1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <drm/drm_print.h>
26#include <drm/i915_pciids.h>
27
28#include "display/intel_cdclk.h"
29#include "display/intel_de.h"
30#include "intel_device_info.h"
31#include "i915_drv.h"
32
33#define PLATFORM_NAME(x) [INTEL_##x] = #x
34static const char * const platform_names[] = {
35	PLATFORM_NAME(I830),
36	PLATFORM_NAME(I845G),
37	PLATFORM_NAME(I85X),
38	PLATFORM_NAME(I865G),
39	PLATFORM_NAME(I915G),
40	PLATFORM_NAME(I915GM),
41	PLATFORM_NAME(I945G),
42	PLATFORM_NAME(I945GM),
43	PLATFORM_NAME(G33),
44	PLATFORM_NAME(PINEVIEW),
45	PLATFORM_NAME(I965G),
46	PLATFORM_NAME(I965GM),
47	PLATFORM_NAME(G45),
48	PLATFORM_NAME(GM45),
49	PLATFORM_NAME(IRONLAKE),
50	PLATFORM_NAME(SANDYBRIDGE),
51	PLATFORM_NAME(IVYBRIDGE),
52	PLATFORM_NAME(VALLEYVIEW),
53	PLATFORM_NAME(HASWELL),
54	PLATFORM_NAME(BROADWELL),
55	PLATFORM_NAME(CHERRYVIEW),
56	PLATFORM_NAME(SKYLAKE),
57	PLATFORM_NAME(BROXTON),
58	PLATFORM_NAME(KABYLAKE),
59	PLATFORM_NAME(GEMINILAKE),
60	PLATFORM_NAME(COFFEELAKE),
61	PLATFORM_NAME(COMETLAKE),
62	PLATFORM_NAME(CANNONLAKE),
63	PLATFORM_NAME(ICELAKE),
64	PLATFORM_NAME(ELKHARTLAKE),
65	PLATFORM_NAME(TIGERLAKE),
66	PLATFORM_NAME(ROCKETLAKE),
67	PLATFORM_NAME(DG1),
68};
69#undef PLATFORM_NAME
70
71const char *intel_platform_name(enum intel_platform platform)
72{
73	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
74
75	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
76			 platform_names[platform] == NULL))
77		return "<unknown>";
78
79	return platform_names[platform];
80}
81
82static const char *iommu_name(void)
83{
84	const char *msg = "n/a";
85
86#ifdef CONFIG_INTEL_IOMMU
87	msg = enableddisabled(intel_iommu_gfx_mapped);
88#endif
89
90	return msg;
91}
92
93void intel_device_info_print_static(const struct intel_device_info *info,
94				    struct drm_printer *p)
95{
96	drm_printf(p, "gen: %d\n", info->gen);
97	drm_printf(p, "gt: %d\n", info->gt);
98	drm_printf(p, "iommu: %s\n", iommu_name());
99	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
100	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
101	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
102	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
103	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104	drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
105
106#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
107	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
108#undef PRINT_FLAG
109
110#define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
111	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
112#undef PRINT_FLAG
113}
114
115void intel_device_info_print_runtime(const struct intel_runtime_info *info,
116				     struct drm_printer *p)
117{
118	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
119	drm_printf(p, "CS timestamp frequency: %u Hz\n",
120		   info->cs_timestamp_frequency_hz);
121}
122
123static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
124{
125	u32 ts_override = intel_uncore_read(&dev_priv->uncore,
126					    GEN9_TIMESTAMP_OVERRIDE);
127	u32 base_freq, frac_freq;
128
129	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
130		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
131	base_freq *= 1000000;
132
133	frac_freq = ((ts_override &
134		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
135		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
136	frac_freq = 1000000 / (frac_freq + 1);
137
138	return base_freq + frac_freq;
139}
140
141static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
142					u32 rpm_config_reg)
143{
144	u32 f19_2_mhz = 19200000;
145	u32 f24_mhz = 24000000;
146	u32 crystal_clock = (rpm_config_reg &
147			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
148			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
149
150	switch (crystal_clock) {
151	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
152		return f19_2_mhz;
153	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
154		return f24_mhz;
155	default:
156		MISSING_CASE(crystal_clock);
157		return 0;
158	}
159}
160
161static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
162					u32 rpm_config_reg)
163{
164	u32 f19_2_mhz = 19200000;
165	u32 f24_mhz = 24000000;
166	u32 f25_mhz = 25000000;
167	u32 f38_4_mhz = 38400000;
168	u32 crystal_clock = (rpm_config_reg &
169			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
170			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
171
172	switch (crystal_clock) {
173	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
174		return f24_mhz;
175	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
176		return f19_2_mhz;
177	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
178		return f38_4_mhz;
179	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
180		return f25_mhz;
181	default:
182		MISSING_CASE(crystal_clock);
183		return 0;
184	}
185}
186
187static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
188{
189	struct intel_uncore *uncore = &dev_priv->uncore;
190	u32 f12_5_mhz = 12500000;
191	u32 f19_2_mhz = 19200000;
192	u32 f24_mhz = 24000000;
193
194	if (INTEL_GEN(dev_priv) <= 4) {
195		/* PRMs say:
196		 *
197		 *     "The value in this register increments once every 16
198		 *      hclks." (through the “Clocking Configuration”
199		 *      (“CLKCFG”) MCHBAR register)
200		 */
201		return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
202	} else if (INTEL_GEN(dev_priv) <= 8) {
203		/* PRMs say:
204		 *
205		 *     "The PCU TSC counts 10ns increments; this timestamp
206		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
207		 *      rolling over every 1.5 hours).
