1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/dma-fence-chain.h>
27#include <linux/irq_work.h>
28#include <linux/prefetch.h>
29#include <linux/sched.h>
30#include <linux/sched/clock.h>
31#include <linux/sched/signal.h>
32
33#include "gem/i915_gem_context.h"
34#include "gt/intel_breadcrumbs.h"
35#include "gt/intel_context.h"
36#include "gt/intel_ring.h"
37#include "gt/intel_rps.h"
38
39#include "i915_active.h"
40#include "i915_drv.h"
41#include "i915_globals.h"
42#include "i915_trace.h"
43#include "intel_pm.h"
44
45struct execute_cb {
46	struct irq_work work;
47	struct i915_sw_fence *fence;
48	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49	struct i915_request *signal;
50};
51
52static struct i915_global_request {
53	struct i915_global base;
54	struct kmem_cache *slab_requests;
55	struct kmem_cache *slab_execute_cbs;
56} global;
57
58static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59{
60	return dev_name(to_request(fence)->engine->i915->drm.dev);
61}
62
63static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64{
65	const struct i915_gem_context *ctx;
66
67	/*
68	 * The timeline struct (as part of the ppgtt underneath a context)
69	 * may be freed when the request is no longer in use by the GPU.
70	 * We could extend the life of a context to beyond that of all
71	 * fences, possibly keeping the hw resource around indefinitely,
72	 * or we just give them a false name. Since
73	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74	 * lie seems justifiable.
75	 */
76	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77		return "signaled";
78
79	ctx = i915_request_gem_context(to_request(fence));
80	if (!ctx)
81		return "[" DRIVER_NAME "]";
82
83	return ctx->name;
84}
85
86static bool i915_fence_signaled(struct dma_fence *fence)
87{
88	return i915_request_completed(to_request(fence));
89}
90
91static bool i915_fence_enable_signaling(struct dma_fence *fence)
92{
93	return i915_request_enable_breadcrumb(to_request(fence));
94}
95
96static signed long i915_fence_wait(struct dma_fence *fence,
97				   bool interruptible,
98				   signed long timeout)
99{
100	return i915_request_wait(to_request(fence),
101				 interruptible | I915_WAIT_PRIORITY,
102				 timeout);
103}
104
105struct kmem_cache *i915_request_slab_cache(void)
106{
107	return global.slab_requests;
108}
109
110static void i915_fence_release(struct dma_fence *fence)
111{
112	struct i915_request *rq = to_request(fence);
113
114	/*
115	 * The request is put onto a RCU freelist (i.e. the address
116	 * is immediately reused), mark the fences as being freed now.
117	 * Otherwise the debugobjects for the fences are only marked as
118	 * freed when the slab cache itself is freed, and so we would get
119	 * caught trying to reuse dead objects.
120	 */
121	i915_sw_fence_fini(&rq->submit);
122	i915_sw_fence_fini(&rq->semaphore);
123
124	/*
125	 * Keep one request on each engine for reserved use under mempressure
126	 *
127	 * We do not hold a reference to the engine here and so have to be
128	 * very careful in what rq->engine we poke. The virtual engine is
129	 * referenced via the rq->context and we released that ref during
130	 * i915_request_retire(), ergo we must not dereference a virtual
131	 * engine here. Not that we would want to, as the only consumer of
132	 * the reserved engine->request_pool is the power management parking,
133	 * which must-not-fail, and that is only run on the physical engines.
134	 *
135	 * Since the request must have been executed to be have completed,
136	 * we know that it will have been processed by the HW and will
137	 * not be unsubmitted again, so rq->engine and rq->execution_mask
138	 * at this point is stable. rq->execution_mask will be a single
139	 * bit if the last and _only_ engine it could execution on was a
140	 * physical engine, if it's multiple bits then it started on and
141	 * could still be on a virtual engine. Thus if the mask is not a
142	 * power-of-two we assume that rq->engine may still be a virtual
143	 * engine and so a dangling invalid pointer that we cannot dereference
144	 *
145	 * For example, consider the flow of a bonded request through a virtual
146	 * engine. The request is created with a wide engine mask (all engines
147	 * that we might execute on). On processing the bond, the request mask
148	 * is reduced to one or more engines. If the request is subsequently
149	 * bound to a single engine, it will then be constrained to only
150	 * execute on that engine and never returned to the virtual engine
151	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152	 * know that if the rq->execution_mask is a single bit, rq->engine
153	 * can be a physical engine with the exact corresponding mask.
154	 */
155	if (is_power_of_2(rq->execution_mask) &&
156	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157		return;
158
159	kmem_cache_free(global.slab_requests, rq);
160}
161
162const struct dma_fence_ops i915_fence_ops = {
163	.get_driver_name = i915_fence_get_driver_name,
164	.get_timeline_name = i915_fence_get_timeline_name,
165	.enable_signaling = i915_fence_enable_signaling,
166	.signaled = i915_fence_signaled,
167	.wait = i915_fence_wait,
168	.release = i915_fence_release,
169};
170
171static void irq_execute_cb(struct irq_work *wrk)
172{
173	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174
175	i915_sw_fence_complete(cb->fence);
176	kmem_cache_free(global.slab_execute_cbs, cb);
177}
178
179static void irq_execute_cb_hook(struct irq_work *wrk)
180{
181	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182
183	cb->hook(container_of(cb->fence, struct i915_request, submit),
184		 &cb->signal->fence);
185	i915_request_put(cb->signal);
186
187	irq_execute_cb(wrk);
188}
189
190static __always_inline void
191__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
192{
193	struct execute_cb *cb, *cn;
194
195	if (llist_empty(&rq->execute_cb))
196		return;
197
198	llist_for_each_entry_safe(cb, cn,
199				  llist_del_all(&rq->execute_cb),
200				  work.llnode)
201		fn(&cb->work);
202}
203
204static void __notify_execute_cb_irq(struct i915_request *rq)
205{
206	__notify_execute_cb(rq, irq_work_queue);
207}
208
209static bool irq_work_imm(struct irq_work *wrk)
210{
211	wrk->func(wrk);
212	return false;
213}
214
215static void __notify_execute_cb_imm(struct i915_request *rq)
216{
217	__notify_execute_cb(rq, irq_work_imm);
218}
219
220static void free_capture_list(struct i915_request *request)
221{
222	struct i915_capture_list *capture;
223
224	capture = fetch_and_zero(&request->capture_list);
225	while (capture) {
226		struct i915_capture_list *next = capture->next;
227
228		kfree(capture);
229		capture = next;
230	}
231}
232
233static void __i915_request_fill(struct i915_request *rq, u8 val)
234{
235	void *vaddr = rq->ring->vaddr;
236	u32 head;
237
238	head = rq->infix;
239	if (rq->postfix < head) {
240		memset(vaddr + head, val, rq->ring->size - head);
241		head = 0;
242	}
243	memset(vaddr + head, val, rq->postfix - head);
244}
245
246static void remove_from_engine(struct i915_request *rq)
247{
248	struct intel_engine_cs *engine, *locked;
249
250	/*
251	 * Virtual engines complicate acquiring the engine timeline lock,
252	 * as their rq->engine pointer is not stable until under that
253	 * engine lock. The simple ploy we use is to take the lock then
254	 * check that the rq still belongs to the newly locked engine.
