1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7#include "i915_drv.h"
8#include "intel_lrc_reg.h"
9#include "intel_sseu.h"
10
11void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
12			 u8 max_subslices, u8 max_eus_per_subslice)
13{
14	sseu->max_slices = max_slices;
15	sseu->max_subslices = max_subslices;
16	sseu->max_eus_per_subslice = max_eus_per_subslice;
17
18	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
19	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
20	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
21	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
22}
23
24unsigned int
25intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
26{
27	unsigned int i, total = 0;
28
29	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
30		total += hweight8(sseu->subslice_mask[i]);
31
32	return total;
33}
34
35u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
36{
37	int i, offset = slice * sseu->ss_stride;
38	u32 mask = 0;
39
40	GEM_BUG_ON(slice >= sseu->max_slices);
41
42	for (i = 0; i < sseu->ss_stride; i++)
43		mask |= (u32)sseu->subslice_mask[offset + i] <<
44			i * BITS_PER_BYTE;
45
46	return mask;
47}
48
49void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
50			      u32 ss_mask)
51{
52	int offset = slice * sseu->ss_stride;
53
54	memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
55}
56
57unsigned int
58intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
59{
60	return hweight32(intel_sseu_get_subslices(sseu, slice));
61}
62
63static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
64		       int subslice)
65{
66	int slice_stride = sseu->max_subslices * sseu->eu_stride;
67
68	return slice * slice_stride + subslice * sseu->eu_stride;
69}
70
71static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
72			int subslice)
73{
74	int i, offset = sseu_eu_idx(sseu, slice, subslice);
75	u16 eu_mask = 0;
76
77	for (i = 0; i < sseu->eu_stride; i++)
78		eu_mask |=
79			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
80
81	return eu_mask;
82}
83
84static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
85			 u16 eu_mask)
86{
87	int i, offset = sseu_eu_idx(sseu, slice, subslice);
88
89	for (i = 0; i < sseu->eu_stride; i++)
90		sseu->eu_mask[offset + i] =
91			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
92}
93
94static u16 compute_eu_total(const struct sseu_dev_info *sseu)
95{
96	u16 i, total = 0;
97
98	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
99		total += hweight8(sseu->eu_mask[i]);
100
101	return total;
102}
103
104static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
105				    u8 s_en, u32 ss_en, u16 eu_en)
106{
107	int s, ss;
108
109	/* ss_en represents entire subslice mask across all slices */
110	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
111		   sizeof(ss_en) * BITS_PER_BYTE);
112
113	for (s = 0; s < sseu->max_slices; s++) {
114		if ((s_en & BIT(s)) == 0)
115			continue;
116
117		sseu->slice_mask |= BIT(s);
118
119		intel_sseu_set_subslices(sseu, s, ss_en);
120
121		for (ss = 0; ss < sseu->max_subslices; ss++)
122			if (intel_sseu_has_subslice(sseu, s, ss))
123				sseu_set_eus(sseu, s, ss, eu_en);
124	}
125	sseu->eu_per_subslice = hweight16(eu_en);
126	sseu->eu_total = compute_eu_total(sseu);
127}
128
129static void gen12_sseu_info_init(struct intel_gt *gt)
130{
131	struct sseu_dev_info *sseu = &gt->info.sseu;
132	struct intel_uncore *uncore = gt->uncore;
133	u32 dss_en;
134	u16 eu_en = 0;
135	u8 eu_en_fuse;
136	u8 s_en;
137	int eu;
138
139	/*
140	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
141	 * Instead of splitting these, provide userspace with an array
142	 * of DSS to more closely represent the hardware resource.
