1/* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25#include <linux/dma-fence-array.h> 26#include <linux/dma-fence-chain.h> 27#include <linux/irq_work.h> 28#include <linux/prefetch.h> 29#include <linux/sched.h> 30#include <linux/sched/clock.h> 31#include <linux/sched/signal.h> 32 33#include "gem/i915_gem_context.h" 34#include "gt/intel_breadcrumbs.h" 35#include "gt/intel_context.h" 36#include "gt/intel_ring.h" 37#include "gt/intel_rps.h" 38 39#include "i915_active.h" 40#include "i915_drv.h" 41#include "i915_globals.h" 42#include "i915_trace.h" 43#include "intel_pm.h" 44 45struct execute_cb { 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50}; 51 52static struct i915_global_request { 53 struct i915_global base; 54 struct kmem_cache *slab_requests; 55 struct kmem_cache *slab_execute_cbs; 56} global; 57 58static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59{ 60 return dev_name(to_request(fence)->engine->i915->drm.dev); 61} 62 63static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64{ 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84} 85 86static bool i915_fence_signaled(struct dma_fence *fence) 87{ 88 return i915_request_completed(to_request(fence)); 89} 90 91static bool i915_fence_enable_signaling(struct dma_fence *fence) 92{ 93 return i915_request_enable_breadcrumb(to_request(fence)); 94} 95 96static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99{ 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103} 104 105struct kmem_cache *i915_request_slab_cache(void) 106{ 107 return global.slab_requests; 108} 109 110static void i915_fence_release(struct dma_fence *fence) 111{ 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 i915_sw_fence_fini(&rq->submit); 122 i915_sw_fence_fini(&rq->semaphore); 123 124 /* 125 * Keep one request on each engine for reserved use under mempressure 126 * 127 * We do not hold a reference to the engine here and so have to be 128 * very careful in what rq->engine we poke. The virtual engine is 129 * referenced via the rq->context and we released that ref during 130 * i915_request_retire(), ergo we must not dereference a virtual 131 * engine here. Not that we would want to, as the only consumer of 132 * the reserved engine->request_pool is the power management parking, 133 * which must-not-fail, and that is only run on the physical engines. 134 * 135 * Since the request must have been executed to be have completed, 136 * we know that it will have been processed by the HW and will 137 * not be unsubmitted again, so rq->engine and rq->execution_mask 138 * at this point is stable. rq->execution_mask will be a single 139 * bit if the last and _only_ engine it could execution on was a 140 * physical engine, if it's multiple bits then it started on and 141 * could still be on a virtual engine. Thus if the mask is not a 142 * power-of-two we assume that rq->engine may still be a virtual 143 * engine and so a dangling invalid pointer that we cannot dereference 144 * 145 * For example, consider the flow of a bonded request through a virtual 146 * engine. The request is created with a wide engine mask (all engines 147 * that we might execute on). On processing the bond, the request mask 148 * is reduced to one or more engines. If the request is subsequently 149 * bound to a single engine, it will then be constrained to only 150 * execute on that engine and never returned to the virtual engine 151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 152 * know that if the rq->execution_mask is a single bit, rq->engine 153 * can be a physical engine with the exact corresponding mask. 154 */ 155 if (is_power_of_2(rq->execution_mask) && 156 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 157 return; 158 159 kmem_cache_free(global.slab_requests, rq); 160} 161 162const struct dma_fence_ops i915_fence_ops = { 163 .get_driver_name = i915_fence_get_driver_name, 164 .get_timeline_name = i915_fence_get_timeline_name, 165 .enable_signaling = i915_fence_enable_signaling, 166 .signaled = i915_fence_signaled, 167 .wait = i915_fence_wait, 168 .release = i915_fence_release, 169}; 170 171static void irq_execute_cb(struct irq_work *wrk) 172{ 173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 174 175 i915_sw_fence_complete(cb->fence); 176 kmem_cache_free(global.slab_execute_cbs, cb); 177} 178 179static void irq_execute_cb_hook(struct irq_work *wrk) 180{ 181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 182 183 cb->hook(container_of(cb->fence, struct i915_request, submit), 184 &cb->signal->fence); 185 i915_request_put(cb->signal); 186 187 irq_execute_cb(wrk); 188} 189 190static __always_inline void 191__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 192{ 193 struct execute_cb *cb, *cn; 194 195 if (llist_empty(&rq->execute_cb)) 196 return; 197 198 llist_for_each_entry_safe(cb, cn, 199 llist_del_all(&rq->execute_cb), 200 work.llnode) 201 fn(&cb->work); 202} 203 204static void __notify_execute_cb_irq(struct i915_request *rq) 205{ 206 __notify_execute_cb(rq, irq_work_queue); 207} 208 209static bool irq_work_imm(struct irq_work *wrk) 210{ 211 wrk->func(wrk); 212 return false; 213} 214 215static void __notify_execute_cb_imm(struct i915_request *rq) 216{ 217 __notify_execute_cb(rq, irq_work_imm); 218} 219 220static void free_capture_list(struct i915_request *request) 221{ 222 struct i915_capture_list *capture; 223 224 capture = fetch_and_zero(&request->capture_list); 225 while (capture) { 226 struct i915_capture_list *next = capture->next; 227 228 kfree(capture); 229 capture = next; 230 } 231} 232 233static void __i915_request_fill(struct i915_request *rq, u8 val) 234{ 235 void *vaddr = rq->ring->vaddr; 236 u32 head; 237 238 head = rq->infix; 239 if (rq->postfix < head) { 240 memset(vaddr + head, val, rq->ring->size - head); 241 head = 0; 242 } 243 memset(vaddr + head, val, rq->postfix - head); 244} 245 246static void remove_from_engine(struct i915_request *rq) 247{ 248 struct intel_engine_cs *engine, *locked; 249 250 /* 251 * Virtual engines complicate acquiring the engine timeline lock, 252 * as their rq->engine pointer is not stable until under that 253 * engine lock. The simple ploy we use is to take the lock then 254 * check that the rq still belongs to the newly locked engine. 255 */ 256 locked = READ_ONCE(rq->engine); 257 spin_lock_irq(&locked->active.lock); 258 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 259 spin_unlock(&locked->active.lock); 260 spin_lock(&engine->active.lock); 261 locked = engine; 262 } 263 list_del_init(&rq->sched.link); 264 265 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 266 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 267 268 /* Prevent further __await_execution() registering a cb, then flush */ 269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 270 271 spin_unlock_irq(&locked->active.lock); 272 273 __notify_execute_cb_imm(rq); 274} 275 276bool i915_request_retire(struct i915_request *rq) 277{ 278 if (!i915_request_completed(rq)) 279 return false; 280 281 RQ_TRACE(rq, "\n"); 282 283 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 284 trace_i915_request_retire(rq); 285 i915_request_mark_complete(rq); 286 287 /* 288 * We know the GPU must have read the request to have 289 * sent us the seqno + interrupt, so use the position 290 * of tail of the request to update the last known position 291 * of the GPU head. 292 * 293 * Note this requires that we are always called in request 294 * completion order. 