18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci * SPDX-License-Identifier: MIT
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * Copyright © 2019 Intel Corporation
58c2ecf20Sopenharmony_ci */
68c2ecf20Sopenharmony_ci
78c2ecf20Sopenharmony_ci#include <linux/debugobjects.h>
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci#include "gt/intel_context.h"
108c2ecf20Sopenharmony_ci#include "gt/intel_engine_heartbeat.h"
118c2ecf20Sopenharmony_ci#include "gt/intel_engine_pm.h"
128c2ecf20Sopenharmony_ci#include "gt/intel_ring.h"
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include "i915_drv.h"
158c2ecf20Sopenharmony_ci#include "i915_active.h"
168c2ecf20Sopenharmony_ci#include "i915_globals.h"
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci/*
198c2ecf20Sopenharmony_ci * Active refs memory management
208c2ecf20Sopenharmony_ci *
218c2ecf20Sopenharmony_ci * To be more economical with memory, we reap all the i915_active trees as
228c2ecf20Sopenharmony_ci * they idle (when we know the active requests are inactive) and allocate the
238c2ecf20Sopenharmony_ci * nodes from a local slab cache to hopefully reduce the fragmentation.
248c2ecf20Sopenharmony_ci */
258c2ecf20Sopenharmony_cistatic struct i915_global_active {
268c2ecf20Sopenharmony_ci	struct i915_global base;
278c2ecf20Sopenharmony_ci	struct kmem_cache *slab_cache;
288c2ecf20Sopenharmony_ci} global;
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_cistruct active_node {
318c2ecf20Sopenharmony_ci	struct rb_node node;
328c2ecf20Sopenharmony_ci	struct i915_active_fence base;
338c2ecf20Sopenharmony_ci	struct i915_active *ref;
348c2ecf20Sopenharmony_ci	u64 timeline;
358c2ecf20Sopenharmony_ci};
368c2ecf20Sopenharmony_ci
378c2ecf20Sopenharmony_ci#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
388c2ecf20Sopenharmony_ci
398c2ecf20Sopenharmony_cistatic inline struct active_node *
408c2ecf20Sopenharmony_cinode_from_active(struct i915_active_fence *active)
418c2ecf20Sopenharmony_ci{
428c2ecf20Sopenharmony_ci	return container_of(active, struct active_node, base);
438c2ecf20Sopenharmony_ci}
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_ci#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_cistatic inline bool is_barrier(const struct i915_active_fence *active)
488c2ecf20Sopenharmony_ci{
498c2ecf20Sopenharmony_ci	return IS_ERR(rcu_access_pointer(active->fence));
508c2ecf20Sopenharmony_ci}
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_cistatic inline struct llist_node *barrier_to_ll(struct active_node *node)
538c2ecf20Sopenharmony_ci{
548c2ecf20Sopenharmony_ci	GEM_BUG_ON(!is_barrier(&node->base));
558c2ecf20Sopenharmony_ci	return (struct llist_node *)&node->base.cb.node;
568c2ecf20Sopenharmony_ci}
578c2ecf20Sopenharmony_ci
588c2ecf20Sopenharmony_cistatic inline struct intel_engine_cs *
598c2ecf20Sopenharmony_ci__barrier_to_engine(struct active_node *node)
608c2ecf20Sopenharmony_ci{
618c2ecf20Sopenharmony_ci	return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
628c2ecf20Sopenharmony_ci}
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_cistatic inline struct intel_engine_cs *
658c2ecf20Sopenharmony_cibarrier_to_engine(struct active_node *node)
668c2ecf20Sopenharmony_ci{
678c2ecf20Sopenharmony_ci	GEM_BUG_ON(!is_barrier(&node->base));
688c2ecf20Sopenharmony_ci	return __barrier_to_engine(node);
698c2ecf20Sopenharmony_ci}
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_cistatic inline struct active_node *barrier_from_ll(struct llist_node *x)
728c2ecf20Sopenharmony_ci{
738c2ecf20Sopenharmony_ci	return container_of((struct list_head *)x,
748c2ecf20Sopenharmony_ci			    struct active_node, base.cb.node);
758c2ecf20Sopenharmony_ci}
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_cistatic void *active_debug_hint(void *addr)
808c2ecf20Sopenharmony_ci{
818c2ecf20Sopenharmony_ci	struct i915_active *ref = addr;
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ci	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
848c2ecf20Sopenharmony_ci}
858c2ecf20Sopenharmony_ci
868c2ecf20Sopenharmony_cistatic const struct debug_obj_descr active_debug_desc = {
878c2ecf20Sopenharmony_ci	.name = "i915_active",
888c2ecf20Sopenharmony_ci	.debug_hint = active_debug_hint,
898c2ecf20Sopenharmony_ci};
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_cistatic void debug_active_init(struct i915_active *ref)
928c2ecf20Sopenharmony_ci{
938c2ecf20Sopenharmony_ci	debug_object_init(ref, &active_debug_desc);
948c2ecf20Sopenharmony_ci}
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_cistatic void debug_active_activate(struct i915_active *ref)
978c2ecf20Sopenharmony_ci{
988c2ecf20Sopenharmony_ci	lockdep_assert_held(&ref->tree_lock);
998c2ecf20Sopenharmony_ci	debug_object_activate(ref, &active_debug_desc);
1008c2ecf20Sopenharmony_ci}
1018c2ecf20Sopenharmony_ci
1028c2ecf20Sopenharmony_cistatic void debug_active_deactivate(struct i915_active *ref)
1038c2ecf20Sopenharmony_ci{
1048c2ecf20Sopenharmony_ci	lockdep_assert_held(&ref->tree_lock);
1058c2ecf20Sopenharmony_ci	if (!atomic_read(&ref->count)) /* after the last dec */
1068c2ecf20Sopenharmony_ci		debug_object_deactivate(ref, &active_debug_desc);
1078c2ecf20Sopenharmony_ci}
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_cistatic void debug_active_fini(struct i915_active *ref)
1108c2ecf20Sopenharmony_ci{
1118c2ecf20Sopenharmony_ci	debug_object_free(ref, &active_debug_desc);
1128c2ecf20Sopenharmony_ci}
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_cistatic void debug_active_assert(struct i915_active *ref)
1158c2ecf20Sopenharmony_ci{
1168c2ecf20Sopenharmony_ci	debug_object_assert_init(ref, &active_debug_desc);
1178c2ecf20Sopenharmony_ci}
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_ci#else
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_cistatic inline void debug_active_init(struct i915_active *ref) { }
1228c2ecf20Sopenharmony_cistatic inline void debug_active_activate(struct i915_active *ref) { }
1238c2ecf20Sopenharmony_cistatic inline void debug_active_deactivate(struct i915_active *ref) { }
1248c2ecf20Sopenharmony_cistatic inline void debug_active_fini(struct i915_active *ref) { }
1258c2ecf20Sopenharmony_cistatic inline void debug_active_assert(struct i915_active *ref) { }
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ci#endif
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_cistatic void
1308c2ecf20Sopenharmony_ci__active_retire(struct i915_active *ref)
1318c2ecf20Sopenharmony_ci{
1328c2ecf20Sopenharmony_ci	struct rb_root root = RB_ROOT;
1338c2ecf20Sopenharmony_ci	struct active_node *it, *n;
1348c2ecf20Sopenharmony_ci	unsigned long flags;
1358c2ecf20Sopenharmony_ci
1368c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci	/* return the unused nodes to our slabcache -- flushing the allocator */
1398c2ecf20Sopenharmony_ci	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
1408c2ecf20Sopenharmony_ci		return;
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
1438c2ecf20Sopenharmony_ci	debug_active_deactivate(ref);
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci	/* Even if we have not used the cache, we may still have a barrier */
1468c2ecf20Sopenharmony_ci	if (!ref->cache)
1478c2ecf20Sopenharmony_ci		ref->cache = fetch_node(ref->tree.rb_node);
1488c2ecf20Sopenharmony_ci
1498c2ecf20Sopenharmony_ci	/* Keep the MRU cached node for reuse */
1508c2ecf20Sopenharmony_ci	if (ref->cache) {
1518c2ecf20Sopenharmony_ci		/* Discard all other nodes in the tree */
1528c2ecf20Sopenharmony_ci		rb_erase(&ref->cache->node, &ref->tree);
1538c2ecf20Sopenharmony_ci		root = ref->tree;
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_ci		/* Rebuild the tree with only the cached node */
1568c2ecf20Sopenharmony_ci		rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
1578c2ecf20Sopenharmony_ci		rb_insert_color(&ref->cache->node, &ref->tree);
1588c2ecf20Sopenharmony_ci		GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci		/* Make the cached node available for reuse with any timeline */
1618c2ecf20Sopenharmony_ci		if (IS_ENABLED(CONFIG_64BIT))
1628c2ecf20Sopenharmony_ci			ref->cache->timeline = 0; /* needs cmpxchg(u64) */
1638c2ecf20Sopenharmony_ci	}
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&ref->tree_lock, flags);
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci	/* After the final retire, the entire struct may be freed */
1688c2ecf20Sopenharmony_ci	if (ref->retire)
1698c2ecf20Sopenharmony_ci		ref->retire(ref);
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	/* ... except if you wait on it, you must manage your own references! */
1728c2ecf20Sopenharmony_ci	wake_up_var(ref);
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci	/* Finally free the discarded timeline tree  */
1758c2ecf20Sopenharmony_ci	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
1768c2ecf20Sopenharmony_ci		GEM_BUG_ON(i915_active_fence_isset(&it->base));
1778c2ecf20Sopenharmony_ci		kmem_cache_free(global.slab_cache, it);
1788c2ecf20Sopenharmony_ci	}
1798c2ecf20Sopenharmony_ci}
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_cistatic void
1828c2ecf20Sopenharmony_ciactive_work(struct work_struct *wrk)
1838c2ecf20Sopenharmony_ci{
1848c2ecf20Sopenharmony_ci	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci	GEM_BUG_ON(!atomic_read(&ref->count));
1878c2ecf20Sopenharmony_ci	if (atomic_add_unless(&ref->count, -1, 1))
1888c2ecf20Sopenharmony_ci		return;
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	__active_retire(ref);
1918c2ecf20Sopenharmony_ci}
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_cistatic void
1948c2ecf20Sopenharmony_ciactive_retire(struct i915_active *ref)
1958c2ecf20Sopenharmony_ci{
1968c2ecf20Sopenharmony_ci	GEM_BUG_ON(!atomic_read(&ref->count));
1978c2ecf20Sopenharmony_ci	if (atomic_add_unless(&ref->count, -1, 1))
1988c2ecf20Sopenharmony_ci		return;