143	 */
144	intel_sseu_set_info(sseu, 1, 6, 16);
145
146	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
147		GEN11_GT_S_ENA_MASK;
148
149	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
150
151	/* one bit per pair of EUs */
152	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
153		       GEN11_EU_DIS_MASK);
154	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
155		if (eu_en_fuse & BIT(eu))
156			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
157
158	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
159
160	/* TGL only supports slice-level power gating */
161	sseu->has_slice_pg = 1;
162}
163
164static void gen11_sseu_info_init(struct intel_gt *gt)
165{
166	struct sseu_dev_info *sseu = &gt->info.sseu;
167	struct intel_uncore *uncore = gt->uncore;
168	u32 ss_en;
169	u8 eu_en;
170	u8 s_en;
171
172	if (IS_ELKHARTLAKE(gt->i915))
173		intel_sseu_set_info(sseu, 1, 4, 8);
174	else
175		intel_sseu_set_info(sseu, 1, 8, 8);
176
177	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
178		GEN11_GT_S_ENA_MASK;
179	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
180
181	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
182		  GEN11_EU_DIS_MASK);
183
184	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
185
186	/* ICL has no power gating restrictions. */
187	sseu->has_slice_pg = 1;
188	sseu->has_subslice_pg = 1;
189	sseu->has_eu_pg = 1;
190}
191
192static void gen10_sseu_info_init(struct intel_gt *gt)
193{
194	struct intel_uncore *uncore = gt->uncore;
195	struct sseu_dev_info *sseu = &gt->info.sseu;
196	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
197	const int eu_mask = 0xff;
198	u32 subslice_mask, eu_en;
199	int s, ss;
200
201	intel_sseu_set_info(sseu, 6, 4, 8);
202
203	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
204		GEN10_F2_S_ENA_SHIFT;
205
206	/* Slice0 */
207	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
208	for (ss = 0; ss < sseu->max_subslices; ss++)
209		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
210	/* Slice1 */
211	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
212	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
213	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
214	/* Slice2 */
215	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
216	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
217	/* Slice3 */
218	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
219	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
220	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
221	/* Slice4 */
222	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
223	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
224	/* Slice5 */
225	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
226	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
227	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
228
229	subslice_mask = (1 << 4) - 1;
230	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
231			   GEN10_F2_SS_DIS_SHIFT);
232
233	for (s = 0; s < sseu->max_slices; s++) {
234		u32 subslice_mask_with_eus = subslice_mask;
235
236		for (ss = 0; ss < sseu->max_subslices; ss++) {
237			if (sseu_get_eus(sseu, s, ss) == 0)
238				subslice_mask_with_eus &= ~BIT(ss);
239		}
240
241		/*
242		 * Slice0 can have up to 3 subslices, but there are only 2 in
243		 * slice1/2.
244		 */
245		intel_sseu_set_subslices(sseu, s, s == 0 ?
246					 subslice_mask_with_eus :
247					 subslice_mask_with_eus & 0x3);
248	}
249
250	sseu->eu_total = compute_eu_total(sseu);
251
252	/*
253	 * CNL is expected to always have a uniform distribution
254	 * of EU across subslices with the exception that any one
255	 * EU in any one subslice may be fused off for die
256	 * recovery.
257	 */
258	sseu->eu_per_subslice =
259		intel_sseu_subslice_total(sseu) ?
260		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
261		0;
262
263	/* No restrictions on Power Gating */
264	sseu->has_slice_pg = 1;
265	sseu->has_subslice_pg = 1;
266	sseu->has_eu_pg = 1;
267}
268
269static void cherryview_sseu_info_init(struct intel_gt *gt)
270{
271	struct sseu_dev_info *sseu = &gt->info.sseu;
272	u32 fuse;
273	u8 subslice_mask = 0;
274
275	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
276
277	sseu->slice_mask = BIT(0);
278	intel_sseu_set_info(sseu, 1, 2, 8);
279
280	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
281		u8 disabled_mask =
282			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
283			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
284			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
285			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
286
287		subslice_mask |= BIT(0);
288		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
289	}
290
291	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
292		u8 disabled_mask =
293			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
294			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
295			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
296			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
297
298		subslice_mask |= BIT(1);
299		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
300	}
301
302	intel_sseu_set_subslices(sseu, 0, subslice_mask);
303
304	sseu->eu_total = compute_eu_total(sseu);
305
306	/*
307	 * CHV expected to always have a uniform distribution of EU
308	 * across subslices.
309	 */
310	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
311		sseu->eu_total /
312		intel_sseu_subslice_total(sseu) :
313		0;
314	/*
315	 * CHV supports subslice power gating on devices with more than
316	 * one subslice, and supports EU power gating on devices with
317	 * more than one EU pair per subslice.
318	 */
319	sseu->has_slice_pg = 0;
320	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
321	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
322}
323
324static void gen9_sseu_info_init(struct intel_gt *gt)
325{
326	struct drm_i915_private *i915 = gt->i915;
327	struct intel_device_info *info = mkwrite_device_info(i915);
328	struct sseu_dev_info *sseu = &gt->info.sseu;
329	struct intel_uncore *uncore = gt->uncore;
330	u32 fuse2, eu_disable, subslice_mask;
331	const u8 eu_mask = 0xff;
332	int s, ss;
333
334	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
335	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
336
337	/* BXT has a single slice and at most 3 subslices. */
338	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
339			    IS_GEN9_LP(i915) ? 3 : 4, 8);
340
341	/*
342	 * The subslice disable field is global, i.e. it applies
343	 * to each of the enabled slices.
