1/*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *   Robert Bragg <robert@sixbynine.org>
25 */
26
27
28/**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50/**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration.  For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 *   Existing perf pmus are used for profiling work on a cpu and we were
109 *   introducing the idea of _IS_DEVICE pmus with different security
110 *   implications, the need to fake cpu-related data (such as user/kernel
111 *   registers) to fit with perf's current design, and adding _DEVICE records
112 *   as a way to forward device-specific status records.
113 *
114 *   The OA unit writes reports of counters into a circular buffer, without
115 *   involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 *   Given the way we were periodically forward data from the GPU-mapped, OA
118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119 *   we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 *   Perf supports groups of counters and allows those to be read via
122 *   transactions internally but transactions currently seem designed to be
123 *   explicitly initiated from the cpu (say in response to a userspace read())
124 *   and while we could pull a report out of the OA buffer we can't
125 *   trigger a report from the cpu on demand.
126 *
127 *   Related to being report based; the OA counters are configured in HW as a
128 *   set while perf generally expects counter configurations to be orthogonal.
129 *   Although counters can be associated with a group leader as they are
130 *   opened, there's no clear precedent for being able to provide group-wide
131 *   configuration attributes (for example we want to let userspace choose the
132 *   OA unit report format used to capture all counters in a set, or specify a
133 *   GPU context to filter metrics on). We avoided using perf's grouping
134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135 *   field. This suited our userspace well considering how coupled the counters
136 *   are when dealing with normalizing. It would be inconvenient to split
137 *   counters up into separate events, only to require userspace to recombine
138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 *   for combining with the side-band raw reports it captures using
140 *   MI_REPORT_PERF_COUNT commands.
141 *
142 *   - As a side note on perf's grouping feature; there was also some concern
143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144 *     would quite drastically inflate our sample sizes, which would likely
145 *     lower the effective sampling resolutions we could use when the available
146 *     memory bandwidth is limited.
147 *
148 *     With the OA unit's report formats, counters are packed together as 32
149 *     or 40bit values, with the largest report size being 256 bytes.
150 *
151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 *   Related to counter orthogonality; we can't time share the OA unit, while
156 *   event scheduling is a central design idea within perf for allowing
157 *   userspace to open + enable more events than can be configured in HW at any
158 *   one time.  The OA unit is not designed to allow re-configuration while in
159 *   use. We can't reconfigure the OA unit without losing internal OA unit
160 *   state which we can't access explicitly to save and restore. Reconfiguring
161 *   the OA unit is also relatively slow, involving ~100 register writes. From
162 *   userspace Mesa also depends on a stable OA configuration when emitting
163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 *   disabled while there are outstanding MI_RPC commands lest we hang the
165 *   command streamer.
166 *
167 *   The contents of sample records aren't extensible by device drivers (i.e.
168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 *   into sample records by using the 'raw' field, but it's tricky to pack more
171 *   than one thing into this field because events/core.c currently only lets a
172 *   pmu give a single raw data pointer plus len which will be copied into the
173 *   ring buffer. To include more than the OA report we'd have to copy the
174 *   report into an intermediate larger buffer. I'd been considering allowing a
175 *   vector of data+len values to be specified for copying the raw data, but
176 *   it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 *   just for the sake of using perf:
180 *
181 *   perf_event_open() requires events to either relate to a pid or a specific
182 *   cpu core, while our device pmu related to neither.  Events opened with a
183 *   pid will be automatically enabled/disabled according to the scheduling of
184 *   that process - so not appropriate for us. When an event is related to a
185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
187 *   perf events for a specific cpu. This was workable but it meant the
188 *   majority of the OA driver ran in atomic context, including all OA report
189 *   forwarding, which wasn't really necessary in our case and seems to make
190 *   our locking requirements somewhat complex as we handled the interaction
191 *   with the rest of the i915 driver.
192 */
193
194#include <linux/anon_inodes.h>
195#include <linux/sizes.h>
196#include <linux/uuid.h>
197
198#include "gem/i915_gem_context.h"
199#include "gt/intel_engine_pm.h"
200#include "gt/intel_engine_user.h"
201#include "gt/intel_gt.h"
202#include "gt/intel_lrc_reg.h"
203#include "gt/intel_ring.h"
204
205#include "i915_drv.h"
206#include "i915_perf.h"
207
208/* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
211 */
212#define OA_BUFFER_SIZE		SZ_16M
213
214#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
215
216/**
217 * DOC: OA Tail Pointer Race
218 *
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
222 * CPU).
223 *
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
228 *
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
237 *
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
240 *
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
247 */
248#define OA_TAIL_MARGIN_NSEC	100000ULL
249#define INVALID_TAIL_PTR	0xffffffff
250
251/* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
253 */
254#define DEFAULT_POLL_FREQUENCY_HZ 200
255#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256
257/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258static u32 i915_perf_stream_paranoid = true;
259
260/* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
263 *
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
267 */
268#define OA_EXPONENT_MAX 31
269
270#define INVALID_CTX_ID 0xffffffff
271
272/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273#define OAREPORT_REASON_MASK           0x3f
274#define OAREPORT_REASON_MASK_EXTENDED  0x7f
275#define OAREPORT_REASON_SHIFT          19
276#define OAREPORT_REASON_TIMER          (1<<0)
277#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
278#define OAREPORT_REASON_CLK_RATIO      (1<<5)
279
280
281/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282 *
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285 *
286 * Initialized just before we register the sysctl parameter.
287 */
288static int oa_sample_rate_hard_limit;
289
290/* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
292 *
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
295 */
296static u32 i915_oa_max_sample_rate = 100000;
297
298/* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
301 */
302static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303	[I915_OA_FORMAT_A13]	    = { 0, 64 },
304	[I915_OA_FORMAT_A29]	    = { 1, 128 },
305	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
306	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
308	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
309	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
310	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
311};
312
313static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
318};
319
320static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322};
323
324#define SAMPLE_OA_REPORT      (1<<0)
325
326/**
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
331 *                   context
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 *        specified configuration in the opening parameters or a default value
341 *        (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343 * data availability
344 *
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
348 */
349struct perf_open_properties {
350	u32 sample_flags;
351
352	u64 single_context:1;
353	u64 hold_preemption:1;
354	u64 ctx_handle;
355
356	/* OA sampling state */
357	int metrics_set;
358	int oa_format;
359	bool oa_periodic;
360	int oa_period_exponent;
361
362	struct intel_engine_cs *engine;
363
364	bool has_sseu;
365	struct intel_sseu sseu;
366
367	u64 poll_oa_period;
368};
369
370struct i915_oa_config_bo {
371	struct llist_node node;
372
373	struct i915_oa_config *oa_config;
374	struct i915_vma *vma;
375};
376
377static struct ctl_table_header *sysctl_header;
378
379static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380
381void i915_oa_config_release(struct kref *ref)
382{
383	struct i915_oa_config *oa_config =
384		container_of(ref, typeof(*oa_config), ref);
385
386	kfree(oa_config->flex_regs);
387	kfree(oa_config->b_counter_regs);
388	kfree(oa_config->mux_regs);
389
390	kfree_rcu(oa_config, rcu);
391}
392
393struct i915_oa_config *
394i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395{
396	struct i915_oa_config *oa_config;
397
398	rcu_read_lock();
399	oa_config = idr_find(&perf->metrics_idr, metrics_set);
400	if (oa_config)
401		oa_config = i915_oa_config_get(oa_config);
402	rcu_read_unlock();
403
404	return oa_config;
405}
406
407static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408{
409	i915_oa_config_put(oa_bo->oa_config);
410	i915_vma_put(oa_bo->vma);
411	kfree(oa_bo);
412}
413
414static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415{
416	struct intel_uncore *uncore = stream->uncore;
417
418	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419	       GEN12_OAG_OATAILPTR_MASK;
420}
421
422static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423{
424	struct intel_uncore *uncore = stream->uncore;
425
426	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427}
428
429static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430{
431	struct intel_uncore *uncore = stream->uncore;
432	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433
434	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435}
436
437/**
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
440 *
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
444 *
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450 *
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453 * object.
454 *
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
457 * can't be modified.
458 *
459 * Returns: %true if the OA buffer contains data, else %false
460 */
461static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462{
463	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464	int report_size = stream->oa_buffer.format_size;
465	unsigned long flags;
466	bool pollin;
467	u32 hw_tail;
468	u64 now;
469
470	/* We have to consider the (unlikely) possibility that read() errors
471	 * could result in an OA buffer reset which might reset the head and
472	 * tail state.
473	 */
474	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475
476	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477
478	/* The tail pointer increases in 64 byte increments,
479	 * not in report_size steps...
480	 */
481	hw_tail &= ~(report_size - 1);
482
483	now = ktime_get_mono_fast_ns();
484
485	if (hw_tail == stream->oa_buffer.aging_tail &&
486	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487		/* If the HW tail hasn't move since the last check and the HW
488		 * tail has been aging for long enough, declare it the new
489		 * tail.
490		 */
491		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492	} else {
493		u32 head, tail, aged_tail;
494
495		/* NB: The head we observe here might effectively be a little
496		 * out of date. If a read() is in progress, the head could be
497		 * anywhere between this head and stream->oa_buffer.tail.
498		 */
499		head = stream->oa_buffer.head - gtt_offset;
500		aged_tail = stream->oa_buffer.tail - gtt_offset;
501
502		hw_tail -= gtt_offset;
503		tail = hw_tail;
504
505		/* Walk the stream backward until we find a report with dword 0
506		 * & 1 not at 0. Since the circular buffer pointers progress by
507		 * increments of 64 bytes and that reports can be up to 256
508		 * bytes long, we can't tell whether a report has fully landed
509		 * in memory before the first 2 dwords of the following report
510		 * have effectively landed.
511		 *
512		 * This is assuming that the writes of the OA unit land in
513		 * memory in the order they were written to.
514		 * If not : (╯°□°)╯︵ ┻━┻
515		 */
516		while (OA_TAKEN(tail, aged_tail) >= report_size) {
517			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518
519			if (report32[0] != 0 || report32[1] != 0)
520				break;
521
522			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523		}
524
525		if (OA_TAKEN(hw_tail, tail) > report_size &&
526		    __ratelimit(&stream->perf->tail_pointer_race))
527			DRM_NOTE("unlanded report(s) head=0x%x "
528				 "tail=0x%x hw_tail=0x%x\n",
529				 head, tail, hw_tail);
530
531		stream->oa_buffer.tail = gtt_offset + tail;
532		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533		stream->oa_buffer.aging_timestamp = now;
534	}
535
536	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537			  stream->oa_buffer.head - gtt_offset) >= report_size;
538
539	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540
541	return pollin;
542}
543
544/**
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
551 *
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
554 *
555 * The @buf @offset will only be updated on success.
556 *
557 * Returns: 0 on success, negative error code on failure.
558 */
559static int append_oa_status(struct i915_perf_stream *stream,
560			    char __user *buf,
561			    size_t count,
562			    size_t *offset,
563			    enum drm_i915_perf_record_type type)
564{
565	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566
567	if ((count - *offset) < header.size)
568		return -ENOSPC;
569
570	if (copy_to_user(buf + *offset, &header, sizeof(header)))
571		return -EFAULT;
572
573	(*offset) += header.size;
574
575	return 0;
576}
577
578/**
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
585 *
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
589 * read() @buf.
590 *
591 * The @buf @offset will only be updated on success.
592 *
593 * Returns: 0 on success, negative error code on failure.
594 */
595static int append_oa_sample(struct i915_perf_stream *stream,
596			    char __user *buf,
597			    size_t count,
598			    size_t *offset,
599			    const u8 *report)
600{
601	int report_size = stream->oa_buffer.format_size;
602	struct drm_i915_perf_record_header header;
603
604	header.type = DRM_I915_PERF_RECORD_SAMPLE;
605	header.pad = 0;
606	header.size = stream->sample_size;
607
608	if ((count - *offset) < header.size)
609		return -ENOSPC;
610
611	buf += *offset;
612	if (copy_to_user(buf, &header, sizeof(header)))
613		return -EFAULT;
614	buf += sizeof(header);
615
616	if (copy_to_user(buf, report, report_size))
617		return -EFAULT;
618
619	(*offset) += header.size;
620
621	return 0;
622}
623
624/**
625 * Copies all buffered OA reports into userspace read() buffer.
626 * @stream: An i915-perf stream opened for OA metrics
627 * @buf: destination buffer given by userspace
628 * @count: the number of bytes userspace wants to read
629 * @offset: (inout): the current position for writing into @buf
630 *
631 * Notably any error condition resulting in a short read (-%ENOSPC or
632 * -%EFAULT) will be returned even though one or more records may
633 * have been successfully copied. In this case it's up to the caller
634 * to decide if the error should be squashed before returning to
635 * userspace.
636 *
637 * Note: reports are consumed from the head, and appended to the
638 * tail, so the tail chases the head?... If you think that's mad
639 * and back-to-front you're not alone, but this follows the
640 * Gen PRM naming convention.
641 *
642 * Returns: 0 on success, negative error code on failure.
643 */
644static int gen8_append_oa_reports(struct i915_perf_stream *stream,
645				  char __user *buf,
646				  size_t count,
647				  size_t *offset)
648{
649	struct intel_uncore *uncore = stream->uncore;
650	int report_size = stream->oa_buffer.format_size;
651	u8 *oa_buf_base = stream->oa_buffer.vaddr;
652	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
653	u32 mask = (OA_BUFFER_SIZE - 1);
654	size_t start_offset = *offset;
655	unsigned long flags;
656	u32 head, tail;
657	u32 taken;
658	int ret = 0;
659
660	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
661		return -EIO;
662
663	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
664
665	head = stream->oa_buffer.head;
666	tail = stream->oa_buffer.tail;
667
668	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
669
670	/*
671	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
672	 * while indexing relative to oa_buf_base.
673	 */
674	head -= gtt_offset;
675	tail -= gtt_offset;
676
677	/*
678	 * An out of bounds or misaligned head or tail pointer implies a driver
679	 * bug since we validate + align the tail pointers we read from the
680	 * hardware and we are in full control of the head pointer which should
681	 * only be incremented by multiples of the report size (notably also
682	 * all a power of two).
683	 */
684	if (drm_WARN_ONCE(&uncore->i915->drm,
685			  head > OA_BUFFER_SIZE || head % report_size ||
686			  tail > OA_BUFFER_SIZE || tail % report_size,
687			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
688			  head, tail))
689		return -EIO;
690
691
692	for (/* none */;
693	     (taken = OA_TAKEN(tail, head));
694	     head = (head + report_size) & mask) {
695		u8 *report = oa_buf_base + head;
696		u32 *report32 = (void *)report;
697		u32 ctx_id;
698		u32 reason;
699
700		/*
701		 * All the report sizes factor neatly into the buffer
702		 * size so we never expect to see a report split
703		 * between the beginning and end of the buffer.
704		 *
705		 * Given the initial alignment check a misalignment
706		 * here would imply a driver bug that would result
707		 * in an overrun.
708		 */
709		if (drm_WARN_ON(&uncore->i915->drm,
710				(OA_BUFFER_SIZE - head) < report_size)) {
711			drm_err(&uncore->i915->drm,
712				"Spurious OA head ptr: non-integral report offset\n");
713			break;
714		}
715
716		/*
717		 * The reason field includes flags identifying what
718		 * triggered this specific report (mostly timer
719		 * triggered or e.g. due to a context switch).
720		 *
721		 * This field is never expected to be zero so we can
722		 * check that the report isn't invalid before copying
723		 * it to userspace...
724		 */
725		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
726			  (IS_GEN(stream->perf->i915, 12) ?
727			   OAREPORT_REASON_MASK_EXTENDED :
728			   OAREPORT_REASON_MASK));
729		if (reason == 0) {
730			if (__ratelimit(&stream->perf->spurious_report_rs))
731				DRM_NOTE("Skipping spurious, invalid OA report\n");
732			continue;
733		}
734
735		ctx_id = report32[2] & stream->specific_ctx_id_mask;
736
737		/*
738		 * Squash whatever is in the CTX_ID field if it's marked as
739		 * invalid to be sure we avoid false-positive, single-context
740		 * filtering below...