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
2018c2ecf20Sopenharmony_ci		queue_work(system_unbound_wq, &ref->work);
2028c2ecf20Sopenharmony_ci		return;
2038c2ecf20Sopenharmony_ci	}
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_ci	__active_retire(ref);
2068c2ecf20Sopenharmony_ci}
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_cistatic inline struct dma_fence **
2098c2ecf20Sopenharmony_ci__active_fence_slot(struct i915_active_fence *active)
2108c2ecf20Sopenharmony_ci{
2118c2ecf20Sopenharmony_ci	return (struct dma_fence ** __force)&active->fence;
2128c2ecf20Sopenharmony_ci}
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_cistatic inline bool
2158c2ecf20Sopenharmony_ciactive_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2168c2ecf20Sopenharmony_ci{
2178c2ecf20Sopenharmony_ci	struct i915_active_fence *active =
2188c2ecf20Sopenharmony_ci		container_of(cb, typeof(*active), cb);
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
2218c2ecf20Sopenharmony_ci}
2228c2ecf20Sopenharmony_ci
2238c2ecf20Sopenharmony_cistatic void
2248c2ecf20Sopenharmony_cinode_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
2258c2ecf20Sopenharmony_ci{
2268c2ecf20Sopenharmony_ci	if (active_fence_cb(fence, cb))
2278c2ecf20Sopenharmony_ci		active_retire(container_of(cb, struct active_node, base.cb)->ref);
2288c2ecf20Sopenharmony_ci}
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_cistatic void
2318c2ecf20Sopenharmony_ciexcl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
2328c2ecf20Sopenharmony_ci{
2338c2ecf20Sopenharmony_ci	if (active_fence_cb(fence, cb))
2348c2ecf20Sopenharmony_ci		active_retire(container_of(cb, struct i915_active, excl.cb));
2358c2ecf20Sopenharmony_ci}
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_cistatic struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
2388c2ecf20Sopenharmony_ci{
2398c2ecf20Sopenharmony_ci	struct active_node *it;
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci	/*
2448c2ecf20Sopenharmony_ci	 * We track the most recently used timeline to skip a rbtree search
2458c2ecf20Sopenharmony_ci	 * for the common case, under typical loads we never need the rbtree
2468c2ecf20Sopenharmony_ci	 * at all. We can reuse the last slot if it is empty, that is
2478c2ecf20Sopenharmony_ci	 * after the previous activity has been retired, or if it matches the
2488c2ecf20Sopenharmony_ci	 * current timeline.
2498c2ecf20Sopenharmony_ci	 */
2508c2ecf20Sopenharmony_ci	it = READ_ONCE(ref->cache);
2518c2ecf20Sopenharmony_ci	if (it) {
2528c2ecf20Sopenharmony_ci		u64 cached = READ_ONCE(it->timeline);
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_ci		/* Once claimed, this slot will only belong to this idx */
2558c2ecf20Sopenharmony_ci		if (cached == idx)
2568c2ecf20Sopenharmony_ci			return it;
2578c2ecf20Sopenharmony_ci
2588c2ecf20Sopenharmony_ci#ifdef CONFIG_64BIT /* for cmpxchg(u64) */
2598c2ecf20Sopenharmony_ci		/*
2608c2ecf20Sopenharmony_ci		 * An unclaimed cache [.timeline=0] can only be claimed once.
2618c2ecf20Sopenharmony_ci		 *
2628c2ecf20Sopenharmony_ci		 * If the value is already non-zero, some other thread has
2638c2ecf20Sopenharmony_ci		 * claimed the cache and we know that is does not match our
2648c2ecf20Sopenharmony_ci		 * idx. If, and only if, the timeline is currently zero is it
2658c2ecf20Sopenharmony_ci		 * worth competing to claim it atomically for ourselves (for
2668c2ecf20Sopenharmony_ci		 * only the winner of that race will cmpxchg return the old
2678c2ecf20Sopenharmony_ci		 * value of 0).
2688c2ecf20Sopenharmony_ci		 */
2698c2ecf20Sopenharmony_ci		if (!cached && !cmpxchg(&it->timeline, 0, idx))
2708c2ecf20Sopenharmony_ci			return it;
2718c2ecf20Sopenharmony_ci#endif
2728c2ecf20Sopenharmony_ci	}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci	BUILD_BUG_ON(offsetof(typeof(*it), node));
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci	/* While active, the tree can only be built; not destroyed */
2778c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	it = fetch_node(ref->tree.rb_node);
2808c2ecf20Sopenharmony_ci	while (it) {
2818c2ecf20Sopenharmony_ci		if (it->timeline < idx) {
2828c2ecf20Sopenharmony_ci			it = fetch_node(it->node.rb_right);
2838c2ecf20Sopenharmony_ci		} else if (it->timeline > idx) {
2848c2ecf20Sopenharmony_ci			it = fetch_node(it->node.rb_left);
2858c2ecf20Sopenharmony_ci		} else {
2868c2ecf20Sopenharmony_ci			WRITE_ONCE(ref->cache, it);
2878c2ecf20Sopenharmony_ci			break;
2888c2ecf20Sopenharmony_ci		}
2898c2ecf20Sopenharmony_ci	}
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	/* NB: If the tree rotated beneath us, we may miss our target. */
2928c2ecf20Sopenharmony_ci	return it;
2938c2ecf20Sopenharmony_ci}
2948c2ecf20Sopenharmony_ci
2958c2ecf20Sopenharmony_cistatic struct i915_active_fence *
2968c2ecf20Sopenharmony_ciactive_instance(struct i915_active *ref, u64 idx)
2978c2ecf20Sopenharmony_ci{
2988c2ecf20Sopenharmony_ci	struct active_node *node, *prealloc;
2998c2ecf20Sopenharmony_ci	struct rb_node **p, *parent;
3008c2ecf20Sopenharmony_ci
3018c2ecf20Sopenharmony_ci	node = __active_lookup(ref, idx);
3028c2ecf20Sopenharmony_ci	if (likely(node))
3038c2ecf20Sopenharmony_ci		return &node->base;
3048c2ecf20Sopenharmony_ci
3058c2ecf20Sopenharmony_ci	/* Preallocate a replacement, just in case */
3068c2ecf20Sopenharmony_ci	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
3078c2ecf20Sopenharmony_ci	if (!prealloc)
3088c2ecf20Sopenharmony_ci		return NULL;
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci	spin_lock_irq(&ref->tree_lock);
3118c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci	parent = NULL;
3148c2ecf20Sopenharmony_ci	p = &ref->tree.rb_node;
3158c2ecf20Sopenharmony_ci	while (*p) {
3168c2ecf20Sopenharmony_ci		parent = *p;
3178c2ecf20Sopenharmony_ci
3188c2ecf20Sopenharmony_ci		node = rb_entry(parent, struct active_node, node);
3198c2ecf20Sopenharmony_ci		if (node->timeline == idx) {
3208c2ecf20Sopenharmony_ci			kmem_cache_free(global.slab_cache, prealloc);
3218c2ecf20Sopenharmony_ci			goto out;
3228c2ecf20Sopenharmony_ci		}
3238c2ecf20Sopenharmony_ci
3248c2ecf20Sopenharmony_ci		if (node->timeline < idx)
3258c2ecf20Sopenharmony_ci			p = &parent->rb_right;
3268c2ecf20Sopenharmony_ci		else
3278c2ecf20Sopenharmony_ci			p = &parent->rb_left;
3288c2ecf20Sopenharmony_ci	}
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ci	node = prealloc;
3318c2ecf20Sopenharmony_ci	__i915_active_fence_init(&node->base, NULL, node_retire);
3328c2ecf20Sopenharmony_ci	node->ref = ref;
3338c2ecf20Sopenharmony_ci	node->timeline = idx;
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci	rb_link_node(&node->node, parent, p);
3368c2ecf20Sopenharmony_ci	rb_insert_color(&node->node, &ref->tree);
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_ciout:
3398c2ecf20Sopenharmony_ci	WRITE_ONCE(ref->cache, node);
3408c2ecf20Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
3418c2ecf20Sopenharmony_ci
3428c2ecf20Sopenharmony_ci	return &node->base;
3438c2ecf20Sopenharmony_ci}
3448c2ecf20Sopenharmony_ci
3458c2ecf20Sopenharmony_civoid __i915_active_init(struct i915_active *ref,
3468c2ecf20Sopenharmony_ci			int (*active)(struct i915_active *ref),
3478c2ecf20Sopenharmony_ci			void (*retire)(struct i915_active *ref),
3488c2ecf20Sopenharmony_ci			struct lock_class_key *mkey,
3498c2ecf20Sopenharmony_ci			struct lock_class_key *wkey)
3508c2ecf20Sopenharmony_ci{
3518c2ecf20Sopenharmony_ci	unsigned long bits;
3528c2ecf20Sopenharmony_ci
3538c2ecf20Sopenharmony_ci	debug_active_init(ref);
3548c2ecf20Sopenharmony_ci
3558c2ecf20Sopenharmony_ci	ref->flags = 0;
3568c2ecf20Sopenharmony_ci	ref->active = active;
3578c2ecf20Sopenharmony_ci	ref->retire = ptr_unpack_bits(retire, &bits, 2);
3588c2ecf20Sopenharmony_ci	if (bits & I915_ACTIVE_MAY_SLEEP)
3598c2ecf20Sopenharmony_ci		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
3608c2ecf20Sopenharmony_ci
3618c2ecf20Sopenharmony_ci	spin_lock_init(&ref->tree_lock);
3628c2ecf20Sopenharmony_ci	ref->tree = RB_ROOT;
3638c2ecf20Sopenharmony_ci	ref->cache = NULL;
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_ci	init_llist_head(&ref->preallocated_barriers);
3668c2ecf20Sopenharmony_ci	atomic_set(&ref->count, 0);
3678c2ecf20Sopenharmony_ci	__mutex_init(&ref->mutex, "i915_active", mkey);
3688c2ecf20Sopenharmony_ci	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
3698c2ecf20Sopenharmony_ci	INIT_WORK(&ref->work, active_work);
3708c2ecf20Sopenharmony_ci#if IS_ENABLED(CONFIG_LOCKDEP)
3718c2ecf20Sopenharmony_ci	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
3728c2ecf20Sopenharmony_ci#endif
3738c2ecf20Sopenharmony_ci}
3748c2ecf20Sopenharmony_ci
3758c2ecf20Sopenharmony_cistatic bool ____active_del_barrier(struct i915_active *ref,
3768c2ecf20Sopenharmony_ci				   struct active_node *node,
3778c2ecf20Sopenharmony_ci				   struct intel_engine_cs *engine)
3788c2ecf20Sopenharmony_ci
3798c2ecf20Sopenharmony_ci{
3808c2ecf20Sopenharmony_ci	struct llist_node *head = NULL, *tail = NULL;
3818c2ecf20Sopenharmony_ci	struct llist_node *pos, *next;
3828c2ecf20Sopenharmony_ci
3838c2ecf20Sopenharmony_ci	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
3848c2ecf20Sopenharmony_ci
3858c2ecf20Sopenharmony_ci	/*
3868c2ecf20Sopenharmony_ci	 * Rebuild the llist excluding our node. We may perform this
3878c2ecf20Sopenharmony_ci	 * outside of the kernel_context timeline mutex and so someone
3888c2ecf20Sopenharmony_ci	 * else may be manipulating the engine->barrier_tasks, in
3898c2ecf20Sopenharmony_ci	 * which case either we or they will be upset :)
3908c2ecf20Sopenharmony_ci	 *
3918c2ecf20Sopenharmony_ci	 * A second __active_del_barrier() will report failure to claim
3928c2ecf20Sopenharmony_ci	 * the active_node and the caller will just shrug and know not to
3938c2ecf20Sopenharmony_ci	 * claim ownership of its node.
