1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7#include <drm/i915_drm.h>
8
9#include "i915_drv.h"
10#include "intel_breadcrumbs.h"
11#include "intel_gt.h"
12#include "intel_gt_clock_utils.h"
13#include "intel_gt_irq.h"
14#include "intel_gt_pm_irq.h"
15#include "intel_rps.h"
16#include "intel_sideband.h"
17#include "../../../platform/x86/intel_ips.h"
18
19#define BUSY_MAX_EI	20u /* ms */
20
21/*
22 * Lock protecting IPS related data structures
23 */
24static DEFINE_SPINLOCK(mchdev_lock);
25
26static struct intel_gt *rps_to_gt(struct intel_rps *rps)
27{
28	return container_of(rps, struct intel_gt, rps);
29}
30
31static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
32{
33	return rps_to_gt(rps)->i915;
34}
35
36static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
37{
38	return rps_to_gt(rps)->uncore;
39}
40
41static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
42{
43	return mask & ~rps->pm_intrmsk_mbz;
44}
45
46static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
47{
48	intel_uncore_write_fw(uncore, reg, val);
49}
50
51static void rps_timer(struct timer_list *t)
52{
53	struct intel_rps *rps = from_timer(rps, t, timer);
54	struct intel_engine_cs *engine;
55	ktime_t dt, last, timestamp;
56	enum intel_engine_id id;
57	s64 max_busy[3] = {};
58
59	timestamp = 0;
60	for_each_engine(engine, rps_to_gt(rps), id) {
61		s64 busy;
62		int i;
63
64		dt = intel_engine_get_busy_time(engine, &timestamp);
65		last = engine->stats.rps;
66		engine->stats.rps = dt;
67
68		busy = ktime_to_ns(ktime_sub(dt, last));
69		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
70			if (busy > max_busy[i])
71				swap(busy, max_busy[i]);
72		}
73	}
74	last = rps->pm_timestamp;
75	rps->pm_timestamp = timestamp;
76
77	if (intel_rps_is_active(rps)) {
78		s64 busy;
79		int i;
80
81		dt = ktime_sub(timestamp, last);
82
83		/*
84		 * Our goal is to evaluate each engine independently, so we run
85		 * at the lowest clocks required to sustain the heaviest
86		 * workload. However, a task may be split into sequential
87		 * dependent operations across a set of engines, such that
88		 * the independent contributions do not account for high load,
89		 * but overall the task is GPU bound. For example, consider
90		 * video decode on vcs followed by colour post-processing
91		 * on vecs, followed by general post-processing on rcs.
92		 * Since multi-engines being active does imply a single
93		 * continuous workload across all engines, we hedge our
94		 * bets by only contributing a factor of the distributed
95		 * load into our busyness calculation.
96		 */
97		busy = max_busy[0];
98		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
99			if (!max_busy[i])
100				break;
101
102			busy += div_u64(max_busy[i], 1 << i);
103		}
104		GT_TRACE(rps_to_gt(rps),
105			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
106			 busy, (int)div64_u64(100 * busy, dt),
107			 max_busy[0], max_busy[1], max_busy[2],
108			 rps->pm_interval);
109
110		if (100 * busy > rps->power.up_threshold * dt &&
111		    rps->cur_freq < rps->max_freq_softlimit) {
112			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
113			rps->pm_interval = 1;
114			schedule_work(&rps->work);
115		} else if (100 * busy < rps->power.down_threshold * dt &&
116			   rps->cur_freq > rps->min_freq_softlimit) {
117			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
118			rps->pm_interval = 1;
119			schedule_work(&rps->work);
120		} else {
121			rps->last_adj = 0;
122		}
123
124		mod_timer(&rps->timer,
125			  jiffies + msecs_to_jiffies(rps->pm_interval));
126		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
127	}
128}
129
130static void rps_start_timer(struct intel_rps *rps)
131{
132	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
133	rps->pm_interval = 1;
134	mod_timer(&rps->timer, jiffies + 1);
135}
136
137static void rps_stop_timer(struct intel_rps *rps)
138{
139	del_timer_sync(&rps->timer);
140	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
141	cancel_work_sync(&rps->work);
142}
143
144static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
145{
146	u32 mask = 0;
147
148	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