741		 *
742		 * Note: that we don't clear the valid_ctx_bit so userspace can
743		 * understand that the ID has been squashed by the kernel.
744		 */
745		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
746		    INTEL_GEN(stream->perf->i915) <= 11)
747			ctx_id = report32[2] = INVALID_CTX_ID;
748
749		/*
750		 * NB: For Gen 8 the OA unit no longer supports clock gating
751		 * off for a specific context and the kernel can't securely
752		 * stop the counters from updating as system-wide / global
753		 * values.
754		 *
755		 * Automatic reports now include a context ID so reports can be
756		 * filtered on the cpu but it's not worth trying to
757		 * automatically subtract/hide counter progress for other
758		 * contexts while filtering since we can't stop userspace
759		 * issuing MI_REPORT_PERF_COUNT commands which would still
760		 * provide a side-band view of the real values.
761		 *
762		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
763		 * to normalize counters for a single filtered context then it
764		 * needs be forwarded bookend context-switch reports so that it
765		 * can track switches in between MI_REPORT_PERF_COUNT commands
766		 * and can itself subtract/ignore the progress of counters
767		 * associated with other contexts. Note that the hardware
768		 * automatically triggers reports when switching to a new
769		 * context which are tagged with the ID of the newly active
770		 * context. To avoid the complexity (and likely fragility) of
771		 * reading ahead while parsing reports to try and minimize
772		 * forwarding redundant context switch reports (i.e. between
773		 * other, unrelated contexts) we simply elect to forward them
774		 * all.
775		 *
776		 * We don't rely solely on the reason field to identify context
777		 * switches since it's not-uncommon for periodic samples to
778		 * identify a switch before any 'context switch' report.
779		 */
780		if (!stream->perf->exclusive_stream->ctx ||
781		    stream->specific_ctx_id == ctx_id ||
782		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
783		    reason & OAREPORT_REASON_CTX_SWITCH) {
784
785			/*
786			 * While filtering for a single context we avoid
787			 * leaking the IDs of other contexts.
788			 */
789			if (stream->perf->exclusive_stream->ctx &&
790			    stream->specific_ctx_id != ctx_id) {
791				report32[2] = INVALID_CTX_ID;
792			}
793
794			ret = append_oa_sample(stream, buf, count, offset,
795					       report);
796			if (ret)
797				break;
798
799			stream->oa_buffer.last_ctx_id = ctx_id;
800		}
801
802		/*
803		 * Clear out the first 2 dword as a mean to detect unlanded
804		 * reports.
805		 */
806		report32[0] = 0;
807		report32[1] = 0;
808	}
809
810	if (start_offset != *offset) {
811		i915_reg_t oaheadptr;
812
813		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
814			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
815
816		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
817
818		/*
819		 * We removed the gtt_offset for the copy loop above, indexing
820		 * relative to oa_buf_base so put back here...
821		 */
822		head += gtt_offset;
823		intel_uncore_write(uncore, oaheadptr,
824				   head & GEN12_OAG_OAHEADPTR_MASK);
825		stream->oa_buffer.head = head;
826
827		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
828	}
829
830	return ret;
831}
832
833/**
834 * gen8_oa_read - copy status records then buffered OA reports
835 * @stream: An i915-perf stream opened for OA metrics
836 * @buf: destination buffer given by userspace
837 * @count: the number of bytes userspace wants to read
838 * @offset: (inout): the current position for writing into @buf
839 *
840 * Checks OA unit status registers and if necessary appends corresponding
841 * status records for userspace (such as for a buffer full condition) and then
842 * initiate appending any buffered OA reports.
843 *
844 * Updates @offset according to the number of bytes successfully copied into
845 * the userspace buffer.
846 *
847 * NB: some data may be successfully copied to the userspace buffer
848 * even if an error is returned, and this is reflected in the
849 * updated @offset.
850 *
851 * Returns: zero on success or a negative error code
852 */
853static int gen8_oa_read(struct i915_perf_stream *stream,
854			char __user *buf,
855			size_t count,
856			size_t *offset)
857{
858	struct intel_uncore *uncore = stream->uncore;
859	u32 oastatus;
860	i915_reg_t oastatus_reg;
861	int ret;
862
863	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
864		return -EIO;
865
866	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
867		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
868
869	oastatus = intel_uncore_read(uncore, oastatus_reg);
870
871	/*
872	 * We treat OABUFFER_OVERFLOW as a significant error:
873	 *
874	 * Although theoretically we could handle this more gracefully
875	 * sometimes, some Gens don't correctly suppress certain
876	 * automatically triggered reports in this condition and so we
877	 * have to assume that old reports are now being trampled
878	 * over.
879	 *
880	 * Considering how we don't currently give userspace control
881	 * over the OA buffer size and always configure a large 16MB
882	 * buffer, then a buffer overflow does anyway likely indicate
883	 * that something has gone quite badly wrong.
884	 */
885	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
886		ret = append_oa_status(stream, buf, count, offset,
887				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
888		if (ret)
889			return ret;
890
891		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
892			  stream->period_exponent);
893
894		stream->perf->ops.oa_disable(stream);
895		stream->perf->ops.oa_enable(stream);
896
897		/*
898		 * Note: .oa_enable() is expected to re-init the oabuffer and
899		 * reset GEN8_OASTATUS for us
900		 */
901		oastatus = intel_uncore_read(uncore, oastatus_reg);
902	}
903
904	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
905		ret = append_oa_status(stream, buf, count, offset,
906				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
907		if (ret)
908			return ret;
909
910		intel_uncore_rmw(uncore, oastatus_reg,
911				 GEN8_OASTATUS_COUNTER_OVERFLOW |
912				 GEN8_OASTATUS_REPORT_LOST,
913				 IS_GEN_RANGE(uncore->i915, 8, 10) ?
914				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
915				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
916	}
917
918	return gen8_append_oa_reports(stream, buf, count, offset);
919}
920
921/**
922 * Copies all buffered OA reports into userspace read() buffer.
923 * @stream: An i915-perf stream opened for OA metrics
924 * @buf: destination buffer given by userspace
925 * @count: the number of bytes userspace wants to read
926 * @offset: (inout): the current position for writing into @buf
927 *
928 * Notably any error condition resulting in a short read (-%ENOSPC or
929 * -%EFAULT) will be returned even though one or more records may
930 * have been successfully copied. In this case it's up to the caller
931 * to decide if the error should be squashed before returning to
932 * userspace.
933 *
934 * Note: reports are consumed from the head, and appended to the
935 * tail, so the tail chases the head?... If you think that's mad
936 * and back-to-front you're not alone, but this follows the
937 * Gen PRM naming convention.
938 *
939 * Returns: 0 on success, negative error code on failure.
940 */
941static int gen7_append_oa_reports(struct i915_perf_stream *stream,
942				  char __user *buf,
943				  size_t count,
944				  size_t *offset)
945{
946	struct intel_uncore *uncore = stream->uncore;
947	int report_size = stream->oa_buffer.format_size;
948	u8 *oa_buf_base = stream->oa_buffer.vaddr;
949	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
950	u32 mask = (OA_BUFFER_SIZE - 1);
951	size_t start_offset = *offset;
952	unsigned long flags;
953	u32 head, tail;
954	u32 taken;
955	int ret = 0;
956
957	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
958		return -EIO;
959
960	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
961
962	head = stream->oa_buffer.head;
963	tail = stream->oa_buffer.tail;
964
965	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
966
967	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
968	 * while indexing relative to oa_buf_base.
969	 */
970	head -= gtt_offset;
971	tail -= gtt_offset;
972
973	/* An out of bounds or misaligned head or tail pointer implies a driver
974	 * bug since we validate + align the tail pointers we read from the
975	 * hardware and we are in full control of the head pointer which should
976	 * only be incremented by multiples of the report size (notably also
977	 * all a power of two).
978	 */
979	if (drm_WARN_ONCE(&uncore->i915->drm,
980			  head > OA_BUFFER_SIZE || head % report_size ||
981			  tail > OA_BUFFER_SIZE || tail % report_size,
982			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
983			  head, tail))
984		return -EIO;
985
986
987	for (/* none */;
988	     (taken = OA_TAKEN(tail, head));
989	     head = (head + report_size) & mask) {
990		u8 *report = oa_buf_base + head;
991		u32 *report32 = (void *)report;
992
993		/* All the report sizes factor neatly into the buffer
994		 * size so we never expect to see a report split
995		 * between the beginning and end of the buffer.
996		 *
997		 * Given the initial alignment check a misalignment
998		 * here would imply a driver bug that would result
999		 * in an overrun.
1000		 */
1001		if (drm_WARN_ON(&uncore->i915->drm,
1002				(OA_BUFFER_SIZE - head) < report_size)) {
1003			drm_err(&uncore->i915->drm,
1004				"Spurious OA head ptr: non-integral report offset\n");
1005			break;
1006		}
1007
1008		/* The report-ID field for periodic samples includes
1009		 * some undocumented flags related to what triggered
1010		 * the report and is never expected to be zero so we
1011		 * can check that the report isn't invalid before
1012		 * copying it to userspace...
1013		 */
1014		if (report32[0] == 0) {
1015			if (__ratelimit(&stream->perf->spurious_report_rs))
1016				DRM_NOTE("Skipping spurious, invalid OA report\n");
1017			continue;
1018		}
1019
1020		ret = append_oa_sample(stream, buf, count, offset, report);
1021		if (ret)
1022			break;
1023
1024		/* Clear out the first 2 dwords as a mean to detect unlanded
1025		 * reports.
1026		 */
1027		report32[0] = 0;
1028		report32[1] = 0;
1029	}
1030
1031	if (start_offset != *offset) {
1032		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1033
1034		/* We removed the gtt_offset for the copy loop above, indexing
1035		 * relative to oa_buf_base so put back here...
1036		 */
1037		head += gtt_offset;
1038
1039		intel_uncore_write(uncore, GEN7_OASTATUS2,
1040				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1041				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1042		stream->oa_buffer.head = head;
1043
1044		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1045	}
1046
1047	return ret;
1048}
1049
1050/**
1051 * gen7_oa_read - copy status records then buffered OA reports
1052 * @stream: An i915-perf stream opened for OA metrics
1053 * @buf: destination buffer given by userspace
1054 * @count: the number of bytes userspace wants to read
1055 * @offset: (inout): the current position for writing into @buf
1056 *
1057 * Checks Gen 7 specific OA unit status registers and if necessary appends
1058 * corresponding status records for userspace (such as for a buffer full
1059 * condition) and then initiate appending any buffered OA reports.
1060 *
1061 * Updates @offset according to the number of bytes successfully copied into
1062 * the userspace buffer.
1063 *
1064 * Returns: zero on success or a negative error code
1065 */
1066static int gen7_oa_read(struct i915_perf_stream *stream,
1067			char __user *buf,
1068			size_t count,
1069			size_t *offset)
1070{
1071	struct intel_uncore *uncore = stream->uncore;
1072	u32 oastatus1;
1073	int ret;
1074
1075	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1076		return -EIO;
1077
1078	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1079
1080	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1081	 * bits while the OA unit is enabled (while the tail pointer
1082	 * may be updated asynchronously) so we ignore status bits
1083	 * that have already been reported to userspace.
1084	 */
1085	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1086
1087	/* We treat OABUFFER_OVERFLOW as a significant error:
1088	 *
1089	 * - The status can be interpreted to mean that the buffer is
1090	 *   currently full (with a higher precedence than OA_TAKEN()
1091	 *   which will start to report a near-empty buffer after an
1092	 *   overflow) but it's awkward that we can't clear the status
1093	 *   on Haswell, so without a reset we won't be able to catch
1094	 *   the state again.
1095	 *
1096	 * - Since it also implies the HW has started overwriting old
1097	 *   reports it may also affect our sanity checks for invalid
1098	 *   reports when copying to userspace that assume new reports
1099	 *   are being written to cleared memory.
1100	 *
1101	 * - In the future we may want to introduce a flight recorder
1102	 *   mode where the driver will automatically maintain a safe
1103	 *   guard band between head/tail, avoiding this overflow
1104	 *   condition, but we avoid the added driver complexity for
1105	 *   now.
1106	 */
1107	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1108		ret = append_oa_status(stream, buf, count, offset,
1109				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1110		if (ret)
1111			return ret;
1112
1113		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1114			  stream->period_exponent);
1115
1116		stream->perf->ops.oa_disable(stream);
1117		stream->perf->ops.oa_enable(stream);
1118
1119		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1120	}
1121
1122	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123		ret = append_oa_status(stream, buf, count, offset,
1124				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125		if (ret)
1126			return ret;
1127		stream->perf->gen7_latched_oastatus1 |=
1128			GEN7_OASTATUS1_REPORT_LOST;
1129	}
1130
1131	return gen7_append_oa_reports(stream, buf, count, offset);
1132}
1133
1134/**
1135 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136 * @stream: An i915-perf stream opened for OA metrics
1137 *
1138 * Called when userspace tries to read() from a blocking stream FD opened
1139 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140 * OA buffer and wakes us.
1141 *
1142 * Note: it's acceptable to have this return with some false positives
1143 * since any subsequent read handling will return -EAGAIN if there isn't
1144 * really data ready for userspace yet.
1145 *
1146 * Returns: zero on success or a negative error code
1147 */
1148static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149{
1150	/* We would wait indefinitely if periodic sampling is not enabled */
1151	if (!stream->periodic)
1152		return -EIO;
1153
1154	return wait_event_interruptible(stream->poll_wq,
1155					oa_buffer_check_unlocked(stream));
1156}
1157
1158/**
1159 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1160 * @stream: An i915-perf stream opened for OA metrics
1161 * @file: An i915 perf stream file
1162 * @wait: poll() state table
1163 *
1164 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1165 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1166 * when it sees data ready to read in the circular OA buffer.
1167 */
1168static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1169			      struct file *file,
1170			      poll_table *wait)
1171{
1172	poll_wait(file, &stream->poll_wq, wait);
1173}
1174
1175/**
1176 * i915_oa_read - just calls through to &i915_oa_ops->read
1177 * @stream: An i915-perf stream opened for OA metrics
1178 * @buf: destination buffer given by userspace
1179 * @count: the number of bytes userspace wants to read
1180 * @offset: (inout): the current position for writing into @buf
1181 *
1182 * Updates @offset according to the number of bytes successfully copied into
1183 * the userspace buffer.
1184 *
1185 * Returns: zero on success or a negative error code
1186 */
1187static int i915_oa_read(struct i915_perf_stream *stream,
1188			char __user *buf,
1189			size_t count,
1190			size_t *offset)
1191{
1192	return stream->perf->ops.read(stream, buf, count, offset);
1193}
1194
1195static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1196{
1197	struct i915_gem_engines_iter it;
1198	struct i915_gem_context *ctx = stream->ctx;
1199	struct intel_context *ce;
1200	struct i915_gem_ww_ctx ww;
1201	int err = -ENODEV;
1202
1203	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1204		if (ce->engine != stream->engine) /* first match! */
1205			continue;
1206
1207		err = 0;
1208		break;
1209	}
1210	i915_gem_context_unlock_engines(ctx);
1211
1212	if (err)
1213		return ERR_PTR(err);
1214
1215	i915_gem_ww_ctx_init(&ww, true);
1216retry:
1217	/*
1218	 * As the ID is the gtt offset of the context's vma we
1219	 * pin the vma to ensure the ID remains fixed.
1220	 */
1221	err = intel_context_pin_ww(ce, &ww);
1222	if (err == -EDEADLK) {
1223		err = i915_gem_ww_ctx_backoff(&ww);
1224		if (!err)
1225			goto retry;
1226	}
1227	i915_gem_ww_ctx_fini(&ww);
1228
1229	if (err)
1230		return ERR_PTR(err);
1231
1232	stream->pinned_ctx = ce;
1233	return stream->pinned_ctx;
1234}
1235
1236/**
1237 * oa_get_render_ctx_id - determine and hold ctx hw id
1238 * @stream: An i915-perf stream opened for OA metrics
1239 *
1240 * Determine the render context hw id, and ensure it remains fixed for the
1241 * lifetime of the stream. This ensures that we don't have to worry about
1242 * updating the context ID in OACONTROL on the fly.