3948c2ecf20Sopenharmony_ci	 *
3958c2ecf20Sopenharmony_ci	 * A concurrent i915_request_add_active_barriers() will miss adding
3968c2ecf20Sopenharmony_ci	 * any of the tasks, but we will try again on the next -- and since
3978c2ecf20Sopenharmony_ci	 * we are actively using the barrier, we know that there will be
3988c2ecf20Sopenharmony_ci	 * at least another opportunity when we idle.
3998c2ecf20Sopenharmony_ci	 */
4008c2ecf20Sopenharmony_ci	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
4018c2ecf20Sopenharmony_ci		if (node == barrier_from_ll(pos)) {
4028c2ecf20Sopenharmony_ci			node = NULL;
4038c2ecf20Sopenharmony_ci			continue;
4048c2ecf20Sopenharmony_ci		}
4058c2ecf20Sopenharmony_ci
4068c2ecf20Sopenharmony_ci		pos->next = head;
4078c2ecf20Sopenharmony_ci		head = pos;
4088c2ecf20Sopenharmony_ci		if (!tail)
4098c2ecf20Sopenharmony_ci			tail = pos;
4108c2ecf20Sopenharmony_ci	}
4118c2ecf20Sopenharmony_ci	if (head)
4128c2ecf20Sopenharmony_ci		llist_add_batch(head, tail, &engine->barrier_tasks);
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci	return !node;
4158c2ecf20Sopenharmony_ci}
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_cistatic bool
4188c2ecf20Sopenharmony_ci__active_del_barrier(struct i915_active *ref, struct active_node *node)
4198c2ecf20Sopenharmony_ci{
4208c2ecf20Sopenharmony_ci	return ____active_del_barrier(ref, node, barrier_to_engine(node));
4218c2ecf20Sopenharmony_ci}
4228c2ecf20Sopenharmony_ci
4238c2ecf20Sopenharmony_cistatic bool
4248c2ecf20Sopenharmony_cireplace_barrier(struct i915_active *ref, struct i915_active_fence *active)
4258c2ecf20Sopenharmony_ci{
4268c2ecf20Sopenharmony_ci	if (!is_barrier(active)) /* proto-node used by our idle barrier? */
4278c2ecf20Sopenharmony_ci		return false;
4288c2ecf20Sopenharmony_ci
4298c2ecf20Sopenharmony_ci	/*
4308c2ecf20Sopenharmony_ci	 * This request is on the kernel_context timeline, and so
4318c2ecf20Sopenharmony_ci	 * we can use it to substitute for the pending idle-barrer
4328c2ecf20Sopenharmony_ci	 * request that we want to emit on the kernel_context.
4338c2ecf20Sopenharmony_ci	 */
4348c2ecf20Sopenharmony_ci	return __active_del_barrier(ref, node_from_active(active));
4358c2ecf20Sopenharmony_ci}
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ciint i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
4388c2ecf20Sopenharmony_ci{
4398c2ecf20Sopenharmony_ci	struct i915_active_fence *active;
4408c2ecf20Sopenharmony_ci	int err;
4418c2ecf20Sopenharmony_ci
4428c2ecf20Sopenharmony_ci	/* Prevent reaping in case we malloc/wait while building the tree */
4438c2ecf20Sopenharmony_ci	err = i915_active_acquire(ref);
4448c2ecf20Sopenharmony_ci	if (err)
4458c2ecf20Sopenharmony_ci		return err;
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci	do {
4488c2ecf20Sopenharmony_ci		active = active_instance(ref, idx);
4498c2ecf20Sopenharmony_ci		if (!active) {
4508c2ecf20Sopenharmony_ci			err = -ENOMEM;
4518c2ecf20Sopenharmony_ci			goto out;
4528c2ecf20Sopenharmony_ci		}
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci		if (replace_barrier(ref, active)) {
4558c2ecf20Sopenharmony_ci			RCU_INIT_POINTER(active->fence, NULL);
4568c2ecf20Sopenharmony_ci			atomic_dec(&ref->count);
4578c2ecf20Sopenharmony_ci		}
4588c2ecf20Sopenharmony_ci	} while (unlikely(is_barrier(active)));
4598c2ecf20Sopenharmony_ci
4608c2ecf20Sopenharmony_ci	fence = __i915_active_fence_set(active, fence);
4618c2ecf20Sopenharmony_ci	if (!fence)
4628c2ecf20Sopenharmony_ci		__i915_active_acquire(ref);
4638c2ecf20Sopenharmony_ci	else
4648c2ecf20Sopenharmony_ci		dma_fence_put(fence);
4658c2ecf20Sopenharmony_ci
4668c2ecf20Sopenharmony_ciout:
4678c2ecf20Sopenharmony_ci	i915_active_release(ref);
4688c2ecf20Sopenharmony_ci	return err;
4698c2ecf20Sopenharmony_ci}
4708c2ecf20Sopenharmony_ci
4718c2ecf20Sopenharmony_cistatic struct dma_fence *
4728c2ecf20Sopenharmony_ci__i915_active_set_fence(struct i915_active *ref,
4738c2ecf20Sopenharmony_ci			struct i915_active_fence *active,
4748c2ecf20Sopenharmony_ci			struct dma_fence *fence)
4758c2ecf20Sopenharmony_ci{
4768c2ecf20Sopenharmony_ci	struct dma_fence *prev;
4778c2ecf20Sopenharmony_ci
4788c2ecf20Sopenharmony_ci	if (replace_barrier(ref, active)) {
4798c2ecf20Sopenharmony_ci		RCU_INIT_POINTER(active->fence, fence);
4808c2ecf20Sopenharmony_ci		return NULL;
4818c2ecf20Sopenharmony_ci	}
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_ci	prev = __i915_active_fence_set(active, fence);
4848c2ecf20Sopenharmony_ci	if (!prev)
4858c2ecf20Sopenharmony_ci		__i915_active_acquire(ref);
4868c2ecf20Sopenharmony_ci
4878c2ecf20Sopenharmony_ci	return prev;
4888c2ecf20Sopenharmony_ci}
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_cistatic struct i915_active_fence *
4918c2ecf20Sopenharmony_ci__active_fence(struct i915_active *ref, u64 idx)
4928c2ecf20Sopenharmony_ci{
4938c2ecf20Sopenharmony_ci	struct active_node *it;
4948c2ecf20Sopenharmony_ci
4958c2ecf20Sopenharmony_ci	it = __active_lookup(ref, idx);
4968c2ecf20Sopenharmony_ci	if (unlikely(!it)) { /* Contention with parallel tree builders! */
4978c2ecf20Sopenharmony_ci		spin_lock_irq(&ref->tree_lock);
4988c2ecf20Sopenharmony_ci		it = __active_lookup(ref, idx);
4998c2ecf20Sopenharmony_ci		spin_unlock_irq(&ref->tree_lock);
5008c2ecf20Sopenharmony_ci	}
5018c2ecf20Sopenharmony_ci	GEM_BUG_ON(!it); /* slot must be preallocated */
5028c2ecf20Sopenharmony_ci
5038c2ecf20Sopenharmony_ci	return &it->base;
5048c2ecf20Sopenharmony_ci}
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_cistruct dma_fence *
5078c2ecf20Sopenharmony_ci__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
5088c2ecf20Sopenharmony_ci{
5098c2ecf20Sopenharmony_ci	/* Only valid while active, see i915_active_acquire_for_context() */
5108c2ecf20Sopenharmony_ci	return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
5118c2ecf20Sopenharmony_ci}
5128c2ecf20Sopenharmony_ci
5138c2ecf20Sopenharmony_cistruct dma_fence *
5148c2ecf20Sopenharmony_cii915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
5158c2ecf20Sopenharmony_ci{
5168c2ecf20Sopenharmony_ci	/* We expect the caller to manage the exclusive timeline ordering */
5178c2ecf20Sopenharmony_ci	return __i915_active_set_fence(ref, &ref->excl, f);