149	if (val > rps->min_freq_softlimit)
150		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
151			 GEN6_PM_RP_DOWN_THRESHOLD |
152			 GEN6_PM_RP_DOWN_TIMEOUT);
153
154	if (val < rps->max_freq_softlimit)
155		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
156
157	mask &= rps->pm_events;
158
159	return rps_pm_sanitize_mask(rps, ~mask);
160}
161
162static void rps_reset_ei(struct intel_rps *rps)
163{
164	memset(&rps->ei, 0, sizeof(rps->ei));
165}
166
167static void rps_enable_interrupts(struct intel_rps *rps)
168{
169	struct intel_gt *gt = rps_to_gt(rps);
170
171	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
172		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
173
174	rps_reset_ei(rps);
175
176	spin_lock_irq(&gt->irq_lock);
177	gen6_gt_pm_enable_irq(gt, rps->pm_events);
178	spin_unlock_irq(&gt->irq_lock);
179
180	intel_uncore_write(gt->uncore,
181			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
182}
183
184static void gen6_rps_reset_interrupts(struct intel_rps *rps)
185{
186	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
187}
188
189static void gen11_rps_reset_interrupts(struct intel_rps *rps)
190{
191	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
192		;
193}
194
195static void rps_reset_interrupts(struct intel_rps *rps)
196{
197	struct intel_gt *gt = rps_to_gt(rps);
198
199	spin_lock_irq(&gt->irq_lock);
200	if (INTEL_GEN(gt->i915) >= 11)
201		gen11_rps_reset_interrupts(rps);
202	else
203		gen6_rps_reset_interrupts(rps);
204
205	rps->pm_iir = 0;
206	spin_unlock_irq(&gt->irq_lock);
207}
208
209static void rps_disable_interrupts(struct intel_rps *rps)
210{
211	struct intel_gt *gt = rps_to_gt(rps);
212
213	intel_uncore_write(gt->uncore,
214			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
215
216	spin_lock_irq(&gt->irq_lock);
217	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
218	spin_unlock_irq(&gt->irq_lock);
219
220	intel_synchronize_irq(gt->i915);
221
222	/*
223	 * Now that we will not be generating any more work, flush any
224	 * outstanding tasks. As we are called on the RPS idle path,
225	 * we will reset the GPU to minimum frequencies, so the current
226	 * state of the worker can be discarded.
227	 */
228	cancel_work_sync(&rps->work);
229
230	rps_reset_interrupts(rps);
231	GT_TRACE(gt, "interrupts:off\n");
232}
233
234static const struct cparams {
235	u16 i;
236	u16 t;
237	u16 m;
238	u16 c;
239} cparams[] = {
240	{ 1, 1333, 301, 28664 },
241	{ 1, 1066, 294, 24460 },
242	{ 1, 800, 294, 25192 },
243	{ 0, 1333, 276, 27605 },
244	{ 0, 1066, 276, 27605 },
245	{ 0, 800, 231, 23784 },
246};
247
248static void gen5_rps_init(struct intel_rps *rps)
249{
250	struct drm_i915_private *i915 = rps_to_i915(rps);
251	struct intel_uncore *uncore = rps_to_uncore(rps);
252	u8 fmax, fmin, fstart;
253	u32 rgvmodectl;
254	int c_m, i;
255
256	if (i915->fsb_freq <= 3200)
257		c_m = 0;
258	else if (i915->fsb_freq <= 4800)
259		c_m = 1;
260	else
261		c_m = 2;
262
263	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
264		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
265			rps->ips.m = cparams[i].m;
266			rps->ips.c = cparams[i].c;
267			break;
268		}
269	}
270
271	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
272
273	/* Set up min, max, and cur for interrupt handling */
274	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
275	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
276	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
277		MEMMODE_FSTART_SHIFT;
278	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
279		fmax, fmin, fstart);
280
281	rps->min_freq = fmax;
282	rps->efficient_freq = fstart;
283	rps->max_freq = fmin;
284}
285
286static unsigned long
287__ips_chipset_val(struct intel_ips *ips)
288{
289	struct intel_uncore *uncore =
290		rps_to_uncore(container_of(ips, struct intel_rps, ips));
291	unsigned long now = jiffies_to_msecs(jiffies), dt;
292	unsigned long result;
293	u64 total, delta;
294
295	lockdep_assert_held(&mchdev_lock);
296
297	/*
298	 * Prevent division-by-zero if we are asking too fast.
299	 * Also, we don't get interesting results if we are polling
300	 * faster than once in 10ms, so just return the saved value
301	 * in such cases.