1243 *
1244 * Returns: zero on success or a negative error code
1245 */
1246static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1247{
1248	struct intel_context *ce;
1249
1250	ce = oa_pin_context(stream);
1251	if (IS_ERR(ce))
1252		return PTR_ERR(ce);
1253
1254	switch (INTEL_GEN(ce->engine->i915)) {
1255	case 7: {
1256		/*
1257		 * On Haswell we don't do any post processing of the reports
1258		 * and don't need to use the mask.
1259		 */
1260		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1261		stream->specific_ctx_id_mask = 0;
1262		break;
1263	}
1264
1265	case 8:
1266	case 9:
1267	case 10:
1268		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1269			stream->specific_ctx_id_mask =
1270				(1U << GEN8_CTX_ID_WIDTH) - 1;
1271			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1272		} else {
1273			/*
1274			 * When using GuC, the context descriptor we write in
1275			 * i915 is read by GuC and rewritten before it's
1276			 * actually written into the hardware. The LRCA is
1277			 * what is put into the context id field of the
1278			 * context descriptor by GuC. Because it's aligned to
1279			 * a page, the lower 12bits are always at 0 and
1280			 * dropped by GuC. They won't be part of the context
1281			 * ID in the OA reports, so squash those lower bits.
1282			 */
1283			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1284
1285			/*
1286			 * GuC uses the top bit to signal proxy submission, so
1287			 * ignore that bit.
1288			 */
1289			stream->specific_ctx_id_mask =
1290				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1291		}
1292		break;
1293
1294	case 11:
1295	case 12: {
1296		stream->specific_ctx_id_mask =
1297			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1298		/*
1299		 * Pick an unused context id
1300		 * 0 - BITS_PER_LONG are used by other contexts
1301		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1302		 */
1303		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1304		break;
1305	}
1306
1307	default:
1308		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1309	}
1310
1311	ce->tag = stream->specific_ctx_id;
1312
1313	drm_dbg(&stream->perf->i915->drm,
1314		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1315		stream->specific_ctx_id,
1316		stream->specific_ctx_id_mask);
1317
1318	return 0;
1319}
1320
1321/**
1322 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1323 * @stream: An i915-perf stream opened for OA metrics
1324 *
1325 * In case anything needed doing to ensure the context HW ID would remain valid
1326 * for the lifetime of the stream, then that can be undone here.
1327 */
1328static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1329{
1330	struct intel_context *ce;
1331
1332	ce = fetch_and_zero(&stream->pinned_ctx);
1333	if (ce) {
1334		ce->tag = 0; /* recomputed on next submission after parking */
1335		intel_context_unpin(ce);
1336	}
1337
1338	stream->specific_ctx_id = INVALID_CTX_ID;
1339	stream->specific_ctx_id_mask = 0;
1340}
1341
1342static void
1343free_oa_buffer(struct i915_perf_stream *stream)
1344{
1345	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1346				   I915_VMA_RELEASE_MAP);
1347
1348	stream->oa_buffer.vaddr = NULL;
1349}
1350
1351static void
1352free_oa_configs(struct i915_perf_stream *stream)
1353{
1354	struct i915_oa_config_bo *oa_bo, *tmp;
1355
1356	i915_oa_config_put(stream->oa_config);
1357	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1358		free_oa_config_bo(oa_bo);
1359}
1360
1361static void
1362free_noa_wait(struct i915_perf_stream *stream)
1363{
1364	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1365}
1366
1367static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1368{
1369	struct i915_perf *perf = stream->perf;
1370
1371	BUG_ON(stream != perf->exclusive_stream);
1372
1373	/*
1374	 * Unset exclusive_stream first, it will be checked while disabling
1375	 * the metric set on gen8+.
1376	 *
1377	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1378	 */
1379	WRITE_ONCE(perf->exclusive_stream, NULL);
1380	perf->ops.disable_metric_set(stream);
1381
1382	free_oa_buffer(stream);
1383
1384	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1385	intel_engine_pm_put(stream->engine);
1386
1387	if (stream->ctx)
1388		oa_put_render_ctx_id(stream);
1389
1390	free_oa_configs(stream);
1391	free_noa_wait(stream);
1392
1393	if (perf->spurious_report_rs.missed) {
1394		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1395			 perf->spurious_report_rs.missed);
1396	}
1397}
1398
1399static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1400{
1401	struct intel_uncore *uncore = stream->uncore;
1402	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1403	unsigned long flags;
1404
1405	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1406
1407	/* Pre-DevBDW: OABUFFER must be set with counters off,
1408	 * before OASTATUS1, but after OASTATUS2
1409	 */
1410	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1411			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1412	stream->oa_buffer.head = gtt_offset;
1413
1414	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1415
1416	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1417			   gtt_offset | OABUFFER_SIZE_16M);
1418
1419	/* Mark that we need updated tail pointers to read from... */
1420	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1421	stream->oa_buffer.tail = gtt_offset;
1422
1423	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1424
1425	/* On Haswell we have to track which OASTATUS1 flags we've
1426	 * already seen since they can't be cleared while periodic
1427	 * sampling is enabled.
1428	 */
1429	stream->perf->gen7_latched_oastatus1 = 0;
1430
1431	/* NB: although the OA buffer will initially be allocated
1432	 * zeroed via shmfs (and so this memset is redundant when
1433	 * first allocating), we may re-init the OA buffer, either
1434	 * when re-enabling a stream or in error/reset paths.
1435	 *
1436	 * The reason we clear the buffer for each re-init is for the
1437	 * sanity check in gen7_append_oa_reports() that looks at the
1438	 * report-id field to make sure it's non-zero which relies on
1439	 * the assumption that new reports are being written to zeroed
1440	 * memory...
1441	 */
1442	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1443}
1444
1445static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1446{
1447	struct intel_uncore *uncore = stream->uncore;
1448	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1449	unsigned long flags;
1450
1451	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1452
1453	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1454	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1455	stream->oa_buffer.head = gtt_offset;
1456
1457	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1458
1459	/*
1460	 * PRM says:
1461	 *
1462	 *  "This MMIO must be set before the OATAILPTR
1463	 *  register and after the OAHEADPTR register. This is
1464	 *  to enable proper functionality of the overflow
1465	 *  bit."
1466	 */
1467	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1468		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1469	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1470
1471	/* Mark that we need updated tail pointers to read from... */
1472	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1473	stream->oa_buffer.tail = gtt_offset;
1474
1475	/*
1476	 * Reset state used to recognise context switches, affecting which
1477	 * reports we will forward to userspace while filtering for a single
1478	 * context.
1479	 */
1480	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1481
1482	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1483
1484	/*
1485	 * NB: although the OA buffer will initially be allocated
1486	 * zeroed via shmfs (and so this memset is redundant when
1487	 * first allocating), we may re-init the OA buffer, either
1488	 * when re-enabling a stream or in error/reset paths.
1489	 *
1490	 * The reason we clear the buffer for each re-init is for the
1491	 * sanity check in gen8_append_oa_reports() that looks at the
1492	 * reason field to make sure it's non-zero which relies on
1493	 * the assumption that new reports are being written to zeroed
1494	 * memory...
1495	 */
1496	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1497}
1498
1499static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1500{
1501	struct intel_uncore *uncore = stream->uncore;
1502	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1503	unsigned long flags;
1504
1505	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1506
1507	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1508	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1509			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1510	stream->oa_buffer.head = gtt_offset;
1511
1512	/*
1513	 * PRM says:
1514	 *
1515	 *  "This MMIO must be set before the OATAILPTR
1516	 *  register and after the OAHEADPTR register. This is
1517	 *  to enable proper functionality of the overflow
1518	 *  bit."
1519	 */
1520	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1521			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1522	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1523			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1524
1525	/* Mark that we need updated tail pointers to read from... */
1526	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1527	stream->oa_buffer.tail = gtt_offset;
1528
1529	/*
1530	 * Reset state used to recognise context switches, affecting which
1531	 * reports we will forward to userspace while filtering for a single
1532	 * context.
1533	 */
1534	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1535
1536	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1537
1538	/*
1539	 * NB: although the OA buffer will initially be allocated
1540	 * zeroed via shmfs (and so this memset is redundant when
1541	 * first allocating), we may re-init the OA buffer, either
1542	 * when re-enabling a stream or in error/reset paths.
1543	 *
1544	 * The reason we clear the buffer for each re-init is for the
1545	 * sanity check in gen8_append_oa_reports() that looks at the
1546	 * reason field to make sure it's non-zero which relies on
1547	 * the assumption that new reports are being written to zeroed
1548	 * memory...
1549	 */
1550	memset(stream->oa_buffer.vaddr, 0,
1551	       stream->oa_buffer.vma->size);
1552}
1553
1554static int alloc_oa_buffer(struct i915_perf_stream *stream)
1555{
1556	struct drm_i915_private *i915 = stream->perf->i915;
1557	struct drm_i915_gem_object *bo;
1558	struct i915_vma *vma;
1559	int ret;
1560
1561	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1562		return -ENODEV;
1563
1564	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1565	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1566
1567	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1568	if (IS_ERR(bo)) {
1569		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1570		return PTR_ERR(bo);
1571	}
1572
1573	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1574
1575	/* PreHSW required 512K alignment, HSW requires 16M */
1576	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1577	if (IS_ERR(vma)) {
1578		ret = PTR_ERR(vma);
1579		goto err_unref;
1580	}
1581	stream->oa_buffer.vma = vma;
1582
1583	stream->oa_buffer.vaddr =
1584		i915_gem_object_pin_map(bo, I915_MAP_WB);
1585	if (IS_ERR(stream->oa_buffer.vaddr)) {
1586		ret = PTR_ERR(stream->oa_buffer.vaddr);
1587		goto err_unpin;
1588	}
1589
1590	return 0;
1591
1592err_unpin:
1593	__i915_vma_unpin(vma);
1594
1595err_unref:
1596	i915_gem_object_put(bo);
1597
1598	stream->oa_buffer.vaddr = NULL;
1599	stream->oa_buffer.vma = NULL;
1600
1601	return ret;
1602}
1603
1604static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1605				  bool save, i915_reg_t reg, u32 offset,
1606				  u32 dword_count)
1607{
1608	u32 cmd;
1609	u32 d;
1610
1611	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1612	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1613	if (INTEL_GEN(stream->perf->i915) >= 8)
1614		cmd++;
1615
1616	for (d = 0; d < dword_count; d++) {
1617		*cs++ = cmd;
1618		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1619		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1620						offset) + 4 * d;
1621		*cs++ = 0;
1622	}
1623
1624	return cs;
1625}
1626
1627static int alloc_noa_wait(struct i915_perf_stream *stream)
1628{
1629	struct drm_i915_private *i915 = stream->perf->i915;
1630	struct drm_i915_gem_object *bo;
1631	struct i915_vma *vma;
1632	const u64 delay_ticks = 0xffffffffffffffff -
1633		i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1634	const u32 base = stream->engine->mmio_base;
1635#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1636	u32 *batch, *ts0, *cs, *jump;
1637	int ret, i;
1638	enum {
1639		START_TS,
1640		NOW_TS,
1641		DELTA_TS,
1642		JUMP_PREDICATE,
1643		DELTA_TARGET,
1644		N_CS_GPR
1645	};
1646
1647	bo = i915_gem_object_create_internal(i915, 4096);
1648	if (IS_ERR(bo)) {
1649		drm_err(&i915->drm,
1650			"Failed to allocate NOA wait batchbuffer\n");
1651		return PTR_ERR(bo);
1652	}
1653
1654	/*
1655	 * We pin in GGTT because we jump into this buffer now because
1656	 * multiple OA config BOs will have a jump to this address and it
1657	 * needs to be fixed during the lifetime of the i915/perf stream.
1658	 */
1659	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1660	if (IS_ERR(vma)) {
1661		ret = PTR_ERR(vma);
1662		goto err_unref;
1663	}
1664
1665	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1666	if (IS_ERR(batch)) {
1667		ret = PTR_ERR(batch);
1668		goto err_unpin;
1669	}
1670
1671	/* Save registers. */
1672	for (i = 0; i < N_CS_GPR; i++)
1673		cs = save_restore_register(
1674			stream, cs, true /* save */, CS_GPR(i),
1675			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1676	cs = save_restore_register(
1677		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1678		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1679
1680	/* First timestamp snapshot location. */
1681	ts0 = cs;
1682
1683	/*
1684	 * Initial snapshot of the timestamp register to implement the wait.
1685	 * We work with 32b values, so clear out the top 32b bits of the
1686	 * register because the ALU works 64bits.
1687	 */
1688	*cs++ = MI_LOAD_REGISTER_IMM(1);
1689	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1690	*cs++ = 0;
1691	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1692	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1693	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1694
1695	/*
1696	 * This is the location we're going to jump back into until the
1697	 * required amount of time has passed.
1698	 */
1699	jump = cs;
1700
1701	/*
1702	 * Take another snapshot of the timestamp register. Take care to clear
1703	 * up the top 32bits of CS_GPR(1) as we're using it for other
1704	 * operations below.
1705	 */
1706	*cs++ = MI_LOAD_REGISTER_IMM(1);
1707	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1708	*cs++ = 0;
1709	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1710	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1711	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1712
1713	/*
1714	 * Do a diff between the 2 timestamps and store the result back into
1715	 * CS_GPR(1).
1716	 */
1717	*cs++ = MI_MATH(5);
1718	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1719	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1720	*cs++ = MI_MATH_SUB;
1721	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1722	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1723
1724	/*
1725	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1726	 * timestamp have rolled over the 32bits) into the predicate register
1727	 * to be used for the predicated jump.
1728	 */
1729	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1731	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1732
1733	/* Restart from the beginning if we had timestamps roll over. */
1734	*cs++ = (INTEL_GEN(i915) < 8 ?
1735		 MI_BATCH_BUFFER_START :
1736		 MI_BATCH_BUFFER_START_GEN8) |
1737		MI_BATCH_PREDICATE;
1738	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1739	*cs++ = 0;
1740
1741	/*
1742	 * Now add the diff between to previous timestamps and add it to :
1743	 *      (((1 * << 64) - 1) - delay_ns)
1744	 *
1745	 * When the Carry Flag contains 1 this means the elapsed time is
1746	 * longer than the expected delay, and we can exit the wait loop.
1747	 */
1748	*cs++ = MI_LOAD_REGISTER_IMM(2);
1749	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1750	*cs++ = lower_32_bits(delay_ticks);
1751	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1752	*cs++ = upper_32_bits(delay_ticks);
1753
1754	*cs++ = MI_MATH(4);
1755	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1756	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1757	*cs++ = MI_MATH_ADD;
1758	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1759
1760	*cs++ = MI_ARB_CHECK;
1761
1762	/*
1763	 * Transfer the result into the predicate register to be used for the
1764	 * predicated jump.
1765	 */
1766	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1767	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1768	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1769
1770	/* Predicate the jump.  */
1771	*cs++ = (INTEL_GEN(i915) < 8 ?