5188c2ecf20Sopenharmony_ci}
5198c2ecf20Sopenharmony_ci
5208c2ecf20Sopenharmony_cibool i915_active_acquire_if_busy(struct i915_active *ref)
5218c2ecf20Sopenharmony_ci{
5228c2ecf20Sopenharmony_ci	debug_active_assert(ref);
5238c2ecf20Sopenharmony_ci	return atomic_add_unless(&ref->count, 1, 0);
5248c2ecf20Sopenharmony_ci}
5258c2ecf20Sopenharmony_ci
5268c2ecf20Sopenharmony_cistatic void __i915_active_activate(struct i915_active *ref)
5278c2ecf20Sopenharmony_ci{
5288c2ecf20Sopenharmony_ci	spin_lock_irq(&ref->tree_lock); /* __active_retire() */
5298c2ecf20Sopenharmony_ci	if (!atomic_fetch_inc(&ref->count))
5308c2ecf20Sopenharmony_ci		debug_active_activate(ref);
5318c2ecf20Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
5328c2ecf20Sopenharmony_ci}
5338c2ecf20Sopenharmony_ci
5348c2ecf20Sopenharmony_ciint i915_active_acquire(struct i915_active *ref)
5358c2ecf20Sopenharmony_ci{
5368c2ecf20Sopenharmony_ci	int err;
5378c2ecf20Sopenharmony_ci
5388c2ecf20Sopenharmony_ci	if (i915_active_acquire_if_busy(ref))
5398c2ecf20Sopenharmony_ci		return 0;
5408c2ecf20Sopenharmony_ci
5418c2ecf20Sopenharmony_ci	if (!ref->active) {
5428c2ecf20Sopenharmony_ci		__i915_active_activate(ref);
5438c2ecf20Sopenharmony_ci		return 0;
5448c2ecf20Sopenharmony_ci	}
5458c2ecf20Sopenharmony_ci
5468c2ecf20Sopenharmony_ci	err = mutex_lock_interruptible(&ref->mutex);
5478c2ecf20Sopenharmony_ci	if (err)
5488c2ecf20Sopenharmony_ci		return err;
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ci	if (likely(!i915_active_acquire_if_busy(ref))) {
5518c2ecf20Sopenharmony_ci		err = ref->active(ref);
5528c2ecf20Sopenharmony_ci		if (!err)
5538c2ecf20Sopenharmony_ci			__i915_active_activate(ref);
5548c2ecf20Sopenharmony_ci	}
5558c2ecf20Sopenharmony_ci
5568c2ecf20Sopenharmony_ci	mutex_unlock(&ref->mutex);
5578c2ecf20Sopenharmony_ci
5588c2ecf20Sopenharmony_ci	return err;
5598c2ecf20Sopenharmony_ci}
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ciint i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
5628c2ecf20Sopenharmony_ci{
5638c2ecf20Sopenharmony_ci	struct i915_active_fence *active;
5648c2ecf20Sopenharmony_ci	int err;
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci	err = i915_active_acquire(ref);
5678c2ecf20Sopenharmony_ci	if (err)
5688c2ecf20Sopenharmony_ci		return err;
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	active = active_instance(ref, idx);
5718c2ecf20Sopenharmony_ci	if (!active) {
5728c2ecf20Sopenharmony_ci		i915_active_release(ref);
5738c2ecf20Sopenharmony_ci		return -ENOMEM;
5748c2ecf20Sopenharmony_ci	}
5758c2ecf20Sopenharmony_ci
5768c2ecf20Sopenharmony_ci	return 0; /* return with active ref */
5778c2ecf20Sopenharmony_ci}
5788c2ecf20Sopenharmony_ci
5798c2ecf20Sopenharmony_civoid i915_active_release(struct i915_active *ref)
5808c2ecf20Sopenharmony_ci{
5818c2ecf20Sopenharmony_ci	debug_active_assert(ref);
5828c2ecf20Sopenharmony_ci	active_retire(ref);
5838c2ecf20Sopenharmony_ci}
5848c2ecf20Sopenharmony_ci
5858c2ecf20Sopenharmony_cistatic void enable_signaling(struct i915_active_fence *active)
5868c2ecf20Sopenharmony_ci{
5878c2ecf20Sopenharmony_ci	struct dma_fence *fence;
5888c2ecf20Sopenharmony_ci
5898c2ecf20Sopenharmony_ci	if (unlikely(is_barrier(active)))
5908c2ecf20Sopenharmony_ci		return;
5918c2ecf20Sopenharmony_ci
5928c2ecf20Sopenharmony_ci	fence = i915_active_fence_get(active);
5938c2ecf20Sopenharmony_ci	if (!fence)
5948c2ecf20Sopenharmony_ci		return;
5958c2ecf20Sopenharmony_ci
5968c2ecf20Sopenharmony_ci	dma_fence_enable_sw_signaling(fence);
5978c2ecf20Sopenharmony_ci	dma_fence_put(fence);
5988c2ecf20Sopenharmony_ci}
5998c2ecf20Sopenharmony_ci
6008c2ecf20Sopenharmony_cistatic int flush_barrier(struct active_node *it)
6018c2ecf20Sopenharmony_ci{
6028c2ecf20Sopenharmony_ci	struct intel_engine_cs *engine;
6038c2ecf20Sopenharmony_ci
6048c2ecf20Sopenharmony_ci	if (likely(!is_barrier(&it->base)))
6058c2ecf20Sopenharmony_ci		return 0;
6068c2ecf20Sopenharmony_ci
6078c2ecf20Sopenharmony_ci	engine = __barrier_to_engine(it);
6088c2ecf20Sopenharmony_ci	smp_rmb(); /* serialise with add_active_barriers */
6098c2ecf20Sopenharmony_ci	if (!is_barrier(&it->base))
6108c2ecf20Sopenharmony_ci		return 0;
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci	return intel_engine_flush_barriers(engine);
6138c2ecf20Sopenharmony_ci}
6148c2ecf20Sopenharmony_ci
6158c2ecf20Sopenharmony_cistatic int flush_lazy_signals(struct i915_active *ref)
6168c2ecf20Sopenharmony_ci{
6178c2ecf20Sopenharmony_ci	struct active_node *it, *n;
6188c2ecf20Sopenharmony_ci	int err = 0;
6198c2ecf20Sopenharmony_ci
6208c2ecf20Sopenharmony_ci	enable_signaling(&ref->excl);
6218c2ecf20Sopenharmony_ci	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
6228c2ecf20Sopenharmony_ci		err = flush_barrier(it); /* unconnected idle barrier? */
6238c2ecf20Sopenharmony_ci		if (err)
6248c2ecf20Sopenharmony_ci			break;
6258c2ecf20Sopenharmony_ci
6268c2ecf20Sopenharmony_ci		enable_signaling(&it->base);
6278c2ecf20Sopenharmony_ci	}
6288c2ecf20Sopenharmony_ci
6298c2ecf20Sopenharmony_ci	return err;
6308c2ecf20Sopenharmony_ci}
6318c2ecf20Sopenharmony_ci
6328c2ecf20Sopenharmony_ciint __i915_active_wait(struct i915_active *ref, int state)
6338c2ecf20Sopenharmony_ci{
6348c2ecf20Sopenharmony_ci	might_sleep();
6358c2ecf20Sopenharmony_ci
6368c2ecf20Sopenharmony_ci	/* Any fence added after the wait begins will not be auto-signaled */
6378c2ecf20Sopenharmony_ci	if (i915_active_acquire_if_busy(ref)) {
6388c2ecf20Sopenharmony_ci		int err;
6398c2ecf20Sopenharmony_ci
6408c2ecf20Sopenharmony_ci		err = flush_lazy_signals(ref);
6418c2ecf20Sopenharmony_ci		i915_active_release(ref);
6428c2ecf20Sopenharmony_ci		if (err)
6438c2ecf20Sopenharmony_ci			return err;
6448c2ecf20Sopenharmony_ci
6458c2ecf20Sopenharmony_ci		if (___wait_var_event(ref, i915_active_is_idle(ref),
6468c2ecf20Sopenharmony_ci				      state, 0, 0, schedule()))
6478c2ecf20Sopenharmony_ci			return -EINTR;
6488c2ecf20Sopenharmony_ci	}
6498c2ecf20Sopenharmony_ci
6508c2ecf20Sopenharmony_ci	/*
6518c2ecf20Sopenharmony_ci	 * After the wait is complete, the caller may free the active.
6528c2ecf20Sopenharmony_ci	 * We have to flush any concurrent retirement before returning.
