1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7#include <linux/debugobjects.h>
8
9#include "gt/intel_context.h"
10#include "gt/intel_engine_heartbeat.h"
11#include "gt/intel_engine_pm.h"
12#include "gt/intel_ring.h"
13
14#include "i915_drv.h"
15#include "i915_active.h"
16#include "i915_globals.h"
17
18/*
19 * Active refs memory management
20 *
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
24 */
25static struct i915_global_active {
26	struct i915_global base;
27	struct kmem_cache *slab_cache;
28} global;
29
30struct active_node {
31	struct rb_node node;
32	struct i915_active_fence base;
33	struct i915_active *ref;
34	u64 timeline;
35};
36
37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38
39static inline struct active_node *
40node_from_active(struct i915_active_fence *active)
41{
42	return container_of(active, struct active_node, base);
43}
44
45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46
47static inline bool is_barrier(const struct i915_active_fence *active)
48{
49	return IS_ERR(rcu_access_pointer(active->fence));
50}
51
52static inline struct llist_node *barrier_to_ll(struct active_node *node)
53{
54	GEM_BUG_ON(!is_barrier(&node->base));
55	return (struct llist_node *)&node->base.cb.node;
56}
57
58static inline struct intel_engine_cs *
59__barrier_to_engine(struct active_node *node)
60{
61	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62}
63
64static inline struct intel_engine_cs *
65barrier_to_engine(struct active_node *node)
66{
67	GEM_BUG_ON(!is_barrier(&node->base));
68	return __barrier_to_engine(node);
69}
70
71static inline struct active_node *barrier_from_ll(struct llist_node *x)
72{
73	return container_of((struct list_head *)x,
74			    struct active_node, base.cb.node);
75}
76
77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78
79static void *active_debug_hint(void *addr)
80{
81	struct i915_active *ref = addr;
82
83	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84}
85
86static const struct debug_obj_descr active_debug_desc = {
87	.name = "i915_active",
88	.debug_hint = active_debug_hint,
89};
90
91static void debug_active_init(struct i915_active *ref)
92{
93	debug_object_init(ref, &active_debug_desc);
94}
95
96static void debug_active_activate(struct i915_active *ref)
97{
98	lockdep_assert_held(&ref->tree_lock);
99	debug_object_activate(ref, &active_debug_desc);
100}
101
102static void debug_active_deactivate(struct i915_active *ref)
103{
104	lockdep_assert_held(&ref->tree_lock);
105	if (!atomic_read(&ref->count)) /* after the last dec */
106		debug_object_deactivate(ref, &active_debug_desc);
107}
108
109static void debug_active_fini(struct i915_active *ref)
110{
111	debug_object_free(ref, &active_debug_desc);
112}
113
114static void debug_active_assert(struct i915_active *ref)
115{
116	debug_object_assert_init(ref, &active_debug_desc);
117}
118
119#else
120
121static inline void debug_active_init(struct i915_active *ref) { }
122static inline void debug_active_activate(struct i915_active *ref) { }
123static inline void debug_active_deactivate(struct i915_active *ref) { }
124static inline void debug_active_fini(struct i915_active *ref) { }
125static inline void debug_active_assert(struct i915_active *ref) { }
126
127#endif
128
129static void
130__active_retire(struct i915_active *ref)
131{
132	struct rb_root root = RB_ROOT;
133	struct active_node *it, *n;
134	unsigned long flags;
135
136	GEM_BUG_ON(i915_active_is_idle(ref));
137
138	/* return the unused nodes to our slabcache -- flushing the allocator */
139	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
140		return;
141
142	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
143	debug_active_deactivate(ref);
144
145	/* Even if we have not used the cache, we may still have a barrier */
146	if (!ref->cache)
147		ref->cache = fetch_node(ref->tree.rb_node);
148
149	/* Keep the MRU cached node for reuse */
150	if (ref->cache) {
151		/* Discard all other nodes in the tree */
152		rb_erase(&ref->cache->node, &ref->tree);
153		root = ref->tree;
154