1772		 MI_BATCH_BUFFER_START :
1773		 MI_BATCH_BUFFER_START_GEN8) |
1774		MI_BATCH_PREDICATE;
1775	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1776	*cs++ = 0;
1777
1778	/* Restore registers. */
1779	for (i = 0; i < N_CS_GPR; i++)
1780		cs = save_restore_register(
1781			stream, cs, false /* restore */, CS_GPR(i),
1782			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1783	cs = save_restore_register(
1784		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1785		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1786
1787	/* And return to the ring. */
1788	*cs++ = MI_BATCH_BUFFER_END;
1789
1790	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1791
1792	i915_gem_object_flush_map(bo);
1793	__i915_gem_object_release_map(bo);
1794
1795	stream->noa_wait = vma;
1796	return 0;
1797
1798err_unpin:
1799	i915_vma_unpin_and_release(&vma, 0);
1800err_unref:
1801	i915_gem_object_put(bo);
1802	return ret;
1803}
1804
1805static u32 *write_cs_mi_lri(u32 *cs,
1806			    const struct i915_oa_reg *reg_data,
1807			    u32 n_regs)
1808{
1809	u32 i;
1810
1811	for (i = 0; i < n_regs; i++) {
1812		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1813			u32 n_lri = min_t(u32,
1814					  n_regs - i,
1815					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1816
1817			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1818		}
1819		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1820		*cs++ = reg_data[i].value;
1821	}
1822
1823	return cs;
1824}
1825
1826static int num_lri_dwords(int num_regs)
1827{
1828	int count = 0;
1829
1830	if (num_regs > 0) {
1831		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1832		count += num_regs * 2;
1833	}
1834
1835	return count;
1836}
1837
1838static struct i915_oa_config_bo *
1839alloc_oa_config_buffer(struct i915_perf_stream *stream,
1840		       struct i915_oa_config *oa_config)
1841{
1842	struct drm_i915_gem_object *obj;
1843	struct i915_oa_config_bo *oa_bo;
1844	size_t config_length = 0;
1845	u32 *cs;
1846	int err;
1847
1848	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1849	if (!oa_bo)
1850		return ERR_PTR(-ENOMEM);
1851
1852	config_length += num_lri_dwords(oa_config->mux_regs_len);
1853	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1854	config_length += num_lri_dwords(oa_config->flex_regs_len);
1855	config_length += 3; /* MI_BATCH_BUFFER_START */
1856	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1857
1858	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1859	if (IS_ERR(obj)) {
1860		err = PTR_ERR(obj);
1861		goto err_free;
1862	}
1863
1864	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1865	if (IS_ERR(cs)) {
1866		err = PTR_ERR(cs);
1867		goto err_oa_bo;
1868	}
1869
1870	cs = write_cs_mi_lri(cs,
1871			     oa_config->mux_regs,
1872			     oa_config->mux_regs_len);
1873	cs = write_cs_mi_lri(cs,
1874			     oa_config->b_counter_regs,
1875			     oa_config->b_counter_regs_len);
1876	cs = write_cs_mi_lri(cs,
1877			     oa_config->flex_regs,
1878			     oa_config->flex_regs_len);
1879
1880	/* Jump into the active wait. */
1881	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1882		 MI_BATCH_BUFFER_START :
1883		 MI_BATCH_BUFFER_START_GEN8);
1884	*cs++ = i915_ggtt_offset(stream->noa_wait);
1885	*cs++ = 0;
1886
1887	i915_gem_object_flush_map(obj);
1888	__i915_gem_object_release_map(obj);
1889
1890	oa_bo->vma = i915_vma_instance(obj,
1891				       &stream->engine->gt->ggtt->vm,
1892				       NULL);
1893	if (IS_ERR(oa_bo->vma)) {
1894		err = PTR_ERR(oa_bo->vma);
1895		goto err_oa_bo;
1896	}
1897
1898	oa_bo->oa_config = i915_oa_config_get(oa_config);
1899	llist_add(&oa_bo->node, &stream->oa_config_bos);
1900
1901	return oa_bo;
1902
1903err_oa_bo:
1904	i915_gem_object_put(obj);
1905err_free:
1906	kfree(oa_bo);
1907	return ERR_PTR(err);
1908}
1909
1910static struct i915_vma *
1911get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1912{
1913	struct i915_oa_config_bo *oa_bo;
1914
1915	/*
1916	 * Look for the buffer in the already allocated BOs attached
1917	 * to the stream.
1918	 */
1919	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1920		if (oa_bo->oa_config == oa_config &&
1921		    memcmp(oa_bo->oa_config->uuid,
1922			   oa_config->uuid,
1923			   sizeof(oa_config->uuid)) == 0)
1924			goto out;
1925	}
1926
1927	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1928	if (IS_ERR(oa_bo))
1929		return ERR_CAST(oa_bo);
1930
1931out:
1932	return i915_vma_get(oa_bo->vma);
1933}
1934
1935static int
1936emit_oa_config(struct i915_perf_stream *stream,
1937	       struct i915_oa_config *oa_config,
1938	       struct intel_context *ce,
1939	       struct i915_active *active)
1940{
1941	struct i915_request *rq;
1942	struct i915_vma *vma;
1943	struct i915_gem_ww_ctx ww;
1944	int err;
1945
1946	vma = get_oa_vma(stream, oa_config);
1947	if (IS_ERR(vma))
1948		return PTR_ERR(vma);
1949
1950	i915_gem_ww_ctx_init(&ww, true);
1951retry:
1952	err = i915_gem_object_lock(vma->obj, &ww);
1953	if (err)
1954		goto err;
1955
1956	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1957	if (err)
1958		goto err;
1959
1960	intel_engine_pm_get(ce->engine);
1961	rq = i915_request_create(ce);
1962	intel_engine_pm_put(ce->engine);
1963	if (IS_ERR(rq)) {
1964		err = PTR_ERR(rq);
1965		goto err_vma_unpin;
1966	}
1967
1968	if (!IS_ERR_OR_NULL(active)) {
1969		/* After all individual context modifications */
1970		err = i915_request_await_active(rq, active,
1971						I915_ACTIVE_AWAIT_ACTIVE);
1972		if (err)
1973			goto err_add_request;
1974
1975		err = i915_active_add_request(active, rq);
1976		if (err)
1977			goto err_add_request;
1978	}
1979
1980	err = i915_request_await_object(rq, vma->obj, 0);
1981	if (!err)
1982		err = i915_vma_move_to_active(vma, rq, 0);
1983	if (err)
1984		goto err_add_request;
1985
1986	err = rq->engine->emit_bb_start(rq,
1987					vma->node.start, 0,
1988					I915_DISPATCH_SECURE);
1989	if (err)
1990		goto err_add_request;
1991
1992err_add_request:
1993	i915_request_add(rq);
1994err_vma_unpin:
1995	i915_vma_unpin(vma);
1996err:
1997	if (err == -EDEADLK) {
1998		err = i915_gem_ww_ctx_backoff(&ww);
1999		if (!err)
2000			goto retry;
2001	}
2002
2003	i915_gem_ww_ctx_fini(&ww);
2004	i915_vma_put(vma);
2005	return err;
2006}
2007
2008static struct intel_context *oa_context(struct i915_perf_stream *stream)
2009{
2010	return stream->pinned_ctx ?: stream->engine->kernel_context;
2011}
2012
2013static int
2014hsw_enable_metric_set(struct i915_perf_stream *stream,
2015		      struct i915_active *active)
2016{
2017	struct intel_uncore *uncore = stream->uncore;
2018
2019	/*
2020	 * PRM:
2021	 *
2022	 * OA unit is using “crclk” for its functionality. When trunk
2023	 * level clock gating takes place, OA clock would be gated,
2024	 * unable to count the events from non-render clock domain.
2025	 * Render clock gating must be disabled when OA is enabled to
2026	 * count the events from non-render domain. Unit level clock
2027	 * gating for RCS should also be disabled.
2028	 */
2029	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2030			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2031	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2032			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2033
2034	return emit_oa_config(stream,
2035			      stream->oa_config, oa_context(stream),
2036			      active);
2037}
2038
2039static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2040{
2041	struct intel_uncore *uncore = stream->uncore;
2042
2043	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2044			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2045	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2046			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2047
2048	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2049}
2050
2051static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2052			      i915_reg_t reg)
2053{
2054	u32 mmio = i915_mmio_reg_offset(reg);
2055	int i;
2056
2057	/*
2058	 * This arbitrary default will select the 'EU FPU0 Pipeline
2059	 * Active' event. In the future it's anticipated that there
2060	 * will be an explicit 'No Event' we can select, but not yet...
2061	 */
2062	if (!oa_config)
2063		return 0;
2064
2065	for (i = 0; i < oa_config->flex_regs_len; i++) {
2066		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2067			return oa_config->flex_regs[i].value;
2068	}
2069
2070	return 0;
2071}
2072/*
2073 * NB: It must always remain pointer safe to run this even if the OA unit
2074 * has been disabled.
2075 *
2076 * It's fine to put out-of-date values into these per-context registers
2077 * in the case that the OA unit has been disabled.
2078 */
2079static void
2080gen8_update_reg_state_unlocked(const struct intel_context *ce,
2081			       const struct i915_perf_stream *stream)
2082{
2083	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2084	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2085	/* The MMIO offsets for Flex EU registers aren't contiguous */
2086	i915_reg_t flex_regs[] = {
2087		EU_PERF_CNTL0,
2088		EU_PERF_CNTL1,
2089		EU_PERF_CNTL2,
2090		EU_PERF_CNTL3,
2091		EU_PERF_CNTL4,
2092		EU_PERF_CNTL5,
2093		EU_PERF_CNTL6,
2094	};
2095	u32 *reg_state = ce->lrc_reg_state;
2096	int i;
2097
2098	reg_state[ctx_oactxctrl + 1] =
2099		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2100		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2101		GEN8_OA_COUNTER_RESUME;
2102
2103	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2104		reg_state[ctx_flexeu0 + i * 2 + 1] =
2105			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2106}
2107
2108struct flex {
2109	i915_reg_t reg;
2110	u32 offset;
2111	u32 value;
2112};
2113
2114static int
2115gen8_store_flex(struct i915_request *rq,
2116		struct intel_context *ce,
2117		const struct flex *flex, unsigned int count)
2118{
2119	u32 offset;
2120	u32 *cs;
2121
2122	cs = intel_ring_begin(rq, 4 * count);
2123	if (IS_ERR(cs))
2124		return PTR_ERR(cs);
2125
2126	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2127	do {
2128		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2129		*cs++ = offset + flex->offset * sizeof(u32);
2130		*cs++ = 0;
2131		*cs++ = flex->value;
2132	} while (flex++, --count);
2133
2134	intel_ring_advance(rq, cs);
2135
2136	return 0;
2137}
2138
2139static int
2140gen8_load_flex(struct i915_request *rq,
2141	       struct intel_context *ce,
2142	       const struct flex *flex, unsigned int count)
2143{
2144	u32 *cs;
2145
2146	GEM_BUG_ON(!count || count > 63);
2147
2148	cs = intel_ring_begin(rq, 2 * count + 2);
2149	if (IS_ERR(cs))
2150		return PTR_ERR(cs);
2151
2152	*cs++ = MI_LOAD_REGISTER_IMM(count);
2153	do {
2154		*cs++ = i915_mmio_reg_offset(flex->reg);
2155		*cs++ = flex->value;
2156	} while (flex++, --count);
2157	*cs++ = MI_NOOP;
2158
2159	intel_ring_advance(rq, cs);
2160
2161	return 0;
2162}
2163
2164static int gen8_modify_context(struct intel_context *ce,
2165			       const struct flex *flex, unsigned int count)
2166{
2167	struct i915_request *rq;
2168	int err;
2169
2170	rq = intel_engine_create_kernel_request(ce->engine);
2171	if (IS_ERR(rq))
2172		return PTR_ERR(rq);
2173
2174	/* Serialise with the remote context */
2175	err = intel_context_prepare_remote_request(ce, rq);
2176	if (err == 0)
2177		err = gen8_store_flex(rq, ce, flex, count);
2178
2179	i915_request_add(rq);
2180	return err;
2181}
2182
2183static int
2184gen8_modify_self(struct intel_context *ce,
2185		 const struct flex *flex, unsigned int count,
2186		 struct i915_active *active)
2187{
2188	struct i915_request *rq;
2189	int err;
2190
2191	intel_engine_pm_get(ce->engine);
2192	rq = i915_request_create(ce);
2193	intel_engine_pm_put(ce->engine);
2194	if (IS_ERR(rq))
2195		return PTR_ERR(rq);
2196
2197	if (!IS_ERR_OR_NULL(active)) {
2198		err = i915_active_add_request(active, rq);
2199		if (err)
2200			goto err_add_request;
2201	}
2202
2203	err = gen8_load_flex(rq, ce, flex, count);
2204	if (err)
2205		goto err_add_request;
2206
2207err_add_request:
2208	i915_request_add(rq);
2209	return err;
2210}
2211
2212static int gen8_configure_context(struct i915_gem_context *ctx,
2213				  struct flex *flex, unsigned int count)
2214{
2215	struct i915_gem_engines_iter it;
2216	struct intel_context *ce;
2217	int err = 0;
2218
2219	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2220		GEM_BUG_ON(ce == ce->engine->kernel_context);
2221
2222		if (ce->engine->class != RENDER_CLASS)
2223			continue;
2224
2225		/* Otherwise OA settings will be set upon first use */
2226		if (!intel_context_pin_if_active(ce))
2227			continue;
2228
2229		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2230		err = gen8_modify_context(ce, flex, count);
2231
2232		intel_context_unpin(ce);
2233		if (err)
2234			break;
2235	}
2236	i915_gem_context_unlock_engines(ctx);
2237
2238	return err;
2239}
2240
2241static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2242				       struct i915_active *active)
2243{
2244	int err;
2245	struct intel_context *ce = stream->pinned_ctx;
2246	u32 format = stream->oa_buffer.format;
2247	struct flex regs_context[] = {
2248		{
2249			GEN8_OACTXCONTROL,
2250			stream->perf->ctx_oactxctrl_offset + 1,
2251			active ? GEN8_OA_COUNTER_RESUME : 0,
2252		},
2253	};
2254	/* Offsets in regs_lri are not used since this configuration is only
2255	 * applied using LRI. Initialize the correct offsets for posterity.
2256	 */
2257#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2258	struct flex regs_lri[] = {
2259		{
2260			GEN12_OAR_OACONTROL,
2261			GEN12_OAR_OACONTROL_OFFSET + 1,
2262			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2263			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2264		},
2265		{
2266			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2267			CTX_CONTEXT_CONTROL,
2268			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2269				      active ?
2270				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2271				      0)
2272		},
2273	};
2274
2275	/* Modify the context image of pinned context with regs_context*/
2276	err = intel_context_lock_pinned(ce);
2277	if (err)
2278		return err;
2279
2280	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2281	intel_context_unlock_pinned(ce);
2282	if (err)
2283		return err;
2284
2285	/* Apply regs_lri using LRI with pinned context */
2286	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2287}
2288
2289/*
2290 * Manages updating the per-context aspects of the OA stream
2291 * configuration across all contexts.
2292 *
2293 * The awkward consideration here is that OACTXCONTROL controls the
2294 * exponent for periodic sampling which is primarily used for system
2295 * wide profiling where we'd like a consistent sampling period even in
2296 * the face of context switches.
2297 *
2298 * Our approach of updating the register state context (as opposed to
2299 * say using a workaround batch buffer) ensures that the hardware
2300 * won't automatically reload an out-of-date timer exponent even
2301 * transiently before a WA BB could be parsed.
2302 *
2303 * This function needs to:
2304 * - Ensure the currently running context's per-context OA state is
2305 *   updated
2306 * - Ensure that all existing contexts will have the correct per-context
2307 *   OA state if they are scheduled for use.
2308 * - Ensure any new contexts will be initialized with the correct
2309 *   per-context OA state.
2310 *
2311 * Note: it's only the RCS/Render context that has any OA state.
2312 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2313 */
2314static int
2315oa_configure_all_contexts(struct i915_perf_stream *stream,
2316			  struct flex *regs,
2317			  size_t num_regs,
2318			  struct i915_active *active)
2319{
2320	struct drm_i915_private *i915 = stream->perf->i915;
2321	struct intel_engine_cs *engine;
2322	struct i915_gem_context *ctx, *cn;
2323	int err;
2324
2325	lockdep_assert_held(&stream->perf->lock);
2326
2327	/*
2328	 * The OA register config is setup through the context image. This image
2329	 * might be written to by the GPU on context switch (in particular on
2330	 * lite-restore). This means we can't safely update a context's image,
2331	 * if this context is scheduled/submitted to run on the GPU.
2332	 *
2333	 * We could emit the OA register config through the batch buffer but
2334	 * this might leave small interval of time where the OA unit is
2335	 * configured at an invalid sampling period.
2336	 *
2337	 * Note that since we emit all requests from a single ring, there
2338	 * is still an implicit global barrier here that may cause a high
2339	 * priority context to wait for an otherwise independent low priority
2340	 * context. Contexts idle at the time of reconfiguration are not
2341	 * trapped behind the barrier.
2342	 */
2343	spin_lock(&i915->gem.contexts.lock);
2344	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2345		if (!kref_get_unless_zero(&ctx->ref))
2346			continue;
2347
2348		spin_unlock(&i915->gem.contexts.lock);
2349
2350		err = gen8_configure_context(ctx, regs, num_regs);
2351		if (err) {
2352			i915_gem_context_put(ctx);
2353			return err;
2354		}
2355
2356		spin_lock(&i915->gem.contexts.lock);
2357		list_safe_reset_next(ctx, cn, link);
2358		i915_gem_context_put(ctx);
2359	}
2360	spin_unlock(&i915->gem.contexts.lock);
2361
2362	/*
2363	 * After updating all other contexts, we need to modify ourselves.