6538c2ecf20Sopenharmony_ci	 */
6548c2ecf20Sopenharmony_ci	flush_work(&ref->work);
6558c2ecf20Sopenharmony_ci	return 0;
6568c2ecf20Sopenharmony_ci}
6578c2ecf20Sopenharmony_ci
6588c2ecf20Sopenharmony_cistatic int __await_active(struct i915_active_fence *active,
6598c2ecf20Sopenharmony_ci			  int (*fn)(void *arg, struct dma_fence *fence),
6608c2ecf20Sopenharmony_ci			  void *arg)
6618c2ecf20Sopenharmony_ci{
6628c2ecf20Sopenharmony_ci	struct dma_fence *fence;
6638c2ecf20Sopenharmony_ci
6648c2ecf20Sopenharmony_ci	if (is_barrier(active)) /* XXX flush the barrier? */
6658c2ecf20Sopenharmony_ci		return 0;
6668c2ecf20Sopenharmony_ci
6678c2ecf20Sopenharmony_ci	fence = i915_active_fence_get(active);
6688c2ecf20Sopenharmony_ci	if (fence) {
6698c2ecf20Sopenharmony_ci		int err;
6708c2ecf20Sopenharmony_ci
6718c2ecf20Sopenharmony_ci		err = fn(arg, fence);
6728c2ecf20Sopenharmony_ci		dma_fence_put(fence);
6738c2ecf20Sopenharmony_ci		if (err < 0)
6748c2ecf20Sopenharmony_ci			return err;
6758c2ecf20Sopenharmony_ci	}
6768c2ecf20Sopenharmony_ci
6778c2ecf20Sopenharmony_ci	return 0;
6788c2ecf20Sopenharmony_ci}
6798c2ecf20Sopenharmony_ci
6808c2ecf20Sopenharmony_cistruct wait_barrier {
6818c2ecf20Sopenharmony_ci	struct wait_queue_entry base;
6828c2ecf20Sopenharmony_ci	struct i915_active *ref;
6838c2ecf20Sopenharmony_ci};
6848c2ecf20Sopenharmony_ci
6858c2ecf20Sopenharmony_cistatic int
6868c2ecf20Sopenharmony_cibarrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
6878c2ecf20Sopenharmony_ci{
6888c2ecf20Sopenharmony_ci	struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
6898c2ecf20Sopenharmony_ci
6908c2ecf20Sopenharmony_ci	if (i915_active_is_idle(wb->ref)) {
6918c2ecf20Sopenharmony_ci		list_del(&wq->entry);
6928c2ecf20Sopenharmony_ci		i915_sw_fence_complete(wq->private);
6938c2ecf20Sopenharmony_ci		kfree(wq);
6948c2ecf20Sopenharmony_ci	}
6958c2ecf20Sopenharmony_ci
6968c2ecf20Sopenharmony_ci	return 0;
6978c2ecf20Sopenharmony_ci}
6988c2ecf20Sopenharmony_ci
6998c2ecf20Sopenharmony_cistatic int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
7008c2ecf20Sopenharmony_ci{
7018c2ecf20Sopenharmony_ci	struct wait_barrier *wb;
7028c2ecf20Sopenharmony_ci
7038c2ecf20Sopenharmony_ci	wb = kmalloc(sizeof(*wb), GFP_KERNEL);
7048c2ecf20Sopenharmony_ci	if (unlikely(!wb))
7058c2ecf20Sopenharmony_ci		return -ENOMEM;
7068c2ecf20Sopenharmony_ci
7078c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
7088c2ecf20Sopenharmony_ci	if (!i915_sw_fence_await(fence)) {
7098c2ecf20Sopenharmony_ci		kfree(wb);
7108c2ecf20Sopenharmony_ci		return -EINVAL;
7118c2ecf20Sopenharmony_ci	}
7128c2ecf20Sopenharmony_ci
7138c2ecf20Sopenharmony_ci	wb->base.flags = 0;
7148c2ecf20Sopenharmony_ci	wb->base.func = barrier_wake;
7158c2ecf20Sopenharmony_ci	wb->base.private = fence;
7168c2ecf20Sopenharmony_ci	wb->ref = ref;
7178c2ecf20Sopenharmony_ci
7188c2ecf20Sopenharmony_ci	add_wait_queue(__var_waitqueue(ref), &wb->base);
7198c2ecf20Sopenharmony_ci	return 0;
7208c2ecf20Sopenharmony_ci}
7218c2ecf20Sopenharmony_ci
7228c2ecf20Sopenharmony_cistatic int await_active(struct i915_active *ref,
7238c2ecf20Sopenharmony_ci			unsigned int flags,
7248c2ecf20Sopenharmony_ci			int (*fn)(void *arg, struct dma_fence *fence),
7258c2ecf20Sopenharmony_ci			void *arg, struct i915_sw_fence *barrier)
7268c2ecf20Sopenharmony_ci{
7278c2ecf20Sopenharmony_ci	int err = 0;
7288c2ecf20Sopenharmony_ci
7298c2ecf20Sopenharmony_ci	if (!i915_active_acquire_if_busy(ref))
7308c2ecf20Sopenharmony_ci		return 0;
7318c2ecf20Sopenharmony_ci
7328c2ecf20Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_EXCL &&
7338c2ecf20Sopenharmony_ci	    rcu_access_pointer(ref->excl.fence)) {
7348c2ecf20Sopenharmony_ci		err = __await_active(&ref->excl, fn, arg);
7358c2ecf20Sopenharmony_ci		if (err)
7368c2ecf20Sopenharmony_ci			goto out;
7378c2ecf20Sopenharmony_ci	}
7388c2ecf20Sopenharmony_ci
7398c2ecf20Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
7408c2ecf20Sopenharmony_ci		struct active_node *it, *n;
7418c2ecf20Sopenharmony_ci
7428c2ecf20Sopenharmony_ci		rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
7438c2ecf20Sopenharmony_ci			err = __await_active(&it->base, fn, arg);
7448c2ecf20Sopenharmony_ci			if (err)
7458c2ecf20Sopenharmony_ci				goto out;
7468c2ecf20Sopenharmony_ci		}
7478c2ecf20Sopenharmony_ci	}
7488c2ecf20Sopenharmony_ci
7498c2ecf20Sopenharmony_ci	if (flags & I915_ACTIVE_AWAIT_BARRIER) {
7508c2ecf20Sopenharmony_ci		err = flush_lazy_signals(ref);
7518c2ecf20Sopenharmony_ci		if (err)
7528c2ecf20Sopenharmony_ci			goto out;
7538c2ecf20Sopenharmony_ci
7548c2ecf20Sopenharmony_ci		err = __await_barrier(ref, barrier);
7558c2ecf20Sopenharmony_ci		if (err)
7568c2ecf20Sopenharmony_ci			goto out;
7578c2ecf20Sopenharmony_ci	}
7588c2ecf20Sopenharmony_ci
7598c2ecf20Sopenharmony_ciout:
7608c2ecf20Sopenharmony_ci	i915_active_release(ref);
7618c2ecf20Sopenharmony_ci	return err;
7628c2ecf20Sopenharmony_ci}
7638c2ecf20Sopenharmony_ci
7648c2ecf20Sopenharmony_cistatic int rq_await_fence(void *arg, struct dma_fence *fence)
7658c2ecf20Sopenharmony_ci{
7668c2ecf20Sopenharmony_ci	return i915_request_await_dma_fence(arg, fence);
7678c2ecf20Sopenharmony_ci}
7688c2ecf20Sopenharmony_ci
7698c2ecf20Sopenharmony_ciint i915_request_await_active(struct i915_request *rq,
7708c2ecf20Sopenharmony_ci			      struct i915_active *ref,
7718c2ecf20Sopenharmony_ci			      unsigned int flags)
7728c2ecf20Sopenharmony_ci{
7738c2ecf20Sopenharmony_ci	return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
7748c2ecf20Sopenharmony_ci}
7758c2ecf20Sopenharmony_ci
7768c2ecf20Sopenharmony_cistatic int sw_await_fence(void *arg, struct dma_fence *fence)
7778c2ecf20Sopenharmony_ci{
7788c2ecf20Sopenharmony_ci	return i915_sw_fence_await_dma_fence(arg, fence, 0,
7798c2ecf20Sopenharmony_ci					     GFP_NOWAIT | __GFP_NOWARN);
7808c2ecf20Sopenharmony_ci}
7818c2ecf20Sopenharmony_ci
7828c2ecf20Sopenharmony_ciint i915_sw_fence_await_active(struct i915_sw_fence *fence,
7838c2ecf20Sopenharmony_ci			       struct i915_active *ref,
7848c2ecf20Sopenharmony_ci			       unsigned int flags)
7858c2ecf20Sopenharmony_ci{
7868c2ecf20Sopenharmony_ci	return await_active(ref, flags, sw_await_fence, fence, fence);
7878c2ecf20Sopenharmony_ci}
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_civoid i915_active_fini(struct i915_active *ref)
7908c2ecf20Sopenharmony_ci{
7918c2ecf20Sopenharmony_ci	debug_active_fini(ref);
7928c2ecf20Sopenharmony_ci	GEM_BUG_ON(atomic_read(&ref->count));
7938c2ecf20Sopenharmony_ci	GEM_BUG_ON(work_pending(&ref->work));
7948c2ecf20Sopenharmony_ci	mutex_destroy(&ref->mutex);
7958c2ecf20Sopenharmony_ci
7968c2ecf20Sopenharmony_ci	if (ref->cache)
7978c2ecf20Sopenharmony_ci		kmem_cache_free(global.slab_cache, ref->cache);
7988c2ecf20Sopenharmony_ci}
7998c2ecf20Sopenharmony_ci
8008c2ecf20Sopenharmony_cistatic inline bool is_idle_barrier(struct active_node *node, u64 idx)
8018c2ecf20Sopenharmony_ci{
8028c2ecf20Sopenharmony_ci	return node->timeline == idx && !i915_active_fence_isset(&node->base);
8038c2ecf20Sopenharmony_ci}
8048c2ecf20Sopenharmony_ci
8058c2ecf20Sopenharmony_cistatic struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
8068c2ecf20Sopenharmony_ci{
8078c2ecf20Sopenharmony_ci	struct rb_node *prev, *p;
8088c2ecf20Sopenharmony_ci
8098c2ecf20Sopenharmony_ci	if (RB_EMPTY_ROOT(&ref->tree))
8108c2ecf20Sopenharmony_ci		return NULL;
8118c2ecf20Sopenharmony_ci
8128c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
8138c2ecf20Sopenharmony_ci
8148c2ecf20Sopenharmony_ci	/*
8158c2ecf20Sopenharmony_ci	 * Try to reuse any existing barrier nodes already allocated for this
8168c2ecf20Sopenharmony_ci	 * i915_active, due to overlapping active phases there is likely a
8178c2ecf20Sopenharmony_ci	 * node kept alive (as we reuse before parking). We prefer to reuse
8188c2ecf20Sopenharmony_ci	 * completely idle barriers (less hassle in manipulating the llists),
8198c2ecf20Sopenharmony_ci	 * but otherwise any will do.