255	 */
256	locked = READ_ONCE(rq->engine);
257	spin_lock_irq(&locked->active.lock);
258	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
259		spin_unlock(&locked->active.lock);
260		spin_lock(&engine->active.lock);
261		locked = engine;
262	}
263	list_del_init(&rq->sched.link);
264
265	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
266	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
267
268	/* Prevent further __await_execution() registering a cb, then flush */
269	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270
271	spin_unlock_irq(&locked->active.lock);
272
273	__notify_execute_cb_imm(rq);
274}
275
276bool i915_request_retire(struct i915_request *rq)
277{
278	if (!i915_request_completed(rq))
279		return false;
280
281	RQ_TRACE(rq, "\n");
282
283	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
284	trace_i915_request_retire(rq);
285	i915_request_mark_complete(rq);
286
287	/*
288	 * We know the GPU must have read the request to have
289	 * sent us the seqno + interrupt, so use the position
290	 * of tail of the request to update the last known position
291	 * of the GPU head.
292	 *
293	 * Note this requires that we are always called in request
294	 * completion order.
295	 */
296	GEM_BUG_ON(!list_is_first(&rq->link,
297				  &i915_request_timeline(rq)->requests));
298	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
299		/* Poison before we release our space in the ring */
300		__i915_request_fill(rq, POISON_FREE);
301	rq->ring->head = rq->postfix;
302
303	if (!i915_request_signaled(rq)) {
304		spin_lock_irq(&rq->lock);
305		dma_fence_signal_locked(&rq->fence);
306		spin_unlock_irq(&rq->lock);
307	}
308
309	if (i915_request_has_waitboost(rq)) {
310		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
311		atomic_dec(&rq->engine->gt->rps.num_waiters);
312	}
313
314	/*
315	 * We only loosely track inflight requests across preemption,
316	 * and so we may find ourselves attempting to retire a _completed_
317	 * request that we have removed from the HW and put back on a run
318	 * queue.
319	 *
320	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
321	 * after removing the breadcrumb and signaling it, so that we do not
322	 * inadvertently attach the breadcrumb to a completed request.
323	 */
324	remove_from_engine(rq);
325	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
326
327	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
328
329	intel_context_exit(rq->context);
330	intel_context_unpin(rq->context);
331
332	free_capture_list(rq);
333	i915_sched_node_fini(&rq->sched);
334	i915_request_put(rq);
335
336	return true;
337}
338
339void i915_request_retire_upto(struct i915_request *rq)
340{
341	struct intel_timeline * const tl = i915_request_timeline(rq);
342	struct i915_request *tmp;
343
344	RQ_TRACE(rq, "\n");
345
346	GEM_BUG_ON(!i915_request_completed(rq));
347
348	do {
349		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
350	} while (i915_request_retire(tmp) && tmp != rq);
351}
352
353static struct i915_request * const *
354__engine_active(struct intel_engine_cs *engine)
355{
356	return READ_ONCE(engine->execlists.active);
357}
358
359static bool __request_in_flight(const struct i915_request *signal)
360{
361	struct i915_request * const *port, *rq;
362	bool inflight = false;
363
364	if (!i915_request_is_ready(signal))
365		return false;
366
367	/*
368	 * Even if we have unwound the request, it may still be on
369	 * the GPU (preempt-to-busy). If that request is inside an
370	 * unpreemptible critical section, it will not be removed. Some
371	 * GPU functions may even be stuck waiting for the paired request
372	 * (__await_execution) to be submitted and cannot be preempted
373	 * until the bond is executing.
374	 *
375	 * As we know that there are always preemption points between
376	 * requests, we know that only the currently executing request
377	 * may be still active even though we have cleared the flag.
378	 * However, we can't rely on our tracking of ELSP[0] to know
379	 * which request is currently active and so maybe stuck, as
380	 * the tracking maybe an event behind. Instead assume that
381	 * if the context is still inflight, then it is still active
382	 * even if the active flag has been cleared.
383	 *
384	 * To further complicate matters, if there a pending promotion, the HW
385	 * may either perform a context switch to the second inflight execlists,
386	 * or it may switch to the pending set of execlists. In the case of the
387	 * latter, it may send the ACK and we process the event copying the
388	 * pending[] over top of inflight[], _overwriting_ our *active. Since
389	 * this implies the HW is arbitrating and not struck in *active, we do
390	 * not worry about complete accuracy, but we do require no read/write
391	 * tearing of the pointer [the read of the pointer must be valid, even
392	 * as the array is being overwritten, for which we require the writes
393	 * to avoid tearing.]
394	 *
395	 * Note that the read of *execlists->active may race with the promotion
396	 * of execlists->pending[] to execlists->inflight[], overwritting
397	 * the value at *execlists->active. This is fine. The promotion implies
398	 * that we received an ACK from the HW, and so the context is not
399	 * stuck -- if we do not see ourselves in *active, the inflight status
400	 * is valid. If instead we see ourselves being copied into *active,
401	 * we are inflight and may signal the callback.
402	 */
403	if (!intel_context_inflight(signal->context))
404		return false;
405
406	rcu_read_lock();
407	for (port = __engine_active(signal->engine);
408	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
409	     port++) {
410		if (rq->context == signal->context) {
411			inflight = i915_seqno_passed(rq->fence.seqno,
412						     signal->fence.seqno);
413			break;
414		}
415	}
416	rcu_read_unlock();
417
418	return inflight;
419}
420
421static int
422__await_execution(struct i915_request *rq,
423		  struct i915_request *signal,
424		  void (*hook)(struct i915_request *rq,
425			       struct dma_fence *signal),
426		  gfp_t gfp)
427{
428	struct execute_cb *cb;
429
430	if (i915_request_is_active(signal)) {
431		if (hook)
432			hook(rq, &signal->fence);
433		return 0;
434	}
435
436	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
437	if (!cb)
438		return -ENOMEM;
439
440	cb->fence = &rq->submit;
441	i915_sw_fence_await(cb->fence);
442	init_irq_work(&cb->work, irq_execute_cb);
443
444	if (hook) {
445		cb->hook = hook;
446		cb->signal = i915_request_get(signal);
447		cb->work.func = irq_execute_cb_hook;
448	}
449
450	/*
451	 * Register the callback first, then see if the signaler is already
452	 * active. This ensures that if we race with the
453	 * __notify_execute_cb from i915_request_submit() and we are not
454	 * included in that list, we get a second bite of the cherry and
455	 * execute it ourselves. After this point, a future
456	 * i915_request_submit() will notify us.
457	 *
458	 * In i915_request_retire() we set the ACTIVE bit on a completed
459	 * request (then flush the execute_cb). So by registering the
460	 * callback first, then checking the ACTIVE bit, we serialise with
461	 * the completed/retired request.
462	 */
463	if (llist_add(&cb->work.llnode, &signal->execute_cb)) {
464		if (i915_request_is_active(signal) ||
465		    __request_in_flight(signal))
466			__notify_execute_cb_imm(signal);
467	}
468
469	return 0;
470}
471
472static bool fatal_error(int error)
473{
474	switch (error) {
475	case 0: /* not an error! */
476	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
477	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
478		return false;
479	default:
480		return true;
481	}
482}
483
484void __i915_request_skip(struct i915_request *rq)
485{
486	GEM_BUG_ON(!fatal_error(rq->fence.error));
487
488	if (rq->infix == rq->postfix)
489		return;
490
491	/*
492	 * As this request likely depends on state from the lost
493	 * context, clear out all the user operations leaving the
494	 * breadcrumb at the end (so we get the fence notifications).