295 */ 296 GEM_BUG_ON(!list_is_first(&rq->link, 297 &i915_request_timeline(rq)->requests)); 298 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 299 /* Poison before we release our space in the ring */ 300 __i915_request_fill(rq, POISON_FREE); 301 rq->ring->head = rq->postfix; 302 303 if (!i915_request_signaled(rq)) { 304 spin_lock_irq(&rq->lock); 305 dma_fence_signal_locked(&rq->fence); 306 spin_unlock_irq(&rq->lock); 307 } 308 309 if (i915_request_has_waitboost(rq)) { 310 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 311 atomic_dec(&rq->engine->gt->rps.num_waiters); 312 } 313 314 /* 315 * We only loosely track inflight requests across preemption, 316 * and so we may find ourselves attempting to retire a _completed_ 317 * request that we have removed from the HW and put back on a run 318 * queue. 319 * 320 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 321 * after removing the breadcrumb and signaling it, so that we do not 322 * inadvertently attach the breadcrumb to a completed request. 323 */ 324 remove_from_engine(rq); 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 326 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 328 329 intel_context_exit(rq->context); 330 intel_context_unpin(rq->context); 331 332 free_capture_list(rq); 333 i915_sched_node_fini(&rq->sched); 334 i915_request_put(rq); 335 336 return true; 337} 338 339void i915_request_retire_upto(struct i915_request *rq) 340{ 341 struct intel_timeline * const tl = i915_request_timeline(rq); 342 struct i915_request *tmp; 343 344 RQ_TRACE(rq, "\n"); 345 346 GEM_BUG_ON(!i915_request_completed(rq)); 347 348 do { 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 350 } while (i915_request_retire(tmp) && tmp != rq); 351} 352 353static struct i915_request * const * 354__engine_active(struct intel_engine_cs *engine) 355{ 356 return READ_ONCE(engine->execlists.active); 357} 358 359static bool __request_in_flight(const struct i915_request *signal) 360{ 361 struct i915_request * const *port, *rq; 362 bool inflight = false; 363 364 if (!i915_request_is_ready(signal)) 365 return false; 366 367 /* 368 * Even if we have unwound the request, it may still be on 369 * the GPU (preempt-to-busy). If that request is inside an 370 * unpreemptible critical section, it will not be removed. Some 371 * GPU functions may even be stuck waiting for the paired request 372 * (__await_execution) to be submitted and cannot be preempted 373 * until the bond is executing. 374 * 375 * As we know that there are always preemption points between 376 * requests, we know that only the currently executing request 377 * may be still active even though we have cleared the flag. 378 * However, we can't rely on our tracking of ELSP[0] to know 379 * which request is currently active and so maybe stuck, as 380 * the tracking maybe an event behind. Instead assume that 381 * if the context is still inflight, then it is still active 382 * even if the active flag has been cleared. 383 * 384 * To further complicate matters, if there a pending promotion, the HW 385 * may either perform a context switch to the second inflight execlists, 386 * or it may switch to the pending set of execlists. In the case of the 387 * latter, it may send the ACK and we process the event copying the 388 * pending[] over top of inflight[], _overwriting_ our *active. Since 389 * this implies the HW is arbitrating and not struck in *active, we do 390 * not worry about complete accuracy, but we do require no read/write 391 * tearing of the pointer [the read of the pointer must be valid, even 392 * as the array is being overwritten, for which we require the writes 393 * to avoid tearing.] 394 * 395 * Note that the read of *execlists->active may race with the promotion 396 * of execlists->pending[] to execlists->inflight[], overwritting 397 * the value at *execlists->active. This is fine. The promotion implies 398 * that we received an ACK from the HW, and so the context is not 399 * stuck -- if we do not see ourselves in *active, the inflight status 400 * is valid. If instead we see ourselves being copied into *active, 401 * we are inflight and may signal the callback. 402 */ 403 if (!intel_context_inflight(signal->context)) 404 return false; 405 406 rcu_read_lock(); 407 for (port = __engine_active(signal->engine); 408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 409 port++) { 410 if (rq->context == signal->context) { 411 inflight = i915_seqno_passed(rq->fence.seqno, 412 signal->fence.seqno); 413 break; 414 } 415 } 416 rcu_read_unlock(); 417 418 return inflight; 419} 420 421static int 422__await_execution(struct i915_request *rq, 423 struct i915_request *signal, 424 void (*hook)(struct i915_request *rq, 425 struct dma_fence *signal), 426 gfp_t gfp) 427{ 428 struct execute_cb *cb; 429 430 if (i915_request_is_active(signal)) { 431 if (hook) 432 hook(rq, &signal->fence); 433 return 0; 434 } 435 436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 437 if (!cb) 438 return -ENOMEM; 439 440 cb->fence = &rq->submit; 441 i915_sw_fence_await(cb->fence); 442 init_irq_work(&cb->work, irq_execute_cb); 443 444 if (hook) { 445 cb->hook = hook; 446 cb->signal = i915_request_get(signal); 447 cb->work.func = irq_execute_cb_hook; 448 } 449 450 /* 451 * Register the callback first, then see if the signaler is already 452 * active. This ensures that if we race with the 453 * __notify_execute_cb from i915_request_submit() and we are not 454 * included in that list, we get a second bite of the cherry and 455 * execute it ourselves. After this point, a future 456 * i915_request_submit() will notify us. 457 * 458 * In i915_request_retire() we set the ACTIVE bit on a completed 459 * request (then flush the execute_cb). So by registering the 460 * callback first, then checking the ACTIVE bit, we serialise with 461 * the completed/retired request. 462 */ 463 if (llist_add(&cb->work.llnode, &signal->execute_cb)) { 464 if (i915_request_is_active(signal) || 465 __request_in_flight(signal)) 466 __notify_execute_cb_imm(signal); 467 } 468 469 return 0; 470} 471 472static bool fatal_error(int error) 473{ 474 switch (error) { 475 case 0: /* not an error! */ 476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 478 return false; 479 default: 480 return true; 481 } 482} 483 484void __i915_request_skip(struct i915_request *rq) 485{ 486 GEM_BUG_ON(!fatal_error(rq->fence.error)); 487 488 if (rq->infix == rq->postfix) 489 return; 490 491 /* 492 * As this request likely depends on state from the lost 493 * context, clear out all the user operations leaving the 494 * breadcrumb at the end (so we get the fence notifications). 495 */ 496 __i915_request_fill(rq, 0); 497 rq->infix = rq->postfix; 498} 499 500void i915_request_set_error_once(struct i915_request *rq, int error) 501{ 502 int old; 503 504 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 505 506 if (i915_request_signaled(rq)) 507 return; 508 509 old = READ_ONCE(rq->fence.error); 510 do { 511 if (fatal_error(old)) 512 return; 513 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 514} 515 516bool __i915_request_submit(struct i915_request *request) 517{ 518 struct intel_engine_cs *engine = request->engine; 519 bool result = false; 520 521 RQ_TRACE(request, "\n"); 522 523 GEM_BUG_ON(!irqs_disabled()); 524 lockdep_assert_held(&engine->active.lock); 525 526 /* 527 * With the advent of preempt-to-busy, we frequently encounter 528 * requests that we have unsubmitted from HW, but left running 529 * until the next ack and so have completed in the meantime. On 530 * resubmission of that completed request, we can skip 531 * updating the payload, and execlists can even skip submitting 532 * the request. 