0,
2335		.windows = (const unsigned int[]) { 0 },
2336		.num_windows = 1,
2337	}, {
2338		.index = 1,
2339		.dc = 1,
2340		.windows = (const unsigned int[]) { 1 },
2341		.num_windows = 1,
2342	}, {
2343		.index = 2,
2344		.dc = 1,
2345		.windows = (const unsigned int[]) { 2 },
2346		.num_windows = 1,
2347	}, {
2348		.index = 3,
2349		.dc = 2,
2350		.windows = (const unsigned int[]) { 3 },
2351		.num_windows = 1,
2352	}, {
2353		.index = 4,
2354		.dc = 2,
2355		.windows = (const unsigned int[]) { 4 },
2356		.num_windows = 1,
2357	}, {
2358		.index = 5,
2359		.dc = 2,
2360		.windows = (const unsigned int[]) { 5 },
2361		.num_windows = 1,
2362	},
2363};
2364
2365static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2366	.supports_background_color = true,
2367	.supports_interlacing = true,
2368	.supports_cursor = true,
2369	.supports_block_linear = true,
2370	.has_legacy_blending = false,
2371	.pitch_align = 64,
2372	.has_powergate = false,
2373	.coupled_pm = false,
2374	.has_nvdisplay = true,
2375	.wgrps = tegra186_dc_wgrps,
2376	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2377};
2378
2379static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2380	{
2381		.index = 0,
2382		.dc = 0,
2383		.windows = (const unsigned int[]) { 0 },
2384		.num_windows = 1,
2385	}, {
2386		.index = 1,
2387		.dc = 1,
2388		.windows = (const unsigned int[]) { 1 },
2389		.num_windows = 1,
2390	}, {
2391		.index = 2,
2392		.dc = 1,
2393		.windows = (const unsigned int[]) { 2 },
2394		.num_windows = 1,
2395	}, {
2396		.index = 3,
2397		.dc = 2,
2398		.windows = (const unsigned int[]) { 3 },
2399		.num_windows = 1,
2400	}, {
2401		.index = 4,
2402		.dc = 2,
2403		.windows = (const unsigned int[]) { 4 },
2404		.num_windows = 1,
2405	}, {
2406		.index = 5,
2407		.dc = 2,
2408		.windows = (const unsigned int[]) { 5 },
2409		.num_windows = 1,
2410	},
2411};
2412
2413static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2414	.supports_background_color = true,
2415	.supports_interlacing = true,
2416	.supports_cursor = true,
2417	.supports_block_linear = true,
2418	.has_legacy_blending = false,
2419	.pitch_align = 64,
2420	.has_powergate = false,
2421	.coupled_pm = false,
2422	.has_nvdisplay = true,
2423	.wgrps = tegra194_dc_wgrps,
2424	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2425};
2426
2427static const struct of_device_id tegra_dc_of_match[] = {
2428	{
2429		.compatible = "nvidia,tegra194-dc",
2430		.data = &tegra194_dc_soc_info,
2431	}, {
2432		.compatible = "nvidia,tegra186-dc",
2433		.data = &tegra186_dc_soc_info,
2434	}, {
2435		.compatible = "nvidia,tegra210-dc",
2436		.data = &tegra210_dc_soc_info,
2437	}, {
2438		.compatible = "nvidia,tegra124-dc",
2439		.data = &tegra124_dc_soc_info,
2440	}, {
2441		.compatible = "nvidia,tegra114-dc",
2442		.data = &tegra114_dc_soc_info,
2443	}, {
2444		.compatible = "nvidia,tegra30-dc",
2445		.data = &tegra30_dc_soc_info,
2446	}, {
2447		.compatible = "nvidia,tegra20-dc",
2448		.data = &tegra20_dc_soc_info,
2449	}, {
2450		/* sentinel */
2451	}
2452};
2453MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2454
2455static int tegra_dc_parse_dt(struct tegra_dc *dc)
2456{
2457	struct device_node *np;
2458	u32 value = 0;
2459	int err;
2460
2461	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2462	if (err < 0) {
2463		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2464
2465		/*
2466		 * If the nvidia,head property isn't present, try to find the
2467		 * correct head number by looking up the position of this
2468		 * display controller's node within the device tree. Assuming
2469		 * that the nodes are ordered properly in the DTS file and
2470		 * that the translation into a flattened device tree blob
2471		 * preserves that ordering this will actually yield the right
2472		 * head number.
2473		 *
2474		 * If those assumptions don't hold, this will still work for
2475		 * cases where only a single display controller is used.