2364	 * If we don't modify the kernel_context, we do not get events while
2365	 * idle.
2366	 */
2367	for_each_uabi_engine(engine, i915) {
2368		struct intel_context *ce = engine->kernel_context;
2369
2370		if (engine->class != RENDER_CLASS)
2371			continue;
2372
2373		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2374
2375		err = gen8_modify_self(ce, regs, num_regs, active);
2376		if (err)
2377			return err;
2378	}
2379
2380	return 0;
2381}
2382
2383static int
2384gen12_configure_all_contexts(struct i915_perf_stream *stream,
2385			     const struct i915_oa_config *oa_config,
2386			     struct i915_active *active)
2387{
2388	struct flex regs[] = {
2389		{
2390			GEN8_R_PWR_CLK_STATE,
2391			CTX_R_PWR_CLK_STATE,
2392		},
2393	};
2394
2395	return oa_configure_all_contexts(stream,
2396					 regs, ARRAY_SIZE(regs),
2397					 active);
2398}
2399
2400static int
2401lrc_configure_all_contexts(struct i915_perf_stream *stream,
2402			   const struct i915_oa_config *oa_config,
2403			   struct i915_active *active)
2404{
2405	/* The MMIO offsets for Flex EU registers aren't contiguous */
2406	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2407#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2408	struct flex regs[] = {
2409		{
2410			GEN8_R_PWR_CLK_STATE,
2411			CTX_R_PWR_CLK_STATE,
2412		},
2413		{
2414			GEN8_OACTXCONTROL,
2415			stream->perf->ctx_oactxctrl_offset + 1,
2416		},
2417		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2418		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2419		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2420		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2421		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2422		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2423		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2424	};
2425#undef ctx_flexeuN
2426	int i;
2427
2428	regs[1].value =
2429		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2430		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2431		GEN8_OA_COUNTER_RESUME;
2432
2433	for (i = 2; i < ARRAY_SIZE(regs); i++)
2434		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2435
2436	return oa_configure_all_contexts(stream,
2437					 regs, ARRAY_SIZE(regs),
2438					 active);
2439}
2440
2441static int
2442gen8_enable_metric_set(struct i915_perf_stream *stream,
2443		       struct i915_active *active)
2444{
2445	struct intel_uncore *uncore = stream->uncore;
2446	struct i915_oa_config *oa_config = stream->oa_config;
2447	int ret;
2448
2449	/*
2450	 * We disable slice/unslice clock ratio change reports on SKL since
2451	 * they are too noisy. The HW generates a lot of redundant reports
2452	 * where the ratio hasn't really changed causing a lot of redundant
2453	 * work to processes and increasing the chances we'll hit buffer
2454	 * overruns.
2455	 *
2456	 * Although we don't currently use the 'disable overrun' OABUFFER
2457	 * feature it's worth noting that clock ratio reports have to be
2458	 * disabled before considering to use that feature since the HW doesn't
2459	 * correctly block these reports.
2460	 *
2461	 * Currently none of the high-level metrics we have depend on knowing
2462	 * this ratio to normalize.
2463	 *
2464	 * Note: This register is not power context saved and restored, but
2465	 * that's OK considering that we disable RC6 while the OA unit is
2466	 * enabled.
2467	 *
2468	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2469	 * be read back from automatically triggered reports, as part of the
2470	 * RPT_ID field.
2471	 */
2472	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2473		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2474				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2475						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2476	}
2477
2478	/*
2479	 * Update all contexts prior writing the mux configurations as we need
2480	 * to make sure all slices/subslices are ON before writing to NOA
2481	 * registers.
2482	 */
2483	ret = lrc_configure_all_contexts(stream, oa_config, active);
2484	if (ret)
2485		return ret;
2486
2487	return emit_oa_config(stream,
2488			      stream->oa_config, oa_context(stream),
2489			      active);
2490}
2491
2492static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2493{
2494	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2495			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2496			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2497}
2498
2499static int
2500gen12_enable_metric_set(struct i915_perf_stream *stream,
2501			struct i915_active *active)
2502{
2503	struct intel_uncore *uncore = stream->uncore;
2504	struct i915_oa_config *oa_config = stream->oa_config;
2505	bool periodic = stream->periodic;
2506	u32 period_exponent = stream->period_exponent;
2507	int ret;
2508
2509	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2510			   /* Disable clk ratio reports, like previous Gens. */
2511			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2512					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2513			   /*
2514			    * If the user didn't require OA reports, instruct
2515			    * the hardware not to emit ctx switch reports.
2516			    */
2517			   oag_report_ctx_switches(stream));
2518
2519	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2520			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2521			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2522			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2523			    : 0);
2524
2525	/*
2526	 * Update all contexts prior writing the mux configurations as we need
2527	 * to make sure all slices/subslices are ON before writing to NOA
2528	 * registers.
2529	 */
2530	ret = gen12_configure_all_contexts(stream, oa_config, active);
2531	if (ret)
2532		return ret;
2533
2534	/*
2535	 * For Gen12, performance counters are context
2536	 * saved/restored. Only enable it for the context that
2537	 * requested this.
2538	 */
2539	if (stream->ctx) {
2540		ret = gen12_configure_oar_context(stream, active);
2541		if (ret)
2542			return ret;
2543	}
2544
2545	return emit_oa_config(stream,
2546			      stream->oa_config, oa_context(stream),
2547			      active);
2548}
2549
2550static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2551{
2552	struct intel_uncore *uncore = stream->uncore;
2553
2554	/* Reset all contexts' slices/subslices configurations. */
2555	lrc_configure_all_contexts(stream, NULL, NULL);
2556
2557	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2558}
2559
2560static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2561{
2562	struct intel_uncore *uncore = stream->uncore;
2563
2564	/* Reset all contexts' slices/subslices configurations. */
2565	lrc_configure_all_contexts(stream, NULL, NULL);
2566
2567	/* Make sure we disable noa to save power. */
2568	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2569}
2570
2571static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2572{
2573	struct intel_uncore *uncore = stream->uncore;
2574
2575	/* Reset all contexts' slices/subslices configurations. */
2576	gen12_configure_all_contexts(stream, NULL, NULL);
2577
2578	/* disable the context save/restore or OAR counters */
2579	if (stream->ctx)
2580		gen12_configure_oar_context(stream, NULL);
2581
2582	/* Make sure we disable noa to save power. */
2583	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2584}
2585
2586static void gen7_oa_enable(struct i915_perf_stream *stream)
2587{
2588	struct intel_uncore *uncore = stream->uncore;
2589	struct i915_gem_context *ctx = stream->ctx;
2590	u32 ctx_id = stream->specific_ctx_id;
2591	bool periodic = stream->periodic;
2592	u32 period_exponent = stream->period_exponent;
2593	u32 report_format = stream->oa_buffer.format;
2594
2595	/*
2596	 * Reset buf pointers so we don't forward reports from before now.
2597	 *
2598	 * Think carefully if considering trying to avoid this, since it
2599	 * also ensures status flags and the buffer itself are cleared
2600	 * in error paths, and we have checks for invalid reports based
2601	 * on the assumption that certain fields are written to zeroed
2602	 * memory which this helps maintains.
2603	 */
2604	gen7_init_oa_buffer(stream);
2605
2606	intel_uncore_write(uncore, GEN7_OACONTROL,
2607			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2608			   (period_exponent <<
2609			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2610			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2611			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2612			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2613			   GEN7_OACONTROL_ENABLE);
2614}
2615
2616static void gen8_oa_enable(struct i915_perf_stream *stream)
2617{
2618	struct intel_uncore *uncore = stream->uncore;
2619	u32 report_format = stream->oa_buffer.format;
2620
2621	/*
2622	 * Reset buf pointers so we don't forward reports from before now.
2623	 *
2624	 * Think carefully if considering trying to avoid this, since it
2625	 * also ensures status flags and the buffer itself are cleared
2626	 * in error paths, and we have checks for invalid reports based
2627	 * on the assumption that certain fields are written to zeroed
2628	 * memory which this helps maintains.
2629	 */
2630	gen8_init_oa_buffer(stream);
2631
2632	/*
2633	 * Note: we don't rely on the hardware to perform single context
2634	 * filtering and instead filter on the cpu based on the context-id
2635	 * field of reports
2636	 */
2637	intel_uncore_write(uncore, GEN8_OACONTROL,
2638			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2639			   GEN8_OA_COUNTER_ENABLE);
2640}
2641
2642static void gen12_oa_enable(struct i915_perf_stream *stream)
2643{
2644	struct intel_uncore *uncore = stream->uncore;
2645	u32 report_format = stream->oa_buffer.format;
2646
2647	/*
2648	 * If we don't want OA reports from the OA buffer, then we don't even
2649	 * need to program the OAG unit.
2650	 */
2651	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2652		return;
2653
2654	gen12_init_oa_buffer(stream);
2655
2656	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2657			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2658			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2659}
2660
2661/**
2662 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2663 * @stream: An i915 perf stream opened for OA metrics
2664 *
2665 * [Re]enables hardware periodic sampling according to the period configured
2666 * when opening the stream. This also starts a hrtimer that will periodically
2667 * check for data in the circular OA buffer for notifying userspace (e.g.
2668 * during a read() or poll()).
2669 */
2670static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2671{
2672	stream->pollin = false;
2673
2674	stream->perf->ops.oa_enable(stream);
2675
2676	if (stream->sample_flags & SAMPLE_OA_REPORT)
2677		hrtimer_start(&stream->poll_check_timer,
2678			      ns_to_ktime(stream->poll_oa_period),
2679			      HRTIMER_MODE_REL_PINNED);
2680}
2681
2682static void gen7_oa_disable(struct i915_perf_stream *stream)
2683{
2684	struct intel_uncore *uncore = stream->uncore;
2685
2686	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2687	if (intel_wait_for_register(uncore,
2688				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2689				    50))
2690		drm_err(&stream->perf->i915->drm,
2691			"wait for OA to be disabled timed out\n");
2692}
2693
2694static void gen8_oa_disable(struct i915_perf_stream *stream)
2695{
2696	struct intel_uncore *uncore = stream->uncore;
2697
2698	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2699	if (intel_wait_for_register(uncore,
2700				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2701				    50))
2702		drm_err(&stream->perf->i915->drm,
2703			"wait for OA to be disabled timed out\n");
2704}
2705
2706static void gen12_oa_disable(struct i915_perf_stream *stream)
2707{
2708	struct intel_uncore *uncore = stream->uncore;
2709
2710	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2711	if (intel_wait_for_register(uncore,
2712				    GEN12_OAG_OACONTROL,
2713				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2714				    50))
2715		drm_err(&stream->perf->i915->drm,
2716			"wait for OA to be disabled timed out\n");
2717
2718	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2719	if (intel_wait_for_register(uncore,
2720				    GEN12_OA_TLB_INV_CR,
2721				    1, 0,
2722				    50))
2723		drm_err(&stream->perf->i915->drm,
2724			"wait for OA tlb invalidate timed out\n");
2725}
2726
2727/**
2728 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2729 * @stream: An i915 perf stream opened for OA metrics
2730 *
2731 * Stops the OA unit from periodically writing counter reports into the
2732 * circular OA buffer. This also stops the hrtimer that periodically checks for
2733 * data in the circular OA buffer, for notifying userspace.
2734 */
2735static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2736{
2737	stream->perf->ops.oa_disable(stream);
2738
2739	if (stream->sample_flags & SAMPLE_OA_REPORT)
2740		hrtimer_cancel(&stream->poll_check_timer);
2741}
2742
2743static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2744	.destroy = i915_oa_stream_destroy,
2745	.enable = i915_oa_stream_enable,
2746	.disable = i915_oa_stream_disable,
2747	.wait_unlocked = i915_oa_wait_unlocked,
2748	.poll_wait = i915_oa_poll_wait,
2749	.read = i915_oa_read,
2750};
2751
2752static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2753{
2754	struct i915_active *active;
2755	int err;
2756
2757	active = i915_active_create();
2758	if (!active)
2759		return -ENOMEM;
2760
2761	err = stream->perf->ops.enable_metric_set(stream, active);
2762	if (err == 0)
2763		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2764
2765	i915_active_put(active);
2766	return err;
2767}
2768
2769static void
2770get_default_sseu_config(struct intel_sseu *out_sseu,
2771			struct intel_engine_cs *engine)
2772{
2773	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2774
2775	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2776
2777	if (IS_GEN(engine->i915, 11)) {
2778		/*
2779		 * We only need subslice count so it doesn't matter which ones
2780		 * we select - just turn off low bits in the amount of half of
2781		 * all available subslices per slice.
2782		 */
2783		out_sseu->subslice_mask =
2784			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2785		out_sseu->slice_mask = 0x1;
2786	}
2787}
2788
2789static int
2790get_sseu_config(struct intel_sseu *out_sseu,
2791		struct intel_engine_cs *engine,
2792		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2793{
2794	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2795	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2796		return -EINVAL;
2797
2798	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2799}
2800
2801/**
2802 * i915_oa_stream_init - validate combined props for OA stream and init
2803 * @stream: An i915 perf stream
2804 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2805 * @props: The property state that configures stream (individually validated)
2806 *
2807 * While read_properties_unlocked() validates properties in isolation it
2808 * doesn't ensure that the combination necessarily makes sense.
2809 *
2810 * At this point it has been determined that userspace wants a stream of
2811 * OA metrics, but still we need to further validate the combined
2812 * properties are OK.
2813 *
2814 * If the configuration makes sense then we can allocate memory for
2815 * a circular OA buffer and apply the requested metric set configuration.
2816 *
2817 * Returns: zero on success or a negative error code.
2818 */
2819static int i915_oa_stream_init(struct i915_perf_stream *stream,
2820			       struct drm_i915_perf_open_param *param,
2821			       struct perf_open_properties *props)
2822{
2823	struct drm_i915_private *i915 = stream->perf->i915;
2824	struct i915_perf *perf = stream->perf;
2825	int format_size;
2826	int ret;
2827
2828	if (!props->engine) {
2829		DRM_DEBUG("OA engine not specified\n");
2830		return -EINVAL;
2831	}
2832
2833	/*
2834	 * If the sysfs metrics/ directory wasn't registered for some
2835	 * reason then don't let userspace try their luck with config
2836	 * IDs
2837	 */
2838	if (!perf->metrics_kobj) {
2839		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2840		return -EINVAL;
2841	}
2842
2843	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2844	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2845		DRM_DEBUG("Only OA report sampling supported\n");
2846		return -EINVAL;
2847	}
2848
2849	if (!perf->ops.enable_metric_set) {
2850		DRM_DEBUG("OA unit not supported\n");
2851		return -ENODEV;
2852	}
2853
2854	/*
2855	 * To avoid the complexity of having to accurately filter
2856	 * counter reports and marshal to the appropriate client
2857	 * we currently only allow exclusive access
2858	 */
2859	if (perf->exclusive_stream) {
2860		DRM_DEBUG("OA unit already in use\n");
2861		return -EBUSY;
2862	}
2863
2864	if (!props->oa_format) {
2865		DRM_DEBUG("OA report format not specified\n");
2866		return -EINVAL;
2867	}
2868
2869	stream->engine = props->engine;
2870	stream->uncore = stream->engine->gt->uncore;
2871
2872	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2873
2874	format_size = perf->oa_formats[props->oa_format].size;
2875
2876	stream->sample_flags = props->sample_flags;
2877	stream->sample_size += format_size;
2878
2879	stream->oa_buffer.format_size = format_size;
2880	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2881		return -EINVAL;
2882
2883	stream->hold_preemption = props->hold_preemption;
2884
2885	stream->oa_buffer.format =
2886		perf->oa_formats[props->oa_format].format;
2887
2888	stream->periodic = props->oa_periodic;
2889	if (stream->periodic)
2890		stream->period_exponent = props->oa_period_exponent;
2891
2892	if (stream->ctx) {
2893		ret = oa_get_render_ctx_id(stream);
2894		if (ret) {
2895			DRM_DEBUG("Invalid context id to filter with\n");
2896			return ret;
2897		}
2898	}
2899
2900	ret = alloc_noa_wait(stream);
2901	if (ret) {
2902		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2903		goto err_noa_wait_alloc;
2904	}
2905
2906	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2907	if (!stream->oa_config) {
2908		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2909		ret = -EINVAL;
2910		goto err_config;
2911	}
2912
2913	/* PRM - observability performance counters:
2914	 *
2915	 *   OACONTROL, performance counter enable, note:
2916	 *
2917	 *   "When this bit is set, in order to have coherent counts,
2918	 *   RC6 power state and trunk clock gating must be disabled.