533 * 534 * We must remove the request from the caller's priority queue, 535 * and the caller must only call us when the request is in their 536 * priority queue, under the active.lock. This ensures that the 537 * request has *not* yet been retired and we can safely move 538 * the request into the engine->active.list where it will be 539 * dropped upon retiring. (Otherwise if resubmit a *retired* 540 * request, this would be a horrible use-after-free.) 541 */ 542 if (i915_request_completed(request)) 543 goto xfer; 544 545 if (unlikely(intel_context_is_closed(request->context) && 546 !intel_engine_has_heartbeat(engine))) 547 intel_context_set_banned(request->context); 548 549 if (unlikely(intel_context_is_banned(request->context))) 550 i915_request_set_error_once(request, -EIO); 551 552 if (unlikely(fatal_error(request->fence.error))) 553 __i915_request_skip(request); 554 555 /* 556 * Are we using semaphores when the gpu is already saturated? 557 * 558 * Using semaphores incurs a cost in having the GPU poll a 559 * memory location, busywaiting for it to change. The continual 560 * memory reads can have a noticeable impact on the rest of the 561 * system with the extra bus traffic, stalling the cpu as it too 562 * tries to access memory across the bus (perf stat -e bus-cycles). 563 * 564 * If we installed a semaphore on this request and we only submit 565 * the request after the signaler completed, that indicates the 566 * system is overloaded and using semaphores at this time only 567 * increases the amount of work we are doing. If so, we disable 568 * further use of semaphores until we are idle again, whence we 569 * optimistically try again. 570 */ 571 if (request->sched.semaphores && 572 i915_sw_fence_signaled(&request->semaphore)) 573 engine->saturated |= request->sched.semaphores; 574 575 engine->emit_fini_breadcrumb(request, 576 request->ring->vaddr + request->postfix); 577 578 trace_i915_request_execute(request); 579 engine->serial++; 580 result = true; 581 582xfer: 583 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 584 list_move_tail(&request->sched.link, &engine->active.requests); 585 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 586 } 587 588 /* 589 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 590 * 591 * In the future, perhaps when we have an active time-slicing scheduler, 592 * it will be interesting to unsubmit parallel execution and remove 593 * busywaits from the GPU until their master is restarted. This is 594 * quite hairy, we have to carefully rollback the fence and do a 595 * preempt-to-idle cycle on the target engine, all the while the 596 * master execute_cb may refire. 597 */ 598 __notify_execute_cb_irq(request); 599 600 /* We may be recursing from the signal callback of another i915 fence */ 601 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 602 i915_request_enable_breadcrumb(request); 603 604 return result; 605} 606 607void i915_request_submit(struct i915_request *request) 608{ 609 struct intel_engine_cs *engine = request->engine; 610 unsigned long flags; 611 612 /* Will be called from irq-context when using foreign fences. */ 613 spin_lock_irqsave(&engine->active.lock, flags); 614 615 __i915_request_submit(request); 616 617 spin_unlock_irqrestore(&engine->active.lock, flags); 618} 619 620void __i915_request_unsubmit(struct i915_request *request) 621{ 622 struct intel_engine_cs *engine = request->engine; 623 624 /* 625 * Only unwind in reverse order, required so that the per-context list 626 * is kept in seqno/ring order. 627 */ 628 RQ_TRACE(request, "\n"); 629 630 GEM_BUG_ON(!irqs_disabled()); 631 lockdep_assert_held(&engine->active.lock); 632 633 /* 634 * Before we remove this breadcrumb from the signal list, we have 635 * to ensure that a concurrent dma_fence_enable_signaling() does not 636 * attach itself. We first mark the request as no longer active and 637 * make sure that is visible to other cores, and then remove the 638 * breadcrumb if attached. 639 */ 640 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 641 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 643 i915_request_cancel_breadcrumb(request); 644 645 /* We've already spun, don't charge on resubmitting. */ 646 if (request->sched.semaphores && i915_request_started(request)) 647 request->sched.semaphores = 0; 648 649 /* 650 * We don't need to wake_up any waiters on request->execute, they 651 * will get woken by any other event or us re-adding this request 652 * to the engine timeline (__i915_request_submit()). The waiters 653 * should be quite adapt at finding that the request now has a new 654 * global_seqno to the one they went to sleep on. 655 */ 656} 657 658void i915_request_unsubmit(struct i915_request *request) 659{ 660 struct intel_engine_cs *engine = request->engine; 661 unsigned long flags; 662 663 /* Will be called from irq-context when using foreign fences. */ 664 spin_lock_irqsave(&engine->active.lock, flags); 665 666 __i915_request_unsubmit(request); 667 668 spin_unlock_irqrestore(&engine->active.lock, flags); 669} 670 671static int __i915_sw_fence_call 672submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 673{ 674 struct i915_request *request = 675 container_of(fence, typeof(*request), submit); 676 677 switch (state) { 678 case FENCE_COMPLETE: 679 trace_i915_request_submit(request); 680 681 if (unlikely(fence->error)) 682 i915_request_set_error_once(request, fence->error); 683 684 /* 685 * We need to serialize use of the submit_request() callback 686 * with its hotplugging performed during an emergency 687 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 688 * critical section in order to force i915_gem_set_wedged() to 689 * wait until the submit_request() is completed before 690 * proceeding. 691 */ 692 rcu_read_lock(); 693 request->engine->submit_request(request); 694 rcu_read_unlock(); 695 break; 696 697 case FENCE_FREE: 698 i915_request_put(request); 699 break; 700 } 701 702 return NOTIFY_DONE; 703} 704 705static int __i915_sw_fence_call 706semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 707{ 708 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 709 710 switch (state) { 711 case FENCE_COMPLETE: 712 break; 713 714 case FENCE_FREE: 715 i915_request_put(rq); 716 break; 717 } 718 719 return NOTIFY_DONE; 720} 721 722static void retire_requests(struct intel_timeline *tl) 723{ 724 struct i915_request *rq, *rn; 725 726 list_for_each_entry_safe(rq, rn, &tl->requests, link) 727 if (!i915_request_retire(rq)) 728 break; 729} 730 731static noinline struct i915_request * 732request_alloc_slow(struct intel_timeline *tl, 733 struct i915_request **rsvd, 734 gfp_t gfp) 735{ 736 struct i915_request *rq; 737 738 /* If we cannot wait, dip into our reserves */ 739 if (!gfpflags_allow_blocking(gfp)) { 740 rq = xchg(rsvd, NULL); 741 if (!rq) /* Use the normal failure path for one final WARN */ 742 goto out; 743 744 return rq; 745 } 746 747 if (list_empty(&tl->requests)) 748 goto out; 749 750 /* Move our oldest request to the slab-cache (if not in use!) */ 751 rq = list_first_entry(&tl->requests, typeof(*rq), link); 752 i915_request_retire(rq); 753 754 rq = kmem_cache_alloc(global.slab_requests, 755 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 756 if (rq) 757 return rq; 758 759 /* Ratelimit ourselves to prevent oom from malicious clients */ 760 rq = list_last_entry(&tl->requests, typeof(*rq), link); 761 cond_synchronize_rcu(rq->rcustate); 762 763 /* Retire our old requests in the hope that we free some */ 764 retire_requests(tl); 765 766out: 767 return kmem_cache_alloc(global.slab_requests, gfp); 768} 769 770static void __i915_request_ctor(void *arg) 771{ 772 struct i915_request *rq = arg; 773 774 spin_lock_init(&rq->lock); 775 i915_sched_node_init(&rq->sched); 776 i915_sw_fence_init(&rq->submit, submit_notify); 777 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 778 779 rq->capture_list = NULL; 780 781 init_llist_head(&rq->execute_cb); 782} 783 784struct i915_request * 785__i915_request_create(struct intel_context *ce, gfp_t gfp) 786{ 787 struct intel_timeline *tl = ce->timeline; 788 struct i915_request *rq; 789 u32 seqno; 790 int ret; 791 792 might_sleep_if(gfpflags_allow_blocking(gfp)); 793 794 /* Check that the caller provided an already pinned context */ 795 __intel_context_pin(ce); 796 797 /* 798 * Beware: Dragons be flying overhead. 799 * 800 * We use RCU to look up requests in flight. The lookups may 801 * race with the request being allocated from the slab freelist. 802 * That is the request we are writing to here, may be in the process 803 * of being read by __i915_active_request_get_rcu(). As such, 804 * we have to be very careful when overwriting the contents. During 805 * the RCU lookup, we change chase the request->engine pointer, 806 * read the request->global_seqno and increment the reference count. 807 * 808 * The reference count is incremented atomically. If it is zero, 809 * the lookup knows the request is unallocated and complete. Otherwise, 810 * it is either still in use, or has been reallocated and reset 811 * with dma_fence_init(). This increment is safe for release as we 812 * check that the request we have a reference to and matches the active 813 * request. 814 * 815 * Before we increment the refcount, we chase the request->engine 816 * pointer. We must not call kmem_cache_zalloc() or else we set 817 * that pointer to NULL and cause a crash during the lookup. If 818 * we see the request is completed (based on the value of the 819 * old engine and seqno), the lookup is complete and reports NULL. 820 * If we decide the request is not completed (new engine or seqno), 821 * then we grab a reference and double check that it is still the 822 * active request - which it won't be and restart the lookup. 823 * 824 * Do not use kmem_cache_zalloc() here! 825 */ 826 rq = kmem_cache_alloc(global.slab_requests, 827 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 828 if (unlikely(!rq)) { 829 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 830 if (!rq) { 831 ret = -ENOMEM; 832 goto err_unreserve; 833 } 834 } 835 836 rq->context = ce; 837 rq->engine = ce->engine; 838 rq->ring = ce->ring; 839 rq->execution_mask = ce->engine->mask; 840 841 ret = intel_timeline_get_seqno(tl, rq, &seqno); 842 if (ret) 843 goto err_free; 844 845 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 846 tl->fence_context, seqno); 847 848 RCU_INIT_POINTER(rq->timeline, tl); 849 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 850 rq->hwsp_seqno = tl->hwsp_seqno; 851 GEM_BUG_ON(i915_request_completed(rq)); 852 853 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 854 855 /* We bump the ref for the fence chain */ 856 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 857 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 858 859 i915_sched_node_reinit(&rq->sched); 860 861 /* No zalloc, everything must be cleared after use */ 862 rq->batch = NULL; 863 GEM_BUG_ON(rq->capture_list); 864 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 865 866 /* 867 * Reserve space in the ring buffer for all the commands required to 868 * eventually emit this request. This is to guarantee that the 869 * i915_request_add() call can't fail. Note that the reserve may need 870 * to be redone if the request is not actually submitted straight 871 * away, e.g. because a GPU scheduler has deferred it. 872 * 873 * Note that due to how we add reserved_space to intel_ring_begin() 874 * we need to double our request to ensure that if we need to wrap 875 * around inside i915_request_add() there is sufficient space at 876 * the beginning of the ring as well. 877 */ 878 rq->reserved_space = 879 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 880 881 /* 882 * Record the position of the start of the request so that 883 * should we detect the updated seqno part-way through the 884 * GPU processing the request, we never over-estimate the 885 * position of the head. 886 */ 887 rq->head = rq->ring->emit; 888 889 ret = rq->engine->request_alloc(rq); 890 if (ret) 891 goto err_unwind; 892 893 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 894 895 intel_context_mark_active(ce); 896 list_add_tail_rcu(&rq->link, &tl->requests); 897 898 return rq; 899 900err_unwind: 901 ce->ring->emit = rq->head; 902 903 /* Make sure we didn't add ourselves to external state before freeing */ 904 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 905 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 906 907err_free: 908 kmem_cache_free(global.slab_requests, rq); 909err_unreserve: 910 intel_context_unpin(ce); 911 return ERR_PTR(ret); 912} 913 914struct i915_request * 915i915_request_create(struct intel_context *ce) 916{ 917 struct i915_request *rq; 918 struct intel_timeline *tl; 919 920 tl = intel_context_timeline_lock(ce); 921 if (IS_ERR(tl)) 922 return ERR_CAST(tl); 923 924 /* Move our oldest request to the slab-cache (if not in use!) */ 925 rq = list_first_entry(&tl->requests, typeof(*rq), link); 926 if (!list_is_last(&rq->link, &tl->requests)) 927 i915_request_retire(rq); 928 929 intel_context_enter(ce); 930 rq = __i915_request_create(ce, GFP_KERNEL); 931 intel_context_exit(ce); /* active reference transferred to request */ 932 if (IS_ERR(rq)) 933 goto err_unlock; 934 935 /* Check that we do not interrupt ourselves with a new request */ 936 rq->cookie = lockdep_pin_lock(&tl->mutex); 937 938 return rq; 939 940err_unlock: 941 intel_context_timeline_unlock(tl); 942 return rq; 943} 944 945static int 946i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 947{ 948 struct dma_fence *fence; 949 int err; 950 951 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 952 return 0; 953 954 if (i915_request_started(signal)) 955 return 0; 956 957 fence = NULL; 958 rcu_read_lock(); 959 spin_lock_irq(&signal->lock); 960 do { 961 struct list_head *pos = READ_ONCE(signal->link.prev); 962 struct i915_request *prev; 963 964 /* Confirm signal has not been retired, the link is valid */ 965 if (unlikely(i915_request_started(signal))) 966 break; 967 968 /* Is signal the earliest request on its timeline? */ 969 if (pos == &rcu_dereference(signal->timeline)->requests) 970 break; 971 972 /* 973 * Peek at the request before us in the timeline. That 974 * request will only be valid before it is retired, so 975 * after acquiring a reference to it, confirm that it is 976 * still part of the signaler's timeline. 