155		/* Rebuild the tree with only the cached node */
156		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
157		rb_insert_color(&ref->cache->node, &ref->tree);
158		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
159
160		/* Make the cached node available for reuse with any timeline */
161		if (IS_ENABLED(CONFIG_64BIT))
162			ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163	}
164
165	spin_unlock_irqrestore(&ref->tree_lock, flags);
166
167	/* After the final retire, the entire struct may be freed */
168	if (ref->retire)
169		ref->retire(ref);
170
171	/* ... except if you wait on it, you must manage your own references! */
172	wake_up_var(ref);
173
174	/* Finally free the discarded timeline tree  */
175	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176		GEM_BUG_ON(i915_active_fence_isset(&it->base));
177		kmem_cache_free(global.slab_cache, it);
178	}
179}
180
181static void
182active_work(struct work_struct *wrk)
183{
184	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185
186	GEM_BUG_ON(!atomic_read(&ref->count));
187	if (atomic_add_unless(&ref->count, -1, 1))
188		return;
189
190	__active_retire(ref);
191}
192
193static void
194active_retire(struct i915_active *ref)
195{
196	GEM_BUG_ON(!atomic_read(&ref->count));
197	if (atomic_add_unless(&ref->count, -1, 1))
198		return;
199
200	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201		queue_work(system_unbound_wq, &ref->work);
202		return;
203	}
204
205	__active_retire(ref);
206}
207
208static inline struct dma_fence **
209__active_fence_slot(struct i915_active_fence *active)
210{
211	return (struct dma_fence ** __force)&active->fence;
212}
213
214static inline bool
215active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216{
217	struct i915_active_fence *active =
218		container_of(cb, typeof(*active), cb);
219
220	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221}
222
223static void
224node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225{
226	if (active_fence_cb(fence, cb))
227		active_retire(container_of(cb, struct active_node, base.cb)->ref);
228}
229
230static void
231excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232{
233	if (active_fence_cb(fence, cb))
234		active_retire(container_of(cb, struct i915_active, excl.cb));
235}
236
237static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238{
239	struct active_node *it;
240
241	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242
243	/*
244	 * We track the most recently used timeline to skip a rbtree search
245	 * for the common case, under typical loads we never need the rbtree
246	 * at all. We can reuse the last slot if it is empty, that is
247	 * after the previous activity has been retired, or if it matches the
248	 * current timeline.
249	 */
250	it = READ_ONCE(ref->cache);
251	if (it) {
252		u64 cached = READ_ONCE(it->timeline);
253
254		/* Once claimed, this slot will only belong to this idx */
255		if (cached == idx)
256			return it;
257
258#ifdef CONFIG_64BIT /* for cmpxchg(u64) */
259		/*
260		 * An unclaimed cache [.timeline=0] can only be claimed once.
261		 *
262		 * If the value is already non-zero, some other thread has
263		 * claimed the cache and we know that is does not match our
264		 * idx. If, and only if, the timeline is currently zero is it
265		 * worth competing to claim it atomically for ourselves (for
266		 * only the winner of that race will cmpxchg return the old
267		 * value of 0).
268		 */
269		if (!cached && !cmpxchg(&it->timeline, 0, idx))
270			return it;
271#endif
272	}
273
274	BUILD_BUG_ON(offsetof(typeof(*it), node));
275
276	/* While active, the tree can only be built; not destroyed */
277	GEM_BUG_ON(i915_active_is_idle(ref));
278
279	it = fetch_node(ref->tree.rb_node);
280	while (it) {
281		if (it->timeline < idx) {
282			it = fetch_node(it->node.rb_right);
283		} else if (it->timeline > idx) {
284			it = fetch_node(it->node.rb_left);
285		} else {
286			WRITE_ONCE(ref->cache, it);
287			break;
288		}
289	}
290
291	/* NB: If the tree rotated beneath us, we may miss our target. */
