1/* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2019 Intel Corporation 5 */ 6 7#include <linux/debugobjects.h> 8 9#include "gt/intel_context.h" 10#include "gt/intel_engine_heartbeat.h" 11#include "gt/intel_engine_pm.h" 12#include "gt/intel_ring.h" 13 14#include "i915_drv.h" 15#include "i915_active.h" 16#include "i915_globals.h" 17 18/* 19 * Active refs memory management 20 * 21 * To be more economical with memory, we reap all the i915_active trees as 22 * they idle (when we know the active requests are inactive) and allocate the 23 * nodes from a local slab cache to hopefully reduce the fragmentation. 24 */ 25static struct i915_global_active { 26 struct i915_global base; 27 struct kmem_cache *slab_cache; 28} global; 29 30struct active_node { 31 struct rb_node node; 32 struct i915_active_fence base; 33 struct i915_active *ref; 34 u64 timeline; 35}; 36 37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node) 38 39static inline struct active_node * 40node_from_active(struct i915_active_fence *active) 41{ 42 return container_of(active, struct active_node, base); 43} 44 45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers) 46 47static inline bool is_barrier(const struct i915_active_fence *active) 48{ 49 return IS_ERR(rcu_access_pointer(active->fence)); 50} 51 52static inline struct llist_node *barrier_to_ll(struct active_node *node) 53{ 54 GEM_BUG_ON(!is_barrier(&node->base)); 55 return (struct llist_node *)&node->base.cb.node; 56} 57 58static inline struct intel_engine_cs * 59__barrier_to_engine(struct active_node *node) 60{ 61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev); 62} 63 64static inline struct intel_engine_cs * 65barrier_to_engine(struct active_node *node) 66{ 67 GEM_BUG_ON(!is_barrier(&node->base)); 68 return __barrier_to_engine(node); 69} 70 71static inline struct active_node *barrier_from_ll(struct llist_node *x) 72{ 73 return container_of((struct list_head *)x, 74 struct active_node, base.cb.node); 75} 76 77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS) 78 79static void *active_debug_hint(void *addr) 80{ 81 struct i915_active *ref = addr; 82 83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref; 84} 85 86static const struct debug_obj_descr active_debug_desc = { 87 .name = "i915_active", 88 .debug_hint = active_debug_hint, 89}; 90 91static void debug_active_init(struct i915_active *ref) 92{ 93 debug_object_init(ref, &active_debug_desc); 94} 95 96static void debug_active_activate(struct i915_active *ref) 97{ 98 lockdep_assert_held(&ref->tree_lock); 99 debug_object_activate(ref, &active_debug_desc); 100} 101 102static void debug_active_deactivate(struct i915_active *ref) 103{ 104 lockdep_assert_held(&ref->tree_lock); 105 if (!atomic_read(&ref->count)) /* after the last dec */ 106 debug_object_deactivate(ref, &active_debug_desc); 107} 108 109static void debug_active_fini(struct i915_active *ref) 110{ 111 debug_object_free(ref, &active_debug_desc); 112} 113 114static void debug_active_assert(struct i915_active *ref) 115{ 116 debug_object_assert_init(ref, &active_debug_desc); 117} 118 119#else 120 121static inline void debug_active_init(struct i915_active *ref) { } 122static inline void debug_active_activate(struct i915_active *ref) { } 123static inline void debug_active_deactivate(struct i915_active *ref) { } 124static inline void debug_active_fini(struct i915_active *ref) { } 125static inline void debug_active_assert(struct i915_active *ref) { } 126 127#endif 128 129static void 130__active_retire(struct i915_active *ref) 131{ 132 struct rb_root root = RB_ROOT; 133 struct active_node *it, *n; 134 unsigned long flags; 135 136 GEM_BUG_ON(i915_active_is_idle(ref)); 137 138 /* return the unused nodes to our slabcache -- flushing the allocator */ 139 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags)) 140 return; 141 142 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence)); 143 debug_active_deactivate(ref); 144 145 /* Even if we have not used the cache, we may still have a barrier */ 146 if (!ref->cache) 147 ref->cache = fetch_node(ref->tree.rb_node); 148 149 /* Keep the MRU cached node for reuse */ 150 if (ref->cache) { 151 /* Discard all other nodes in the tree */ 152 rb_erase(&ref->cache->node, &ref->tree); 153 root = ref->tree; 154 155 /* Rebuild the tree with only the cached node */ 156 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node); 