344	 */
345	subslice_mask = (1 << sseu->max_subslices) - 1;
346	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
347			   GEN9_F2_SS_DIS_SHIFT);
348
349	/*
350	 * Iterate through enabled slices and subslices to
351	 * count the total enabled EU.
352	 */
353	for (s = 0; s < sseu->max_slices; s++) {
354		if (!(sseu->slice_mask & BIT(s)))
355			/* skip disabled slice */
356			continue;
357
358		intel_sseu_set_subslices(sseu, s, subslice_mask);
359
360		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
361		for (ss = 0; ss < sseu->max_subslices; ss++) {
362			int eu_per_ss;
363			u8 eu_disabled_mask;
364
365			if (!intel_sseu_has_subslice(sseu, s, ss))
366				/* skip disabled subslice */
367				continue;
368
369			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
370
371			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
372
373			eu_per_ss = sseu->max_eus_per_subslice -
374				hweight8(eu_disabled_mask);
375
376			/*
377			 * Record which subslice(s) has(have) 7 EUs. we
378			 * can tune the hash used to spread work among
379			 * subslices if they are unbalanced.
380			 */
381			if (eu_per_ss == 7)
382				sseu->subslice_7eu[s] |= BIT(ss);
383		}
384	}
385
386	sseu->eu_total = compute_eu_total(sseu);
387
388	/*
389	 * SKL is expected to always have a uniform distribution
390	 * of EU across subslices with the exception that any one
391	 * EU in any one subslice may be fused off for die
392	 * recovery. BXT is expected to be perfectly uniform in EU
393	 * distribution.
394	 */
395	sseu->eu_per_subslice =
396		intel_sseu_subslice_total(sseu) ?
397		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
398		0;
399
400	/*
401	 * SKL+ supports slice power gating on devices with more than
402	 * one slice, and supports EU power gating on devices with
403	 * more than one EU pair per subslice. BXT+ supports subslice
404	 * power gating on devices with more than one subslice, and
405	 * supports EU power gating on devices with more than one EU
406	 * pair per subslice.
407	 */
408	sseu->has_slice_pg =
409		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
410	sseu->has_subslice_pg =
411		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
412	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
413
414	if (IS_GEN9_LP(i915)) {
415#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
416		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
417
418		sseu->min_eu_in_pool = 0;
419		if (info->has_pooled_eu) {
420			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
421				sseu->min_eu_in_pool = 3;
422			else if (IS_SS_DISABLED(1))
423				sseu->min_eu_in_pool = 6;
424			else
425				sseu->min_eu_in_pool = 9;
426		}
427#undef IS_SS_DISABLED
428	}
429}
430
431static void bdw_sseu_info_init(struct intel_gt *gt)
432{
433	struct sseu_dev_info *sseu = &gt->info.sseu;
434	struct intel_uncore *uncore = gt->uncore;
435	int s, ss;
436	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
437	u32 eu_disable0, eu_disable1, eu_disable2;
438
439	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
440	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
441	intel_sseu_set_info(sseu, 3, 3, 8);
442
443	/*
444	 * The subslice disable field is global, i.e. it applies
445	 * to each of the enabled slices.
446	 */
447	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
448	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
449			   GEN8_F2_SS_DIS_SHIFT);
450	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
451	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
452	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
453	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
454	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
455		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
456		 (32 - GEN8_EU_DIS0_S1_SHIFT));
457	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
458		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
459		 (32 - GEN8_EU_DIS1_S2_SHIFT));
460
461	/*
462	 * Iterate through enabled slices and subslices to
463	 * count the total enabled EU.
464	 */
465	for (s = 0; s < sseu->max_slices; s++) {
466		if (!(sseu->slice_mask & BIT(s)))
467			/* skip disabled slice */
468			continue;
469
470		intel_sseu_set_subslices(sseu, s, subslice_mask);
471
472		for (ss = 0; ss < sseu->max_subslices; ss++) {
473			u8 eu_disabled_mask;
474			u32 n_disabled;
475
476			if (!intel_sseu_has_subslice(sseu, s, ss))
477				/* skip disabled subslice */
478				continue;
479
480			eu_disabled_mask =
481				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
482
483			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
484
485			n_disabled = hweight8(eu_disabled_mask);
486
487			/*
488			 * Record which subslices have 7 EUs.