2919	 *   This can be achieved by programming MMIO registers as
2920	 *   0xA094=0 and 0xA090[31]=1"
2921	 *
2922	 *   In our case we are expecting that taking pm + FORCEWAKE
2923	 *   references will effectively disable RC6.
2924	 */
2925	intel_engine_pm_get(stream->engine);
2926	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2927
2928	ret = alloc_oa_buffer(stream);
2929	if (ret)
2930		goto err_oa_buf_alloc;
2931
2932	stream->ops = &i915_oa_stream_ops;
2933
2934	perf->sseu = props->sseu;
2935	WRITE_ONCE(perf->exclusive_stream, stream);
2936
2937	ret = i915_perf_stream_enable_sync(stream);
2938	if (ret) {
2939		DRM_DEBUG("Unable to enable metric set\n");
2940		goto err_enable;
2941	}
2942
2943	DRM_DEBUG("opening stream oa config uuid=%s\n",
2944		  stream->oa_config->uuid);
2945
2946	hrtimer_init(&stream->poll_check_timer,
2947		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2948	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2949	init_waitqueue_head(&stream->poll_wq);
2950	spin_lock_init(&stream->oa_buffer.ptr_lock);
2951
2952	return 0;
2953
2954err_enable:
2955	WRITE_ONCE(perf->exclusive_stream, NULL);
2956	perf->ops.disable_metric_set(stream);
2957
2958	free_oa_buffer(stream);
2959
2960err_oa_buf_alloc:
2961	free_oa_configs(stream);
2962
2963	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2964	intel_engine_pm_put(stream->engine);
2965
2966err_config:
2967	free_noa_wait(stream);
2968
2969err_noa_wait_alloc:
2970	if (stream->ctx)
2971		oa_put_render_ctx_id(stream);
2972
2973	return ret;
2974}
2975
2976void i915_oa_init_reg_state(const struct intel_context *ce,
2977			    const struct intel_engine_cs *engine)
2978{
2979	struct i915_perf_stream *stream;
2980
2981	if (engine->class != RENDER_CLASS)
2982		return;
2983
2984	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2985	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2986	if (stream && INTEL_GEN(stream->perf->i915) < 12)
2987		gen8_update_reg_state_unlocked(ce, stream);
2988}
2989
2990/**
2991 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2992 * @file: An i915 perf stream file
2993 * @buf: destination buffer given by userspace
2994 * @count: the number of bytes userspace wants to read
2995 * @ppos: (inout) file seek position (unused)
2996 *
2997 * The entry point for handling a read() on a stream file descriptor from
2998 * userspace. Most of the work is left to the i915_perf_read_locked() and
2999 * &i915_perf_stream_ops->read but to save having stream implementations (of
3000 * which we might have multiple later) we handle blocking read here.
3001 *
3002 * We can also consistently treat trying to read from a disabled stream
3003 * as an IO error so implementations can assume the stream is enabled
3004 * while reading.
3005 *
3006 * Returns: The number of bytes copied or a negative error code on failure.
3007 */
3008static ssize_t i915_perf_read(struct file *file,
3009			      char __user *buf,
3010			      size_t count,
3011			      loff_t *ppos)
3012{
3013	struct i915_perf_stream *stream = file->private_data;
3014	struct i915_perf *perf = stream->perf;
3015	size_t offset = 0;
3016	int ret;
3017
3018	/* To ensure it's handled consistently we simply treat all reads of a
3019	 * disabled stream as an error. In particular it might otherwise lead
3020	 * to a deadlock for blocking file descriptors...
3021	 */
3022	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3023		return -EIO;
3024
3025	if (!(file->f_flags & O_NONBLOCK)) {
3026		/* There's the small chance of false positives from
3027		 * stream->ops->wait_unlocked.
3028		 *
3029		 * E.g. with single context filtering since we only wait until
3030		 * oabuffer has >= 1 report we don't immediately know whether
3031		 * any reports really belong to the current context
3032		 */
3033		do {
3034			ret = stream->ops->wait_unlocked(stream);
3035			if (ret)
3036				return ret;
3037
3038			mutex_lock(&perf->lock);
3039			ret = stream->ops->read(stream, buf, count, &offset);
3040			mutex_unlock(&perf->lock);
3041		} while (!offset && !ret);
3042	} else {
3043		mutex_lock(&perf->lock);
3044		ret = stream->ops->read(stream, buf, count, &offset);
3045		mutex_unlock(&perf->lock);
3046	}
3047
3048	/* We allow the poll checking to sometimes report false positive EPOLLIN
3049	 * events where we might actually report EAGAIN on read() if there's
3050	 * not really any data available. In this situation though we don't
3051	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3052	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3053	 * effectively ensures we back off until the next hrtimer callback
3054	 * before reporting another EPOLLIN event.
3055	 * The exception to this is if ops->read() returned -ENOSPC which means
3056	 * that more OA data is available than could fit in the user provided
3057	 * buffer. In this case we want the next poll() call to not block.
3058	 */
3059	if (ret != -ENOSPC)
3060		stream->pollin = false;
3061
3062	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3063	return offset ?: (ret ?: -EAGAIN);
3064}
3065
3066static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3067{
3068	struct i915_perf_stream *stream =
3069		container_of(hrtimer, typeof(*stream), poll_check_timer);
3070
3071	if (oa_buffer_check_unlocked(stream)) {
3072		stream->pollin = true;
3073		wake_up(&stream->poll_wq);
3074	}
3075
3076	hrtimer_forward_now(hrtimer,
3077			    ns_to_ktime(stream->poll_oa_period));
3078
3079	return HRTIMER_RESTART;
3080}
3081
3082/**
3083 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3084 * @stream: An i915 perf stream
3085 * @file: An i915 perf stream file
3086 * @wait: poll() state table
3087 *
3088 * For handling userspace polling on an i915 perf stream, this calls through to
3089 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3090 * will be woken for new stream data.
3091 *
3092 * Note: The &perf->lock mutex has been taken to serialize
3093 * with any non-file-operation driver hooks.
3094 *
3095 * Returns: any poll events that are ready without sleeping
3096 */
3097static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3098				      struct file *file,
3099				      poll_table *wait)
3100{
3101	__poll_t events = 0;
3102
3103	stream->ops->poll_wait(stream, file, wait);
3104
3105	/* Note: we don't explicitly check whether there's something to read
3106	 * here since this path may be very hot depending on what else
3107	 * userspace is polling, or on the timeout in use. We rely solely on
3108	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3109	 * samples to read.
3110	 */
3111	if (stream->pollin)
3112		events |= EPOLLIN;
3113
3114	return events;
3115}
3116
3117/**
3118 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3119 * @file: An i915 perf stream file
3120 * @wait: poll() state table
3121 *
3122 * For handling userspace polling on an i915 perf stream, this ensures
3123 * poll_wait() gets called with a wait queue that will be woken for new stream
3124 * data.
3125 *
3126 * Note: Implementation deferred to i915_perf_poll_locked()
3127 *
3128 * Returns: any poll events that are ready without sleeping
3129 */
3130static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3131{
3132	struct i915_perf_stream *stream = file->private_data;
3133	struct i915_perf *perf = stream->perf;
3134	__poll_t ret;
3135
3136	mutex_lock(&perf->lock);
3137	ret = i915_perf_poll_locked(stream, file, wait);
3138	mutex_unlock(&perf->lock);
3139
3140	return ret;
3141}
3142
3143/**
3144 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3145 * @stream: A disabled i915 perf stream
3146 *
3147 * [Re]enables the associated capture of data for this stream.
3148 *
3149 * If a stream was previously enabled then there's currently no intention
3150 * to provide userspace any guarantee about the preservation of previously
3151 * buffered data.
3152 */
3153static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3154{
3155	if (stream->enabled)
3156		return;
3157
3158	/* Allow stream->ops->enable() to refer to this */
3159	stream->enabled = true;
3160
3161	if (stream->ops->enable)
3162		stream->ops->enable(stream);
3163
3164	if (stream->hold_preemption)
3165		intel_context_set_nopreempt(stream->pinned_ctx);
3166}
3167
3168/**
3169 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3170 * @stream: An enabled i915 perf stream
3171 *
3172 * Disables the associated capture of data for this stream.
3173 *
3174 * The intention is that disabling an re-enabling a stream will ideally be
3175 * cheaper than destroying and re-opening a stream with the same configuration,
3176 * though there are no formal guarantees about what state or buffered data
3177 * must be retained between disabling and re-enabling a stream.
3178 *
3179 * Note: while a stream is disabled it's considered an error for userspace
3180 * to attempt to read from the stream (-EIO).
3181 */
3182static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3183{
3184	if (!stream->enabled)
3185		return;
3186
3187	/* Allow stream->ops->disable() to refer to this */
3188	stream->enabled = false;
3189
3190	if (stream->hold_preemption)
3191		intel_context_clear_nopreempt(stream->pinned_ctx);
3192
3193	if (stream->ops->disable)
3194		stream->ops->disable(stream);
3195}
3196
3197static long i915_perf_config_locked(struct i915_perf_stream *stream,
3198				    unsigned long metrics_set)
3199{
3200	struct i915_oa_config *config;
3201	long ret = stream->oa_config->id;
3202
3203	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3204	if (!config)
3205		return -EINVAL;
3206
3207	if (config != stream->oa_config) {
3208		int err;
3209
3210		/*
3211		 * If OA is bound to a specific context, emit the
3212		 * reconfiguration inline from that context. The update
3213		 * will then be ordered with respect to submission on that
3214		 * context.
3215		 *
3216		 * When set globally, we use a low priority kernel context,
3217		 * so it will effectively take effect when idle.
3218		 */
3219		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3220		if (!err)
3221			config = xchg(&stream->oa_config, config);
3222		else
3223			ret = err;
3224	}
3225
3226	i915_oa_config_put(config);
3227
3228	return ret;
3229}
3230
3231/**
3232 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3233 * @stream: An i915 perf stream
3234 * @cmd: the ioctl request
3235 * @arg: the ioctl data
3236 *
3237 * Note: The &perf->lock mutex has been taken to serialize
3238 * with any non-file-operation driver hooks.
3239 *
3240 * Returns: zero on success or a negative error code. Returns -EINVAL for
3241 * an unknown ioctl request.
3242 */
3243static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3244				   unsigned int cmd,
3245				   unsigned long arg)
3246{
3247	switch (cmd) {
3248	case I915_PERF_IOCTL_ENABLE:
3249		i915_perf_enable_locked(stream);
3250		return 0;
3251	case I915_PERF_IOCTL_DISABLE:
3252		i915_perf_disable_locked(stream);
3253		return 0;
3254	case I915_PERF_IOCTL_CONFIG:
3255		return i915_perf_config_locked(stream, arg);
3256	}
3257
3258	return -EINVAL;
3259}
3260
3261/**
3262 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3263 * @file: An i915 perf stream file
3264 * @cmd: the ioctl request
3265 * @arg: the ioctl data
3266 *
3267 * Implementation deferred to i915_perf_ioctl_locked().
3268 *
3269 * Returns: zero on success or a negative error code. Returns -EINVAL for
3270 * an unknown ioctl request.
3271 */
3272static long i915_perf_ioctl(struct file *file,
3273			    unsigned int cmd,
3274			    unsigned long arg)
3275{
3276	struct i915_perf_stream *stream = file->private_data;
3277	struct i915_perf *perf = stream->perf;
3278	long ret;
3279
3280	mutex_lock(&perf->lock);
3281	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3282	mutex_unlock(&perf->lock);
3283
3284	return ret;
3285}
3286
3287/**
3288 * i915_perf_destroy_locked - destroy an i915 perf stream
3289 * @stream: An i915 perf stream
3290 *
3291 * Frees all resources associated with the given i915 perf @stream, disabling
3292 * any associated data capture in the process.
3293 *
3294 * Note: The &perf->lock mutex has been taken to serialize
3295 * with any non-file-operation driver hooks.
3296 */
3297static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3298{
3299	if (stream->enabled)
3300		i915_perf_disable_locked(stream);
3301
3302	if (stream->ops->destroy)
3303		stream->ops->destroy(stream);
3304
3305	if (stream->ctx)
3306		i915_gem_context_put(stream->ctx);
3307
3308	kfree(stream);
3309}
3310
3311/**
3312 * i915_perf_release - handles userspace close() of a stream file
3313 * @inode: anonymous inode associated with file
3314 * @file: An i915 perf stream file
3315 *
3316 * Cleans up any resources associated with an open i915 perf stream file.
3317 *
3318 * NB: close() can't really fail from the userspace point of view.
3319 *
3320 * Returns: zero on success or a negative error code.
3321 */
3322static int i915_perf_release(struct inode *inode, struct file *file)
3323{
3324	struct i915_perf_stream *stream = file->private_data;
3325	struct i915_perf *perf = stream->perf;
3326
3327	mutex_lock(&perf->lock);
3328	i915_perf_destroy_locked(stream);
3329	mutex_unlock(&perf->lock);
3330
3331	/* Release the reference the perf stream kept on the driver. */
3332	drm_dev_put(&perf->i915->drm);
3333
3334	return 0;
3335}
3336
3337
3338static const struct file_operations fops = {
3339	.owner		= THIS_MODULE,
3340	.llseek		= no_llseek,
3341	.release	= i915_perf_release,
3342	.poll		= i915_perf_poll,
3343	.read		= i915_perf_read,
3344	.unlocked_ioctl	= i915_perf_ioctl,
3345	/* Our ioctl have no arguments, so it's safe to use the same function
3346	 * to handle 32bits compatibility.
3347	 */
3348	.compat_ioctl   = i915_perf_ioctl,
3349};
3350
3351
3352/**
3353 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3354 * @perf: i915 perf instance
3355 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3356 * @props: individually validated u64 property value pairs
3357 * @file: drm file
3358 *
3359 * See i915_perf_ioctl_open() for interface details.
3360 *
3361 * Implements further stream config validation and stream initialization on
3362 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3363 * taken to serialize with any non-file-operation driver hooks.
3364 *
3365 * Note: at this point the @props have only been validated in isolation and
3366 * it's still necessary to validate that the combination of properties makes
3367 * sense.
3368 *
3369 * In the case where userspace is interested in OA unit metrics then further
3370 * config validation and stream initialization details will be handled by
3371 * i915_oa_stream_init(). The code here should only validate config state that
3372 * will be relevant to all stream types / backends.
3373 *
3374 * Returns: zero on success or a negative error code.
3375 */
3376static int
3377i915_perf_open_ioctl_locked(struct i915_perf *perf,
3378			    struct drm_i915_perf_open_param *param,
3379			    struct perf_open_properties *props,
3380			    struct drm_file *file)
3381{
3382	struct i915_gem_context *specific_ctx = NULL;
3383	struct i915_perf_stream *stream = NULL;
3384	unsigned long f_flags = 0;
3385	bool privileged_op = true;
3386	int stream_fd;
3387	int ret;
3388
3389	if (props->single_context) {
3390		u32 ctx_handle = props->ctx_handle;
3391		struct drm_i915_file_private *file_priv = file->driver_priv;
3392
3393		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3394		if (!specific_ctx) {
3395			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3396				  ctx_handle);
3397			ret = -ENOENT;
3398			goto err;
3399		}
3400	}
3401
3402	/*
3403	 * On Haswell the OA unit supports clock gating off for a specific
3404	 * context and in this mode there's no visibility of metrics for the
3405	 * rest of the system, which we consider acceptable for a
3406	 * non-privileged client.