2476		 */
2477		for_each_matching_node(np, tegra_dc_of_match) {
2478			if (np == dc->dev->of_node) {
2479				of_node_put(np);
2480				break;
2481			}
2482
2483			value++;
2484		}
2485	}
2486
2487	dc->pipe = value;
2488
2489	return 0;
2490}
2491
2492static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2493{
2494	struct tegra_dc *dc = dev_get_drvdata(dev);
2495	unsigned int pipe = (unsigned long)(void *)data;
2496
2497	return dc->pipe == pipe;
2498}
2499
2500static int tegra_dc_couple(struct tegra_dc *dc)
2501{
2502	/*
2503	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2504	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2505	 * POWER_CONTROL registers during CRTC enabling.
2506	 */
2507	if (dc->soc->coupled_pm && dc->pipe == 1) {
2508		struct device *companion;
2509		struct tegra_dc *parent;
2510
2511		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2512					       tegra_dc_match_by_pipe);
2513		if (!companion)
2514			return -EPROBE_DEFER;
2515
2516		parent = dev_get_drvdata(companion);
2517		dc->client.parent = &parent->client;
2518
2519		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2520	}
2521
2522	return 0;
2523}
2524
2525static int tegra_dc_probe(struct platform_device *pdev)
2526{
2527	struct tegra_dc *dc;
2528	int err;
2529
2530	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2531	if (!dc)
2532		return -ENOMEM;
2533
2534	dc->soc = of_device_get_match_data(&pdev->dev);
2535
2536	INIT_LIST_HEAD(&dc->list);
2537	dc->dev = &pdev->dev;
2538
2539	err = tegra_dc_parse_dt(dc);
2540	if (err < 0)
2541		return err;
2542
2543	err = tegra_dc_couple(dc);
2544	if (err < 0)
2545		return err;
2546
2547	dc->clk = devm_clk_get(&pdev->dev, NULL);
2548	if (IS_ERR(dc->clk)) {
2549		dev_err(&pdev->dev, "failed to get clock\n");
2550		return PTR_ERR(dc->clk);
2551	}
2552
2553	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2554	if (IS_ERR(dc->rst)) {
2555		dev_err(&pdev->dev, "failed to get reset\n");
2556		return PTR_ERR(dc->rst);
2557	}
2558
2559	/* assert reset and disable clock */
2560	err = clk_prepare_enable(dc->clk);
2561	if (err < 0)
2562		return err;
2563
2564	usleep_range(2000, 4000);
2565
2566	err = reset_control_assert(dc->rst);
2567	if (err < 0) {
2568		clk_disable_unprepare(dc->clk);
2569		return err;
2570	}
2571
2572	usleep_range(2000, 4000);
2573
2574	clk_disable_unprepare(dc->clk);
2575
2576	if (dc->soc->has_powergate) {
2577		if (dc->pipe == 0)
2578			dc->powergate = TEGRA_POWERGATE_DIS;
2579		else
2580			dc->powergate = TEGRA_POWERGATE_DISB;
2581
2582		tegra_powergate_power_off(dc->powergate);
2583	}
2584
2585	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2586	if (IS_ERR(dc->regs))
2587		return PTR_ERR(dc->regs);
2588
2589	dc->irq = platform_get_irq(pdev, 0);
2590	if (dc->irq < 0)
2591		return -ENXIO;
2592
2593	err = tegra_dc_rgb_probe(dc);
2594	if (err < 0 && err != -ENODEV) {
2595		const char *level = KERN_ERR;
2596
2597		if (err == -EPROBE_DEFER)
2598			level = KERN_DEBUG;
2599
2600		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2601			   err);
2602		return err;
2603	}
2604
2605	platform_set_drvdata(pdev, dc);
2606	pm_runtime_enable(&pdev->dev);
2607
2608	INIT_LIST_HEAD(&dc->client.list);
2609	dc->client.ops = &dc_client_ops;
2610	dc->client.dev = &pdev->dev;
2611
2612	err = host1x_client_register(&dc->client);
2613	if (err < 0) {
2614		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2615			err);
2616		goto disable_pm;
2617	}
2618
2619	return 0;
2620
2621disable_pm:
2622	pm_runtime_disable(&pdev->dev);
2623	tegra_dc_rgb_remove(dc);
2624
2625	return err;
2626}
2627
2628static int tegra_dc_remove(struct platform_device *pdev)
2629{
2630	struct tegra_dc *dc = platform_get_drvdata(pdev);
2631	int err;
2632
2633	err = host1x_client_unregister(&dc->client);
2634	if (err < 0) {
2635		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2636			err);
2637		return err;
2638	}
2639
2640	err = tegra_dc_rgb_remove(dc);
2641	if (err < 0) {
2642		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2643		return err;
2644	}
2645
2646	pm_runtime_disable(&pdev->dev);
2647
2648	return 0;
2649}
2650
2651struct platform_driver tegra_dc_driver = {
2652	.driver = {
2653		.name = "tegra-dc",
2654		.of_match_table = tegra_dc_of_match,
2655	},
2656	.probe = tegra_dc_probe,
2657	.remove = tegra_dc_remove,
2658};
2659