292	return it;
293}
294
295static struct i915_active_fence *
296active_instance(struct i915_active *ref, u64 idx)
297{
298	struct active_node *node, *prealloc;
299	struct rb_node **p, *parent;
300
301	node = __active_lookup(ref, idx);
302	if (likely(node))
303		return &node->base;
304
305	/* Preallocate a replacement, just in case */
306	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
307	if (!prealloc)
308		return NULL;
309
310	spin_lock_irq(&ref->tree_lock);
311	GEM_BUG_ON(i915_active_is_idle(ref));
312
313	parent = NULL;
314	p = &ref->tree.rb_node;
315	while (*p) {
316		parent = *p;
317
318		node = rb_entry(parent, struct active_node, node);
319		if (node->timeline == idx) {
320			kmem_cache_free(global.slab_cache, prealloc);
321			goto out;
322		}
323
324		if (node->timeline < idx)
325			p = &parent->rb_right;
326		else
327			p = &parent->rb_left;
328	}
329
330	node = prealloc;
331	__i915_active_fence_init(&node->base, NULL, node_retire);
332	node->ref = ref;
333	node->timeline = idx;
334
335	rb_link_node(&node->node, parent, p);
336	rb_insert_color(&node->node, &ref->tree);
337
338out:
339	WRITE_ONCE(ref->cache, node);
340	spin_unlock_irq(&ref->tree_lock);
341
342	return &node->base;
343}
344
345void __i915_active_init(struct i915_active *ref,
346			int (*active)(struct i915_active *ref),
347			void (*retire)(struct i915_active *ref),
348			struct lock_class_key *mkey,
349			struct lock_class_key *wkey)
350{
351	unsigned long bits;
352
353	debug_active_init(ref);
354
355	ref->flags = 0;
356	ref->active = active;
357	ref->retire = ptr_unpack_bits(retire, &bits, 2);
358	if (bits & I915_ACTIVE_MAY_SLEEP)
359		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
360
361	spin_lock_init(&ref->tree_lock);
362	ref->tree = RB_ROOT;
363	ref->cache = NULL;
364
365	init_llist_head(&ref->preallocated_barriers);
366	atomic_set(&ref->count, 0);
367	__mutex_init(&ref->mutex, "i915_active", mkey);
368	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
369	INIT_WORK(&ref->work, active_work);
370#if IS_ENABLED(CONFIG_LOCKDEP)
371	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
372#endif
373}
374
375static bool ____active_del_barrier(struct i915_active *ref,
376				   struct active_node *node,
377				   struct intel_engine_cs *engine)
378
379{
380	struct llist_node *head = NULL, *tail = NULL;
381	struct llist_node *pos, *next;
382
383	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
384
385	/*
386	 * Rebuild the llist excluding our node. We may perform this
387	 * outside of the kernel_context timeline mutex and so someone
388	 * else may be manipulating the engine->barrier_tasks, in
389	 * which case either we or they will be upset :)
390	 *
391	 * A second __active_del_barrier() will report failure to claim
392	 * the active_node and the caller will just shrug and know not to
393	 * claim ownership of its node.
394	 *
395	 * A concurrent i915_request_add_active_barriers() will miss adding
396	 * any of the tasks, but we will try again on the next -- and since
397	 * we are actively using the barrier, we know that there will be
398	 * at least another opportunity when we idle.
399	 */
400	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
401		if (node == barrier_from_ll(pos)) {
402			node = NULL;
403			continue;
404		}
405
406		pos->next = head;
407		head = pos;
408		if (!tail)
409			tail = pos;
410	}
411	if (head)
412		llist_add_batch(head, tail, &engine->barrier_tasks);
413
414	return !node;
415}
416
417static bool
418__active_del_barrier(struct i915_active *ref, struct active_node *node)
419{
420	return ____active_del_barrier(ref, node, barrier_to_engine(node));
421}
422
423static bool
424replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
425{
426	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
427		return false;
428
429	/*
430	 * This request is on the kernel_context timeline, and so
431	 * we can use it to substitute for the pending idle-barrer
432	 * request that we want to emit on the kernel_context.