208		 */
209		return f12_5_mhz;
210	} else if (INTEL_GEN(dev_priv) <= 9) {
211		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
212		u32 freq = 0;
213
214		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
215			freq = read_reference_ts_freq(dev_priv);
216		} else {
217			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
218
219			/* Now figure out how the command stream's timestamp
220			 * register increments from this frequency (it might
221			 * increment only every few clock cycle).
222			 */
223			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
224				      CTC_SHIFT_PARAMETER_SHIFT);
225		}
226
227		return freq;
228	} else if (INTEL_GEN(dev_priv) <= 12) {
229		u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
230		u32 freq = 0;
231
232		/* First figure out the reference frequency. There are 2 ways
233		 * we can compute the frequency, either through the
234		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
235		 * tells us which one we should use.
236		 */
237		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
238			freq = read_reference_ts_freq(dev_priv);
239		} else {
240			u32 rpm_config_reg = intel_uncore_read(uncore, RPM_CONFIG0);
241
242			if (INTEL_GEN(dev_priv) <= 10)
243				freq = gen10_get_crystal_clock_freq(dev_priv,
244								rpm_config_reg);
245			else
246				freq = gen11_get_crystal_clock_freq(dev_priv,
247								rpm_config_reg);
248
249			/* Now figure out how the command stream's timestamp
250			 * register increments from this frequency (it might
251			 * increment only every few clock cycle).
252			 */
253			freq >>= 3 - ((rpm_config_reg &
254				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
255				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
256		}
257
258		return freq;
259	}
260
261	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
262	return 0;
263}
264
265#undef INTEL_VGA_DEVICE
266#define INTEL_VGA_DEVICE(id, info) (id)
267
268static const u16 subplatform_ult_ids[] = {
269	INTEL_HSW_ULT_GT1_IDS(0),
270	INTEL_HSW_ULT_GT2_IDS(0),
271	INTEL_HSW_ULT_GT3_IDS(0),
272	INTEL_BDW_ULT_GT1_IDS(0),
273	INTEL_BDW_ULT_GT2_IDS(0),
274	INTEL_BDW_ULT_GT3_IDS(0),
275	INTEL_BDW_ULT_RSVD_IDS(0),
276	INTEL_SKL_ULT_GT1_IDS(0),
277	INTEL_SKL_ULT_GT2_IDS(0),
278	INTEL_SKL_ULT_GT3_IDS(0),
279	INTEL_KBL_ULT_GT1_IDS(0),
280	INTEL_KBL_ULT_GT2_IDS(0),
281	INTEL_KBL_ULT_GT3_IDS(0),
282	INTEL_CFL_U_GT2_IDS(0),
283	INTEL_CFL_U_GT3_IDS(0),
284	INTEL_WHL_U_GT1_IDS(0),
285	INTEL_WHL_U_GT2_IDS(0),
286	INTEL_WHL_U_GT3_IDS(0),
287	INTEL_CML_U_GT1_IDS(0),
288	INTEL_CML_U_GT2_IDS(0),
289};
290
291static const u16 subplatform_ulx_ids[] = {
292	INTEL_HSW_ULX_GT1_IDS(0),
293	INTEL_HSW_ULX_GT2_IDS(0),
294	INTEL_BDW_ULX_GT1_IDS(0),
295	INTEL_BDW_ULX_GT2_IDS(0),
296	INTEL_BDW_ULX_GT3_IDS(0),
297	INTEL_BDW_ULX_RSVD_IDS(0),
298	INTEL_SKL_ULX_GT1_IDS(0),
299	INTEL_SKL_ULX_GT2_IDS(0),
300	INTEL_KBL_ULX_GT1_IDS(0),
301	INTEL_KBL_ULX_GT2_IDS(0),
302	INTEL_AML_KBL_GT2_IDS(0),
303	INTEL_AML_CFL_GT2_IDS(0),
304};
305
306static const u16 subplatform_portf_ids[] = {
307	INTEL_CNL_PORT_F_IDS(0),
308	INTEL_ICL_PORT_F_IDS(0),
309};
310
311static bool find_devid(u16 id, const u16 *p, unsigned int num)
312{
313	for (; num; num--, p++) {
314		if (*p == id)
315			return true;
316	}
317
318	return false;
319}
320
321void intel_device_info_subplatform_init(struct drm_i915_private *i915)
322{
323	const struct intel_device_info *info = INTEL_INFO(i915);
324	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
325	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