977 */ 978 prev = list_entry(pos, typeof(*prev), link); 979 if (!i915_request_get_rcu(prev)) 980 break; 981 982 /* After the strong barrier, confirm prev is still attached */ 983 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 984 i915_request_put(prev); 985 break; 986 } 987 988 fence = &prev->fence; 989 } while (0); 990 spin_unlock_irq(&signal->lock); 991 rcu_read_unlock(); 992 if (!fence) 993 return 0; 994 995 err = 0; 996 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 997 err = i915_sw_fence_await_dma_fence(&rq->submit, 998 fence, 0, 999 I915_FENCE_GFP); 1000 dma_fence_put(fence); 1001 1002 return err; 1003} 1004 1005static intel_engine_mask_t 1006already_busywaiting(struct i915_request *rq) 1007{ 1008 /* 1009 * Polling a semaphore causes bus traffic, delaying other users of 1010 * both the GPU and CPU. We want to limit the impact on others, 1011 * while taking advantage of early submission to reduce GPU 1012 * latency. Therefore we restrict ourselves to not using more 1013 * than one semaphore from each source, and not using a semaphore 1014 * if we have detected the engine is saturated (i.e. would not be 1015 * submitted early and cause bus traffic reading an already passed 1016 * semaphore). 1017 * 1018 * See the are-we-too-late? check in __i915_request_submit(). 1019 */ 1020 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1021} 1022 1023static int 1024__emit_semaphore_wait(struct i915_request *to, 1025 struct i915_request *from, 1026 u32 seqno) 1027{ 1028 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1029 u32 hwsp_offset; 1030 int len, err; 1031 u32 *cs; 1032 1033 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1034 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1035 1036 /* We need to pin the signaler's HWSP until we are finished reading. */ 1037 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1038 if (err) 1039 return err; 1040 1041 len = 4; 1042 if (has_token) 1043 len += 2; 1044 1045 cs = intel_ring_begin(to, len); 1046 if (IS_ERR(cs)) 1047 return PTR_ERR(cs); 1048 1049 /* 1050 * Using greater-than-or-equal here means we have to worry 1051 * about seqno wraparound. To side step that issue, we swap 1052 * the timeline HWSP upon wrapping, so that everyone listening 1053 * for the old (pre-wrap) values do not see the much smaller 1054 * (post-wrap) values than they were expecting (and so wait 1055 * forever). 1056 */ 1057 *cs++ = (MI_SEMAPHORE_WAIT | 1058 MI_SEMAPHORE_GLOBAL_GTT | 1059 MI_SEMAPHORE_POLL | 1060 MI_SEMAPHORE_SAD_GTE_SDD) + 1061 has_token; 1062 *cs++ = seqno; 1063 *cs++ = hwsp_offset; 1064 *cs++ = 0; 1065 if (has_token) { 1066 *cs++ = 0; 1067 *cs++ = MI_NOOP; 1068 } 1069 1070 intel_ring_advance(to, cs); 1071 return 0; 1072} 1073 1074static int 1075emit_semaphore_wait(struct i915_request *to, 1076 struct i915_request *from, 1077 gfp_t gfp) 1078{ 1079 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1080 struct i915_sw_fence *wait = &to->submit; 1081 1082 if (!intel_context_use_semaphores(to->context)) 1083 goto await_fence; 1084 1085 if (i915_request_has_initial_breadcrumb(to)) 1086 goto await_fence; 1087 1088 if (!rcu_access_pointer(from->hwsp_cacheline)) 1089 goto await_fence; 1090 1091 /* 1092 * If this or its dependents are waiting on an external fence 1093 * that may fail catastrophically, then we want to avoid using 1094 * sempahores as they bypass the fence signaling metadata, and we 1095 * lose the fence->error propagation. 1096 */ 1097 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1098 goto await_fence; 1099 1100 /* Just emit the first semaphore we see as request space is limited. */ 1101 if (already_busywaiting(to) & mask) 1102 goto await_fence; 1103 1104 if (i915_request_await_start(to, from) < 0) 1105 goto await_fence; 1106 1107 /* Only submit our spinner after the signaler is running! */ 1108 if (__await_execution(to, from, NULL, gfp)) 1109 goto await_fence; 1110 1111 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1112 goto await_fence; 1113 1114 to->sched.semaphores |= mask; 1115 wait = &to->semaphore; 1116 1117await_fence: 1118 return i915_sw_fence_await_dma_fence(wait, 1119 &from->fence, 0, 1120 I915_FENCE_GFP); 1121} 1122 1123static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1124 struct dma_fence *fence) 1125{ 1126 return __intel_timeline_sync_is_later(tl, 1127 fence->context, 1128 fence->seqno - 1); 1129} 1130 1131static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1132 const struct dma_fence *fence) 1133{ 1134 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1135} 1136 1137static int 1138__i915_request_await_execution(struct i915_request *to, 1139 struct i915_request *from, 1140 void (*hook)(struct i915_request *rq, 1141 struct dma_fence *signal)) 1142{ 1143 int err; 1144 1145 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1146 1147 /* Submit both requests at the same time */ 1148 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1149 if (err) 1150 return err; 1151 1152 /* Squash repeated depenendices to the same timelines */ 1153 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1154 &from->fence)) 1155 return 0; 1156 1157 /* 1158 * Wait until the start of this request. 1159 * 1160 * The execution cb fires when we submit the request to HW. But in 1161 * many cases this may be long before the request itself is ready to 1162 * run (consider that we submit 2 requests for the same context, where 1163 * the request of interest is behind an indefinite spinner). So we hook 1164 * up to both to reduce our queues and keep the execution lag minimised 1165 * in the worst case, though we hope that the await_start is elided. 1166 */ 1167 err = i915_request_await_start(to, from); 1168 if (err < 0) 1169 return err; 1170 1171 /* 1172 * Ensure both start together [after all semaphores in signal] 1173 * 1174 * Now that we are queued to the HW at roughly the same time (thanks 1175 * to the execute cb) and are ready to run at roughly the same time 1176 * (thanks to the await start), our signaler may still be indefinitely 1177 * delayed by waiting on a semaphore from a remote engine. If our 1178 * signaler depends on a semaphore, so indirectly do we, and we do not 1179 * want to start our payload until our signaler also starts theirs. 1180 * So we wait. 1181 * 1182 * However, there is also a second condition for which we need to wait 1183 * for the precise start of the signaler. Consider that the signaler 1184 * was submitted in a chain of requests following another context 1185 * (with just an ordinary intra-engine fence dependency between the 1186 * two). In this case the signaler is queued to HW, but not for 1187 * immediate execution, and so we must wait until it reaches the 1188 * active slot. 1189 */ 1190 if (intel_engine_has_semaphores(to->engine) && 1191 !i915_request_has_initial_breadcrumb(to)) { 1192 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1193 if (err < 0) 1194 return err; 1195 } 1196 1197 /* Couple the dependency tree for PI on this exposed to->fence */ 1198 if (to->engine->schedule) { 1199 err = i915_sched_node_add_dependency(&to->sched, 1200 &from->sched, 1201 I915_DEPENDENCY_WEAK); 1202 if (err < 0) 1203 return err; 1204 } 1205 1206 return intel_timeline_sync_set_start(i915_request_timeline(to), 1207 &from->fence); 1208} 1209 1210static void mark_external(struct i915_request *rq) 1211{ 1212 /* 1213 * The downside of using semaphores is that we lose metadata passing 1214 * along the signaling chain. This is particularly nasty when we 1215 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1216 * fatal errors we want to scrub the request before it is executed, 1217 * which means that we cannot preload the request onto HW and have 1218 * it wait upon a semaphore. 