433	 */
434	return __active_del_barrier(ref, node_from_active(active));
435}
436
437int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
438{
439	struct i915_active_fence *active;
440	int err;
441
442	/* Prevent reaping in case we malloc/wait while building the tree */
443	err = i915_active_acquire(ref);
444	if (err)
445		return err;
446
447	do {
448		active = active_instance(ref, idx);
449		if (!active) {
450			err = -ENOMEM;
451			goto out;
452		}
453
454		if (replace_barrier(ref, active)) {
455			RCU_INIT_POINTER(active->fence, NULL);
456			atomic_dec(&ref->count);
457		}
458	} while (unlikely(is_barrier(active)));
459
460	fence = __i915_active_fence_set(active, fence);
461	if (!fence)
462		__i915_active_acquire(ref);
463	else
464		dma_fence_put(fence);
465
466out:
467	i915_active_release(ref);
468	return err;
469}
470
471static struct dma_fence *
472__i915_active_set_fence(struct i915_active *ref,
473			struct i915_active_fence *active,
474			struct dma_fence *fence)
475{
476	struct dma_fence *prev;
477
478	if (replace_barrier(ref, active)) {
479		RCU_INIT_POINTER(active->fence, fence);
480		return NULL;
481	}
482
483	prev = __i915_active_fence_set(active, fence);
484	if (!prev)
485		__i915_active_acquire(ref);
486
487	return prev;
488}
489
490static struct i915_active_fence *
491__active_fence(struct i915_active *ref, u64 idx)
492{
493	struct active_node *it;
494
495	it = __active_lookup(ref, idx);
496	if (unlikely(!it)) { /* Contention with parallel tree builders! */
497		spin_lock_irq(&ref->tree_lock);
498		it = __active_lookup(ref, idx);
499		spin_unlock_irq(&ref->tree_lock);
500	}
501	GEM_BUG_ON(!it); /* slot must be preallocated */
502
503	return &it->base;
504}
505
506struct dma_fence *
507__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
508{
509	/* Only valid while active, see i915_active_acquire_for_context() */
510	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511}
512
513struct dma_fence *
514i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
515{
516	/* We expect the caller to manage the exclusive timeline ordering */
517	return __i915_active_set_fence(ref, &ref->excl, f);
518}
519
520bool i915_active_acquire_if_busy(struct i915_active *ref)
521{
522	debug_active_assert(ref);
523	return atomic_add_unless(&ref->count, 1, 0);
524}
525
526static void __i915_active_activate(struct i915_active *ref)
527{
528	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
529	if (!atomic_fetch_inc(&ref->count))
530		debug_active_activate(ref);
531	spin_unlock_irq(&ref->tree_lock);
532}
533
534int i915_active_acquire(struct i915_active *ref)
535{
536	int err;
537
538	if (i915_active_acquire_if_busy(ref))
539		return 0;
540
541	if (!ref->active) {
542		__i915_active_activate(ref);
543		return 0;
544	}
545
546	err = mutex_lock_interruptible(&ref->mutex);
547	if (err)
548		return err;
549
550	if (likely(!i915_active_acquire_if_busy(ref))) {
551		err = ref->active(ref);
552		if (!err)
553			__i915_active_activate(ref);
554	}
555
556	mutex_unlock(&ref->mutex);
557
558	return err;
559}
560
561int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
562{
563	struct i915_active_fence *active;
564	int err;
565
566	err = i915_active_acquire(ref);
567	if (err)
568		return err;
569
570	active = active_instance(ref, idx);
571	if (!active) {
572		i915_active_release(ref);
573		return -ENOMEM;
574	}
575
576	return 0; /* return with active ref */
577}
578
579void i915_active_release(struct i915_active *ref)
580{
581	debug_active_assert(ref);
582	active_retire(ref);
583}
584
585static void enable_signaling(struct i915_active_fence *active)
586{
587	struct dma_fence *fence;
588
589	if (unlikely(is_barrier(active)))
590		return;
591
592	fence = i915_active_fence_get(active);
593	if (!fence)
594		return;
595
596	dma_fence_enable_sw_signaling(fence);
597	dma_fence_put(fence);
598}
599
600static int flush_barrier(struct active_node *it)
601{
602	struct intel_engine_cs *engine;
603
604	if (likely(!is_barrier(&it->base)))
605		return 0;
606
607	engine = __barrier_to_engine(it);
608	smp_rmb(); /* serialise with add_active_barriers */
609	if (!is_barrier(&it->base))
610		return 0;
611
612	return intel_engine_flush_barriers(engine);
613}
614
615static int flush_lazy_signals(struct i915_active *ref)
616{
617	struct active_node *it, *n;
618	int err = 0;
619
620	enable_signaling(&ref->excl);
621	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
622		err = flush_barrier(it); /* unconnected idle barrier? */
623		if (err)
624			break;
625
626		enable_signaling(&it->base);
627	}
628
629	return err;
630}
631
632int __i915_active_wait(struct i915_active *ref, int state)
633{
634	might_sleep();
635
636	/* Any fence added after the wait begins will not be auto-signaled */
637	if (i915_active_acquire_if_busy(ref)) {
638		int err;
639
640		err = flush_lazy_signals(ref);
641		i915_active_release(ref);
642		if (err)
643			return err;
644
645		if (___wait_var_event(ref, i915_active_is_idle(ref),
646				      state, 0, 0, schedule()))
647			return -EINTR;
648	}
649
650	/*
651	 * After the wait is complete, the caller may free the active.
652	 * We have to flush any concurrent retirement before returning.