157 rb_insert_color(&ref->cache->node, &ref->tree); 158 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node); 159 160 /* Make the cached node available for reuse with any timeline */ 161 if (IS_ENABLED(CONFIG_64BIT)) 162 ref->cache->timeline = 0; /* needs cmpxchg(u64) */ 163 } 164 165 spin_unlock_irqrestore(&ref->tree_lock, flags); 166 167 /* After the final retire, the entire struct may be freed */ 168 if (ref->retire) 169 ref->retire(ref); 170 171 /* ... except if you wait on it, you must manage your own references! */ 172 wake_up_var(ref); 173 174 /* Finally free the discarded timeline tree */ 175 rbtree_postorder_for_each_entry_safe(it, n, &root, node) { 176 GEM_BUG_ON(i915_active_fence_isset(&it->base)); 177 kmem_cache_free(global.slab_cache, it); 178 } 179} 180 181static void 182active_work(struct work_struct *wrk) 183{ 184 struct i915_active *ref = container_of(wrk, typeof(*ref), work); 185 186 GEM_BUG_ON(!atomic_read(&ref->count)); 187 if (atomic_add_unless(&ref->count, -1, 1)) 188 return; 189 190 __active_retire(ref); 191} 192 193static void 194active_retire(struct i915_active *ref) 195{ 196 GEM_BUG_ON(!atomic_read(&ref->count)); 197 if (atomic_add_unless(&ref->count, -1, 1)) 198 return; 199 200 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) { 201 queue_work(system_unbound_wq, &ref->work); 202 return; 203 } 204 205 __active_retire(ref); 206} 207 208static inline struct dma_fence ** 209__active_fence_slot(struct i915_active_fence *active) 210{ 211 return (struct dma_fence ** __force)&active->fence; 212} 213 214static inline bool 215active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 216{ 217 struct i915_active_fence *active = 218 container_of(cb, typeof(*active), cb); 219 220 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence; 221} 222 223static void 224node_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 225{ 226 if (active_fence_cb(fence, cb)) 227 active_retire(container_of(cb, struct active_node, base.cb)->ref); 228} 229 230static void 231excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb) 232{ 233 if (active_fence_cb(fence, cb)) 234 active_retire(container_of(cb, struct i915_active, excl.cb)); 235} 236 237static struct active_node *__active_lookup(struct i915_active *ref, u64 idx) 238{ 239 struct active_node *it; 240 241 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */ 242 243 /* 244 * We track the most recently used timeline to skip a rbtree search 245 * for the common case, under typical loads we never need the rbtree 246 * at all. We can reuse the last slot if it is empty, that is 247 * after the previous activity has been retired, or if it matches the 248 * current timeline. 249 */ 250 it = READ_ONCE(ref->cache); 251 if (it) { 252 u64 cached = READ_ONCE(it->timeline); 253 254 /* Once claimed, this slot will only belong to this idx */ 255 if (cached == idx) 256 return it; 257 258#ifdef CONFIG_64BIT /* for cmpxchg(u64) */ 259 /* 260 * An unclaimed cache [.timeline=0] can only be claimed once. 261 * 262 * If the value is already non-zero, some other thread has 263 * claimed the cache and we know that is does not match our 264 * idx. If, and only if, the timeline is currently zero is it 265 * worth competing to claim it atomically for ourselves (for 266 * only the winner of that race will cmpxchg return the old 267 * value of 0). 268 */ 269 if (!cached && !cmpxchg(&it->timeline, 0, idx)) 270 return it; 271#endif 272 } 273 274 BUILD_BUG_ON(offsetof(typeof(*it), node)); 275 276 /* While active, the tree can only be built; not destroyed */ 277 GEM_BUG_ON(i915_active_is_idle(ref)); 278 279 it = fetch_node(ref->tree.rb_node); 280 while (it) { 281 if (it->timeline < idx) { 282 it = fetch_node(it->node.rb_right); 283 } else if (it->timeline > idx) { 284 it = fetch_node(it->node.rb_left); 285 } else { 286 WRITE_ONCE(ref->cache, it); 287 break; 288 } 289 } 290 291 /* NB: If the tree rotated beneath us, we may miss our target. */ 292 return it; 293} 294 295static struct i915_active_fence * 296active_instance(struct i915_active *ref, u64 idx) 297{ 298 struct active_node *node, *prealloc; 299 struct rb_node **p, *parent; 300 301 node = __active_lookup(ref, idx); 302 if (likely(node)) 303 return &node->base; 304 305 /* Preallocate a replacement, just in case */ 306 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 