8208c2ecf20Sopenharmony_ci	 */
8218c2ecf20Sopenharmony_ci	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
8228c2ecf20Sopenharmony_ci		p = &ref->cache->node;
8238c2ecf20Sopenharmony_ci		goto match;
8248c2ecf20Sopenharmony_ci	}
8258c2ecf20Sopenharmony_ci
8268c2ecf20Sopenharmony_ci	prev = NULL;
8278c2ecf20Sopenharmony_ci	p = ref->tree.rb_node;
8288c2ecf20Sopenharmony_ci	while (p) {
8298c2ecf20Sopenharmony_ci		struct active_node *node =
8308c2ecf20Sopenharmony_ci			rb_entry(p, struct active_node, node);
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci		if (is_idle_barrier(node, idx))
8338c2ecf20Sopenharmony_ci			goto match;
8348c2ecf20Sopenharmony_ci
8358c2ecf20Sopenharmony_ci		prev = p;
8368c2ecf20Sopenharmony_ci		if (node->timeline < idx)
8378c2ecf20Sopenharmony_ci			p = READ_ONCE(p->rb_right);
8388c2ecf20Sopenharmony_ci		else
8398c2ecf20Sopenharmony_ci			p = READ_ONCE(p->rb_left);
8408c2ecf20Sopenharmony_ci	}
8418c2ecf20Sopenharmony_ci
8428c2ecf20Sopenharmony_ci	/*
8438c2ecf20Sopenharmony_ci	 * No quick match, but we did find the leftmost rb_node for the
8448c2ecf20Sopenharmony_ci	 * kernel_context. Walk the rb_tree in-order to see if there were
8458c2ecf20Sopenharmony_ci	 * any idle-barriers on this timeline that we missed, or just use
8468c2ecf20Sopenharmony_ci	 * the first pending barrier.
8478c2ecf20Sopenharmony_ci	 */
8488c2ecf20Sopenharmony_ci	for (p = prev; p; p = rb_next(p)) {
8498c2ecf20Sopenharmony_ci		struct active_node *node =
8508c2ecf20Sopenharmony_ci			rb_entry(p, struct active_node, node);
8518c2ecf20Sopenharmony_ci		struct intel_engine_cs *engine;
8528c2ecf20Sopenharmony_ci
8538c2ecf20Sopenharmony_ci		if (node->timeline > idx)
8548c2ecf20Sopenharmony_ci			break;
8558c2ecf20Sopenharmony_ci
8568c2ecf20Sopenharmony_ci		if (node->timeline < idx)
8578c2ecf20Sopenharmony_ci			continue;
8588c2ecf20Sopenharmony_ci
8598c2ecf20Sopenharmony_ci		if (is_idle_barrier(node, idx))
8608c2ecf20Sopenharmony_ci			goto match;
8618c2ecf20Sopenharmony_ci
8628c2ecf20Sopenharmony_ci		/*
8638c2ecf20Sopenharmony_ci		 * The list of pending barriers is protected by the
8648c2ecf20Sopenharmony_ci		 * kernel_context timeline, which notably we do not hold
8658c2ecf20Sopenharmony_ci		 * here. i915_request_add_active_barriers() may consume
8668c2ecf20Sopenharmony_ci		 * the barrier before we claim it, so we have to check
8678c2ecf20Sopenharmony_ci		 * for success.
8688c2ecf20Sopenharmony_ci		 */
8698c2ecf20Sopenharmony_ci		engine = __barrier_to_engine(node);
8708c2ecf20Sopenharmony_ci		smp_rmb(); /* serialise with add_active_barriers */
8718c2ecf20Sopenharmony_ci		if (is_barrier(&node->base) &&
8728c2ecf20Sopenharmony_ci		    ____active_del_barrier(ref, node, engine))
8738c2ecf20Sopenharmony_ci			goto match;
8748c2ecf20Sopenharmony_ci	}
8758c2ecf20Sopenharmony_ci
8768c2ecf20Sopenharmony_ci	return NULL;
8778c2ecf20Sopenharmony_ci
8788c2ecf20Sopenharmony_cimatch:
8798c2ecf20Sopenharmony_ci	spin_lock_irq(&ref->tree_lock);
8808c2ecf20Sopenharmony_ci	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
8818c2ecf20Sopenharmony_ci	if (p == &ref->cache->node)
8828c2ecf20Sopenharmony_ci		WRITE_ONCE(ref->cache, NULL);
8838c2ecf20Sopenharmony_ci	spin_unlock_irq(&ref->tree_lock);
8848c2ecf20Sopenharmony_ci
8858c2ecf20Sopenharmony_ci	return rb_entry(p, struct active_node, node);
8868c2ecf20Sopenharmony_ci}
8878c2ecf20Sopenharmony_ci
8888c2ecf20Sopenharmony_ciint i915_active_acquire_preallocate_barrier(struct i915_active *ref,
8898c2ecf20Sopenharmony_ci					    struct intel_engine_cs *engine)
8908c2ecf20Sopenharmony_ci{
8918c2ecf20Sopenharmony_ci	intel_engine_mask_t tmp, mask = engine->mask;
8928c2ecf20Sopenharmony_ci	struct llist_node *first = NULL, *last = NULL;
8938c2ecf20Sopenharmony_ci	struct intel_gt *gt = engine->gt;
8948c2ecf20Sopenharmony_ci
8958c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
8968c2ecf20Sopenharmony_ci
8978c2ecf20Sopenharmony_ci	/* Wait until the previous preallocation is completed */
8988c2ecf20Sopenharmony_ci	while (!llist_empty(&ref->preallocated_barriers))
8998c2ecf20Sopenharmony_ci		cond_resched();
9008c2ecf20Sopenharmony_ci
9018c2ecf20Sopenharmony_ci	/*
9028c2ecf20Sopenharmony_ci	 * Preallocate a node for each physical engine supporting the target
9038c2ecf20Sopenharmony_ci	 * engine (remember virtual engines have more than one sibling).
9048c2ecf20Sopenharmony_ci	 * We can then use the preallocated nodes in
9058c2ecf20Sopenharmony_ci	 * i915_active_acquire_barrier()
9068c2ecf20Sopenharmony_ci	 */
9078c2ecf20Sopenharmony_ci	GEM_BUG_ON(!mask);
9088c2ecf20Sopenharmony_ci	for_each_engine_masked(engine, gt, mask, tmp) {
9098c2ecf20Sopenharmony_ci		u64 idx = engine->kernel_context->timeline->fence_context;
9108c2ecf20Sopenharmony_ci		struct llist_node *prev = first;
9118c2ecf20Sopenharmony_ci		struct active_node *node;
9128c2ecf20Sopenharmony_ci
9138c2ecf20Sopenharmony_ci		rcu_read_lock();
9148c2ecf20Sopenharmony_ci		node = reuse_idle_barrier(ref, idx);
9158c2ecf20Sopenharmony_ci		rcu_read_unlock();
9168c2ecf20Sopenharmony_ci		if (!node) {
9178c2ecf20Sopenharmony_ci			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
9188c2ecf20Sopenharmony_ci			if (!node)
9198c2ecf20Sopenharmony_ci				goto unwind;
9208c2ecf20Sopenharmony_ci
9218c2ecf20Sopenharmony_ci			RCU_INIT_POINTER(node->base.fence, NULL);
9228c2ecf20Sopenharmony_ci			node->base.cb.func = node_retire;
9238c2ecf20Sopenharmony_ci			node->timeline = idx;
9248c2ecf20Sopenharmony_ci			node->ref = ref;
9258c2ecf20Sopenharmony_ci		}
9268c2ecf20Sopenharmony_ci
9278c2ecf20Sopenharmony_ci		if (!i915_active_fence_isset(&node->base)) {
9288c2ecf20Sopenharmony_ci			/*
9298c2ecf20Sopenharmony_ci			 * Mark this as being *our* unconnected proto-node.
9308c2ecf20Sopenharmony_ci			 *
9318c2ecf20Sopenharmony_ci			 * Since this node is not in any list, and we have
9328c2ecf20Sopenharmony_ci			 * decoupled it from the rbtree, we can reuse the
9338c2ecf20Sopenharmony_ci			 * request to indicate this is an idle-barrier node
9348c2ecf20Sopenharmony_ci			 * and then we can use the rb_node and list pointers
9358c2ecf20Sopenharmony_ci			 * for our tracking of the pending barrier.
9368c2ecf20Sopenharmony_ci			 */
9378c2ecf20Sopenharmony_ci			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
9388c2ecf20Sopenharmony_ci			node->base.cb.node.prev = (void *)engine;
9398c2ecf20Sopenharmony_ci			__i915_active_acquire(ref);
9408c2ecf20Sopenharmony_ci		}
9418c2ecf20Sopenharmony_ci		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
9428c2ecf20Sopenharmony_ci
9438c2ecf20Sopenharmony_ci		GEM_BUG_ON(barrier_to_engine(node) != engine);
9448c2ecf20Sopenharmony_ci		first = barrier_to_ll(node);
9458c2ecf20Sopenharmony_ci		first->next = prev;
9468c2ecf20Sopenharmony_ci		if (!last)
9478c2ecf20Sopenharmony_ci			last = first;
9488c2ecf20Sopenharmony_ci		intel_engine_pm_get(engine);
9498c2ecf20Sopenharmony_ci	}
9508c2ecf20Sopenharmony_ci
9518c2ecf20Sopenharmony_ci	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
9528c2ecf20Sopenharmony_ci	llist_add_batch(first, last, &ref->preallocated_barriers);
9538c2ecf20Sopenharmony_ci
9548c2ecf20Sopenharmony_ci	return 0;
9558c2ecf20Sopenharmony_ci
9568c2ecf20Sopenharmony_ciunwind:
9578c2ecf20Sopenharmony_ci	while (first) {
9588c2ecf20Sopenharmony_ci		struct active_node *node = barrier_from_ll(first);
9598c2ecf20Sopenharmony_ci
9608c2ecf20Sopenharmony_ci		first = first->next;
9618c2ecf20Sopenharmony_ci
9628c2ecf20Sopenharmony_ci		atomic_dec(&ref->count);
9638c2ecf20Sopenharmony_ci		intel_engine_pm_put(barrier_to_engine(node));
9648c2ecf20Sopenharmony_ci
9658c2ecf20Sopenharmony_ci		kmem_cache_free(global.slab_cache, node);
9668c2ecf20Sopenharmony_ci	}
9678c2ecf20Sopenharmony_ci	return -ENOMEM;
9688c2ecf20Sopenharmony_ci}
9698c2ecf20Sopenharmony_ci
9708c2ecf20Sopenharmony_civoid i915_active_acquire_barrier(struct i915_active *ref)
9718c2ecf20Sopenharmony_ci{
9728c2ecf20Sopenharmony_ci	struct llist_node *pos, *next;
9738c2ecf20Sopenharmony_ci	unsigned long flags;
9748c2ecf20Sopenharmony_ci
9758c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_active_is_idle(ref));
9768c2ecf20Sopenharmony_ci
9778c2ecf20Sopenharmony_ci	/*
9788c2ecf20Sopenharmony_ci	 * Transfer the list of preallocated barriers into the
9798c2ecf20Sopenharmony_ci	 * i915_active rbtree, but only as proto-nodes. They will be
9808c2ecf20Sopenharmony_ci	 * populated by i915_request_add_active_barriers() to point to the
9818c2ecf20Sopenharmony_ci	 * request that will eventually release them.