653	 */
654	flush_work(&ref->work);
655	return 0;
656}
657
658static int __await_active(struct i915_active_fence *active,
659			  int (*fn)(void *arg, struct dma_fence *fence),
660			  void *arg)
661{
662	struct dma_fence *fence;
663
664	if (is_barrier(active)) /* XXX flush the barrier? */
665		return 0;
666
667	fence = i915_active_fence_get(active);
668	if (fence) {
669		int err;
670
671		err = fn(arg, fence);
672		dma_fence_put(fence);
673		if (err < 0)
674			return err;
675	}
676
677	return 0;
678}
679
680struct wait_barrier {
681	struct wait_queue_entry base;
682	struct i915_active *ref;
683};
684
685static int
686barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
687{
688	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
689
690	if (i915_active_is_idle(wb->ref)) {
691		list_del(&wq->entry);
692		i915_sw_fence_complete(wq->private);
693		kfree(wq);
694	}
695
696	return 0;
697}
698
699static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
700{
701	struct wait_barrier *wb;
702
703	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
704	if (unlikely(!wb))
705		return -ENOMEM;
706
707	GEM_BUG_ON(i915_active_is_idle(ref));
708	if (!i915_sw_fence_await(fence)) {
709		kfree(wb);
710		return -EINVAL;
711	}
712
713	wb->base.flags = 0;
714	wb->base.func = barrier_wake;
715	wb->base.private = fence;
716	wb->ref = ref;
717
718	add_wait_queue(__var_waitqueue(ref), &wb->base);
719	return 0;
720}
721
722static int await_active(struct i915_active *ref,
723			unsigned int flags,
724			int (*fn)(void *arg, struct dma_fence *fence),
725			void *arg, struct i915_sw_fence *barrier)
726{
727	int err = 0;
728
729	if (!i915_active_acquire_if_busy(ref))
730		return 0;
731
732	if (flags & I915_ACTIVE_AWAIT_EXCL &&
733	    rcu_access_pointer(ref->excl.fence)) {
734		err = __await_active(&ref->excl, fn, arg);
735		if (err)
736			goto out;
737	}
738
739	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
740		struct active_node *it, *n;
741
742		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
743			err = __await_active(&it->base, fn, arg);
744			if (err)
745				goto out;
746		}
747	}
748
749	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
750		err = flush_lazy_signals(ref);
751		if (err)
752			goto out;
753
754		err = __await_barrier(ref, barrier);
755		if (err)
756			goto out;
757	}
758
759out:
760	i915_active_release(ref);
761	return err;
762}
763
764static int rq_await_fence(void *arg, struct dma_fence *fence)
765{
766	return i915_request_await_dma_fence(arg, fence);
767}
768
769int i915_request_await_active(struct i915_request *rq,
770			      struct i915_active *ref,
771			      unsigned int flags)
772{
773	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
774}
775
776static int sw_await_fence(void *arg, struct dma_fence *fence)
777{
778	return i915_sw_fence_await_dma_fence(arg, fence, 0,
779					     GFP_NOWAIT | __GFP_NOWARN);
780}
781
782int i915_sw_fence_await_active(struct i915_sw_fence *fence,
783			       struct i915_active *ref,
784			       unsigned int flags)
785{
786	return await_active(ref, flags, sw_await_fence, fence, fence);
787}
788
789void i915_active_fini(struct i915_active *ref)
790{
791	debug_active_fini(ref);
792	GEM_BUG_ON(atomic_read(&ref->count));
793	GEM_BUG_ON(work_pending(&ref->work));
794	mutex_destroy(&ref->mutex);
795
796	if (ref->cache)
797		kmem_cache_free(global.slab_cache, ref->cache);
798}
799
800static inline bool is_idle_barrier(struct active_node *node, u64 idx)
801{
802	return node->timeline == idx && !i915_active_fence_isset(&node->base);
803}
804
805static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
806{
807	struct rb_node *prev, *p;
808
809	if (RB_EMPTY_ROOT(&ref->tree))
810		return NULL;
811
812	GEM_BUG_ON(i915_active_is_idle(ref));
813
814	/*
815	 * Try to reuse any existing barrier nodes already allocated for this
816	 * i915_active, due to overlapping active phases there is likely a
817	 * node kept alive (as we reuse before parking). We prefer to reuse
818	 * completely idle barriers (less hassle in manipulating the llists),
819	 * but otherwise any will do.