489			 */
490			if (sseu->max_eus_per_subslice - n_disabled == 7)
491				sseu->subslice_7eu[s] |= 1 << ss;
492		}
493	}
494
495	sseu->eu_total = compute_eu_total(sseu);
496
497	/*
498	 * BDW is expected to always have a uniform distribution of EU across
499	 * subslices with the exception that any one EU in any one subslice may
500	 * be fused off for die recovery.
501	 */
502	sseu->eu_per_subslice =
503		intel_sseu_subslice_total(sseu) ?
504		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
505		0;
506
507	/*
508	 * BDW supports slice power gating on devices with more than
509	 * one slice.
510	 */
511	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
512	sseu->has_subslice_pg = 0;
513	sseu->has_eu_pg = 0;
514}
515
516static void hsw_sseu_info_init(struct intel_gt *gt)
517{
518	struct drm_i915_private *i915 = gt->i915;
519	struct sseu_dev_info *sseu = &gt->info.sseu;
520	u32 fuse1;
521	u8 subslice_mask = 0;
522	int s, ss;
523
524	/*
525	 * There isn't a register to tell us how many slices/subslices. We
526	 * work off the PCI-ids here.
527	 */
528	switch (INTEL_INFO(i915)->gt) {
529	default:
530		MISSING_CASE(INTEL_INFO(i915)->gt);
531		fallthrough;
532	case 1:
533		sseu->slice_mask = BIT(0);
534		subslice_mask = BIT(0);
535		break;
536	case 2:
537		sseu->slice_mask = BIT(0);
538		subslice_mask = BIT(0) | BIT(1);
539		break;
540	case 3:
541		sseu->slice_mask = BIT(0) | BIT(1);
542		subslice_mask = BIT(0) | BIT(1);
543		break;
544	}
545
546	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
547	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
548	default:
549		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
550			     HSW_F1_EU_DIS_SHIFT);
551		fallthrough;
552	case HSW_F1_EU_DIS_10EUS:
553		sseu->eu_per_subslice = 10;
554		break;
555	case HSW_F1_EU_DIS_8EUS:
556		sseu->eu_per_subslice = 8;
557		break;
558	case HSW_F1_EU_DIS_6EUS:
559		sseu->eu_per_subslice = 6;
560		break;
561	}
562
563	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
564			    hweight8(subslice_mask),
565			    sseu->eu_per_subslice);
566
567	for (s = 0; s < sseu->max_slices; s++) {
568		intel_sseu_set_subslices(sseu, s, subslice_mask);
569
570		for (ss = 0; ss < sseu->max_subslices; ss++) {
571			sseu_set_eus(sseu, s, ss,
572				     (1UL << sseu->eu_per_subslice) - 1);
573		}
574	}
575
576	sseu->eu_total = compute_eu_total(sseu);
577
578	/* No powergating for you. */
579	sseu->has_slice_pg = 0;
580	sseu->has_subslice_pg = 0;
581	sseu->has_eu_pg = 0;
582}
583
584void intel_sseu_info_init(struct intel_gt *gt)
585{
586	struct drm_i915_private *i915 = gt->i915;
587
588	if (IS_HASWELL(i915))
589		hsw_sseu_info_init(gt);
590	else if (IS_CHERRYVIEW(i915))
591		cherryview_sseu_info_init(gt);
592	else if (IS_BROADWELL(i915))
593		bdw_sseu_info_init(gt);
594	else if (IS_GEN(i915, 9))
595		gen9_sseu_info_init(gt);
596	else if (IS_GEN(i915, 10))
597		gen10_sseu_info_init(gt);
598	else if (IS_GEN(i915, 11))
599		gen11_sseu_info_init(gt);
600	else if (INTEL_GEN(i915) >= 12)
601		gen12_sseu_info_init(gt);
602}
603
604u32 intel_sseu_make_rpcs(struct intel_gt *gt,
605			 const struct intel_sseu *req_sseu)
606{
607	struct drm_i915_private *i915 = gt->i915;
608	const struct sseu_dev_info *sseu = &gt->info.sseu;
609	bool subslice_pg = sseu->has_subslice_pg;
610	u8 slices, subslices;
611	u32 rpcs = 0;
612
613	/*
614	 * No explicit RPCS request is needed to ensure full
615	 * slice/subslice/EU enablement prior to Gen9.