495	 */
496	__i915_request_fill(rq, 0);
497	rq->infix = rq->postfix;
498}
499
500void i915_request_set_error_once(struct i915_request *rq, int error)
501{
502	int old;
503
504	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
505
506	if (i915_request_signaled(rq))
507		return;
508
509	old = READ_ONCE(rq->fence.error);
510	do {
511		if (fatal_error(old))
512			return;
513	} while (!try_cmpxchg(&rq->fence.error, &old, error));
514}
515
516bool __i915_request_submit(struct i915_request *request)
517{
518	struct intel_engine_cs *engine = request->engine;
519	bool result = false;
520
521	RQ_TRACE(request, "\n");
522
523	GEM_BUG_ON(!irqs_disabled());
524	lockdep_assert_held(&engine->active.lock);
525
526	/*
527	 * With the advent of preempt-to-busy, we frequently encounter
528	 * requests that we have unsubmitted from HW, but left running
529	 * until the next ack and so have completed in the meantime. On
530	 * resubmission of that completed request, we can skip
531	 * updating the payload, and execlists can even skip submitting
532	 * the request.
533	 *
534	 * We must remove the request from the caller's priority queue,
535	 * and the caller must only call us when the request is in their
536	 * priority queue, under the active.lock. This ensures that the
537	 * request has *not* yet been retired and we can safely move
538	 * the request into the engine->active.list where it will be
539	 * dropped upon retiring. (Otherwise if resubmit a *retired*
540	 * request, this would be a horrible use-after-free.)
541	 */
542	if (i915_request_completed(request))
543		goto xfer;
544
545	if (unlikely(intel_context_is_closed(request->context) &&
546		     !intel_engine_has_heartbeat(engine)))
547		intel_context_set_banned(request->context);
548
549	if (unlikely(intel_context_is_banned(request->context)))
550		i915_request_set_error_once(request, -EIO);
551
552	if (unlikely(fatal_error(request->fence.error)))
553		__i915_request_skip(request);
554
555	/*
556	 * Are we using semaphores when the gpu is already saturated?
557	 *
558	 * Using semaphores incurs a cost in having the GPU poll a
559	 * memory location, busywaiting for it to change. The continual
560	 * memory reads can have a noticeable impact on the rest of the
561	 * system with the extra bus traffic, stalling the cpu as it too
562	 * tries to access memory across the bus (perf stat -e bus-cycles).
563	 *
564	 * If we installed a semaphore on this request and we only submit
565	 * the request after the signaler completed, that indicates the
566	 * system is overloaded and using semaphores at this time only
567	 * increases the amount of work we are doing. If so, we disable
568	 * further use of semaphores until we are idle again, whence we
569	 * optimistically try again.
570	 */
571	if (request->sched.semaphores &&
572	    i915_sw_fence_signaled(&request->semaphore))
573		engine->saturated |= request->sched.semaphores;
574
575	engine->emit_fini_breadcrumb(request,
576				     request->ring->vaddr + request->postfix);
577
578	trace_i915_request_execute(request);
579	engine->serial++;
580	result = true;
581
582xfer:
583	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
584		list_move_tail(&request->sched.link, &engine->active.requests);
585		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
586	}
587
588	/*
589	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
590	 *
591	 * In the future, perhaps when we have an active time-slicing scheduler,
592	 * it will be interesting to unsubmit parallel execution and remove
593	 * busywaits from the GPU until their master is restarted. This is
594	 * quite hairy, we have to carefully rollback the fence and do a
595	 * preempt-to-idle cycle on the target engine, all the while the
596	 * master execute_cb may refire.
597	 */
598	__notify_execute_cb_irq(request);
599
600	/* We may be recursing from the signal callback of another i915 fence */
601	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
602		i915_request_enable_breadcrumb(request);
603
604	return result;
605}
606
607void i915_request_submit(struct i915_request *request)
608{
609	struct intel_engine_cs *engine = request->engine;
610	unsigned long flags;
611
612	/* Will be called from irq-context when using foreign fences. */
613	spin_lock_irqsave(&engine->active.lock, flags);
614
615	__i915_request_submit(request);
616
617	spin_unlock_irqrestore(&engine->active.lock, flags);
618}
619
620void __i915_request_unsubmit(struct i915_request *request)
621{
622	struct intel_engine_cs *engine = request->engine;
623
624	/*
625	 * Only unwind in reverse order, required so that the per-context list
626	 * is kept in seqno/ring order.
627	 */
628	RQ_TRACE(request, "\n");
629
630	GEM_BUG_ON(!irqs_disabled());
631	lockdep_assert_held(&engine->active.lock);
632
633	/*
634	 * Before we remove this breadcrumb from the signal list, we have
635	 * to ensure that a concurrent dma_fence_enable_signaling() does not
636	 * attach itself. We first mark the request as no longer active and
637	 * make sure that is visible to other cores, and then remove the
638	 * breadcrumb if attached.
639	 */
640	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
641	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
642	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643		i915_request_cancel_breadcrumb(request);
644
645	/* We've already spun, don't charge on resubmitting. */
646	if (request->sched.semaphores && i915_request_started(request))
647		request->sched.semaphores = 0;
648
649	/*
650	 * We don't need to wake_up any waiters on request->execute, they
651	 * will get woken by any other event or us re-adding this request
652	 * to the engine timeline (__i915_request_submit()). The waiters
653	 * should be quite adapt at finding that the request now has a new
654	 * global_seqno to the one they went to sleep on.
655	 */
656}
657
658void i915_request_unsubmit(struct i915_request *request)
659{
660	struct intel_engine_cs *engine = request->engine;
661	unsigned long flags;
662
663	/* Will be called from irq-context when using foreign fences. */
664	spin_lock_irqsave(&engine->active.lock, flags);
665
666	__i915_request_unsubmit(request);
667
668	spin_unlock_irqrestore(&engine->active.lock, flags);
669}
670
671static int __i915_sw_fence_call
672submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
673{
674	struct i915_request *request =
675		container_of(fence, typeof(*request), submit);
676
677	switch (state) {
678	case FENCE_COMPLETE:
679		trace_i915_request_submit(request);
680
681		if (unlikely(fence->error))
682			i915_request_set_error_once(request, fence->error);
683
684		/*
685		 * We need to serialize use of the submit_request() callback
686		 * with its hotplugging performed during an emergency
687		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
688		 * critical section in order to force i915_gem_set_wedged() to
689		 * wait until the submit_request() is completed before
690		 * proceeding.