820	 */
821	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
822		p = &ref->cache->node;
823		goto match;
824	}
825
826	prev = NULL;
827	p = ref->tree.rb_node;
828	while (p) {
829		struct active_node *node =
830			rb_entry(p, struct active_node, node);
831
832		if (is_idle_barrier(node, idx))
833			goto match;
834
835		prev = p;
836		if (node->timeline < idx)
837			p = READ_ONCE(p->rb_right);
838		else
839			p = READ_ONCE(p->rb_left);
840	}
841
842	/*
843	 * No quick match, but we did find the leftmost rb_node for the
844	 * kernel_context. Walk the rb_tree in-order to see if there were
845	 * any idle-barriers on this timeline that we missed, or just use
846	 * the first pending barrier.
847	 */
848	for (p = prev; p; p = rb_next(p)) {
849		struct active_node *node =
850			rb_entry(p, struct active_node, node);
851		struct intel_engine_cs *engine;
852
853		if (node->timeline > idx)
854			break;
855
856		if (node->timeline < idx)
857			continue;
858
859		if (is_idle_barrier(node, idx))
860			goto match;
861
862		/*
863		 * The list of pending barriers is protected by the
864		 * kernel_context timeline, which notably we do not hold
865		 * here. i915_request_add_active_barriers() may consume
866		 * the barrier before we claim it, so we have to check
867		 * for success.
868		 */
869		engine = __barrier_to_engine(node);
870		smp_rmb(); /* serialise with add_active_barriers */
871		if (is_barrier(&node->base) &&
872		    ____active_del_barrier(ref, node, engine))
873			goto match;
874	}
875
876	return NULL;
877
878match:
879	spin_lock_irq(&ref->tree_lock);
880	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
881	if (p == &ref->cache->node)
882		WRITE_ONCE(ref->cache, NULL);
883	spin_unlock_irq(&ref->tree_lock);
884
885	return rb_entry(p, struct active_node, node);
886}
887
888int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
889					    struct intel_engine_cs *engine)
890{
891	intel_engine_mask_t tmp, mask = engine->mask;
892	struct llist_node *first = NULL, *last = NULL;
893	struct intel_gt *gt = engine->gt;
894
895	GEM_BUG_ON(i915_active_is_idle(ref));
896
897	/* Wait until the previous preallocation is completed */
898	while (!llist_empty(&ref->preallocated_barriers))
899		cond_resched();
900
901	/*
902	 * Preallocate a node for each physical engine supporting the target
903	 * engine (remember virtual engines have more than one sibling).
904	 * We can then use the preallocated nodes in
905	 * i915_active_acquire_barrier()
906	 */
907	GEM_BUG_ON(!mask);
908	for_each_engine_masked(engine, gt, mask, tmp) {
909		u64 idx = engine->kernel_context->timeline->fence_context;
910		struct llist_node *prev = first;
911		struct active_node *node;
912
913		rcu_read_lock();
914		node = reuse_idle_barrier(ref, idx);
915		rcu_read_unlock();
916		if (!node) {
917			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
918			if (!node)
919				goto unwind;
920
921			RCU_INIT_POINTER(node->base.fence, NULL);
922			node->base.cb.func = node_retire;
923			node->timeline = idx;
924			node->ref = ref;
925		}
926
927		if (!i915_active_fence_isset(&node->base)) {
928			/*
929			 * Mark this as being *our* unconnected proto-node.
930			 *
931			 * Since this node is not in any list, and we have
932			 * decoupled it from the rbtree, we can reuse the
933			 * request to indicate this is an idle-barrier node
934			 * and then we can use the rb_node and list pointers
935			 * for our tracking of the pending barrier.
936			 */
937			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
938			node->base.cb.node.prev = (void *)engine;
939			__i915_active_acquire(ref);
940		}
941		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
942
943		GEM_BUG_ON(barrier_to_engine(node) != engine);
944		first = barrier_to_ll(node);
945		first->next = prev;
946		if (!last)
947			last = first;
948		intel_engine_pm_get(engine);
949	}
950
951	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
952	llist_add_batch(first, last, &ref->preallocated_barriers);
953
954	return 0;
955
956unwind:
957	while (first) {
958		struct active_node *node = barrier_from_ll(first);
959
960		first = first->next;
961
962		atomic_dec(&ref->count);
963		intel_engine_pm_put(barrier_to_engine(node));
964
965		kmem_cache_free(global.slab_cache, node);
966	}
967	return -ENOMEM;
968}
969
970void i915_active_acquire_barrier(struct i915_active *ref)
971{
972	struct llist_node *pos, *next;
973	unsigned long flags;
974
975	GEM_BUG_ON(i915_active_is_idle(ref));
976
977	/*
978	 * Transfer the list of preallocated barriers into the
979	 * i915_active rbtree, but only as proto-nodes. They will be
980	 * populated by i915_request_add_active_barriers() to point to the
981	 * request that will eventually release them.