307 if (!prealloc) 308 return NULL; 309 310 spin_lock_irq(&ref->tree_lock); 311 GEM_BUG_ON(i915_active_is_idle(ref)); 312 313 parent = NULL; 314 p = &ref->tree.rb_node; 315 while (*p) { 316 parent = *p; 317 318 node = rb_entry(parent, struct active_node, node); 319 if (node->timeline == idx) { 320 kmem_cache_free(global.slab_cache, prealloc); 321 goto out; 322 } 323 324 if (node->timeline < idx) 325 p = &parent->rb_right; 326 else 327 p = &parent->rb_left; 328 } 329 330 node = prealloc; 331 __i915_active_fence_init(&node->base, NULL, node_retire); 332 node->ref = ref; 333 node->timeline = idx; 334 335 rb_link_node(&node->node, parent, p); 336 rb_insert_color(&node->node, &ref->tree); 337 338out: 339 WRITE_ONCE(ref->cache, node); 340 spin_unlock_irq(&ref->tree_lock); 341 342 return &node->base; 343} 344 345void __i915_active_init(struct i915_active *ref, 346 int (*active)(struct i915_active *ref), 347 void (*retire)(struct i915_active *ref), 348 struct lock_class_key *mkey, 349 struct lock_class_key *wkey) 350{ 351 unsigned long bits; 352 353 debug_active_init(ref); 354 355 ref->flags = 0; 356 ref->active = active; 357 ref->retire = ptr_unpack_bits(retire, &bits, 2); 358 if (bits & I915_ACTIVE_MAY_SLEEP) 359 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS; 360 361 spin_lock_init(&ref->tree_lock); 362 ref->tree = RB_ROOT; 363 ref->cache = NULL; 364 365 init_llist_head(&ref->preallocated_barriers); 366 atomic_set(&ref->count, 0); 367 __mutex_init(&ref->mutex, "i915_active", mkey); 368 __i915_active_fence_init(&ref->excl, NULL, excl_retire); 369 INIT_WORK(&ref->work, active_work); 370#if IS_ENABLED(CONFIG_LOCKDEP) 371 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0); 372#endif 373} 374 375static bool ____active_del_barrier(struct i915_active *ref, 376 struct active_node *node, 377 struct intel_engine_cs *engine) 378 379{ 380 struct llist_node *head = NULL, *tail = NULL; 381 struct llist_node *pos, *next; 382 383 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context); 384 385 /* 386 * Rebuild the llist excluding our node. We may perform this 387 * outside of the kernel_context timeline mutex and so someone 388 * else may be manipulating the engine->barrier_tasks, in 389 * which case either we or they will be upset :) 390 * 391 * A second __active_del_barrier() will report failure to claim 392 * the active_node and the caller will just shrug and know not to 393 * claim ownership of its node. 394 * 395 * A concurrent i915_request_add_active_barriers() will miss adding 396 * any of the tasks, but we will try again on the next -- and since 397 * we are actively using the barrier, we know that there will be 398 * at least another opportunity when we idle. 399 */ 400 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) { 401 if (node == barrier_from_ll(pos)) { 402 node = NULL; 403 continue; 404 } 405 406 pos->next = head; 407 head = pos; 408 if (!tail) 409 tail = pos; 410 } 411 if (head) 412 llist_add_batch(head, tail, &engine->barrier_tasks); 413 414 return !node; 415} 416 417static bool 418__active_del_barrier(struct i915_active *ref, struct active_node *node) 419{ 420 return ____active_del_barrier(ref, node, barrier_to_engine(node)); 421} 422 423static bool 424replace_barrier(struct i915_active *ref, struct i915_active_fence *active) 425{ 426 if (!is_barrier(active)) /* proto-node used by our idle barrier? */ 427 return false; 428 429 /* 430 * This request is on the kernel_context timeline, and so 431 * we can use it to substitute for the pending idle-barrer 432 * request that we want to emit on the kernel_context. 433 */ 434 return __active_del_barrier(ref, node_from_active(active)); 435} 436 437int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 438{ 439 struct i915_active_fence *active; 440 int err; 441 442 /* Prevent reaping in case we malloc/wait while building the tree */ 443 err = i915_active_acquire(ref); 444 if (err) 445 return err; 446 447 do { 448 active = active_instance(ref, idx); 449 if (!active) { 450 err = -ENOMEM; 451 goto out; 452 } 453 454 if (replace_barrier(ref, active)) { 455 RCU_INIT_POINTER(active->fence, NULL); 456 atomic_dec(&ref->count); 457 } 458 } while (unlikely(is_barrier(active))); 459 460 fence = __i915_active_fence_set(active, fence); 461 if (!fence) 462 __i915_active_acquire(ref); 463 else 464 dma_fence_put(fence); 