691		 */
692		rcu_read_lock();
693		request->engine->submit_request(request);
694		rcu_read_unlock();
695		break;
696
697	case FENCE_FREE:
698		i915_request_put(request);
699		break;
700	}
701
702	return NOTIFY_DONE;
703}
704
705static int __i915_sw_fence_call
706semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
707{
708	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
709
710	switch (state) {
711	case FENCE_COMPLETE:
712		break;
713
714	case FENCE_FREE:
715		i915_request_put(rq);
716		break;
717	}
718
719	return NOTIFY_DONE;
720}
721
722static void retire_requests(struct intel_timeline *tl)
723{
724	struct i915_request *rq, *rn;
725
726	list_for_each_entry_safe(rq, rn, &tl->requests, link)
727		if (!i915_request_retire(rq))
728			break;
729}
730
731static noinline struct i915_request *
732request_alloc_slow(struct intel_timeline *tl,
733		   struct i915_request **rsvd,
734		   gfp_t gfp)
735{
736	struct i915_request *rq;
737
738	/* If we cannot wait, dip into our reserves */
739	if (!gfpflags_allow_blocking(gfp)) {
740		rq = xchg(rsvd, NULL);
741		if (!rq) /* Use the normal failure path for one final WARN */
742			goto out;
743
744		return rq;
745	}
746
747	if (list_empty(&tl->requests))
748		goto out;
749
750	/* Move our oldest request to the slab-cache (if not in use!) */
751	rq = list_first_entry(&tl->requests, typeof(*rq), link);
752	i915_request_retire(rq);
753
754	rq = kmem_cache_alloc(global.slab_requests,
755			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
756	if (rq)
757		return rq;
758
759	/* Ratelimit ourselves to prevent oom from malicious clients */
760	rq = list_last_entry(&tl->requests, typeof(*rq), link);
761	cond_synchronize_rcu(rq->rcustate);
762
763	/* Retire our old requests in the hope that we free some */
764	retire_requests(tl);
765
766out:
767	return kmem_cache_alloc(global.slab_requests, gfp);
768}
769
770static void __i915_request_ctor(void *arg)
771{
772	struct i915_request *rq = arg;
773
774	spin_lock_init(&rq->lock);
775	i915_sched_node_init(&rq->sched);
776	i915_sw_fence_init(&rq->submit, submit_notify);
777	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
778
779	rq->capture_list = NULL;
780
781	init_llist_head(&rq->execute_cb);
782}
783
784struct i915_request *
785__i915_request_create(struct intel_context *ce, gfp_t gfp)
786{
787	struct intel_timeline *tl = ce->timeline;
788	struct i915_request *rq;
789	u32 seqno;
790	int ret;
791
792	might_sleep_if(gfpflags_allow_blocking(gfp));
793
794	/* Check that the caller provided an already pinned context */
795	__intel_context_pin(ce);
796
797	/*
798	 * Beware: Dragons be flying overhead.
799	 *
800	 * We use RCU to look up requests in flight. The lookups may
801	 * race with the request being allocated from the slab freelist.
802	 * That is the request we are writing to here, may be in the process
803	 * of being read by __i915_active_request_get_rcu(). As such,
804	 * we have to be very careful when overwriting the contents. During
805	 * the RCU lookup, we change chase the request->engine pointer,
806	 * read the request->global_seqno and increment the reference count.
807	 *
808	 * The reference count is incremented atomically. If it is zero,
809	 * the lookup knows the request is unallocated and complete. Otherwise,
810	 * it is either still in use, or has been reallocated and reset
811	 * with dma_fence_init(). This increment is safe for release as we
812	 * check that the request we have a reference to and matches the active
813	 * request.
814	 *
815	 * Before we increment the refcount, we chase the request->engine
816	 * pointer. We must not call kmem_cache_zalloc() or else we set
817	 * that pointer to NULL and cause a crash during the lookup. If
818	 * we see the request is completed (based on the value of the
819	 * old engine and seqno), the lookup is complete and reports NULL.
820	 * If we decide the request is not completed (new engine or seqno),
821	 * then we grab a reference and double check that it is still the
822	 * active request - which it won't be and restart the lookup.
823	 *
824	 * Do not use kmem_cache_zalloc() here!
825	 */
826	rq = kmem_cache_alloc(global.slab_requests,
827			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
828	if (unlikely(!rq)) {
829		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
830		if (!rq) {
831			ret = -ENOMEM;
832			goto err_unreserve;
833		}
834	}
835
836	rq->context = ce;
837	rq->engine = ce->engine;
838	rq->ring = ce->ring;
839	rq->execution_mask = ce->engine->mask;
840
841	ret = intel_timeline_get_seqno(tl, rq, &seqno);
842	if (ret)
843		goto err_free;
844
845	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
846		       tl->fence_context, seqno);
847
848	RCU_INIT_POINTER(rq->timeline, tl);
849	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
850	rq->hwsp_seqno = tl->hwsp_seqno;
851	GEM_BUG_ON(i915_request_completed(rq));
852
853	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
854
855	/* We bump the ref for the fence chain */
856	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
857	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
858
859	i915_sched_node_reinit(&rq->sched);
860
861	/* No zalloc, everything must be cleared after use */
862	rq->batch = NULL;
863	GEM_BUG_ON(rq->capture_list);
864	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
865
866	/*
867	 * Reserve space in the ring buffer for all the commands required to
868	 * eventually emit this request. This is to guarantee that the
869	 * i915_request_add() call can't fail. Note that the reserve may need
870	 * to be redone if the request is not actually submitted straight
871	 * away, e.g. because a GPU scheduler has deferred it.
872	 *
873	 * Note that due to how we add reserved_space to intel_ring_begin()
874	 * we need to double our request to ensure that if we need to wrap
875	 * around inside i915_request_add() there is sufficient space at
876	 * the beginning of the ring as well.
877	 */
878	rq->reserved_space =
879		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
880
881	/*
882	 * Record the position of the start of the request so that
883	 * should we detect the updated seqno part-way through the
884	 * GPU processing the request, we never over-estimate the
885	 * position of the head.
886	 */
887	rq->head = rq->ring->emit;
888
889	ret = rq->engine->request_alloc(rq);
890	if (ret)
891		goto err_unwind;
892
893	rq->infix = rq->ring->emit; /* end of header; start of user payload */
894
895	intel_context_mark_active(ce);
896	list_add_tail_rcu(&rq->link, &tl->requests);
897
898	return rq;
899
900err_unwind:
901	ce->ring->emit = rq->head;
902
903	/* Make sure we didn't add ourselves to external state before freeing */
904	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
905	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
906
907err_free:
908	kmem_cache_free(global.slab_requests, rq);
909err_unreserve:
910	intel_context_unpin(ce);
911	return ERR_PTR(ret);
912}
913
914struct i915_request *
915i915_request_create(struct intel_context *ce)
916{
917	struct i915_request *rq;
918	struct intel_timeline *tl;
919
920	tl = intel_context_timeline_lock(ce);
921	if (IS_ERR(tl))
922		return ERR_CAST(tl);
923
924	/* Move our oldest request to the slab-cache (if not in use!) */
925	rq = list_first_entry(&tl->requests, typeof(*rq), link);
926	if (!list_is_last(&rq->link, &tl->requests))
927		i915_request_retire(rq);
928
929	intel_context_enter(ce);
930	rq = __i915_request_create(ce, GFP_KERNEL);
931	intel_context_exit(ce); /* active reference transferred to request */
932	if (IS_ERR(rq))
933		goto err_unlock;
934
935	/* Check that we do not interrupt ourselves with a new request */
936	rq->cookie = lockdep_pin_lock(&tl->mutex);
937
938	return rq;
939
940err_unlock:
941	intel_context_timeline_unlock(tl);
942	return rq;
943}
944
945static int
946i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
947{
948	struct dma_fence *fence;
949	int err;
950
951	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
952		return 0;
953
954	if (i915_request_started(signal))
955		return 0;
956
957	fence = NULL;
958	rcu_read_lock();
959	spin_lock_irq(&signal->lock);
960	do {
961		struct list_head *pos = READ_ONCE(signal->link.prev);
962		struct i915_request *prev;
963
964		/* Confirm signal has not been retired, the link is valid */
965		if (unlikely(i915_request_started(signal)))
966			break;
967
968		/* Is signal the earliest request on its timeline? */
969		if (pos == &rcu_dereference(signal->timeline)->requests)
970			break;
971
972		/*
973		 * Peek at the request before us in the timeline. That
974		 * request will only be valid before it is retired, so
975		 * after acquiring a reference to it, confirm that it is
976		 * still part of the signaler's timeline.