1219 */ 1220 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1221} 1222 1223static int 1224__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1225{ 1226 mark_external(rq); 1227 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1228 i915_fence_context_timeout(rq->engine->i915, 1229 fence->context), 1230 I915_FENCE_GFP); 1231} 1232 1233static int 1234i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1235{ 1236 struct dma_fence *iter; 1237 int err = 0; 1238 1239 if (!to_dma_fence_chain(fence)) 1240 return __i915_request_await_external(rq, fence); 1241 1242 dma_fence_chain_for_each(iter, fence) { 1243 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1244 1245 if (!dma_fence_is_i915(chain->fence)) { 1246 err = __i915_request_await_external(rq, iter); 1247 break; 1248 } 1249 1250 err = i915_request_await_dma_fence(rq, chain->fence); 1251 if (err < 0) 1252 break; 1253 } 1254 1255 dma_fence_put(iter); 1256 return err; 1257} 1258 1259int 1260i915_request_await_execution(struct i915_request *rq, 1261 struct dma_fence *fence, 1262 void (*hook)(struct i915_request *rq, 1263 struct dma_fence *signal)) 1264{ 1265 struct dma_fence **child = &fence; 1266 unsigned int nchild = 1; 1267 int ret; 1268 1269 if (dma_fence_is_array(fence)) { 1270 struct dma_fence_array *array = to_dma_fence_array(fence); 1271 1272 /* XXX Error for signal-on-any fence arrays */ 1273 1274 child = array->fences; 1275 nchild = array->num_fences; 1276 GEM_BUG_ON(!nchild); 1277 } 1278 1279 do { 1280 fence = *child++; 1281 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1282 continue; 1283 1284 if (fence->context == rq->fence.context) 1285 continue; 1286 1287 /* 1288 * We don't squash repeated fence dependencies here as we 1289 * want to run our callback in all cases. 1290 */ 1291 1292 if (dma_fence_is_i915(fence)) 1293 ret = __i915_request_await_execution(rq, 1294 to_request(fence), 1295 hook); 1296 else 1297 ret = i915_request_await_external(rq, fence); 1298 if (ret < 0) 1299 return ret; 1300 } while (--nchild); 1301 1302 return 0; 1303} 1304 1305static int 1306await_request_submit(struct i915_request *to, struct i915_request *from) 1307{ 1308 /* 1309 * If we are waiting on a virtual engine, then it may be 1310 * constrained to execute on a single engine *prior* to submission. 1311 * When it is submitted, it will be first submitted to the virtual 1312 * engine and then passed to the physical engine. We cannot allow 1313 * the waiter to be submitted immediately to the physical engine 1314 * as it may then bypass the virtual request. 1315 */ 1316 if (to->engine == READ_ONCE(from->engine)) 1317 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1318 &from->submit, 1319 I915_FENCE_GFP); 1320 else 1321 return __i915_request_await_execution(to, from, NULL); 1322} 1323 1324static int 1325i915_request_await_request(struct i915_request *to, struct i915_request *from) 1326{ 1327 int ret; 1328 1329 GEM_BUG_ON(to == from); 1330 GEM_BUG_ON(to->timeline == from->timeline); 1331 1332 if (i915_request_completed(from)) { 1333 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1334 return 0; 1335 } 1336 1337 if (to->engine->schedule) { 1338 ret = i915_sched_node_add_dependency(&to->sched, 1339 &from->sched, 1340 I915_DEPENDENCY_EXTERNAL); 1341 if (ret < 0) 1342 return ret; 1343 } 1344 1345 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1346 ret = await_request_submit(to, from); 1347 else 1348 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1349 if (ret < 0) 1350 return ret; 1351 1352 return 0; 1353} 1354 1355int 1356i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1357{ 1358 struct dma_fence **child = &fence; 1359 unsigned int nchild = 1; 1360 int ret; 1361 1362 /* 1363 * Note that if the fence-array was created in signal-on-any mode, 1364 * we should *not* decompose it into its individual fences. However, 1365 * we don't currently store which mode the fence-array is operating 1366 * in. Fortunately, the only user of signal-on-any is private to 1367 * amdgpu and we should not see any incoming fence-array from 1368 * sync-file being in signal-on-any mode. 1369 */ 1370 if (dma_fence_is_array(fence)) { 1371 struct dma_fence_array *array = to_dma_fence_array(fence); 1372 1373 child = array->fences; 1374 nchild = array->num_fences; 1375 GEM_BUG_ON(!nchild); 1376 } 1377 1378 do { 1379 fence = *child++; 1380 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1381 continue; 1382 1383 /* 1384 * Requests on the same timeline are explicitly ordered, along 1385 * with their dependencies, by i915_request_add() which ensures 1386 * that requests are submitted in-order through each ring. 1387 */ 1388 if (fence->context == rq->fence.context) 1389 continue; 1390 1391 /* Squash repeated waits to the same timelines */ 1392 if (fence->context && 1393 intel_timeline_sync_is_later(i915_request_timeline(rq), 1394 fence)) 1395 continue; 1396 1397 if (dma_fence_is_i915(fence)) 1398 ret = i915_request_await_request(rq, to_request(fence)); 1399 else 1400 ret = i915_request_await_external(rq, fence); 1401 if (ret < 0) 1402 return ret; 1403 1404 /* Record the latest fence used against each timeline */ 1405 if (fence->context) 1406 intel_timeline_sync_set(i915_request_timeline(rq), 1407 fence); 1408 } while (--nchild); 1409 1410 return 0; 1411} 1412 1413/** 1414 * i915_request_await_object - set this request to (async) wait upon a bo 1415 * @to: request we are wishing to use 1416 * @obj: object which may be in use on another ring. 1417 * @write: whether the wait is on behalf of a writer 1418 * 1419 * This code is meant to abstract object synchronization with the GPU. 1420 * Conceptually we serialise writes between engines inside the GPU. 1421 * We only allow one engine to write into a buffer at any time, but 1422 * multiple readers. To ensure each has a coherent view of memory, we must: 1423 * 1424 * - If there is an outstanding write request to the object, the new 1425 * request must wait for it to complete (either CPU or in hw, requests 1426 * on the same ring will be naturally ordered). 1427 * 1428 * - If we are a write request (pending_write_domain is set), the new 1429 * request must wait for outstanding read requests to complete. 1430 * 1431 * Returns 0 if successful, else propagates up the lower layer error. 1432 */ 1433int 1434i915_request_await_object(struct i915_request *to, 1435 struct drm_i915_gem_object *obj, 1436 bool write) 1437{ 1438 struct dma_fence *excl; 1439 int ret = 0; 1440 1441 if (write) { 1442 struct dma_fence **shared; 1443 unsigned int count, i; 1444 1445 ret = dma_resv_get_fences_rcu(obj->base.resv, 1446 &excl, &count, &shared); 1447 if (ret) 1448 return ret; 1449 1450 for (i = 0; i < count; i++) { 1451 ret = i915_request_await_dma_fence(to, shared[i]); 1452 if (ret) 1453 break; 1454 1455 dma_fence_put(shared[i]); 1456 } 1457 1458 for (; i < count; i++) 1459 dma_fence_put(shared[i]); 1460 kfree(shared); 1461 } else { 1462 excl = dma_resv_get_excl_rcu(obj->base.resv); 1463 } 1464 1465 if (excl) { 1466 if (ret == 0) 1467 ret = i915_request_await_dma_fence(to, excl); 1468 1469 dma_fence_put(excl); 1470 } 1471 1472 return ret; 1473} 1474 1475static struct i915_request * 1476__i915_request_add_to_timeline(struct i915_request *rq) 1477{ 1478 struct intel_timeline *timeline = i915_request_timeline(rq); 1479 struct i915_request *prev; 1480 1481 /* 1482 * Dependency tracking and request ordering along the timeline 1483 * is special cased so that we can eliminate redundant ordering 1484 * operations while building the request (we know that the timeline 1485 * itself is ordered, and here we guarantee it). 