9828c2ecf20Sopenharmony_ci	 */
9838c2ecf20Sopenharmony_ci	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
9848c2ecf20Sopenharmony_ci		struct active_node *node = barrier_from_ll(pos);
9858c2ecf20Sopenharmony_ci		struct intel_engine_cs *engine = barrier_to_engine(node);
9868c2ecf20Sopenharmony_ci		struct rb_node **p, *parent;
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci		spin_lock_irqsave_nested(&ref->tree_lock, flags,
9898c2ecf20Sopenharmony_ci					 SINGLE_DEPTH_NESTING);
9908c2ecf20Sopenharmony_ci		parent = NULL;
9918c2ecf20Sopenharmony_ci		p = &ref->tree.rb_node;
9928c2ecf20Sopenharmony_ci		while (*p) {
9938c2ecf20Sopenharmony_ci			struct active_node *it;
9948c2ecf20Sopenharmony_ci
9958c2ecf20Sopenharmony_ci			parent = *p;
9968c2ecf20Sopenharmony_ci
9978c2ecf20Sopenharmony_ci			it = rb_entry(parent, struct active_node, node);
9988c2ecf20Sopenharmony_ci			if (it->timeline < node->timeline)
9998c2ecf20Sopenharmony_ci				p = &parent->rb_right;
10008c2ecf20Sopenharmony_ci			else
10018c2ecf20Sopenharmony_ci				p = &parent->rb_left;
10028c2ecf20Sopenharmony_ci		}
10038c2ecf20Sopenharmony_ci		rb_link_node(&node->node, parent, p);
10048c2ecf20Sopenharmony_ci		rb_insert_color(&node->node, &ref->tree);
10058c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(&ref->tree_lock, flags);
10068c2ecf20Sopenharmony_ci
10078c2ecf20Sopenharmony_ci		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
10088c2ecf20Sopenharmony_ci		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
10098c2ecf20Sopenharmony_ci		intel_engine_pm_put_delay(engine, 1);
10108c2ecf20Sopenharmony_ci	}
10118c2ecf20Sopenharmony_ci}
10128c2ecf20Sopenharmony_ci
10138c2ecf20Sopenharmony_cistatic struct dma_fence **ll_to_fence_slot(struct llist_node *node)
10148c2ecf20Sopenharmony_ci{
10158c2ecf20Sopenharmony_ci	return __active_fence_slot(&barrier_from_ll(node)->base);
10168c2ecf20Sopenharmony_ci}
10178c2ecf20Sopenharmony_ci
10188c2ecf20Sopenharmony_civoid i915_request_add_active_barriers(struct i915_request *rq)
10198c2ecf20Sopenharmony_ci{
10208c2ecf20Sopenharmony_ci	struct intel_engine_cs *engine = rq->engine;
10218c2ecf20Sopenharmony_ci	struct llist_node *node, *next;
10228c2ecf20Sopenharmony_ci	unsigned long flags;
10238c2ecf20Sopenharmony_ci
10248c2ecf20Sopenharmony_ci	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
10258c2ecf20Sopenharmony_ci	GEM_BUG_ON(intel_engine_is_virtual(engine));
10268c2ecf20Sopenharmony_ci	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
10278c2ecf20Sopenharmony_ci
10288c2ecf20Sopenharmony_ci	node = llist_del_all(&engine->barrier_tasks);
10298c2ecf20Sopenharmony_ci	if (!node)
10308c2ecf20Sopenharmony_ci		return;
10318c2ecf20Sopenharmony_ci	/*
10328c2ecf20Sopenharmony_ci	 * Attach the list of proto-fences to the in-flight request such
10338c2ecf20Sopenharmony_ci	 * that the parent i915_active will be released when this request
10348c2ecf20Sopenharmony_ci	 * is retired.
10358c2ecf20Sopenharmony_ci	 */
10368c2ecf20Sopenharmony_ci	spin_lock_irqsave(&rq->lock, flags);
10378c2ecf20Sopenharmony_ci	llist_for_each_safe(node, next, node) {
10388c2ecf20Sopenharmony_ci		/* serialise with reuse_idle_barrier */
10398c2ecf20Sopenharmony_ci		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
10408c2ecf20Sopenharmony_ci		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
10418c2ecf20Sopenharmony_ci	}
10428c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&rq->lock, flags);
10438c2ecf20Sopenharmony_ci}
10448c2ecf20Sopenharmony_ci
10458c2ecf20Sopenharmony_ci/*
10468c2ecf20Sopenharmony_ci * __i915_active_fence_set: Update the last active fence along its timeline
10478c2ecf20Sopenharmony_ci * @active: the active tracker
10488c2ecf20Sopenharmony_ci * @fence: the new fence (under construction)
10498c2ecf20Sopenharmony_ci *
10508c2ecf20Sopenharmony_ci * Records the new @fence as the last active fence along its timeline in
10518c2ecf20Sopenharmony_ci * this active tracker, moving the tracking callbacks from the previous
10528c2ecf20Sopenharmony_ci * fence onto this one. Gets and returns a reference to the previous fence
10538c2ecf20Sopenharmony_ci * (if not already completed), which the caller must put after making sure
10548c2ecf20Sopenharmony_ci * that it is executed before the new fence. To ensure that the order of
10558c2ecf20Sopenharmony_ci * fences within the timeline of the i915_active_fence is understood, it
10568c2ecf20Sopenharmony_ci * should be locked by the caller.
10578c2ecf20Sopenharmony_ci */
10588c2ecf20Sopenharmony_cistruct dma_fence *
10598c2ecf20Sopenharmony_ci__i915_active_fence_set(struct i915_active_fence *active,
10608c2ecf20Sopenharmony_ci			struct dma_fence *fence)
10618c2ecf20Sopenharmony_ci{
10628c2ecf20Sopenharmony_ci	struct dma_fence *prev;
10638c2ecf20Sopenharmony_ci	unsigned long flags;
10648c2ecf20Sopenharmony_ci
10658c2ecf20Sopenharmony_ci	/*
10668c2ecf20Sopenharmony_ci	 * In case of fences embedded in i915_requests, their memory is
10678c2ecf20Sopenharmony_ci	 * SLAB_FAILSAFE_BY_RCU, then it can be reused right after release
10688c2ecf20Sopenharmony_ci	 * by new requests.  Then, there is a risk of passing back a pointer
10698c2ecf20Sopenharmony_ci	 * to a new, completely unrelated fence that reuses the same memory
10708c2ecf20Sopenharmony_ci	 * while tracked under a different active tracker.  Combined with i915
10718c2ecf20Sopenharmony_ci	 * perf open/close operations that build await dependencies between
10728c2ecf20Sopenharmony_ci	 * engine kernel context requests and user requests from different
10738c2ecf20Sopenharmony_ci	 * timelines, this can lead to dependency loops and infinite waits.
10748c2ecf20Sopenharmony_ci	 *
10758c2ecf20Sopenharmony_ci	 * As a countermeasure, we try to get a reference to the active->fence
10768c2ecf20Sopenharmony_ci	 * first, so if we succeed and pass it back to our user then it is not
10778c2ecf20Sopenharmony_ci	 * released and potentially reused by an unrelated request before the
10788c2ecf20Sopenharmony_ci	 * user has a chance to set up an await dependency on it.
10798c2ecf20Sopenharmony_ci	 */
10808c2ecf20Sopenharmony_ci	prev = i915_active_fence_get(active);
10818c2ecf20Sopenharmony_ci	if (fence == prev)
10828c2ecf20Sopenharmony_ci		return fence;
10838c2ecf20Sopenharmony_ci
10848c2ecf20Sopenharmony_ci	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
10858c2ecf20Sopenharmony_ci
10868c2ecf20Sopenharmony_ci	/*
10878c2ecf20Sopenharmony_ci	 * Consider that we have two threads arriving (A and B), with
10888c2ecf20Sopenharmony_ci	 * C already resident as the active->fence.
10898c2ecf20Sopenharmony_ci	 *
10908c2ecf20Sopenharmony_ci	 * Both A and B have got a reference to C or NULL, depending on the
10918c2ecf20Sopenharmony_ci	 * timing of the interrupt handler.  Let's assume that if A has got C
10928c2ecf20Sopenharmony_ci	 * then it has locked C first (before B).
10938c2ecf20Sopenharmony_ci	 *
10948c2ecf20Sopenharmony_ci	 * Note the strong ordering of the timeline also provides consistent
10958c2ecf20Sopenharmony_ci	 * nesting rules for the fence->lock; the inner lock is always the
10968c2ecf20Sopenharmony_ci	 * older lock.
10978c2ecf20Sopenharmony_ci	 */
10988c2ecf20Sopenharmony_ci	spin_lock_irqsave(fence->lock, flags);
10998c2ecf20Sopenharmony_ci	if (prev)
11008c2ecf20Sopenharmony_ci		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
11018c2ecf20Sopenharmony_ci
11028c2ecf20Sopenharmony_ci	/*
11038c2ecf20Sopenharmony_ci	 * A does the cmpxchg first, and so it sees C or NULL, as before, or
11048c2ecf20Sopenharmony_ci	 * something else, depending on the timing of other threads and/or
11058c2ecf20Sopenharmony_ci	 * interrupt handler.  If not the same as before then A unlocks C if
11068c2ecf20Sopenharmony_ci	 * applicable and retries, starting from an attempt to get a new
11078c2ecf20Sopenharmony_ci	 * active->fence.  Meanwhile, B follows the same path as A.