616	 */
617	if (INTEL_GEN(i915) < 9)
618		return 0;
619
620	/*
621	 * If i915/perf is active, we want a stable powergating configuration
622	 * on the system. Use the configuration pinned by i915/perf.
623	 */
624	if (i915->perf.exclusive_stream)
625		req_sseu = &i915->perf.sseu;
626
627	slices = hweight8(req_sseu->slice_mask);
628	subslices = hweight8(req_sseu->subslice_mask);
629
630	/*
631	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
632	 * wide and Icelake has up to eight subslices, specfial programming is
633	 * needed in order to correctly enable all subslices.
634	 *
635	 * According to documentation software must consider the configuration
636	 * as 2x4x8 and hardware will translate this to 1x8x8.
637	 *
638	 * Furthemore, even though SScount is three bits, maximum documented
639	 * value for it is four. From this some rules/restrictions follow:
640	 *
641	 * 1.
642	 * If enabled subslice count is greater than four, two whole slices must
643	 * be enabled instead.
644	 *
645	 * 2.
646	 * When more than one slice is enabled, hardware ignores the subslice
647	 * count altogether.
648	 *
649	 * From these restrictions it follows that it is not possible to enable
650	 * a count of subslices between the SScount maximum of four restriction,
651	 * and the maximum available number on a particular SKU. Either all
652	 * subslices are enabled, or a count between one and four on the first
653	 * slice.
654	 */
655	if (IS_GEN(i915, 11) &&
656	    slices == 1 &&
657	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
658		GEM_BUG_ON(subslices & 1);
659
660		subslice_pg = false;
661		slices *= 2;
662	}
663
664	/*
665	 * Starting in Gen9, render power gating can leave
666	 * slice/subslice/EU in a partially enabled state. We
667	 * must make an explicit request through RPCS for full
668	 * enablement.
669	 */
670	if (sseu->has_slice_pg) {
671		u32 mask, val = slices;
672
673		if (INTEL_GEN(i915) >= 11) {
674			mask = GEN11_RPCS_S_CNT_MASK;
675			val <<= GEN11_RPCS_S_CNT_SHIFT;
676		} else {
677			mask = GEN8_RPCS_S_CNT_MASK;
678			val <<= GEN8_RPCS_S_CNT_SHIFT;
679		}
680
681		GEM_BUG_ON(val & ~mask);
682		val &= mask;
683
684		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
685	}
686
687	if (subslice_pg) {
688		u32 val = subslices;
689
690		val <<= GEN8_RPCS_SS_CNT_SHIFT;
691
692		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
693		val &= GEN8_RPCS_SS_CNT_MASK;
694
695		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
696	}
697
698	if (sseu->has_eu_pg) {
699		u32 val;
700
701		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
702		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
703		val &= GEN8_RPCS_EU_MIN_MASK;
704
705		rpcs |= val;
706
707		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
708		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
709		val &= GEN8_RPCS_EU_MAX_MASK;
710
711		rpcs |= val;
712
713		rpcs |= GEN8_RPCS_ENABLE;
714	}
715
716	return rpcs;
717}
718
719void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
720{
721	int s;
722
723	drm_printf(p, "slice total: %u, mask=%04x\n",
724		   hweight8(sseu->slice_mask), sseu->slice_mask);
725	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
726	for (s = 0; s < sseu->max_slices; s++) {
727		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
728			   s, intel_sseu_subslices_per_slice(sseu, s),
729			   intel_sseu_get_subslices(sseu, s));
730	}
731	drm_printf(p, "EU total: %u\n", sseu->eu_total);
732	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
733	drm_printf(p, "has slice power gating: %s\n",
734		   yesno(sseu->has_slice_pg));
735	drm_printf(p, "has subslice power gating: %s\n",
736		   yesno(sseu->has_subslice_pg));
737	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
738}
739
740void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
741			       struct drm_printer *p)
742{
743	int s, ss;
744
745	if (sseu->max_slices == 0) {
746		drm_printf(p, "Unavailable\n");
747		return;
748	}
749
750	for (s = 0; s < sseu->max_slices; s++) {
751		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
752			   s, intel_sseu_subslices_per_slice(sseu, s),
753			   intel_sseu_get_subslices(sseu, s));
754
755		for (ss = 0; ss < sseu->max_subslices; ss++) {
756			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
757
758			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
759				   ss, hweight16(enabled_eus), enabled_eus);
760		}
761	}
762}
763