977		 */
978		prev = list_entry(pos, typeof(*prev), link);
979		if (!i915_request_get_rcu(prev))
980			break;
981
982		/* After the strong barrier, confirm prev is still attached */
983		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
984			i915_request_put(prev);
985			break;
986		}
987
988		fence = &prev->fence;
989	} while (0);
990	spin_unlock_irq(&signal->lock);
991	rcu_read_unlock();
992	if (!fence)
993		return 0;
994
995	err = 0;
996	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
997		err = i915_sw_fence_await_dma_fence(&rq->submit,
998						    fence, 0,
999						    I915_FENCE_GFP);
1000	dma_fence_put(fence);
1001
1002	return err;
1003}
1004
1005static intel_engine_mask_t
1006already_busywaiting(struct i915_request *rq)
1007{
1008	/*
1009	 * Polling a semaphore causes bus traffic, delaying other users of
1010	 * both the GPU and CPU. We want to limit the impact on others,
1011	 * while taking advantage of early submission to reduce GPU
1012	 * latency. Therefore we restrict ourselves to not using more
1013	 * than one semaphore from each source, and not using a semaphore
1014	 * if we have detected the engine is saturated (i.e. would not be
1015	 * submitted early and cause bus traffic reading an already passed
1016	 * semaphore).
1017	 *
1018	 * See the are-we-too-late? check in __i915_request_submit().
1019	 */
1020	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1021}
1022
1023static int
1024__emit_semaphore_wait(struct i915_request *to,
1025		      struct i915_request *from,
1026		      u32 seqno)
1027{
1028	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1029	u32 hwsp_offset;
1030	int len, err;
1031	u32 *cs;
1032
1033	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1034	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1035
1036	/* We need to pin the signaler's HWSP until we are finished reading. */
1037	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1038	if (err)
1039		return err;
1040
1041	len = 4;
1042	if (has_token)
1043		len += 2;
1044
1045	cs = intel_ring_begin(to, len);
1046	if (IS_ERR(cs))
1047		return PTR_ERR(cs);
1048
1049	/*
1050	 * Using greater-than-or-equal here means we have to worry
1051	 * about seqno wraparound. To side step that issue, we swap
1052	 * the timeline HWSP upon wrapping, so that everyone listening
1053	 * for the old (pre-wrap) values do not see the much smaller
1054	 * (post-wrap) values than they were expecting (and so wait
1055	 * forever).
1056	 */
1057	*cs++ = (MI_SEMAPHORE_WAIT |
1058		 MI_SEMAPHORE_GLOBAL_GTT |
1059		 MI_SEMAPHORE_POLL |
1060		 MI_SEMAPHORE_SAD_GTE_SDD) +
1061		has_token;
1062	*cs++ = seqno;
1063	*cs++ = hwsp_offset;
1064	*cs++ = 0;
1065	if (has_token) {
1066		*cs++ = 0;
1067		*cs++ = MI_NOOP;
1068	}
1069
1070	intel_ring_advance(to, cs);
1071	return 0;
1072}
1073
1074static int
1075emit_semaphore_wait(struct i915_request *to,
1076		    struct i915_request *from,
1077		    gfp_t gfp)
1078{
1079	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1080	struct i915_sw_fence *wait = &to->submit;
1081
1082	if (!intel_context_use_semaphores(to->context))
1083		goto await_fence;
1084
1085	if (i915_request_has_initial_breadcrumb(to))
1086		goto await_fence;
1087
1088	if (!rcu_access_pointer(from->hwsp_cacheline))
1089		goto await_fence;
1090
1091	/*
1092	 * If this or its dependents are waiting on an external fence
1093	 * that may fail catastrophically, then we want to avoid using
1094	 * sempahores as they bypass the fence signaling metadata, and we
1095	 * lose the fence->error propagation.
1096	 */
1097	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1098		goto await_fence;
1099
1100	/* Just emit the first semaphore we see as request space is limited. */
1101	if (already_busywaiting(to) & mask)
1102		goto await_fence;
1103
1104	if (i915_request_await_start(to, from) < 0)
1105		goto await_fence;
1106
1107	/* Only submit our spinner after the signaler is running! */
1108	if (__await_execution(to, from, NULL, gfp))
1109		goto await_fence;
1110
1111	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1112		goto await_fence;
1113
1114	to->sched.semaphores |= mask;
1115	wait = &to->semaphore;
1116
1117await_fence:
1118	return i915_sw_fence_await_dma_fence(wait,
1119					     &from->fence, 0,
1120					     I915_FENCE_GFP);
1121}
1122
1123static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1124					  struct dma_fence *fence)
1125{
1126	return __intel_timeline_sync_is_later(tl,
1127					      fence->context,
1128					      fence->seqno - 1);
1129}
1130
1131static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1132					 const struct dma_fence *fence)
1133{
1134	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1135}
1136
1137static int
1138__i915_request_await_execution(struct i915_request *to,
1139			       struct i915_request *from,
1140			       void (*hook)(struct i915_request *rq,
1141					    struct dma_fence *signal))
1142{
1143	int err;
1144
1145	GEM_BUG_ON(intel_context_is_barrier(from->context));
1146
1147	/* Submit both requests at the same time */
1148	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1149	if (err)
1150		return err;
1151
1152	/* Squash repeated depenendices to the same timelines */
1153	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1154					  &from->fence))
1155		return 0;
1156
1157	/*
1158	 * Wait until the start of this request.
1159	 *
1160	 * The execution cb fires when we submit the request to HW. But in
1161	 * many cases this may be long before the request itself is ready to
1162	 * run (consider that we submit 2 requests for the same context, where
1163	 * the request of interest is behind an indefinite spinner). So we hook
1164	 * up to both to reduce our queues and keep the execution lag minimised
1165	 * in the worst case, though we hope that the await_start is elided.
1166	 */
1167	err = i915_request_await_start(to, from);
1168	if (err < 0)
1169		return err;
1170
1171	/*
1172	 * Ensure both start together [after all semaphores in signal]
1173	 *
1174	 * Now that we are queued to the HW at roughly the same time (thanks
1175	 * to the execute cb) and are ready to run at roughly the same time
1176	 * (thanks to the await start), our signaler may still be indefinitely
1177	 * delayed by waiting on a semaphore from a remote engine. If our
1178	 * signaler depends on a semaphore, so indirectly do we, and we do not
1179	 * want to start our payload until our signaler also starts theirs.
1180	 * So we wait.
1181	 *
1182	 * However, there is also a second condition for which we need to wait
1183	 * for the precise start of the signaler. Consider that the signaler
1184	 * was submitted in a chain of requests following another context
1185	 * (with just an ordinary intra-engine fence dependency between the
1186	 * two). In this case the signaler is queued to HW, but not for
1187	 * immediate execution, and so we must wait until it reaches the
1188	 * active slot.
1189	 */
1190	if (intel_engine_has_semaphores(to->engine) &&
1191	    !i915_request_has_initial_breadcrumb(to)) {
1192		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1193		if (err < 0)
1194			return err;
1195	}
1196
1197	/* Couple the dependency tree for PI on this exposed to->fence */
1198	if (to->engine->schedule) {
1199		err = i915_sched_node_add_dependency(&to->sched,
1200						     &from->sched,
1201						     I915_DEPENDENCY_WEAK);
1202		if (err < 0)
1203			return err;
1204	}
1205
1206	return intel_timeline_sync_set_start(i915_request_timeline(to),
1207					     &from->fence);
1208}
1209
1210static void mark_external(struct i915_request *rq)
1211{
1212	/*
1213	 * The downside of using semaphores is that we lose metadata passing
1214	 * along the signaling chain. This is particularly nasty when we
1215	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1216	 * fatal errors we want to scrub the request before it is executed,
1217	 * which means that we cannot preload the request onto HW and have
1218	 * it wait upon a semaphore.