3407	 *
3408	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3409	 * specific context and the kernel can't securely stop the counters
3410	 * from updating as system-wide / global values. Even though we can
3411	 * filter reports based on the included context ID we can't block
3412	 * clients from seeing the raw / global counter values via
3413	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3414	 * enable the OA unit by default.
3415	 *
3416	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3417	 * per context basis. So we can relax requirements there if the user
3418	 * doesn't request global stream access (i.e. query based sampling
3419	 * using MI_RECORD_PERF_COUNT.
3420	 */
3421	if (IS_HASWELL(perf->i915) && specific_ctx)
3422		privileged_op = false;
3423	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3424		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3425		privileged_op = false;
3426
3427	if (props->hold_preemption) {
3428		if (!props->single_context) {
3429			DRM_DEBUG("preemption disable with no context\n");
3430			ret = -EINVAL;
3431			goto err;
3432		}
3433		privileged_op = true;
3434	}
3435
3436	/*
3437	 * Asking for SSEU configuration is a priviliged operation.
3438	 */
3439	if (props->has_sseu)
3440		privileged_op = true;
3441	else
3442		get_default_sseu_config(&props->sseu, props->engine);
3443
3444	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3445	 * we check a dev.i915.perf_stream_paranoid sysctl option
3446	 * to determine if it's ok to access system wide OA counters
3447	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3448	 */
3449	if (privileged_op &&
3450	    i915_perf_stream_paranoid && !perfmon_capable()) {
3451		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3452		ret = -EACCES;
3453		goto err_ctx;
3454	}
3455
3456	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3457	if (!stream) {
3458		ret = -ENOMEM;
3459		goto err_ctx;
3460	}
3461
3462	stream->perf = perf;
3463	stream->ctx = specific_ctx;
3464	stream->poll_oa_period = props->poll_oa_period;
3465
3466	ret = i915_oa_stream_init(stream, param, props);
3467	if (ret)
3468		goto err_alloc;
3469
3470	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3471	 * to have _stream_init check the combination of sample flags more
3472	 * thoroughly, but still this is the expected result at this point.
3473	 */
3474	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3475		ret = -ENODEV;
3476		goto err_flags;
3477	}
3478
3479	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3480		f_flags |= O_CLOEXEC;
3481	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3482		f_flags |= O_NONBLOCK;
3483
3484	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3485	if (stream_fd < 0) {
3486		ret = stream_fd;
3487		goto err_flags;
3488	}
3489
3490	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3491		i915_perf_enable_locked(stream);
3492
3493	/* Take a reference on the driver that will be kept with stream_fd
3494	 * until its release.
3495	 */
3496	drm_dev_get(&perf->i915->drm);
3497
3498	return stream_fd;
3499
3500err_flags:
3501	if (stream->ops->destroy)
3502		stream->ops->destroy(stream);
3503err_alloc:
3504	kfree(stream);
3505err_ctx:
3506	if (specific_ctx)
3507		i915_gem_context_put(specific_ctx);
3508err:
3509	return ret;
3510}
3511
3512static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3513{
3514	return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3515}
3516
3517/**
3518 * read_properties_unlocked - validate + copy userspace stream open properties
3519 * @perf: i915 perf instance
3520 * @uprops: The array of u64 key value pairs given by userspace
3521 * @n_props: The number of key value pairs expected in @uprops
3522 * @props: The stream configuration built up while validating properties
3523 *
3524 * Note this function only validates properties in isolation it doesn't
3525 * validate that the combination of properties makes sense or that all
3526 * properties necessary for a particular kind of stream have been set.
3527 *
3528 * Note that there currently aren't any ordering requirements for properties so
3529 * we shouldn't validate or assume anything about ordering here. This doesn't
3530 * rule out defining new properties with ordering requirements in the future.
3531 */
3532static int read_properties_unlocked(struct i915_perf *perf,
3533				    u64 __user *uprops,
3534				    u32 n_props,
3535				    struct perf_open_properties *props)
3536{
3537	u64 __user *uprop = uprops;
3538	u32 i;
3539	int ret;
3540
3541	memset(props, 0, sizeof(struct perf_open_properties));
3542	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3543
3544	if (!n_props) {
3545		DRM_DEBUG("No i915 perf properties given\n");
3546		return -EINVAL;
3547	}
3548
3549	/* At the moment we only support using i915-perf on the RCS. */
3550	props->engine = intel_engine_lookup_user(perf->i915,
3551						 I915_ENGINE_CLASS_RENDER,
3552						 0);
3553	if (!props->engine) {
3554		DRM_DEBUG("No RENDER-capable engines\n");
3555		return -EINVAL;
3556	}
3557
3558	/* Considering that ID = 0 is reserved and assuming that we don't
3559	 * (currently) expect any configurations to ever specify duplicate
3560	 * values for a particular property ID then the last _PROP_MAX value is
3561	 * one greater than the maximum number of properties we expect to get
3562	 * from userspace.
3563	 */
3564	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3565		DRM_DEBUG("More i915 perf properties specified than exist\n");
3566		return -EINVAL;
3567	}
3568
3569	for (i = 0; i < n_props; i++) {
3570		u64 oa_period, oa_freq_hz;
3571		u64 id, value;
3572
3573		ret = get_user(id, uprop);
3574		if (ret)
3575			return ret;
3576
3577		ret = get_user(value, uprop + 1);
3578		if (ret)
3579			return ret;
3580
3581		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3582			DRM_DEBUG("Unknown i915 perf property ID\n");
3583			return -EINVAL;
3584		}
3585
3586		switch ((enum drm_i915_perf_property_id)id) {
3587		case DRM_I915_PERF_PROP_CTX_HANDLE:
3588			props->single_context = 1;
3589			props->ctx_handle = value;
3590			break;
3591		case DRM_I915_PERF_PROP_SAMPLE_OA:
3592			if (value)
3593				props->sample_flags |= SAMPLE_OA_REPORT;
3594			break;
3595		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3596			if (value == 0) {
3597				DRM_DEBUG("Unknown OA metric set ID\n");
3598				return -EINVAL;
3599			}
3600			props->metrics_set = value;
3601			break;
3602		case DRM_I915_PERF_PROP_OA_FORMAT:
3603			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3604				DRM_DEBUG("Out-of-range OA report format %llu\n",
3605					  value);
3606				return -EINVAL;
3607			}
3608			if (!perf->oa_formats[value].size) {
3609				DRM_DEBUG("Unsupported OA report format %llu\n",
3610					  value);
3611				return -EINVAL;
3612			}
3613			props->oa_format = value;
3614			break;
3615		case DRM_I915_PERF_PROP_OA_EXPONENT:
3616			if (value > OA_EXPONENT_MAX) {
3617				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3618					 OA_EXPONENT_MAX);
3619				return -EINVAL;
3620			}
3621
3622			/* Theoretically we can program the OA unit to sample
3623			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3624			 * for BXT. We don't allow such high sampling
3625			 * frequencies by default unless root.
3626			 */
3627
3628			BUILD_BUG_ON(sizeof(oa_period) != 8);
3629			oa_period = oa_exponent_to_ns(perf, value);
3630
3631			/* This check is primarily to ensure that oa_period <=
3632			 * UINT32_MAX (before passing to do_div which only
3633			 * accepts a u32 denominator), but we can also skip
3634			 * checking anything < 1Hz which implicitly can't be
3635			 * limited via an integer oa_max_sample_rate.
3636			 */
3637			if (oa_period <= NSEC_PER_SEC) {
3638				u64 tmp = NSEC_PER_SEC;
3639				do_div(tmp, oa_period);
3640				oa_freq_hz = tmp;
3641			} else
3642				oa_freq_hz = 0;
3643
3644			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3645				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3646					  i915_oa_max_sample_rate);
3647				return -EACCES;
3648			}
3649
3650			props->oa_periodic = true;
3651			props->oa_period_exponent = value;
3652			break;
3653		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3654			props->hold_preemption = !!value;
3655			break;
3656		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3657			struct drm_i915_gem_context_param_sseu user_sseu;
3658
3659			if (copy_from_user(&user_sseu,
3660					   u64_to_user_ptr(value),
3661					   sizeof(user_sseu))) {
3662				DRM_DEBUG("Unable to copy global sseu parameter\n");
3663				return -EFAULT;
3664			}
3665
3666			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3667			if (ret) {
3668				DRM_DEBUG("Invalid SSEU configuration\n");
3669				return ret;
3670			}
3671			props->has_sseu = true;
3672			break;
3673		}
3674		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3675			if (value < 100000 /* 100us */) {
3676				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3677					  value);
3678				return -EINVAL;
3679			}
3680			props->poll_oa_period = value;
3681			break;
3682		case DRM_I915_PERF_PROP_MAX:
3683			MISSING_CASE(id);
3684			return -EINVAL;
3685		}
3686
3687		uprop += 2;
3688	}
3689
3690	return 0;
3691}
3692
3693/**
3694 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3695 * @dev: drm device
3696 * @data: ioctl data copied from userspace (unvalidated)
3697 * @file: drm file
3698 *
3699 * Validates the stream open parameters given by userspace including flags
3700 * and an array of u64 key, value pair properties.
3701 *
3702 * Very little is assumed up front about the nature of the stream being
3703 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3704 * i915-perf stream is expected to be a suitable interface for other forms of
3705 * buffered data written by the GPU besides periodic OA metrics.
3706 *
3707 * Note we copy the properties from userspace outside of the i915 perf
3708 * mutex to avoid an awkward lockdep with mmap_lock.
3709 *
3710 * Most of the implementation details are handled by
3711 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3712 * mutex for serializing with any non-file-operation driver hooks.
3713 *
3714 * Return: A newly opened i915 Perf stream file descriptor or negative
3715 * error code on failure.
3716 */
3717int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3718			 struct drm_file *file)
3719{
3720	struct i915_perf *perf = &to_i915(dev)->perf;
3721	struct drm_i915_perf_open_param *param = data;
3722	struct perf_open_properties props;
3723	u32 known_open_flags;
3724	int ret;
3725
3726	if (!perf->i915) {
3727		DRM_DEBUG("i915 perf interface not available for this system\n");
3728		return -ENOTSUPP;
3729	}
3730
3731	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3732			   I915_PERF_FLAG_FD_NONBLOCK |
3733			   I915_PERF_FLAG_DISABLED;
3734	if (param->flags & ~known_open_flags) {
3735		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3736		return -EINVAL;
3737	}
3738
3739	ret = read_properties_unlocked(perf,
3740				       u64_to_user_ptr(param->properties_ptr),
3741				       param->num_properties,
3742				       &props);
3743	if (ret)
3744		return ret;
3745
3746	mutex_lock(&perf->lock);
3747	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3748	mutex_unlock(&perf->lock);
3749
3750	return ret;
3751}
3752
3753/**
3754 * i915_perf_register - exposes i915-perf to userspace
3755 * @i915: i915 device instance
3756 *
3757 * In particular OA metric sets are advertised under a sysfs metrics/
3758 * directory allowing userspace to enumerate valid IDs that can be
3759 * used to open an i915-perf stream.
3760 */
3761void i915_perf_register(struct drm_i915_private *i915)
3762{
3763	struct i915_perf *perf = &i915->perf;
3764
3765	if (!perf->i915)
3766		return;
3767
3768	/* To be sure we're synchronized with an attempted
3769	 * i915_perf_open_ioctl(); considering that we register after
3770	 * being exposed to userspace.
3771	 */
3772	mutex_lock(&perf->lock);
3773
3774	perf->metrics_kobj =
3775		kobject_create_and_add("metrics",
3776				       &i915->drm.primary->kdev->kobj);
3777
3778	mutex_unlock(&perf->lock);
3779}
3780
3781/**
3782 * i915_perf_unregister - hide i915-perf from userspace
3783 * @i915: i915 device instance
3784 *
3785 * i915-perf state cleanup is split up into an 'unregister' and
3786 * 'deinit' phase where the interface is first hidden from
3787 * userspace by i915_perf_unregister() before cleaning up
3788 * remaining state in i915_perf_fini().
3789 */
3790void i915_perf_unregister(struct drm_i915_private *i915)
3791{
3792	struct i915_perf *perf = &i915->perf;
3793
3794	if (!perf->metrics_kobj)
3795		return;
3796
3797	kobject_put(perf->metrics_kobj);
3798	perf->metrics_kobj = NULL;
3799}
3800
3801static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3802{
3803	static const i915_reg_t flex_eu_regs[] = {
3804		EU_PERF_CNTL0,
3805		EU_PERF_CNTL1,
3806		EU_PERF_CNTL2,
3807		EU_PERF_CNTL3,
3808		EU_PERF_CNTL4,
3809		EU_PERF_CNTL5,
3810		EU_PERF_CNTL6,
3811	};
3812	int i;
3813
3814	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3815		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3816			return true;
3817	}
3818	return false;
3819}
3820
3821#define ADDR_IN_RANGE(addr, start, end) \
3822	((addr) >= (start) && \
3823	 (addr) <= (end))
3824
3825#define REG_IN_RANGE(addr, start, end) \
3826	((addr) >= i915_mmio_reg_offset(start) && \
3827	 (addr) <= i915_mmio_reg_offset(end))
3828
3829#define REG_EQUAL(addr, mmio) \
3830	((addr) == i915_mmio_reg_offset(mmio))
3831
3832static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3833{
3834	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3835	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3836	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3837}
3838
3839static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3840{
3841	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3842	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3843	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3844	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3845}
3846
3847static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3848{
3849	return gen7_is_valid_mux_addr(perf, addr) ||
3850	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3851	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3852}
3853
3854static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3855{
3856	return gen8_is_valid_mux_addr(perf, addr) ||
3857	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3858	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3859}
3860
3861static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3862{
3863	return gen7_is_valid_mux_addr(perf, addr) ||
3864	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3865	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3866	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3867}
3868
3869static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3870{
3871	return gen7_is_valid_mux_addr(perf, addr) ||
3872	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3873}
3874
3875static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3876{
3877	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3878	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3879	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3880	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3881	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3882	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3883	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3884}
3885
3886static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3887{
3888	return REG_EQUAL(addr, NOA_WRITE) ||
3889	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3890	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3891	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3892	       REG_EQUAL(addr, RPM_CONFIG0) ||
3893	       REG_EQUAL(addr, RPM_CONFIG1) ||
3894	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3895}
3896
3897static u32 mask_reg_value(u32 reg, u32 val)
3898{
3899	/* HALF_SLICE_CHICKEN2 is programmed with a the
3900	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3901	 * programmed by userspace doesn't change this.
3902	 */
3903	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3904		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3905
3906	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3907	 * indicated by its name and a bunch of selection fields used by OA
3908	 * configs.
3909	 */
3910	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3911		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3912
3913	return val;
3914}
3915
3916static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3917					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3918					 u32 __user *regs,
3919					 u32 n_regs)
3920{
3921	struct i915_oa_reg *oa_regs;
3922	int err;
3923	u32 i;
3924
3925	if (!n_regs)
3926		return NULL;
3927
3928	/* No is_valid function means we're not allowing any register to be programmed. */
3929	GEM_BUG_ON(!is_valid);
3930	if (!is_valid)
3931		return ERR_PTR(-EINVAL);
3932
3933	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3934	if (!oa_regs)
3935		return ERR_PTR(-ENOMEM);
3936
3937	for (i = 0; i < n_regs; i++) {
3938		u32 addr, value;
3939
3940		err = get_user(addr, regs);
3941		if (err)
3942			goto addr_err;
3943
3944		if (!is_valid(perf, addr)) {
3945			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3946			err = -EINVAL;
3947			goto addr_err;
3948		}
3949
3950		err = get_user(value, regs + 1);
3951		if (err)
3952			goto addr_err;
3953
3954		oa_regs[i].addr = _MMIO(addr);
3955		oa_regs[i].value = mask_reg_value(addr, value);
3956
3957		regs += 2;
3958	}
3959
3960	return oa_regs;
3961
3962addr_err:
3963	kfree(oa_regs);
3964	return ERR_PTR(err);
3965}
3966
3967static ssize_t show_dynamic_id(struct kobject *kobj,
3968			       struct kobj_attribute *attr,
3969			       char *buf)
3970{
3971	struct i915_oa_config *oa_config =
3972		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3973
3974	return sprintf(buf, "%d\n", oa_config->id);
3975}
3976
3977static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3978					 struct i915_oa_config *oa_config)
3979{
3980	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3981	oa_config->sysfs_metric_id.attr.name = "id";
3982	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3983	oa_config->sysfs_metric_id.show = show_dynamic_id;
3984	oa_config->sysfs_metric_id.store = NULL;
3985
3986	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3987	oa_config->attrs[1] = NULL;
3988
3989	oa_config->sysfs_metric.name = oa_config->uuid;
3990	oa_config->sysfs_metric.attrs = oa_config->attrs;
3991
3992	return sysfs_create_group(perf->metrics_kobj,
3993				  &oa_config->sysfs_metric);
3994}
3995
3996/**
3997 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3998 * @dev: drm device
3999 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4000 *        userspace (unvalidated)
4001 * @file: drm file
4002 *
4003 * Validates the submitted OA register to be saved into a new OA config that
4004 * can then be used for programming the OA unit and its NOA network.