326	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
327	u16 devid = INTEL_DEVID(i915);
328	u32 mask = 0;
329
330	/* Make sure IS_<platform> checks are working. */
331	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
332
333	/* Find and mark subplatform bits based on the PCI device id. */
334	if (find_devid(devid, subplatform_ult_ids,
335		       ARRAY_SIZE(subplatform_ult_ids))) {
336		mask = BIT(INTEL_SUBPLATFORM_ULT);
337	} else if (find_devid(devid, subplatform_ulx_ids,
338			      ARRAY_SIZE(subplatform_ulx_ids))) {
339		mask = BIT(INTEL_SUBPLATFORM_ULX);
340		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
341			/* ULX machines are also considered ULT. */
342			mask |= BIT(INTEL_SUBPLATFORM_ULT);
343		}
344	} else if (find_devid(devid, subplatform_portf_ids,
345			      ARRAY_SIZE(subplatform_portf_ids))) {
346		mask = BIT(INTEL_SUBPLATFORM_PORTF);
347	}
348
349	if (IS_TIGERLAKE(i915)) {
350		struct pci_dev *root, *pdev = i915->drm.pdev;
351
352		root = list_first_entry(&pdev->bus->devices, typeof(*root), bus_list);
353
354		drm_WARN_ON(&i915->drm, mask);
355		drm_WARN_ON(&i915->drm, (root->device & TGL_ROOT_DEVICE_MASK) !=
356			    TGL_ROOT_DEVICE_ID);
357
358		switch (root->device & TGL_ROOT_DEVICE_SKU_MASK) {
359		case TGL_ROOT_DEVICE_SKU_ULX:
360			mask = BIT(INTEL_SUBPLATFORM_ULX);
361			break;
362		case TGL_ROOT_DEVICE_SKU_ULT:
363			mask = BIT(INTEL_SUBPLATFORM_ULT);
364			break;
365		}
366	}
367
368	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
369
370	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
371}
372
373/**
374 * intel_device_info_runtime_init - initialize runtime info
375 * @dev_priv: the i915 device
376 *
377 * Determine various intel_device_info fields at runtime.
378 *
379 * Use it when either:
380 *   - it's judged too laborious to fill n static structures with the limit
381 *     when a simple if statement does the job,
382 *   - run-time checks (eg read fuse/strap registers) are needed.
383 *
384 * This function needs to be called:
385 *   - after the MMIO has been setup as we are reading registers,
386 *   - after the PCH has been detected,
387 *   - before the first usage of the fields it can tweak.
388 */
389void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
390{
391	struct intel_device_info *info = mkwrite_device_info(dev_priv);
392	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
393	enum pipe pipe;
394
395	if (INTEL_GEN(dev_priv) >= 10) {
396		for_each_pipe(dev_priv, pipe)
397			runtime->num_scalers[pipe] = 2;
398	} else if (IS_GEN(dev_priv, 9)) {
399		runtime->num_scalers[PIPE_A] = 2;
400		runtime->num_scalers[PIPE_B] = 2;
401		runtime->num_scalers[PIPE_C] = 1;
402	}
403
404	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
405
406	if (IS_ROCKETLAKE(dev_priv))
407		for_each_pipe(dev_priv, pipe)
408			runtime->num_sprites[pipe] = 4;
409	else if (INTEL_GEN(dev_priv) >= 11)
410		for_each_pipe(dev_priv, pipe)
411			runtime->num_sprites[pipe] = 6;
412	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
413		for_each_pipe(dev_priv, pipe)
414			runtime->num_sprites[pipe] = 3;
415	else if (IS_BROXTON(dev_priv)) {
416		/*
417		 * Skylake and Broxton currently don't expose the topmost plane as its
418		 * use is exclusive with the legacy cursor and we only want to expose
419		 * one of those, not both. Until we can safely expose the topmost plane
420		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
421		 * we don't expose the topmost plane at all to prevent ABI breakage
422		 * down the line.