302	 */
303	dt = now - ips->last_time1;
304	if (dt <= 10)
305		return ips->chipset_power;
306
307	/* FIXME: handle per-counter overflow */
308	total = intel_uncore_read(uncore, DMIEC);
309	total += intel_uncore_read(uncore, DDREC);
310	total += intel_uncore_read(uncore, CSIEC);
311
312	delta = total - ips->last_count1;
313
314	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
315
316	ips->last_count1 = total;
317	ips->last_time1 = now;
318
319	ips->chipset_power = result;
320
321	return result;
322}
323
324static unsigned long ips_mch_val(struct intel_uncore *uncore)
325{
326	unsigned int m, x, b;
327	u32 tsfs;
328
329	tsfs = intel_uncore_read(uncore, TSFS);
330	x = intel_uncore_read8(uncore, TR1);
331
332	b = tsfs & TSFS_INTR_MASK;
333	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
334
335	return m * x / 127 - b;
336}
337
338static int _pxvid_to_vd(u8 pxvid)
339{
340	if (pxvid == 0)
341		return 0;
342
343	if (pxvid >= 8 && pxvid < 31)
344		pxvid = 31;
345
346	return (pxvid + 2) * 125;
347}
348
349static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
350{
351	const int vd = _pxvid_to_vd(pxvid);
352
353	if (INTEL_INFO(i915)->is_mobile)
354		return max(vd - 1125, 0);
355
356	return vd;
357}
358
359static void __gen5_ips_update(struct intel_ips *ips)
360{
361	struct intel_uncore *uncore =
362		rps_to_uncore(container_of(ips, struct intel_rps, ips));
363	u64 now, delta, dt;
364	u32 count;
365
366	lockdep_assert_held(&mchdev_lock);
367
368	now = ktime_get_raw_ns();
369	dt = now - ips->last_time2;
370	do_div(dt, NSEC_PER_MSEC);
371
372	/* Don't divide by 0 */
373	if (dt <= 10)
374		return;
375
376	count = intel_uncore_read(uncore, GFXEC);
377	delta = count - ips->last_count2;
378
379	ips->last_count2 = count;
380	ips->last_time2 = now;
381
382	/* More magic constants... */
383	ips->gfx_power = div_u64(delta * 1181, dt * 10);
384}
385
386static void gen5_rps_update(struct intel_rps *rps)
387{
388	spin_lock_irq(&mchdev_lock);
389	__gen5_ips_update(&rps->ips);
390	spin_unlock_irq(&mchdev_lock);
391}
392
393static bool gen5_rps_set(struct intel_rps *rps, u8 val)
394{
395	struct intel_uncore *uncore = rps_to_uncore(rps);
396	u16 rgvswctl;
397
398	lockdep_assert_held(&mchdev_lock);
399
400	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
401	if (rgvswctl & MEMCTL_CMD_STS) {
402		DRM_DEBUG("gpu busy, RCS change rejected\n");
403		return false; /* still busy with another command */
404	}
405
406	/* Invert the frequency bin into an ips delay */
407	val = rps->max_freq - val;
408	val = rps->min_freq + val;
409
410	rgvswctl =
411		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
412		(val << MEMCTL_FREQ_SHIFT) |
413		MEMCTL_SFCAVM;
414	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
415	intel_uncore_posting_read16(uncore, MEMSWCTL);
416
417	rgvswctl |= MEMCTL_CMD_STS;
418	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
419
420	return true;
421}
422
423static unsigned long intel_pxfreq(u32 vidfreq)
424{
425	int div = (vidfreq & 0x3f0000) >> 16;
426	int post = (vidfreq & 0x3000) >> 12;
427	int pre = (vidfreq & 0x7);
428
429	if (!pre)
430		return 0;
431
432	return div * 133333 / (pre << post);
433}
434
435static unsigned int init_emon(struct intel_uncore *uncore)
436{
437	u8 pxw[16];
438	int i;
439
440	/* Disable to program */
441	intel_uncore_write(uncore, ECR, 0);
442	intel_uncore_posting_read(uncore, ECR);
443
444	/* Program energy weights for various events */
445	intel_uncore_write(uncore, SDEW, 0x15040d00);
446	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
447	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
448	intel_uncore_write(uncore, CSIEW2, 0x04000004);
449
450	for (i = 0; i < 5; i++)
451		intel_uncore_write(uncore, PEW(i), 0);
452	for (i = 0; i < 3; i++)
453		intel_uncore_write(uncore, DEW(i), 0);
454
455	/* Program P-state weights to account for frequency power adjustment */
456	for (i = 0; i < 16; i++) {
457		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