1219	 */
1220	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1221}
1222
1223static int
1224__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1225{
1226	mark_external(rq);
1227	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1228					     i915_fence_context_timeout(rq->engine->i915,
1229									fence->context),
1230					     I915_FENCE_GFP);
1231}
1232
1233static int
1234i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1235{
1236	struct dma_fence *iter;
1237	int err = 0;
1238
1239	if (!to_dma_fence_chain(fence))
1240		return __i915_request_await_external(rq, fence);
1241
1242	dma_fence_chain_for_each(iter, fence) {
1243		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1244
1245		if (!dma_fence_is_i915(chain->fence)) {
1246			err = __i915_request_await_external(rq, iter);
1247			break;
1248		}
1249
1250		err = i915_request_await_dma_fence(rq, chain->fence);
1251		if (err < 0)
1252			break;
1253	}
1254
1255	dma_fence_put(iter);
1256	return err;
1257}
1258
1259int
1260i915_request_await_execution(struct i915_request *rq,
1261			     struct dma_fence *fence,
1262			     void (*hook)(struct i915_request *rq,
1263					  struct dma_fence *signal))
1264{
1265	struct dma_fence **child = &fence;
1266	unsigned int nchild = 1;
1267	int ret;
1268
1269	if (dma_fence_is_array(fence)) {
1270		struct dma_fence_array *array = to_dma_fence_array(fence);
1271
1272		/* XXX Error for signal-on-any fence arrays */
1273
1274		child = array->fences;
1275		nchild = array->num_fences;
1276		GEM_BUG_ON(!nchild);
1277	}
1278
1279	do {
1280		fence = *child++;
1281		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1282			continue;
1283
1284		if (fence->context == rq->fence.context)
1285			continue;
1286
1287		/*
1288		 * We don't squash repeated fence dependencies here as we
1289		 * want to run our callback in all cases.
1290		 */
1291
1292		if (dma_fence_is_i915(fence))
1293			ret = __i915_request_await_execution(rq,
1294							     to_request(fence),
1295							     hook);
1296		else
1297			ret = i915_request_await_external(rq, fence);
1298		if (ret < 0)
1299			return ret;
1300	} while (--nchild);
1301
1302	return 0;
1303}
1304
1305static int
1306await_request_submit(struct i915_request *to, struct i915_request *from)
1307{
1308	/*
1309	 * If we are waiting on a virtual engine, then it may be
1310	 * constrained to execute on a single engine *prior* to submission.
1311	 * When it is submitted, it will be first submitted to the virtual
1312	 * engine and then passed to the physical engine. We cannot allow
1313	 * the waiter to be submitted immediately to the physical engine
1314	 * as it may then bypass the virtual request.
1315	 */
1316	if (to->engine == READ_ONCE(from->engine))
1317		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1318							&from->submit,
1319							I915_FENCE_GFP);
1320	else
1321		return __i915_request_await_execution(to, from, NULL);
1322}
1323
1324static int
1325i915_request_await_request(struct i915_request *to, struct i915_request *from)
1326{
1327	int ret;
1328
1329	GEM_BUG_ON(to == from);
1330	GEM_BUG_ON(to->timeline == from->timeline);
1331
1332	if (i915_request_completed(from)) {
1333		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1334		return 0;
1335	}
1336
1337	if (to->engine->schedule) {
1338		ret = i915_sched_node_add_dependency(&to->sched,
1339						     &from->sched,
1340						     I915_DEPENDENCY_EXTERNAL);
1341		if (ret < 0)
1342			return ret;
1343	}
1344
1345	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1346		ret = await_request_submit(to, from);
1347	else
1348		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1349	if (ret < 0)
1350		return ret;
1351
1352	return 0;
1353}
1354
1355int
1356i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1357{
1358	struct dma_fence **child = &fence;
1359	unsigned int nchild = 1;
1360	int ret;
1361
1362	/*
1363	 * Note that if the fence-array was created in signal-on-any mode,
1364	 * we should *not* decompose it into its individual fences. However,
1365	 * we don't currently store which mode the fence-array is operating
1366	 * in. Fortunately, the only user of signal-on-any is private to
1367	 * amdgpu and we should not see any incoming fence-array from
1368	 * sync-file being in signal-on-any mode.
1369	 */
1370	if (dma_fence_is_array(fence)) {
1371		struct dma_fence_array *array = to_dma_fence_array(fence);
1372
1373		child = array->fences;
1374		nchild = array->num_fences;
1375		GEM_BUG_ON(!nchild);
1376	}
1377
1378	do {
1379		fence = *child++;
1380		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1381			continue;
1382
1383		/*
1384		 * Requests on the same timeline are explicitly ordered, along
1385		 * with their dependencies, by i915_request_add() which ensures
1386		 * that requests are submitted in-order through each ring.
1387		 */
1388		if (fence->context == rq->fence.context)
1389			continue;
1390
1391		/* Squash repeated waits to the same timelines */
1392		if (fence->context &&
1393		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1394						 fence))
1395			continue;
1396
1397		if (dma_fence_is_i915(fence))
1398			ret = i915_request_await_request(rq, to_request(fence));
1399		else
1400			ret = i915_request_await_external(rq, fence);
1401		if (ret < 0)
1402			return ret;
1403
1404		/* Record the latest fence used against each timeline */
1405		if (fence->context)
1406			intel_timeline_sync_set(i915_request_timeline(rq),
1407						fence);
1408	} while (--nchild);
1409
1410	return 0;
1411}
1412
1413/**
1414 * i915_request_await_object - set this request to (async) wait upon a bo
1415 * @to: request we are wishing to use
1416 * @obj: object which may be in use on another ring.
1417 * @write: whether the wait is on behalf of a writer
1418 *
1419 * This code is meant to abstract object synchronization with the GPU.
1420 * Conceptually we serialise writes between engines inside the GPU.
1421 * We only allow one engine to write into a buffer at any time, but
1422 * multiple readers. To ensure each has a coherent view of memory, we must:
1423 *
1424 * - If there is an outstanding write request to the object, the new
1425 *   request must wait for it to complete (either CPU or in hw, requests
1426 *   on the same ring will be naturally ordered).
1427 *
1428 * - If we are a write request (pending_write_domain is set), the new
1429 *   request must wait for outstanding read requests to complete.
1430 *
1431 * Returns 0 if successful, else propagates up the lower layer error.
1432 */
1433int
1434i915_request_await_object(struct i915_request *to,
1435			  struct drm_i915_gem_object *obj,
1436			  bool write)
1437{
1438	struct dma_fence *excl;
1439	int ret = 0;
1440
1441	if (write) {
1442		struct dma_fence **shared;
1443		unsigned int count, i;
1444
1445		ret = dma_resv_get_fences_rcu(obj->base.resv,
1446							&excl, &count, &shared);
1447		if (ret)
1448			return ret;
1449
1450		for (i = 0; i < count; i++) {
1451			ret = i915_request_await_dma_fence(to, shared[i]);
1452			if (ret)
1453				break;
1454
1455			dma_fence_put(shared[i]);
1456		}
1457
1458		for (; i < count; i++)
1459			dma_fence_put(shared[i]);
1460		kfree(shared);
1461	} else {
1462		excl = dma_resv_get_excl_rcu(obj->base.resv);
1463	}
1464
1465	if (excl) {
1466		if (ret == 0)
1467			ret = i915_request_await_dma_fence(to, excl);
1468
1469		dma_fence_put(excl);
1470	}
1471
1472	return ret;
1473}
1474
1475static struct i915_request *
1476__i915_request_add_to_timeline(struct i915_request *rq)
1477{
1478	struct intel_timeline *timeline = i915_request_timeline(rq);
1479	struct i915_request *prev;
1480
1481	/*
1482	 * Dependency tracking and request ordering along the timeline
1483	 * is special cased so that we can eliminate redundant ordering
1484	 * operations while building the request (we know that the timeline
1485	 * itself is ordered, and here we guarantee it).