11088c2ecf20Sopenharmony_ci	 * Once A succeeds with cmpxch, B fails again, retires, gets A from
11098c2ecf20Sopenharmony_ci	 * active->fence, locks it as soon as A completes, and possibly
11108c2ecf20Sopenharmony_ci	 * succeeds with cmpxchg.
11118c2ecf20Sopenharmony_ci	 */
11128c2ecf20Sopenharmony_ci	while (cmpxchg(__active_fence_slot(active), prev, fence) != prev) {
11138c2ecf20Sopenharmony_ci		if (prev) {
11148c2ecf20Sopenharmony_ci			spin_unlock(prev->lock);
11158c2ecf20Sopenharmony_ci			dma_fence_put(prev);
11168c2ecf20Sopenharmony_ci		}
11178c2ecf20Sopenharmony_ci		spin_unlock_irqrestore(fence->lock, flags);
11188c2ecf20Sopenharmony_ci
11198c2ecf20Sopenharmony_ci		prev = i915_active_fence_get(active);
11208c2ecf20Sopenharmony_ci		GEM_BUG_ON(prev == fence);
11218c2ecf20Sopenharmony_ci
11228c2ecf20Sopenharmony_ci		spin_lock_irqsave(fence->lock, flags);
11238c2ecf20Sopenharmony_ci		if (prev)
11248c2ecf20Sopenharmony_ci			spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
11258c2ecf20Sopenharmony_ci	}
11268c2ecf20Sopenharmony_ci
11278c2ecf20Sopenharmony_ci	/*
11288c2ecf20Sopenharmony_ci	 * If prev is NULL then the previous fence must have been signaled
11298c2ecf20Sopenharmony_ci	 * and we know that we are first on the timeline.  If it is still
11308c2ecf20Sopenharmony_ci	 * present then, having the lock on that fence already acquired, we
11318c2ecf20Sopenharmony_ci	 * serialise with the interrupt handler, in the process of removing it
11328c2ecf20Sopenharmony_ci	 * from any future interrupt callback.  A will then wait on C before
11338c2ecf20Sopenharmony_ci	 * executing (if present).
11348c2ecf20Sopenharmony_ci	 *
11358c2ecf20Sopenharmony_ci	 * As B is second, it sees A as the previous fence and so waits for
11368c2ecf20Sopenharmony_ci	 * it to complete its transition and takes over the occupancy for
11378c2ecf20Sopenharmony_ci	 * itself -- remembering that it needs to wait on A before executing.
11388c2ecf20Sopenharmony_ci	 */
11398c2ecf20Sopenharmony_ci	if (prev) {
11408c2ecf20Sopenharmony_ci		__list_del_entry(&active->cb.node);
11418c2ecf20Sopenharmony_ci		spin_unlock(prev->lock); /* serialise with prev->cb_list */
11428c2ecf20Sopenharmony_ci	}
11438c2ecf20Sopenharmony_ci	list_add_tail(&active->cb.node, &fence->cb_list);
11448c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(fence->lock, flags);
11458c2ecf20Sopenharmony_ci
11468c2ecf20Sopenharmony_ci	return prev;
11478c2ecf20Sopenharmony_ci}
11488c2ecf20Sopenharmony_ci
11498c2ecf20Sopenharmony_ciint i915_active_fence_set(struct i915_active_fence *active,
11508c2ecf20Sopenharmony_ci			  struct i915_request *rq)
11518c2ecf20Sopenharmony_ci{
11528c2ecf20Sopenharmony_ci	struct dma_fence *fence;
11538c2ecf20Sopenharmony_ci	int err = 0;
11548c2ecf20Sopenharmony_ci
11558c2ecf20Sopenharmony_ci	/* Must maintain timeline ordering wrt previous active requests */
11568c2ecf20Sopenharmony_ci	fence = __i915_active_fence_set(active, &rq->fence);
11578c2ecf20Sopenharmony_ci	if (fence) {
11588c2ecf20Sopenharmony_ci		err = i915_request_await_dma_fence(rq, fence);
11598c2ecf20Sopenharmony_ci		dma_fence_put(fence);
11608c2ecf20Sopenharmony_ci	}
11618c2ecf20Sopenharmony_ci
11628c2ecf20Sopenharmony_ci	return err;
11638c2ecf20Sopenharmony_ci}
11648c2ecf20Sopenharmony_ci
11658c2ecf20Sopenharmony_civoid i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
11668c2ecf20Sopenharmony_ci{
11678c2ecf20Sopenharmony_ci	active_fence_cb(fence, cb);
11688c2ecf20Sopenharmony_ci}
11698c2ecf20Sopenharmony_ci
11708c2ecf20Sopenharmony_cistruct auto_active {
11718c2ecf20Sopenharmony_ci	struct i915_active base;
11728c2ecf20Sopenharmony_ci	struct kref ref;
11738c2ecf20Sopenharmony_ci};
11748c2ecf20Sopenharmony_ci
11758c2ecf20Sopenharmony_cistruct i915_active *i915_active_get(struct i915_active *ref)
11768c2ecf20Sopenharmony_ci{
11778c2ecf20Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), base);
11788c2ecf20Sopenharmony_ci
11798c2ecf20Sopenharmony_ci	kref_get(&aa->ref);
11808c2ecf20Sopenharmony_ci	return &aa->base;
11818c2ecf20Sopenharmony_ci}
11828c2ecf20Sopenharmony_ci
11838c2ecf20Sopenharmony_cistatic void auto_release(struct kref *ref)
11848c2ecf20Sopenharmony_ci{
11858c2ecf20Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), ref);
11868c2ecf20Sopenharmony_ci
11878c2ecf20Sopenharmony_ci	i915_active_fini(&aa->base);
11888c2ecf20Sopenharmony_ci	kfree(aa);
11898c2ecf20Sopenharmony_ci}
11908c2ecf20Sopenharmony_ci
11918c2ecf20Sopenharmony_civoid i915_active_put(struct i915_active *ref)
11928c2ecf20Sopenharmony_ci{
11938c2ecf20Sopenharmony_ci	struct auto_active *aa = container_of(ref, typeof(*aa), base);
11948c2ecf20Sopenharmony_ci
11958c2ecf20Sopenharmony_ci	kref_put(&aa->ref, auto_release);
11968c2ecf20Sopenharmony_ci}
11978c2ecf20Sopenharmony_ci
11988c2ecf20Sopenharmony_cistatic int auto_active(struct i915_active *ref)
11998c2ecf20Sopenharmony_ci{
12008c2ecf20Sopenharmony_ci	i915_active_get(ref);
12018c2ecf20Sopenharmony_ci	return 0;
12028c2ecf20Sopenharmony_ci}
12038c2ecf20Sopenharmony_ci
12048c2ecf20Sopenharmony_ci__i915_active_call static void
12058c2ecf20Sopenharmony_ciauto_retire(struct i915_active *ref)
12068c2ecf20Sopenharmony_ci{
12078c2ecf20Sopenharmony_ci	i915_active_put(ref);
12088c2ecf20Sopenharmony_ci}
12098c2ecf20Sopenharmony_ci
12108c2ecf20Sopenharmony_cistruct i915_active *i915_active_create(void)
12118c2ecf20Sopenharmony_ci{
12128c2ecf20Sopenharmony_ci	struct auto_active *aa;
12138c2ecf20Sopenharmony_ci
12148c2ecf20Sopenharmony_ci	aa = kmalloc(sizeof(*aa), GFP_KERNEL);
12158c2ecf20Sopenharmony_ci	if (!aa)
12168c2ecf20Sopenharmony_ci		return NULL;
12178c2ecf20Sopenharmony_ci
12188c2ecf20Sopenharmony_ci	kref_init(&aa->ref);
12198c2ecf20Sopenharmony_ci	i915_active_init(&aa->base, auto_active, auto_retire);
12208c2ecf20Sopenharmony_ci
12218c2ecf20Sopenharmony_ci	return &aa->base;
12228c2ecf20Sopenharmony_ci}
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
12258c2ecf20Sopenharmony_ci#include "selftests/i915_active.c"
12268c2ecf20Sopenharmony_ci#endif
12278c2ecf20Sopenharmony_ci
12288c2ecf20Sopenharmony_cistatic void i915_global_active_shrink(void)
12298c2ecf20Sopenharmony_ci{
12308c2ecf20Sopenharmony_ci	kmem_cache_shrink(global.slab_cache);
12318c2ecf20Sopenharmony_ci}
12328c2ecf20Sopenharmony_ci
12338c2ecf20Sopenharmony_cistatic void i915_global_active_exit(void)
12348c2ecf20Sopenharmony_ci{
12358c2ecf20Sopenharmony_ci	kmem_cache_destroy(global.slab_cache);
12368c2ecf20Sopenharmony_ci}
12378c2ecf20Sopenharmony_ci
12388c2ecf20Sopenharmony_cistatic struct i915_global_active global = { {
12398c2ecf20Sopenharmony_ci	.shrink = i915_global_active_shrink,
12408c2ecf20Sopenharmony_ci	.exit = i915_global_active_exit,
12418c2ecf20Sopenharmony_ci} };
12428c2ecf20Sopenharmony_ci
12438c2ecf20Sopenharmony_ciint __init i915_global_active_init(void)
12448c2ecf20Sopenharmony_ci{
12458c2ecf20Sopenharmony_ci	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
12468c2ecf20Sopenharmony_ci	if (!global.slab_cache)
12478c2ecf20Sopenharmony_ci		return -ENOMEM;
12488c2ecf20Sopenharmony_ci
12498c2ecf20Sopenharmony_ci	i915_global_register(&global.base);
12508c2ecf20Sopenharmony_ci	return 0;
12518c2ecf20Sopenharmony_ci}
1252