465 466out: 467 i915_active_release(ref); 468 return err; 469} 470 471static struct dma_fence * 472__i915_active_set_fence(struct i915_active *ref, 473 struct i915_active_fence *active, 474 struct dma_fence *fence) 475{ 476 struct dma_fence *prev; 477 478 if (replace_barrier(ref, active)) { 479 RCU_INIT_POINTER(active->fence, fence); 480 return NULL; 481 } 482 483 prev = __i915_active_fence_set(active, fence); 484 if (!prev) 485 __i915_active_acquire(ref); 486 487 return prev; 488} 489 490static struct i915_active_fence * 491__active_fence(struct i915_active *ref, u64 idx) 492{ 493 struct active_node *it; 494 495 it = __active_lookup(ref, idx); 496 if (unlikely(!it)) { /* Contention with parallel tree builders! */ 497 spin_lock_irq(&ref->tree_lock); 498 it = __active_lookup(ref, idx); 499 spin_unlock_irq(&ref->tree_lock); 500 } 501 GEM_BUG_ON(!it); /* slot must be preallocated */ 502 503 return &it->base; 504} 505 506struct dma_fence * 507__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence) 508{ 509 /* Only valid while active, see i915_active_acquire_for_context() */ 510 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence); 511} 512 513struct dma_fence * 514i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f) 515{ 516 /* We expect the caller to manage the exclusive timeline ordering */ 517 return __i915_active_set_fence(ref, &ref->excl, f); 518} 519 520bool i915_active_acquire_if_busy(struct i915_active *ref) 521{ 522 debug_active_assert(ref); 523 return atomic_add_unless(&ref->count, 1, 0); 524} 525 526static void __i915_active_activate(struct i915_active *ref) 527{ 528 spin_lock_irq(&ref->tree_lock); /* __active_retire() */ 529 if (!atomic_fetch_inc(&ref->count)) 530 debug_active_activate(ref); 531 spin_unlock_irq(&ref->tree_lock); 532} 533 534int i915_active_acquire(struct i915_active *ref) 535{ 536 int err; 537 538 if (i915_active_acquire_if_busy(ref)) 539 return 0; 540 541 if (!ref->active) { 542 __i915_active_activate(ref); 543 return 0; 544 } 545 546 err = mutex_lock_interruptible(&ref->mutex); 547 if (err) 548 return err; 549 550 if (likely(!i915_active_acquire_if_busy(ref))) { 551 err = ref->active(ref); 552 if (!err) 553 __i915_active_activate(ref); 554 } 555 556 mutex_unlock(&ref->mutex); 557 558 return err; 559} 560 561int i915_active_acquire_for_context(struct i915_active *ref, u64 idx) 562{ 563 struct i915_active_fence *active; 564 int err; 565 566 err = i915_active_acquire(ref); 567 if (err) 568 return err; 569 570 active = active_instance(ref, idx); 571 if (!active) { 572 i915_active_release(ref); 573 return -ENOMEM; 574 } 575 576 return 0; /* return with active ref */ 577} 578 579void i915_active_release(struct i915_active *ref) 580{ 581 debug_active_assert(ref); 582 active_retire(ref); 583} 584 585static void enable_signaling(struct i915_active_fence *active) 586{ 587 struct dma_fence *fence; 588 589 if (unlikely(is_barrier(active))) 590 return; 591 592 fence = i915_active_fence_get(active); 593 if (!fence) 594 return; 595 596 dma_fence_enable_sw_signaling(fence); 597 dma_fence_put(fence); 598} 599 600static int flush_barrier(struct active_node *it) 601{ 602 struct intel_engine_cs *engine; 603 604 if (likely(!is_barrier(&it->base))) 605 return 0; 606 607 engine = __barrier_to_engine(it); 608 smp_rmb(); /* serialise with add_active_barriers */ 609 if (!is_barrier(&it->base)) 610 return 0; 611 612 return intel_engine_flush_barriers(engine); 613} 614 615static int flush_lazy_signals(struct i915_active *ref) 616{ 617 struct active_node *it, *n; 618 int err = 0; 619 620 enable_signaling(&ref->excl); 621 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 622 err = flush_barrier(it); /* unconnected idle barrier? */ 623 if (err) 624 break; 625 626 enable_signaling(&it->base); 627 } 628 629 return err; 630} 631 632int __i915_active_wait(struct i915_active *ref, int state) 633{ 634 might_sleep(); 635 636 /* Any fence added after the wait begins will not be auto-signaled */ 637 if (i915_active_acquire_if_busy(ref)) { 638 int err; 639 640 err = flush_lazy_signals(ref); 641 i915_active_release(ref); 642 if (err) 643 return err; 644 645 if (___wait_var_event(ref, i915_active_is_idle(ref), 646 state, 0, 0, schedule())) 647 return -EINTR; 648 } 649 650 /* 651 * After the wait is complete, the caller may free the active. 652 * We have to flush any concurrent retirement before returning. 