1486	 *
1487	 * As we know we will need to emit tracking along the timeline,
1488	 * we embed the hooks into our request struct -- at the cost of
1489	 * having to have specialised no-allocation interfaces (which will
1490	 * be beneficial elsewhere).
1491	 *
1492	 * A second benefit to open-coding i915_request_await_request is
1493	 * that we can apply a slight variant of the rules specialised
1494	 * for timelines that jump between engines (such as virtual engines).
1495	 * If we consider the case of virtual engine, we must emit a dma-fence
1496	 * to prevent scheduling of the second request until the first is
1497	 * complete (to maximise our greedy late load balancing) and this
1498	 * precludes optimising to use semaphores serialisation of a single
1499	 * timeline across engines.
1500	 */
1501	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1502						  &rq->fence));
1503	if (prev && !i915_request_completed(prev)) {
1504		/*
1505		 * The requests are supposed to be kept in order. However,
1506		 * we need to be wary in case the timeline->last_request
1507		 * is used as a barrier for external modification to this
1508		 * context.
1509		 */
1510		GEM_BUG_ON(prev->context == rq->context &&
1511			   i915_seqno_passed(prev->fence.seqno,
1512					     rq->fence.seqno));
1513
1514		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1515			i915_sw_fence_await_sw_fence(&rq->submit,
1516						     &prev->submit,
1517						     &rq->submitq);
1518		else
1519			__i915_sw_fence_await_dma_fence(&rq->submit,
1520							&prev->fence,
1521							&rq->dmaq);
1522		if (rq->engine->schedule)
1523			__i915_sched_node_add_dependency(&rq->sched,
1524							 &prev->sched,
1525							 &rq->dep,
1526							 0);
1527	}
1528	if (prev)
1529		i915_request_put(prev);
1530
1531	/*
1532	 * Make sure that no request gazumped us - if it was allocated after
1533	 * our i915_request_alloc() and called __i915_request_add() before
1534	 * us, the timeline will hold its seqno which is later than ours.
1535	 */
1536	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1537
1538	return prev;
1539}
1540
1541/*
1542 * NB: This function is not allowed to fail. Doing so would mean the the
1543 * request is not being tracked for completion but the work itself is
1544 * going to happen on the hardware. This would be a Bad Thing(tm).
1545 */
1546struct i915_request *__i915_request_commit(struct i915_request *rq)
1547{
1548	struct intel_engine_cs *engine = rq->engine;
1549	struct intel_ring *ring = rq->ring;
1550	u32 *cs;
1551
1552	RQ_TRACE(rq, "\n");
1553
1554	/*
1555	 * To ensure that this call will not fail, space for its emissions
1556	 * should already have been reserved in the ring buffer. Let the ring
1557	 * know that it is time to use that space up.
1558	 */
1559	GEM_BUG_ON(rq->reserved_space > ring->space);
1560	rq->reserved_space = 0;
1561	rq->emitted_jiffies = jiffies;
1562
1563	/*
1564	 * Record the position of the start of the breadcrumb so that
1565	 * should we detect the updated seqno part-way through the
1566	 * GPU processing the request, we never over-estimate the
1567	 * position of the ring's HEAD.
1568	 */
1569	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1570	GEM_BUG_ON(IS_ERR(cs));
1571	rq->postfix = intel_ring_offset(rq, cs);
1572
1573	return __i915_request_add_to_timeline(rq);
1574}
1575
1576void __i915_request_queue(struct i915_request *rq,
1577			  const struct i915_sched_attr *attr)
1578{
1579	/*
1580	 * Let the backend know a new request has arrived that may need
1581	 * to adjust the existing execution schedule due to a high priority
1582	 * request - i.e. we may want to preempt the current request in order
1583	 * to run a high priority dependency chain *before* we can execute this
1584	 * request.
1585	 *
1586	 * This is called before the request is ready to run so that we can
1587	 * decide whether to preempt the entire chain so that it is ready to
1588	 * run at the earliest possible convenience.
1589	 */
1590	if (attr && rq->engine->schedule)
1591		rq->engine->schedule(rq, attr);
1592	i915_sw_fence_commit(&rq->semaphore);
1593	i915_sw_fence_commit(&rq->submit);
1594}
1595
1596void i915_request_add(struct i915_request *rq)
1597{
1598	struct intel_timeline * const tl = i915_request_timeline(rq);
1599	struct i915_sched_attr attr = {};
1600	struct i915_gem_context *ctx;
1601
1602	lockdep_assert_held(&tl->mutex);
1603	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1604
1605	trace_i915_request_add(rq);
1606	__i915_request_commit(rq);
1607
1608	/* XXX placeholder for selftests */
1609	rcu_read_lock();
1610	ctx = rcu_dereference(rq->context->gem_context);
1611	if (ctx)
1612		attr = ctx->sched;
1613	rcu_read_unlock();
1614
1615	__i915_request_queue(rq, &attr);
1616
1617	mutex_unlock(&tl->mutex);
1618}
1619
1620static unsigned long local_clock_ns(unsigned int *cpu)
1621{
1622	unsigned long t;
1623
1624	/*
1625	 * Cheaply and approximately convert from nanoseconds to microseconds.
1626	 * The result and subsequent calculations are also defined in the same
1627	 * approximate microseconds units. The principal source of timing
1628	 * error here is from the simple truncation.
1629	 *
1630	 * Note that local_clock() is only defined wrt to the current CPU;
1631	 * the comparisons are no longer valid if we switch CPUs. Instead of
1632	 * blocking preemption for the entire busywait, we can detect the CPU
1633	 * switch and use that as indicator of system load and a reason to
1634	 * stop busywaiting, see busywait_stop().
1635	 */
1636	*cpu = get_cpu();
1637	t = local_clock();
1638	put_cpu();
1639
1640	return t;
1641}
1642
1643static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1644{
1645	unsigned int this_cpu;
1646
1647	if (time_after(local_clock_ns(&this_cpu), timeout))
1648		return true;
1649
1650	return this_cpu != cpu;
1651}
1652
1653static bool __i915_spin_request(struct i915_request * const rq, int state)
1654{
1655	unsigned long timeout_ns;
1656	unsigned int cpu;
1657
1658	/*
1659	 * Only wait for the request if we know it is likely to complete.
1660	 *
1661	 * We don't track the timestamps around requests, nor the average
1662	 * request length, so we do not have a good indicator that this
1663	 * request will complete within the timeout. What we do know is the
1664	 * order in which requests are executed by the context and so we can
1665	 * tell if the request has been started. If the request is not even
1666	 * running yet, it is a fair assumption that it will not complete
1667	 * within our relatively short timeout.
1668	 */
1669	if (!i915_request_is_running(rq))
1670		return false;
1671
1672	/*
1673	 * When waiting for high frequency requests, e.g. during synchronous
1674	 * rendering split between the CPU and GPU, the finite amount of time
1675	 * required to set up the irq and wait upon it limits the response
1676	 * rate. By busywaiting on the request completion for a short while we
1677	 * can service the high frequency waits as quick as possible. However,
1678	 * if it is a slow request, we want to sleep as quickly as possible.