982	 */
983	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
984		struct active_node *node = barrier_from_ll(pos);
985		struct intel_engine_cs *engine = barrier_to_engine(node);
986		struct rb_node **p, *parent;
987
988		spin_lock_irqsave_nested(&ref->tree_lock, flags,
989					 SINGLE_DEPTH_NESTING);
990		parent = NULL;
991		p = &ref->tree.rb_node;
992		while (*p) {
993			struct active_node *it;
994
995			parent = *p;
996
997			it = rb_entry(parent, struct active_node, node);
998			if (it->timeline < node->timeline)
999				p = &parent->rb_right;
1000			else
1001				p = &parent->rb_left;
1002		}
1003		rb_link_node(&node->node, parent, p);
1004		rb_insert_color(&node->node, &ref->tree);
1005		spin_unlock_irqrestore(&ref->tree_lock, flags);
1006
1007		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1008		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1009		intel_engine_pm_put_delay(engine, 1);
1010	}
1011}
1012
1013static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1014{
1015	return __active_fence_slot(&barrier_from_ll(node)->base);
1016}
1017
1018void i915_request_add_active_barriers(struct i915_request *rq)
1019{
1020	struct intel_engine_cs *engine = rq->engine;
1021	struct llist_node *node, *next;
1022	unsigned long flags;
1023
1024	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1025	GEM_BUG_ON(intel_engine_is_virtual(engine));
1026	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1027
1028	node = llist_del_all(&engine->barrier_tasks);
1029	if (!node)
1030		return;
1031	/*
1032	 * Attach the list of proto-fences to the in-flight request such
1033	 * that the parent i915_active will be released when this request
1034	 * is retired.
1035	 */
1036	spin_lock_irqsave(&rq->lock, flags);
1037	llist_for_each_safe(node, next, node) {
1038		/* serialise with reuse_idle_barrier */
1039		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1040		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1041	}
1042	spin_unlock_irqrestore(&rq->lock, flags);
1043}
1044
1045/*
1046 * __i915_active_fence_set: Update the last active fence along its timeline
1047 * @active: the active tracker
1048 * @fence: the new fence (under construction)
1049 *
1050 * Records the new @fence as the last active fence along its timeline in
1051 * this active tracker, moving the tracking callbacks from the previous
1052 * fence onto this one. Gets and returns a reference to the previous fence
1053 * (if not already completed), which the caller must put after making sure
1054 * that it is executed before the new fence. To ensure that the order of
1055 * fences within the timeline of the i915_active_fence is understood, it
1056 * should be locked by the caller.
1057 */
1058struct dma_fence *
1059__i915_active_fence_set(struct i915_active_fence *active,
1060			struct dma_fence *fence)
1061{
1062	struct dma_fence *prev;
1063	unsigned long flags;
1064
1065	/*
1066	 * In case of fences embedded in i915_requests, their memory is
1067	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
1068	 * by new requests.  Then, there is a risk of passing back a pointer
1069	 * to a new, completely unrelated fence that reuses the same memory
1070	 * while tracked under a different active tracker.  Combined with i915
1071	 * perf open/close operations that build await dependencies between
1072	 * engine kernel context requests and user requests from different
1073	 * timelines, this can lead to dependency loops and infinite waits.
1074	 *
1075	 * As a countermeasure, we try to get a reference to the active->fence
1076	 * first, so if we succeed and pass it back to our user then it is not
1077	 * released and potentially reused by an unrelated request before the
1078	 * user has a chance to set up an await dependency on it.
1079	 */
1080	prev = i915_active_fence_get(active);
1081	if (fence == prev)
1082		return fence;
1083
1084	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1085
1086	/*
1087	 * Consider that we have two threads arriving (A and B), with
1088	 * C already resident as the active->fence.
1089	 *
1090	 * Both A and B have got a reference to C or NULL, depending on the
1091	 * timing of the interrupt handler.  Let's assume that if A has got C
1092	 * then it has locked C first (before B).
1093	 *
1094	 * Note the strong ordering of the timeline also provides consistent
1095	 * nesting rules for the fence->lock; the inner lock is always the
1096	 * older lock.