423		 */
424
425		runtime->num_sprites[PIPE_A] = 2;
426		runtime->num_sprites[PIPE_B] = 2;
427		runtime->num_sprites[PIPE_C] = 1;
428	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
429		for_each_pipe(dev_priv, pipe)
430			runtime->num_sprites[pipe] = 2;
431	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
432		for_each_pipe(dev_priv, pipe)
433			runtime->num_sprites[pipe] = 1;
434	}
435
436	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
437	    HAS_PCH_SPLIT(dev_priv)) {
438		u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
439		u32 sfuse_strap = intel_de_read(dev_priv, SFUSE_STRAP);
440
441		/*
442		 * SFUSE_STRAP is supposed to have a bit signalling the display
443		 * is fused off. Unfortunately it seems that, at least in
444		 * certain cases, fused off display means that PCH display
445		 * reads don't land anywhere. In that case, we read 0s.
446		 *
447		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
448		 * should be set when taking over after the firmware.
449		 */
450		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
451		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
452		    (HAS_PCH_CPT(dev_priv) &&
453		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
454			drm_info(&dev_priv->drm,
455				 "Display fused off, disabling\n");
456			info->pipe_mask = 0;
457			info->cpu_transcoder_mask = 0;
458		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
459			drm_info(&dev_priv->drm, "PipeC fused off\n");
460			info->pipe_mask &= ~BIT(PIPE_C);
461			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
462		}
463	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
464		u32 dfsm = intel_de_read(dev_priv, SKL_DFSM);
465
466		if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
467			info->pipe_mask &= ~BIT(PIPE_A);
468			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
469		}
470		if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
471			info->pipe_mask &= ~BIT(PIPE_B);
472			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
473		}
474		if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
475			info->pipe_mask &= ~BIT(PIPE_C);
476			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
477		}
478		if (INTEL_GEN(dev_priv) >= 12 &&
479		    (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
480			info->pipe_mask &= ~BIT(PIPE_D);
481			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
482		}
483
484		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
485			info->display.has_hdcp = 0;
486
487		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
488			info->display.has_fbc = 0;
489
490		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
491			info->display.has_csr = 0;
492
493		if (INTEL_GEN(dev_priv) >= 10 &&
494		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
495			info->display.has_dsc = 0;
496	}
497
498	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
499		drm_info(&dev_priv->drm,
500			 "Disabling ppGTT for VT-d support\n");
501		info->ppgtt_type = INTEL_PPGTT_NONE;
502	}
503
504	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
505	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
506
507	/* Initialize command stream timestamp frequency */
508	runtime->cs_timestamp_frequency_hz =
509		read_timestamp_frequency(dev_priv);
510	if (runtime->cs_timestamp_frequency_hz) {
511		runtime->cs_timestamp_period_ns =
512			i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
513		drm_dbg(&dev_priv->drm,
514			"CS timestamp wraparound in %lldms\n",
515			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
516					    S32_MAX),
517				USEC_PER_SEC));
518	}
519
520	if (!HAS_DISPLAY(dev_priv)) {
521		dev_priv->drm.driver_features &= ~(DRIVER_MODESET |
522						   DRIVER_ATOMIC);
523		memset(&info->display, 0, sizeof(info->display));
524		memset(runtime->num_sprites, 0, sizeof(runtime->num_sprites));
525		memset(runtime->num_scalers, 0, sizeof(runtime->num_scalers));
526	}
527}
528
529void intel_driver_caps_print(const struct intel_driver_caps *caps,
530			     struct drm_printer *p)
531{
532	drm_printf(p, "Has logical contexts? %s\n",
533		   yesno(caps->has_logical_contexts));
534	drm_printf(p, "scheduler: %x\n", caps->scheduler);
535}
536