1486 * 1487 * As we know we will need to emit tracking along the timeline, 1488 * we embed the hooks into our request struct -- at the cost of 1489 * having to have specialised no-allocation interfaces (which will 1490 * be beneficial elsewhere). 1491 * 1492 * A second benefit to open-coding i915_request_await_request is 1493 * that we can apply a slight variant of the rules specialised 1494 * for timelines that jump between engines (such as virtual engines). 1495 * If we consider the case of virtual engine, we must emit a dma-fence 1496 * to prevent scheduling of the second request until the first is 1497 * complete (to maximise our greedy late load balancing) and this 1498 * precludes optimising to use semaphores serialisation of a single 1499 * timeline across engines. 1500 */ 1501 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1502 &rq->fence)); 1503 if (prev && !i915_request_completed(prev)) { 1504 /* 1505 * The requests are supposed to be kept in order. However, 1506 * we need to be wary in case the timeline->last_request 1507 * is used as a barrier for external modification to this 1508 * context. 1509 */ 1510 GEM_BUG_ON(prev->context == rq->context && 1511 i915_seqno_passed(prev->fence.seqno, 1512 rq->fence.seqno)); 1513 1514 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1515 i915_sw_fence_await_sw_fence(&rq->submit, 1516 &prev->submit, 1517 &rq->submitq); 1518 else 1519 __i915_sw_fence_await_dma_fence(&rq->submit, 1520 &prev->fence, 1521 &rq->dmaq); 1522 if (rq->engine->schedule) 1523 __i915_sched_node_add_dependency(&rq->sched, 1524 &prev->sched, 1525 &rq->dep, 1526 0); 1527 } 1528 if (prev) 1529 i915_request_put(prev); 1530 1531 /* 1532 * Make sure that no request gazumped us - if it was allocated after 1533 * our i915_request_alloc() and called __i915_request_add() before 1534 * us, the timeline will hold its seqno which is later than ours. 1535 */ 1536 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1537 1538 return prev; 1539} 1540 1541/* 1542 * NB: This function is not allowed to fail. Doing so would mean the the 1543 * request is not being tracked for completion but the work itself is 1544 * going to happen on the hardware. This would be a Bad Thing(tm). 1545 */ 1546struct i915_request *__i915_request_commit(struct i915_request *rq) 1547{ 1548 struct intel_engine_cs *engine = rq->engine; 1549 struct intel_ring *ring = rq->ring; 1550 u32 *cs; 1551 1552 RQ_TRACE(rq, "\n"); 1553 1554 /* 1555 * To ensure that this call will not fail, space for its emissions 1556 * should already have been reserved in the ring buffer. Let the ring 1557 * know that it is time to use that space up. 1558 */ 1559 GEM_BUG_ON(rq->reserved_space > ring->space); 1560 rq->reserved_space = 0; 1561 rq->emitted_jiffies = jiffies; 1562 1563 /* 1564 * Record the position of the start of the breadcrumb so that 1565 * should we detect the updated seqno part-way through the 1566 * GPU processing the request, we never over-estimate the 1567 * position of the ring's HEAD. 1568 */ 1569 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1570 GEM_BUG_ON(IS_ERR(cs)); 1571 rq->postfix = intel_ring_offset(rq, cs); 1572 1573 return __i915_request_add_to_timeline(rq); 1574} 1575 1576void __i915_request_queue(struct i915_request *rq, 1577 const struct i915_sched_attr *attr) 1578{ 1579 /* 1580 * Let the backend know a new request has arrived that may need 1581 * to adjust the existing execution schedule due to a high priority 1582 * request - i.e. we may want to preempt the current request in order 1583 * to run a high priority dependency chain *before* we can execute this 1584 * request. 1585 * 1586 * This is called before the request is ready to run so that we can 1587 * decide whether to preempt the entire chain so that it is ready to 1588 * run at the earliest possible convenience. 1589 */ 1590 if (attr && rq->engine->schedule) 1591 rq->engine->schedule(rq, attr); 1592 i915_sw_fence_commit(&rq->semaphore); 1593 i915_sw_fence_commit(&rq->submit); 1594} 1595 1596void i915_request_add(struct i915_request *rq) 1597{ 1598 struct intel_timeline * const tl = i915_request_timeline(rq); 1599 struct i915_sched_attr attr = {}; 1600 struct i915_gem_context *ctx; 1601 1602 lockdep_assert_held(&tl->mutex); 1603 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1604 1605 trace_i915_request_add(rq); 1606 __i915_request_commit(rq); 1607 1608 /* XXX placeholder for selftests */ 1609 rcu_read_lock(); 1610 ctx = rcu_dereference(rq->context->gem_context); 1611 if (ctx) 1612 attr = ctx->sched; 1613 rcu_read_unlock(); 1614 1615 __i915_request_queue(rq, &attr); 1616 1617 mutex_unlock(&tl->mutex); 1618} 1619 1620static unsigned long local_clock_ns(unsigned int *cpu) 1621{ 1622 unsigned long t; 1623 1624 /* 1625 * Cheaply and approximately convert from nanoseconds to microseconds. 1626 * The result and subsequent calculations are also defined in the same 1627 * approximate microseconds units. The principal source of timing 1628 * error here is from the simple truncation. 1629 * 1630 * Note that local_clock() is only defined wrt to the current CPU; 1631 * the comparisons are no longer valid if we switch CPUs. Instead of 1632 * blocking preemption for the entire busywait, we can detect the CPU 1633 * switch and use that as indicator of system load and a reason to 1634 * stop busywaiting, see busywait_stop(). 1635 */ 1636 *cpu = get_cpu(); 1637 t = local_clock(); 1638 put_cpu(); 1639 1640 return t; 1641} 1642 1643static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1644{ 1645 unsigned int this_cpu; 1646 1647 if (time_after(local_clock_ns(&this_cpu), timeout)) 1648 return true; 1649 1650 return this_cpu != cpu; 1651} 1652 1653static bool __i915_spin_request(struct i915_request * const rq, int state) 1654{ 1655 unsigned long timeout_ns; 1656 unsigned int cpu; 1657 1658 /* 1659 * Only wait for the request if we know it is likely to complete. 1660 * 1661 * We don't track the timestamps around requests, nor the average 1662 * request length, so we do not have a good indicator that this 1663 * request will complete within the timeout. What we do know is the 1664 * order in which requests are executed by the context and so we can 1665 * tell if the request has been started. If the request is not even 1666 * running yet, it is a fair assumption that it will not complete 1667 * within our relatively short timeout. 1668 */ 1669 if (!i915_request_is_running(rq)) 1670 return false; 1671 1672 /* 1673 * When waiting for high frequency requests, e.g. during synchronous 1674 * rendering split between the CPU and GPU, the finite amount of time 1675 * required to set up the irq and wait upon it limits the response 1676 * rate. By busywaiting on the request completion for a short while we 1677 * can service the high frequency waits as quick as possible. However, 1678 * if it is a slow request, we want to sleep as quickly as possible. 