653 */ 654 flush_work(&ref->work); 655 return 0; 656} 657 658static int __await_active(struct i915_active_fence *active, 659 int (*fn)(void *arg, struct dma_fence *fence), 660 void *arg) 661{ 662 struct dma_fence *fence; 663 664 if (is_barrier(active)) /* XXX flush the barrier? */ 665 return 0; 666 667 fence = i915_active_fence_get(active); 668 if (fence) { 669 int err; 670 671 err = fn(arg, fence); 672 dma_fence_put(fence); 673 if (err < 0) 674 return err; 675 } 676 677 return 0; 678} 679 680struct wait_barrier { 681 struct wait_queue_entry base; 682 struct i915_active *ref; 683}; 684 685static int 686barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key) 687{ 688 struct wait_barrier *wb = container_of(wq, typeof(*wb), base); 689 690 if (i915_active_is_idle(wb->ref)) { 691 list_del(&wq->entry); 692 i915_sw_fence_complete(wq->private); 693 kfree(wq); 694 } 695 696 return 0; 697} 698 699static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence) 700{ 701 struct wait_barrier *wb; 702 703 wb = kmalloc(sizeof(*wb), GFP_KERNEL); 704 if (unlikely(!wb)) 705 return -ENOMEM; 706 707 GEM_BUG_ON(i915_active_is_idle(ref)); 708 if (!i915_sw_fence_await(fence)) { 709 kfree(wb); 710 return -EINVAL; 711 } 712 713 wb->base.flags = 0; 714 wb->base.func = barrier_wake; 715 wb->base.private = fence; 716 wb->ref = ref; 717 718 add_wait_queue(__var_waitqueue(ref), &wb->base); 719 return 0; 720} 721 722static int await_active(struct i915_active *ref, 723 unsigned int flags, 724 int (*fn)(void *arg, struct dma_fence *fence), 725 void *arg, struct i915_sw_fence *barrier) 726{ 727 int err = 0; 728 729 if (!i915_active_acquire_if_busy(ref)) 730 return 0; 731 732 if (flags & I915_ACTIVE_AWAIT_EXCL && 733 rcu_access_pointer(ref->excl.fence)) { 734 err = __await_active(&ref->excl, fn, arg); 735 if (err) 736 goto out; 737 } 738 739 if (flags & I915_ACTIVE_AWAIT_ACTIVE) { 740 struct active_node *it, *n; 741 742 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) { 743 err = __await_active(&it->base, fn, arg); 744 if (err) 745 goto out; 746 } 747 } 748 749 if (flags & I915_ACTIVE_AWAIT_BARRIER) { 750 err = flush_lazy_signals(ref); 751 if (err) 752 goto out; 753 754 err = __await_barrier(ref, barrier); 755 if (err) 756 goto out; 757 } 758 759out: 760 i915_active_release(ref); 761 return err; 762} 763 764static int rq_await_fence(void *arg, struct dma_fence *fence) 765{ 766 return i915_request_await_dma_fence(arg, fence); 767} 768 769int i915_request_await_active(struct i915_request *rq, 770 struct i915_active *ref, 771 unsigned int flags) 772{ 773 return await_active(ref, flags, rq_await_fence, rq, &rq->submit); 774} 775 776static int sw_await_fence(void *arg, struct dma_fence *fence) 777{ 778 return i915_sw_fence_await_dma_fence(arg, fence, 0, 779 GFP_NOWAIT | __GFP_NOWARN); 780} 781 782int i915_sw_fence_await_active(struct i915_sw_fence *fence, 783 struct i915_active *ref, 784 unsigned int flags) 785{ 786 return await_active(ref, flags, sw_await_fence, fence, fence); 787} 788 789void i915_active_fini(struct i915_active *ref) 790{ 791 debug_active_fini(ref); 792 GEM_BUG_ON(atomic_read(&ref->count)); 793 GEM_BUG_ON(work_pending(&ref->work)); 794 mutex_destroy(&ref->mutex); 795 796 if (ref->cache) 797 kmem_cache_free(global.slab_cache, ref->cache); 798} 799 800static inline bool is_idle_barrier(struct active_node *node, u64 idx) 801{ 802 return node->timeline == idx && !i915_active_fence_isset(&node->base); 803} 804 805static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx) 806{ 807 struct rb_node *prev, *p; 808 809 if (RB_EMPTY_ROOT(&ref->tree)) 810 return NULL; 811 812 GEM_BUG_ON(i915_active_is_idle(ref)); 813 814 /* 815 * Try to reuse any existing barrier nodes already allocated for this 816 * i915_active, due to overlapping active phases there is likely a 817 * node kept alive (as we reuse before parking). We prefer to reuse 818 * completely idle barriers (less hassle in manipulating the llists), 819 * but otherwise any will do. 820 */ 821 if (ref->cache && is_idle_barrier(ref->cache, idx)) { 822 p = &ref->cache->node; 823 goto match; 824 } 825 826 prev = NULL; 827 p = ref->tree.rb_node; 828 while (p) { 829 struct active_node *node = 830 rb_entry(p, struct active_node, node); 831 832 if (is_idle_barrier(node, idx)) 833 goto match; 834 835 prev = p; 836 if (node->timeline < idx) 837 p = READ_ONCE(p->rb_right); 838 else 839 p = READ_ONCE(p->rb_left); 840 } 841 842 /* 843 * No quick match, but we did find the leftmost rb_node for the 844 * kernel_context. Walk the rb_tree in-order to see if there were 845 * any idle-barriers on this timeline that we missed, or just use 846 * the first pending barrier. 