4005 *
4006 * Returns: A new allocated config number to be used with the perf open ioctl
4007 * or a negative error code on failure.
4008 */
4009int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4010			       struct drm_file *file)
4011{
4012	struct i915_perf *perf = &to_i915(dev)->perf;
4013	struct drm_i915_perf_oa_config *args = data;
4014	struct i915_oa_config *oa_config, *tmp;
4015	struct i915_oa_reg *regs;
4016	int err, id;
4017
4018	if (!perf->i915) {
4019		DRM_DEBUG("i915 perf interface not available for this system\n");
4020		return -ENOTSUPP;
4021	}
4022
4023	if (!perf->metrics_kobj) {
4024		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4025		return -EINVAL;
4026	}
4027
4028	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4029		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4030		return -EACCES;
4031	}
4032
4033	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4034	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4035	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4036		DRM_DEBUG("No OA registers given\n");
4037		return -EINVAL;
4038	}
4039
4040	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4041	if (!oa_config) {
4042		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4043		return -ENOMEM;
4044	}
4045
4046	oa_config->perf = perf;
4047	kref_init(&oa_config->ref);
4048
4049	if (!uuid_is_valid(args->uuid)) {
4050		DRM_DEBUG("Invalid uuid format for OA config\n");
4051		err = -EINVAL;
4052		goto reg_err;
4053	}
4054
4055	/* Last character in oa_config->uuid will be 0 because oa_config is
4056	 * kzalloc.
4057	 */
4058	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4059
4060	oa_config->mux_regs_len = args->n_mux_regs;
4061	regs = alloc_oa_regs(perf,
4062			     perf->ops.is_valid_mux_reg,
4063			     u64_to_user_ptr(args->mux_regs_ptr),
4064			     args->n_mux_regs);
4065
4066	if (IS_ERR(regs)) {
4067		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4068		err = PTR_ERR(regs);
4069		goto reg_err;
4070	}
4071	oa_config->mux_regs = regs;
4072
4073	oa_config->b_counter_regs_len = args->n_boolean_regs;
4074	regs = alloc_oa_regs(perf,
4075			     perf->ops.is_valid_b_counter_reg,
4076			     u64_to_user_ptr(args->boolean_regs_ptr),
4077			     args->n_boolean_regs);
4078
4079	if (IS_ERR(regs)) {
4080		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4081		err = PTR_ERR(regs);
4082		goto reg_err;
4083	}
4084	oa_config->b_counter_regs = regs;
4085
4086	if (INTEL_GEN(perf->i915) < 8) {
4087		if (args->n_flex_regs != 0) {
4088			err = -EINVAL;
4089			goto reg_err;
4090		}
4091	} else {
4092		oa_config->flex_regs_len = args->n_flex_regs;
4093		regs = alloc_oa_regs(perf,
4094				     perf->ops.is_valid_flex_reg,
4095				     u64_to_user_ptr(args->flex_regs_ptr),
4096				     args->n_flex_regs);
4097
4098		if (IS_ERR(regs)) {
4099			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4100			err = PTR_ERR(regs);
4101			goto reg_err;
4102		}
4103		oa_config->flex_regs = regs;
4104	}
4105
4106	err = mutex_lock_interruptible(&perf->metrics_lock);
4107	if (err)
4108		goto reg_err;
4109
4110	/* We shouldn't have too many configs, so this iteration shouldn't be
4111	 * too costly.
4112	 */
4113	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4114		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4115			DRM_DEBUG("OA config already exists with this uuid\n");
4116			err = -EADDRINUSE;
4117			goto sysfs_err;
4118		}
4119	}
4120
4121	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4122	if (err) {
4123		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4124		goto sysfs_err;
4125	}
4126
4127	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4128	oa_config->id = idr_alloc(&perf->metrics_idr,
4129				  oa_config, 2,
4130				  0, GFP_KERNEL);
4131	if (oa_config->id < 0) {
4132		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4133		err = oa_config->id;
4134		goto sysfs_err;
4135	}
4136
4137	mutex_unlock(&perf->metrics_lock);
4138
4139	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4140
4141	return oa_config->id;
4142
4143sysfs_err:
4144	mutex_unlock(&perf->metrics_lock);
4145reg_err:
4146	i915_oa_config_put(oa_config);
4147	DRM_DEBUG("Failed to add new OA config\n");
4148	return err;
4149}
4150
4151/**
4152 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4153 * @dev: drm device
4154 * @data: ioctl data (pointer to u64 integer) copied from userspace
4155 * @file: drm file
4156 *
4157 * Configs can be removed while being used, the will stop appearing in sysfs
4158 * and their content will be freed when the stream using the config is closed.
4159 *
4160 * Returns: 0 on success or a negative error code on failure.
4161 */
4162int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4163				  struct drm_file *file)
4164{
4165	struct i915_perf *perf = &to_i915(dev)->perf;
4166	u64 *arg = data;
4167	struct i915_oa_config *oa_config;
4168	int ret;
4169
4170	if (!perf->i915) {
4171		DRM_DEBUG("i915 perf interface not available for this system\n");
4172		return -ENOTSUPP;
4173	}
4174
4175	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4176		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4177		return -EACCES;
4178	}
4179
4180	ret = mutex_lock_interruptible(&perf->metrics_lock);
4181	if (ret)
4182		return ret;
4183
4184	oa_config = idr_find(&perf->metrics_idr, *arg);
4185	if (!oa_config) {
4186		DRM_DEBUG("Failed to remove unknown OA config\n");
4187		ret = -ENOENT;
4188		goto err_unlock;
4189	}
4190
4191	GEM_BUG_ON(*arg != oa_config->id);
4192
4193	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4194
4195	idr_remove(&perf->metrics_idr, *arg);
4196
4197	mutex_unlock(&perf->metrics_lock);
4198
4199	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4200
4201	i915_oa_config_put(oa_config);
4202
4203	return 0;
4204
4205err_unlock:
4206	mutex_unlock(&perf->metrics_lock);
4207	return ret;
4208}
4209
4210static struct ctl_table oa_table[] = {
4211	{
4212	 .procname = "perf_stream_paranoid",
4213	 .data = &i915_perf_stream_paranoid,
4214	 .maxlen = sizeof(i915_perf_stream_paranoid),
4215	 .mode = 0644,
4216	 .proc_handler = proc_dointvec_minmax,
4217	 .extra1 = SYSCTL_ZERO,
4218	 .extra2 = SYSCTL_ONE,
4219	 },
4220	{
4221	 .procname = "oa_max_sample_rate",
4222	 .data = &i915_oa_max_sample_rate,
4223	 .maxlen = sizeof(i915_oa_max_sample_rate),
4224	 .mode = 0644,
4225	 .proc_handler = proc_dointvec_minmax,
4226	 .extra1 = SYSCTL_ZERO,
4227	 .extra2 = &oa_sample_rate_hard_limit,
4228	 },
4229	{}
4230};
4231
4232static struct ctl_table i915_root[] = {
4233	{
4234	 .procname = "i915",
4235	 .maxlen = 0,
4236	 .mode = 0555,
4237	 .child = oa_table,
4238	 },
4239	{}
4240};
4241
4242static struct ctl_table dev_root[] = {
4243	{
4244	 .procname = "dev",
4245	 .maxlen = 0,
4246	 .mode = 0555,
4247	 .child = i915_root,
4248	 },
4249	{}
4250};
4251
4252/**
4253 * i915_perf_init - initialize i915-perf state on module bind
4254 * @i915: i915 device instance
4255 *
4256 * Initializes i915-perf state without exposing anything to userspace.
4257 *
4258 * Note: i915-perf initialization is split into an 'init' and 'register'
4259 * phase with the i915_perf_register() exposing state to userspace.
4260 */
4261void i915_perf_init(struct drm_i915_private *i915)
4262{
4263	struct i915_perf *perf = &i915->perf;
4264
4265	/* XXX const struct i915_perf_ops! */
4266
4267	if (IS_HASWELL(i915)) {
4268		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4269		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4270		perf->ops.is_valid_flex_reg = NULL;
4271		perf->ops.enable_metric_set = hsw_enable_metric_set;
4272		perf->ops.disable_metric_set = hsw_disable_metric_set;
4273		perf->ops.oa_enable = gen7_oa_enable;
4274		perf->ops.oa_disable = gen7_oa_disable;
4275		perf->ops.read = gen7_oa_read;
4276		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4277
4278		perf->oa_formats = hsw_oa_formats;
4279	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4280		/* Note: that although we could theoretically also support the
4281		 * legacy ringbuffer mode on BDW (and earlier iterations of
4282		 * this driver, before upstreaming did this) it didn't seem
4283		 * worth the complexity to maintain now that BDW+ enable
4284		 * execlist mode by default.
4285		 */
4286		perf->ops.read = gen8_oa_read;
4287
4288		if (IS_GEN_RANGE(i915, 8, 9)) {
4289			perf->oa_formats = gen8_plus_oa_formats;
4290
4291			perf->ops.is_valid_b_counter_reg =
4292				gen7_is_valid_b_counter_addr;
4293			perf->ops.is_valid_mux_reg =
4294				gen8_is_valid_mux_addr;
4295			perf->ops.is_valid_flex_reg =
4296				gen8_is_valid_flex_addr;
4297
4298			if (IS_CHERRYVIEW(i915)) {
4299				perf->ops.is_valid_mux_reg =
4300					chv_is_valid_mux_addr;
4301			}
4302
4303			perf->ops.oa_enable = gen8_oa_enable;
4304			perf->ops.oa_disable = gen8_oa_disable;
4305			perf->ops.enable_metric_set = gen8_enable_metric_set;
4306			perf->ops.disable_metric_set = gen8_disable_metric_set;
4307			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4308
4309			if (IS_GEN(i915, 8)) {
4310				perf->ctx_oactxctrl_offset = 0x120;
4311				perf->ctx_flexeu0_offset = 0x2ce;
4312
4313				perf->gen8_valid_ctx_bit = BIT(25);
4314			} else {
4315				perf->ctx_oactxctrl_offset = 0x128;
4316				perf->ctx_flexeu0_offset = 0x3de;
4317
4318				perf->gen8_valid_ctx_bit = BIT(16);
4319			}
4320		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4321			perf->oa_formats = gen8_plus_oa_formats;
4322
4323			perf->ops.is_valid_b_counter_reg =
4324				gen7_is_valid_b_counter_addr;
4325			perf->ops.is_valid_mux_reg =
4326				gen10_is_valid_mux_addr;
4327			perf->ops.is_valid_flex_reg =
4328				gen8_is_valid_flex_addr;
4329
4330			perf->ops.oa_enable = gen8_oa_enable;
4331			perf->ops.oa_disable = gen8_oa_disable;
4332			perf->ops.enable_metric_set = gen8_enable_metric_set;
4333			perf->ops.disable_metric_set = gen10_disable_metric_set;
4334			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4335
4336			if (IS_GEN(i915, 10)) {
4337				perf->ctx_oactxctrl_offset = 0x128;
4338				perf->ctx_flexeu0_offset = 0x3de;
4339			} else {
4340				perf->ctx_oactxctrl_offset = 0x124;
4341				perf->ctx_flexeu0_offset = 0x78e;
4342			}
4343			perf->gen8_valid_ctx_bit = BIT(16);
4344		} else if (IS_GEN(i915, 12)) {
4345			perf->oa_formats = gen12_oa_formats;
4346
4347			perf->ops.is_valid_b_counter_reg =
4348				gen12_is_valid_b_counter_addr;
4349			perf->ops.is_valid_mux_reg =
4350				gen12_is_valid_mux_addr;
4351			perf->ops.is_valid_flex_reg =
4352				gen8_is_valid_flex_addr;
4353
4354			perf->ops.oa_enable = gen12_oa_enable;
4355			perf->ops.oa_disable = gen12_oa_disable;
4356			perf->ops.enable_metric_set = gen12_enable_metric_set;
4357			perf->ops.disable_metric_set = gen12_disable_metric_set;
4358			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4359
4360			perf->ctx_flexeu0_offset = 0;
4361			perf->ctx_oactxctrl_offset = 0x144;
4362		}
4363	}
4364
4365	if (perf->ops.enable_metric_set) {
4366		mutex_init(&perf->lock);
4367
4368		oa_sample_rate_hard_limit =
4369			RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4370
4371		mutex_init(&perf->metrics_lock);
4372		idr_init(&perf->metrics_idr);
4373
4374		/* We set up some ratelimit state to potentially throttle any
4375		 * _NOTES about spurious, invalid OA reports which we don't
4376		 * forward to userspace.
4377		 *
4378		 * We print a _NOTE about any throttling when closing the
4379		 * stream instead of waiting until driver _fini which no one
4380		 * would ever see.
4381		 *
4382		 * Using the same limiting factors as printk_ratelimit()
4383		 */
4384		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4385		/* Since we use a DRM_NOTE for spurious reports it would be
4386		 * inconsistent to let __ratelimit() automatically print a
4387		 * warning for throttling.
4388		 */
4389		ratelimit_set_flags(&perf->spurious_report_rs,
4390				    RATELIMIT_MSG_ON_RELEASE);
4391
4392		ratelimit_state_init(&perf->tail_pointer_race,
4393				     5 * HZ, 10);
4394		ratelimit_set_flags(&perf->tail_pointer_race,
4395				    RATELIMIT_MSG_ON_RELEASE);
4396
4397		atomic64_set(&perf->noa_programming_delay,
4398			     500 * 1000 /* 500us */);
4399
4400		perf->i915 = i915;
4401	}
4402}
4403
4404static int destroy_config(int id, void *p, void *data)
4405{
4406	i915_oa_config_put(p);
4407	return 0;
4408}
4409
4410void i915_perf_sysctl_register(void)
4411{
4412	sysctl_header = register_sysctl_table(dev_root);
4413}
4414
4415void i915_perf_sysctl_unregister(void)
4416{
4417	unregister_sysctl_table(sysctl_header);
4418}
4419
4420/**
4421 * i915_perf_fini - Counter part to i915_perf_init()
4422 * @i915: i915 device instance
4423 */
4424void i915_perf_fini(struct drm_i915_private *i915)
4425{
4426	struct i915_perf *perf = &i915->perf;
4427
4428	if (!perf->i915)
4429		return;
4430
4431	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4432	idr_destroy(&perf->metrics_idr);
4433
4434	memset(&perf->ops, 0, sizeof(perf->ops));
4435	perf->i915 = NULL;
4436}
4437
4438/**
4439 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4440 *
4441 * This version number is used by userspace to detect available features.
4442 */
4443int i915_perf_ioctl_version(void)
4444{
4445	/*
4446	 * 1: Initial version
4447	 *   I915_PERF_IOCTL_ENABLE
4448	 *   I915_PERF_IOCTL_DISABLE
4449	 *
4450	 * 2: Added runtime modification of OA config.
4451	 *   I915_PERF_IOCTL_CONFIG
4452	 *
4453	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4454	 *    preemption on a particular context so that performance data is
4455	 *    accessible from a delta of MI_RPC reports without looking at the
4456	 *    OA buffer.
4457	 *
4458	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4459	 *    be run for the duration of the performance recording based on
4460	 *    their SSEU configuration.
4461	 *
4462	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4463	 *    interval for the hrtimer used to check for OA data.
4464	 */
4465	return 5;
4466}
4467
4468#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4469#include "selftests/i915_perf.c"
4470#endif
4471