1679	 * The tradeoff between waiting and sleeping is roughly the time it
1680	 * takes to sleep on a request, on the order of a microsecond.
1681	 */
1682
1683	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1684	timeout_ns += local_clock_ns(&cpu);
1685	do {
1686		if (dma_fence_is_signaled(&rq->fence))
1687			return true;
1688
1689		if (signal_pending_state(state, current))
1690			break;
1691
1692		if (busywait_stop(timeout_ns, cpu))
1693			break;
1694
1695		cpu_relax();
1696	} while (!need_resched());
1697
1698	return false;
1699}
1700
1701struct request_wait {
1702	struct dma_fence_cb cb;
1703	struct task_struct *tsk;
1704};
1705
1706static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1707{
1708	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1709
1710	wake_up_process(fetch_and_zero(&wait->tsk));
1711}
1712
1713/**
1714 * i915_request_wait - wait until execution of request has finished
1715 * @rq: the request to wait upon
1716 * @flags: how to wait
1717 * @timeout: how long to wait in jiffies
1718 *
1719 * i915_request_wait() waits for the request to be completed, for a
1720 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1721 * unbounded wait).
1722 *
1723 * Returns the remaining time (in jiffies) if the request completed, which may
1724 * be zero or -ETIME if the request is unfinished after the timeout expires.
1725 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1726 * pending before the request completes.
1727 */
1728long i915_request_wait(struct i915_request *rq,
1729		       unsigned int flags,
1730		       long timeout)
1731{
1732	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1733		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1734	struct request_wait wait;
1735
1736	might_sleep();
1737	GEM_BUG_ON(timeout < 0);
1738
1739	if (dma_fence_is_signaled(&rq->fence))
1740		return timeout;
1741
1742	if (!timeout)
1743		return -ETIME;
1744
1745	trace_i915_request_wait_begin(rq, flags);
1746
1747	/*
1748	 * We must never wait on the GPU while holding a lock as we
1749	 * may need to perform a GPU reset. So while we don't need to
1750	 * serialise wait/reset with an explicit lock, we do want
1751	 * lockdep to detect potential dependency cycles.
1752	 */
1753	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1754
1755	/*
1756	 * Optimistic spin before touching IRQs.
1757	 *
1758	 * We may use a rather large value here to offset the penalty of
1759	 * switching away from the active task. Frequently, the client will
1760	 * wait upon an old swapbuffer to throttle itself to remain within a
1761	 * frame of the gpu. If the client is running in lockstep with the gpu,
1762	 * then it should not be waiting long at all, and a sleep now will incur
1763	 * extra scheduler latency in producing the next frame. To try to
1764	 * avoid adding the cost of enabling/disabling the interrupt to the
1765	 * short wait, we first spin to see if the request would have completed
1766	 * in the time taken to setup the interrupt.
1767	 *
1768	 * We need upto 5us to enable the irq, and upto 20us to hide the
1769	 * scheduler latency of a context switch, ignoring the secondary
1770	 * impacts from a context switch such as cache eviction.
1771	 *
1772	 * The scheme used for low-latency IO is called "hybrid interrupt
1773	 * polling". The suggestion there is to sleep until just before you
1774	 * expect to be woken by the device interrupt and then poll for its
1775	 * completion. That requires having a good predictor for the request
1776	 * duration, which we currently lack.
1777	 */
1778	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1779	    __i915_spin_request(rq, state))
1780		goto out;
1781
1782	/*
1783	 * This client is about to stall waiting for the GPU. In many cases
1784	 * this is undesirable and limits the throughput of the system, as
1785	 * many clients cannot continue processing user input/output whilst
1786	 * blocked. RPS autotuning may take tens of milliseconds to respond
1787	 * to the GPU load and thus incurs additional latency for the client.
1788	 * We can circumvent that by promoting the GPU frequency to maximum
1789	 * before we sleep. This makes the GPU throttle up much more quickly
1790	 * (good for benchmarks and user experience, e.g. window animations),
1791	 * but at a cost of spending more power processing the workload
1792	 * (bad for battery).
1793	 */
1794	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1795		intel_rps_boost(rq);
1796
1797	wait.tsk = current;
1798	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1799		goto out;
1800
1801	/*
1802	 * Flush the submission tasklet, but only if it may help this request.
1803	 *
1804	 * We sometimes experience some latency between the HW interrupts and
1805	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1806	 * be due to lazy CS events), so lets run the tasklet manually if there
1807	 * is a chance it may submit this request. If the request is not ready
1808	 * to run, as it is waiting for other fences to be signaled, flushing
1809	 * the tasklet is busy work without any advantage for this client.
1810	 *
1811	 * If the HW is being lazy, this is the last chance before we go to
1812	 * sleep to catch any pending events. We will check periodically in
1813	 * the heartbeat to flush the submission tasklets as a last resort
1814	 * for unhappy HW.
1815	 */
1816	if (i915_request_is_ready(rq))
1817		intel_engine_flush_submission(rq->engine);
1818
1819	for (;;) {
1820		set_current_state(state);
1821
1822		if (dma_fence_is_signaled(&rq->fence))
1823			break;
1824
1825		if (signal_pending_state(state, current)) {
1826			timeout = -ERESTARTSYS;
1827			break;
1828		}
1829
1830		if (!timeout) {
1831			timeout = -ETIME;
1832			break;
1833		}
1834
1835		timeout = io_schedule_timeout(timeout);
1836	}
1837	__set_current_state(TASK_RUNNING);
1838
1839	if (READ_ONCE(wait.tsk))
1840		dma_fence_remove_callback(&rq->fence, &wait.cb);
1841	GEM_BUG_ON(!list_empty(&wait.cb.node));
1842
1843out:
1844	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1845	trace_i915_request_wait_end(rq);
1846	return timeout;
1847}
1848
1849#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1850#include "selftests/mock_request.c"
1851#include "selftests/i915_request.c"
1852#endif
1853
1854static void i915_global_request_shrink(void)
1855{
1856	kmem_cache_shrink(global.slab_execute_cbs);
1857	kmem_cache_shrink(global.slab_requests);
1858}
1859
1860static void i915_global_request_exit(void)
1861{
1862	kmem_cache_destroy(global.slab_execute_cbs);
1863	kmem_cache_destroy(global.slab_requests);
1864}
1865
1866static struct i915_global_request global = { {
1867	.shrink = i915_global_request_shrink,
1868	.exit = i915_global_request_exit,
1869} };
1870
1871int __init i915_global_request_init(void)
1872{
1873	global.slab_requests =
1874		kmem_cache_create("i915_request",
1875				  sizeof(struct i915_request),
1876				  __alignof__(struct i915_request),
1877				  SLAB_HWCACHE_ALIGN |
1878				  SLAB_RECLAIM_ACCOUNT |
1879				  SLAB_TYPESAFE_BY_RCU,
1880				  __i915_request_ctor);
1881	if (!global.slab_requests)
1882		return -ENOMEM;
1883
1884	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1885					     SLAB_HWCACHE_ALIGN |
1886					     SLAB_RECLAIM_ACCOUNT |
1887					     SLAB_TYPESAFE_BY_RCU);
1888	if (!global.slab_execute_cbs)
1889		goto err_requests;
1890
1891	i915_global_register(&global.base);
1892	return 0;
1893
1894err_requests:
1895	kmem_cache_destroy(global.slab_requests);
1896	return -ENOMEM;
1897}
1898