847 */ 848 for (p = prev; p; p = rb_next(p)) { 849 struct active_node *node = 850 rb_entry(p, struct active_node, node); 851 struct intel_engine_cs *engine; 852 853 if (node->timeline > idx) 854 break; 855 856 if (node->timeline < idx) 857 continue; 858 859 if (is_idle_barrier(node, idx)) 860 goto match; 861 862 /* 863 * The list of pending barriers is protected by the 864 * kernel_context timeline, which notably we do not hold 865 * here. i915_request_add_active_barriers() may consume 866 * the barrier before we claim it, so we have to check 867 * for success. 868 */ 869 engine = __barrier_to_engine(node); 870 smp_rmb(); /* serialise with add_active_barriers */ 871 if (is_barrier(&node->base) && 872 ____active_del_barrier(ref, node, engine)) 873 goto match; 874 } 875 876 return NULL; 877 878match: 879 spin_lock_irq(&ref->tree_lock); 880 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */ 881 if (p == &ref->cache->node) 882 WRITE_ONCE(ref->cache, NULL); 883 spin_unlock_irq(&ref->tree_lock); 884 885 return rb_entry(p, struct active_node, node); 886} 887 888int i915_active_acquire_preallocate_barrier(struct i915_active *ref, 889 struct intel_engine_cs *engine) 890{ 891 intel_engine_mask_t tmp, mask = engine->mask; 892 struct llist_node *first = NULL, *last = NULL; 893 struct intel_gt *gt = engine->gt; 894 895 GEM_BUG_ON(i915_active_is_idle(ref)); 896 897 /* Wait until the previous preallocation is completed */ 898 while (!llist_empty(&ref->preallocated_barriers)) 899 cond_resched(); 900 901 /* 902 * Preallocate a node for each physical engine supporting the target 903 * engine (remember virtual engines have more than one sibling). 904 * We can then use the preallocated nodes in 905 * i915_active_acquire_barrier() 906 */ 907 GEM_BUG_ON(!mask); 908 for_each_engine_masked(engine, gt, mask, tmp) { 909 u64 idx = engine->kernel_context->timeline->fence_context; 910 struct llist_node *prev = first; 911 struct active_node *node; 912 913 rcu_read_lock(); 914 node = reuse_idle_barrier(ref, idx); 915 rcu_read_unlock(); 916 if (!node) { 917 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL); 918 if (!node) 919 goto unwind; 920 921 RCU_INIT_POINTER(node->base.fence, NULL); 922 node->base.cb.func = node_retire; 923 node->timeline = idx; 924 node->ref = ref; 925 } 926 927 if (!i915_active_fence_isset(&node->base)) { 928 /* 929 * Mark this as being *our* unconnected proto-node. 930 * 931 * Since this node is not in any list, and we have 932 * decoupled it from the rbtree, we can reuse the 933 * request to indicate this is an idle-barrier node 934 * and then we can use the rb_node and list pointers 935 * for our tracking of the pending barrier. 936 */ 937 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN)); 938 node->base.cb.node.prev = (void *)engine; 939 __i915_active_acquire(ref); 940 } 941 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN)); 942 943 GEM_BUG_ON(barrier_to_engine(node) != engine); 944 first = barrier_to_ll(node); 945 first->next = prev; 946 if (!last) 947 last = first; 948 intel_engine_pm_get(engine); 949 } 950 951 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers)); 952 llist_add_batch(first, last, &ref->preallocated_barriers); 953 954 return 0; 955 956unwind: 957 while (first) { 958 struct active_node *node = barrier_from_ll(first); 959 960 first = first->next; 961 962 atomic_dec(&ref->count); 963 intel_engine_pm_put(barrier_to_engine(node)); 964 965 kmem_cache_free(global.slab_cache, node); 966 } 967 return -ENOMEM; 968} 969 970void i915_active_acquire_barrier(struct i915_active *ref) 971{ 972 struct llist_node *pos, *next; 973 unsigned long flags; 974 975 GEM_BUG_ON(i915_active_is_idle(ref)); 976 977 /* 978 * Transfer the list of preallocated barriers into the 979 * i915_active rbtree, but only as proto-nodes. They will be 980 * populated by i915_request_add_active_barriers() to point to the 981 * request that will eventually release them. 982 */ 983 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) { 984 