1097	 */
1098	spin_lock_irqsave(fence->lock, flags);
1099	if (prev)
1100		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1101
1102	/*
1103	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
1104	 * something else, depending on the timing of other threads and/or
1105	 * interrupt handler.  If not the same as before then A unlocks C if
1106	 * applicable and retries, starting from an attempt to get a new
1107	 * active->fence.  Meanwhile, B follows the same path as A.
1108	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
1109	 * active->fence, locks it as soon as A completes, and possibly
1110	 * succeeds with cmpxchg.
1111	 */
1112	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
1113		if (prev) {
1114			spin_unlock(prev->lock);
1115			dma_fence_put(prev);
1116		}
1117		spin_unlock_irqrestore(fence->lock, flags);
1118
1119		prev = i915_active_fence_get(active);
1120		GEM_BUG_ON(prev == fence);
1121
1122		spin_lock_irqsave(fence->lock, flags);
1123		if (prev)
1124			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1125	}
1126
1127	/*
1128	 * If prev is NULL then the previous fence must have been signaled
1129	 * and we know that we are first on the timeline.  If it is still
1130	 * present then, having the lock on that fence already acquired, we
1131	 * serialise with the interrupt handler, in the process of removing it
1132	 * from any future interrupt callback.  A will then wait on C before
1133	 * executing (if present).
1134	 *
1135	 * As B is second, it sees A as the previous fence and so waits for
1136	 * it to complete its transition and takes over the occupancy for
1137	 * itself -- remembering that it needs to wait on A before executing.
1138	 */
1139	if (prev) {
1140		__list_del_entry(&active->cb.node);
1141		spin_unlock(prev->lock); /* serialise with prev->cb_list */
1142	}
1143	list_add_tail(&active->cb.node, &fence->cb_list);
1144	spin_unlock_irqrestore(fence->lock, flags);
1145
1146	return prev;
1147}
1148
1149int i915_active_fence_set(struct i915_active_fence *active,
1150			  struct i915_request *rq)
1151{
1152	struct dma_fence *fence;
1153	int err = 0;
1154
1155	/* Must maintain timeline ordering wrt previous active requests */
1156	fence = __i915_active_fence_set(active, &rq->fence);
1157	if (fence) {
1158		err = i915_request_await_dma_fence(rq, fence);
1159		dma_fence_put(fence);
1160	}
1161
1162	return err;
1163}
1164
1165void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1166{
1167	active_fence_cb(fence, cb);
1168}
1169
1170struct auto_active {
1171	struct i915_active base;
1172	struct kref ref;
1173};
1174
1175struct i915_active *i915_active_get(struct i915_active *ref)
1176{
1177	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1178
1179	kref_get(&aa->ref);
1180	return &aa->base;
1181}
1182
1183static void auto_release(struct kref *ref)
1184{
1185	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1186
1187	i915_active_fini(&aa->base);
1188	kfree(aa);
1189}
1190
1191void i915_active_put(struct i915_active *ref)
1192{
1193	struct auto_active *aa = container_of(ref, typeof(*aa), base);
1194
1195	kref_put(&aa->ref, auto_release);
1196}
1197
1198static int auto_active(struct i915_active *ref)
1199{
1200	i915_active_get(ref);
1201	return 0;
1202}
1203
1204__i915_active_call static void
1205auto_retire(struct i915_active *ref)
1206{
1207	i915_active_put(ref);
1208}
1209
1210struct i915_active *i915_active_create(void)
1211{
1212	struct auto_active *aa;
1213
1214	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1215	if (!aa)
1216		return NULL;
1217
1218	kref_init(&aa->ref);
1219	i915_active_init(&aa->base, auto_active, auto_retire);
1220
1221	return &aa->base;
1222}
1223
1224#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1225#include "selftests/i915_active.c"
1226#endif
1227
1228static void i915_global_active_shrink(void)
1229{
1230	kmem_cache_shrink(global.slab_cache);
1231}
1232
1233static void i915_global_active_exit(void)
1234{
1235	kmem_cache_destroy(global.slab_cache);
1236}
1237
1238static struct i915_global_active global = { {
1239	.shrink = i915_global_active_shrink,
1240	.exit = i915_global_active_exit,
1241} };
1242
1243int __init i915_global_active_init(void)
1244{
1245	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1246	if (!global.slab_cache)
1247		return -ENOMEM;
1248
1249	i915_global_register(&global.base);
1250	return 0;
1251}
1252