1679 * The tradeoff between waiting and sleeping is roughly the time it 1680 * takes to sleep on a request, on the order of a microsecond. 1681 */ 1682 1683 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1684 timeout_ns += local_clock_ns(&cpu); 1685 do { 1686 if (dma_fence_is_signaled(&rq->fence)) 1687 return true; 1688 1689 if (signal_pending_state(state, current)) 1690 break; 1691 1692 if (busywait_stop(timeout_ns, cpu)) 1693 break; 1694 1695 cpu_relax(); 1696 } while (!need_resched()); 1697 1698 return false; 1699} 1700 1701struct request_wait { 1702 struct dma_fence_cb cb; 1703 struct task_struct *tsk; 1704}; 1705 1706static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1707{ 1708 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1709 1710 wake_up_process(fetch_and_zero(&wait->tsk)); 1711} 1712 1713/** 1714 * i915_request_wait - wait until execution of request has finished 1715 * @rq: the request to wait upon 1716 * @flags: how to wait 1717 * @timeout: how long to wait in jiffies 1718 * 1719 * i915_request_wait() waits for the request to be completed, for a 1720 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1721 * unbounded wait). 1722 * 1723 * Returns the remaining time (in jiffies) if the request completed, which may 1724 * be zero or -ETIME if the request is unfinished after the timeout expires. 1725 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1726 * pending before the request completes. 1727 */ 1728long i915_request_wait(struct i915_request *rq, 1729 unsigned int flags, 1730 long timeout) 1731{ 1732 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1733 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1734 struct request_wait wait; 1735 1736 might_sleep(); 1737 GEM_BUG_ON(timeout < 0); 1738 1739 if (dma_fence_is_signaled(&rq->fence)) 1740 return timeout; 1741 1742 if (!timeout) 1743 return -ETIME; 1744 1745 trace_i915_request_wait_begin(rq, flags); 1746 1747 /* 1748 * We must never wait on the GPU while holding a lock as we 1749 * may need to perform a GPU reset. So while we don't need to 1750 * serialise wait/reset with an explicit lock, we do want 1751 * lockdep to detect potential dependency cycles. 1752 */ 1753 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1754 1755 /* 1756 * Optimistic spin before touching IRQs. 1757 * 1758 * We may use a rather large value here to offset the penalty of 1759 * switching away from the active task. Frequently, the client will 1760 * wait upon an old swapbuffer to throttle itself to remain within a 1761 * frame of the gpu. If the client is running in lockstep with the gpu, 1762 * then it should not be waiting long at all, and a sleep now will incur 1763 * extra scheduler latency in producing the next frame. To try to 1764 * avoid adding the cost of enabling/disabling the interrupt to the 1765 * short wait, we first spin to see if the request would have completed 1766 * in the time taken to setup the interrupt. 1767 * 1768 * We need upto 5us to enable the irq, and upto 20us to hide the 1769 * scheduler latency of a context switch, ignoring the secondary 1770 * impacts from a context switch such as cache eviction. 1771 * 1772 * The scheme used for low-latency IO is called "hybrid interrupt 1773 * polling". The suggestion there is to sleep until just before you 1774 * expect to be woken by the device interrupt and then poll for its 1775 * completion. That requires having a good predictor for the request 1776 * duration, which we currently lack. 1777 */ 1778 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1779 __i915_spin_request(rq, state)) 1780 goto out; 1781 1782 /* 1783 * This client is about to stall waiting for the GPU. In many cases 1784 * this is undesirable and limits the throughput of the system, as 1785 * many clients cannot continue processing user input/output whilst 1786 * blocked. RPS autotuning may take tens of milliseconds to respond 1787 * to the GPU load and thus incurs additional latency for the client. 1788 * We can circumvent that by promoting the GPU frequency to maximum 1789 * before we sleep. This makes the GPU throttle up much more quickly 1790 * (good for benchmarks and user experience, e.g. window animations), 1791 * but at a cost of spending more power processing the workload 1792 * (bad for battery). 1793 */ 1794 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1795 intel_rps_boost(rq); 1796 1797 wait.tsk = current; 1798 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1799 goto out; 1800 1801 /* 1802 * Flush the submission tasklet, but only if it may help this request. 1803 * 1804 * We sometimes experience some latency between the HW interrupts and 1805 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1806 * be due to lazy CS events), so lets run the tasklet manually if there 1807 * is a chance it may submit this request. If the request is not ready 1808 * to run, as it is waiting for other fences to be signaled, flushing 1809 * the tasklet is busy work without any advantage for this client. 1810 * 1811 * If the HW is being lazy, this is the last chance before we go to 1812 * sleep to catch any pending events. We will check periodically in 1813 * the heartbeat to flush the submission tasklets as a last resort 1814 * for unhappy HW. 1815 */ 1816 if (i915_request_is_ready(rq)) 1817 intel_engine_flush_submission(rq->engine); 1818 1819 for (;;) { 1820 set_current_state(state); 1821 1822 if (dma_fence_is_signaled(&rq->fence)) 1823 break; 1824 1825 if (signal_pending_state(state, current)) { 1826 timeout = -ERESTARTSYS; 1827 break; 1828 } 1829 1830 if (!timeout) { 1831 timeout = -ETIME; 1832 break; 1833 } 1834 1835 timeout = io_schedule_timeout(timeout); 1836 } 1837 __set_current_state(TASK_RUNNING); 1838 1839 if (READ_ONCE(wait.tsk)) 1840 dma_fence_remove_callback(&rq->fence, &wait.cb); 1841 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1842 1843out: 1844 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1845 trace_i915_request_wait_end(rq); 1846 return timeout; 1847} 1848 1849#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1850#include "selftests/mock_request.c" 1851#include "selftests/i915_request.c" 1852#endif 1853 1854static void i915_global_request_shrink(void) 1855{ 1856 kmem_cache_shrink(global.slab_execute_cbs); 1857 kmem_cache_shrink(global.slab_requests); 1858} 1859 1860static void i915_global_request_exit(void) 1861{ 1862 kmem_cache_destroy(global.slab_execute_cbs); 1863 kmem_cache_destroy(global.slab_requests); 1864} 1865 1866static struct i915_global_request global = { { 1867 .shrink = i915_global_request_shrink, 1868 .exit = i915_global_request_exit, 1869} }; 1870 1871int __init i915_global_request_init(void) 1872{ 1873 global.slab_requests = 1874 kmem_cache_create("i915_request", 1875 sizeof(struct i915_request), 1876 __alignof__(struct i915_request), 1877 SLAB_HWCACHE_ALIGN | 1878 SLAB_RECLAIM_ACCOUNT | 1879 SLAB_TYPESAFE_BY_RCU, 1880 __i915_request_ctor); 1881 if (!global.slab_requests) 1882 return -ENOMEM; 1883 1884 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1885 SLAB_HWCACHE_ALIGN | 1886 SLAB_RECLAIM_ACCOUNT | 1887 SLAB_TYPESAFE_BY_RCU); 1888 if (!global.slab_execute_cbs) 1889 goto err_requests; 1890 1891 i915_global_register(&global.base); 1892 return 0; 1893 1894err_requests: 1895 kmem_cache_destroy(global.slab_requests); 1896 return -ENOMEM; 1897} 1898