struct active_node *node = barrier_from_ll(pos); 985 struct intel_engine_cs *engine = barrier_to_engine(node); 986 struct rb_node **p, *parent; 987 988 spin_lock_irqsave_nested(&ref->tree_lock, flags, 989 SINGLE_DEPTH_NESTING); 990 parent = NULL; 991 p = &ref->tree.rb_node; 992 while (*p) { 993 struct active_node *it; 994 995 parent = *p; 996 997 it = rb_entry(parent, struct active_node, node); 998 if (it->timeline < node->timeline) 999 p = &parent->rb_right; 1000 else 1001 p = &parent->rb_left; 1002 } 1003 rb_link_node(&node->node, parent, p); 1004 rb_insert_color(&node->node, &ref->tree); 1005 spin_unlock_irqrestore(&ref->tree_lock, flags); 1006 1007 GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); 1008 llist_add(barrier_to_ll(node), &engine->barrier_tasks); 1009 intel_engine_pm_put_delay(engine, 1); 1010 } 1011} 1012 1013static struct dma_fence **ll_to_fence_slot(struct llist_node *node) 1014{ 1015 return __active_fence_slot(&barrier_from_ll(node)->base); 1016} 1017 1018void i915_request_add_active_barriers(struct i915_request *rq) 1019{ 1020 struct intel_engine_cs *engine = rq->engine; 1021 struct llist_node *node, *next; 1022 unsigned long flags; 1023 1024 GEM_BUG_ON(!intel_context_is_barrier(rq->context)); 1025 GEM_BUG_ON(intel_engine_is_virtual(engine)); 1026 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline); 1027 1028 node = llist_del_all(&engine->barrier_tasks); 1029 if (!node) 1030 return; 1031 /* 1032 * Attach the list of proto-fences to the in-flight request such 1033 * that the parent i915_active will be released when this request 1034 * is retired. 1035 */ 1036 spin_lock_irqsave(&rq->lock, flags); 1037 llist_for_each_safe(node, next, node) { 1038 /* serialise with reuse_idle_barrier */ 1039 smp_store_mb(*ll_to_fence_slot(node), &rq->fence); 1040 list_add_tail((struct list_head *)node, &rq->fence.cb_list); 1041 } 1042 spin_unlock_irqrestore(&rq->lock, flags); 1043} 1044 1045/* 1046 * __i915_active_fence_set: Update the last active fence along its timeline 1047 * @active: the active tracker 1048 * @fence: the new fence (under construction) 1049 * 1050 * Records the new @fence as the last active fence along its timeline in 1051 * this active tracker, moving the tracking callbacks from the previous 1052 * fence onto this one. Gets and returns a reference to the previous fence 1053 * (if not already completed), which the caller must put after making sure 1054 * that it is executed before the new fence. To ensure that the order of 1055 * fences within the timeline of the i915_active_fence is understood, it 1056 * should be locked by the caller. 1057 */ 1058struct dma_fence * 1059__i915_active_fence_set(struct i915_active_fence *active, 1060 struct dma_fence *fence) 1061{ 1062 struct dma_fence *prev; 1063 unsigned long flags; 1064 1065 /* 1066 * In case of fences embedded in i915_requests, their memory is 1067 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release 1068 * by new requests. Then, there is a risk of passing back a pointer 1069 * to a new, completely unrelated fence that reuses the same memory 1070 * while tracked under a different active tracker. Combined with i915 1071 * perf open/close operations that build await dependencies between 1072 * engine kernel context requests and user requests from different 1073 * timelines, this can lead to dependency loops and infinite waits. 1074 * 1075 * As a countermeasure, we try to get a reference to the active->fence 1076 * first, so if we succeed and pass it back to our user then it is not 1077 * released and potentially reused by an unrelated request before the 1078 * user has a chance to set up an await dependency on it. 1079 */ 1080 prev = i915_active_fence_get(active); 1081 if (fence == prev) 1082 return fence; 1083 1084 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)); 1085 1086 /* 1087 * Consider that we have two threads arriving (A and B), with 1088 * C already resident as the active->fence. 1089 * 1090 * Both A and B have got a reference to C or NULL, depending on the 1091 * timing of the interrupt handler. Let's assume that if A has got C 1092 * then it has locked C first (before B). 1093 * 1094 * Note the strong ordering of the timeline also provides consistent 1095 * nesting rules for the fence->lock; the inner lock is always the 1096 * older lock. 1097 */ 1098 spin_lock_irqsave(fence->lock, flags); 1099 if (prev) 1100 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1101 1102 /* 1103 * A does the cmpxchg first, and so it sees C or NULL, as before, or 1104 * something else, depending on the timing of other threads and/or 1105 * interrupt handler. If not the same as before then A unlocks C if 1106 * applicable and retries, starting from an attempt to get a new 1107 * active->fence. Meanwhile, B follows the same path as A. 1108 * Once A succeeds with cmpxch, B fails again, retires, gets A from 1109 * active->fence, locks it as soon as A completes, and possibly 1110 * succeeds with cmpxchg. 1111 */ 1112 while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) { 1113 if (prev) { 1114 spin_unlock(prev->lock); 1115 dma_fence_put(prev); 1116 } 1117 spin_unlock_irqrestore(fence->lock, flags); 1118 1119 prev = i915_active_fence_get(active); 1120 GEM_BUG_ON(prev == fence); 1121 1122 spin_lock_irqsave(fence->lock, flags); 1123 if (prev) 1124 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING); 1125 } 1126 1127 /* 1128 * If prev is NULL then the previous fence must have been signaled 1129 * and we know that we are first on the timeline. If it is still 1130 * present then, having the lock on that fence already acquired, we 1131 * serialise with the interrupt handler, in the process of removing it 1132 * from any future interrupt callback. A will then wait on C before 1133 * executing (if present). 1134 * 1135 * As B is second, it sees A as the previous fence and so waits for 1136 * it to complete its transition and takes over the occupancy for 1137 * itself -- remembering that it needs to wait on A before executing. 1138 */ 1139 if (prev) { 1140 __list_del_entry(&active->cb.node); 1141 spin_unlock(prev->lock); /* serialise with prev->cb_list */ 1142 } 1143 list_add_tail(&active->cb.node, &fence->cb_list); 1144 spin_unlock_irqrestore(fence->lock, flags); 1145 1146 return prev; 1147} 1148 1149int i915_active_fence_set(struct i915_active_fence *active, 1150 struct i915_request *rq) 1151{ 1152 struct dma_fence *fence; 1153 int err = 0; 1154 1155 /* Must maintain timeline ordering wrt previous active requests */ 1156 fence = __i915_active_fence_set(active, &rq->fence); 1157 if (fence) { 1158 err = i915_request_await_dma_fence(rq, fence); 1159 dma_fence_put(fence); 1160 } 1161 1162 return err; 1163} 1164 1165void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb) 1166{ 1167 active_fence_cb(fence, cb); 1168} 1169 1170struct auto_active { 1171 struct i915_active base; 1172 struct kref ref; 1173}; 1174 1175struct i915_active *i915_active_get(struct i915_active *ref) 1176{ 1177 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1178 1179 kref_get(&aa->ref); 1180 return &aa->base; 1181} 1182 1183static void auto_release(struct kref *ref) 1184{ 1185 struct auto_active *aa = container_of(ref, typeof(*aa), ref); 1186 1187 i915_active_fini(&aa->base); 1188 kfree(aa); 1189} 1190 1191void i915_active_put(struct i915_active *ref) 1192{ 1193 struct auto_active *aa = container_of(ref, typeof(*aa), base); 1194 1195 kref_put(&aa->ref, auto_release); 1196} 1197 1198static int auto_active(struct i915_active *ref) 1199{ 1200 i915_active_get(ref); 1201 return 0; 1202} 1203 1204__i915_active_call static void 1205auto_retire(struct i915_active *ref) 1206{ 1207 i915_active_put(ref); 1208} 1209 1210struct i915_active *i915_active_create(void) 1211{ 1212 struct auto_active *aa; 1213 1214 aa = kmalloc(sizeof(*aa), GFP_KERNEL); 1215 if (!aa) 1216 return NULL; 1217 1218 kref_init(&aa->ref); 1219 i915_active_init(&aa->base, auto_active, auto_retire); 1220 1221 return &aa->base; 1222} 1223 1224#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1225#include "selftests/i915_active.c" 1226#endif 1227 1228static void i915_global_active_shrink(void) 1229{ 1230 kmem_cache_shrink(global.slab_cache); 1231} 1232 1233static void i915_global_active_exit(void) 1234{ 1235 kmem_cache_destroy(global.slab_cache); 1236} 1237 1238static struct i915_global_active global = { { 1239 .shrink = i915_global_active_shrink, 1240 .exit = i915_global_active_exit, 1241} }; 1242 1243int __init i915_global_active_init(void) 1244{ 1245 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN); 1246 if (!global.slab_cache) 1247 return -ENOMEM; 1248 1249 i915_global_register(&global.base); 1250 return 0; 1251} 1252