458		unsigned int freq = intel_pxfreq(pxvidfreq);
459		unsigned int vid =
460			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
461		unsigned int val;
462
463		val = vid * vid * freq / 1000 * 255;
464		val /= 127 * 127 * 900;
465
466		pxw[i] = val;
467	}
468	/* Render standby states get 0 weight */
469	pxw[14] = 0;
470	pxw[15] = 0;
471
472	for (i = 0; i < 4; i++) {
473		intel_uncore_write(uncore, PXW(i),
474				   pxw[i * 4 + 0] << 24 |
475				   pxw[i * 4 + 1] << 16 |
476				   pxw[i * 4 + 2] <<  8 |
477				   pxw[i * 4 + 3] <<  0);
478	}
479
480	/* Adjust magic regs to magic values (more experimental results) */
481	intel_uncore_write(uncore, OGW0, 0);
482	intel_uncore_write(uncore, OGW1, 0);
483	intel_uncore_write(uncore, EG0, 0x00007f00);
484	intel_uncore_write(uncore, EG1, 0x0000000e);
485	intel_uncore_write(uncore, EG2, 0x000e0000);
486	intel_uncore_write(uncore, EG3, 0x68000300);
487	intel_uncore_write(uncore, EG4, 0x42000000);
488	intel_uncore_write(uncore, EG5, 0x00140031);
489	intel_uncore_write(uncore, EG6, 0);
490	intel_uncore_write(uncore, EG7, 0);
491
492	for (i = 0; i < 8; i++)
493		intel_uncore_write(uncore, PXWL(i), 0);
494
495	/* Enable PMON + select events */
496	intel_uncore_write(uncore, ECR, 0x80000019);
497
498	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
499}
500
501static bool gen5_rps_enable(struct intel_rps *rps)
502{
503	struct intel_uncore *uncore = rps_to_uncore(rps);
504	u8 fstart, vstart;
505	u32 rgvmodectl;
506
507	spin_lock_irq(&mchdev_lock);
508
509	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
510
511	/* Enable temp reporting */
512	intel_uncore_write16(uncore, PMMISC,
513			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
514	intel_uncore_write16(uncore, TSC1,
515			     intel_uncore_read16(uncore, TSC1) | TSE);
516
517	/* 100ms RC evaluation intervals */
518	intel_uncore_write(uncore, RCUPEI, 100000);
519	intel_uncore_write(uncore, RCDNEI, 100000);
520
521	/* Set max/min thresholds to 90ms and 80ms respectively */
522	intel_uncore_write(uncore, RCBMAXAVG, 90000);
523	intel_uncore_write(uncore, RCBMINAVG, 80000);
524
525	intel_uncore_write(uncore, MEMIHYST, 1);
526
527	/* Set up min, max, and cur for interrupt handling */
528	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
529		MEMMODE_FSTART_SHIFT;
530
531	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
532		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
533
534	intel_uncore_write(uncore,
535			   MEMINTREN,
536			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
537
538	intel_uncore_write(uncore, VIDSTART, vstart);
539	intel_uncore_posting_read(uncore, VIDSTART);
540
541	rgvmodectl |= MEMMODE_SWMODE_EN;
542	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
543
544	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
545			     MEMCTL_CMD_STS) == 0, 10))
546		drm_err(&uncore->i915->drm,
547			"stuck trying to change perf mode\n");
548	mdelay(1);
549
550	gen5_rps_set(rps, rps->cur_freq);
551
552	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
553	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
554	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
555	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
556
557	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
558	rps->ips.last_time2 = ktime_get_raw_ns();
559
560	spin_unlock_irq(&mchdev_lock);
561
562	rps->ips.corr = init_emon(uncore);
563
564	return true;
565}
566
567static void gen5_rps_disable(struct intel_rps *rps)
568{
569	struct intel_uncore *uncore = rps_to_uncore(rps);
570	u16 rgvswctl;
571
572	spin_lock_irq(&mchdev_lock);
573
574	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
575
576	/* Ack interrupts, disable EFC interrupt */
577	intel_uncore_write(uncore, MEMINTREN,
578			   intel_uncore_read(uncore, MEMINTREN) &
579			   ~MEMINT_EVAL_CHG_EN);
580	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
581	intel_uncore_write(uncore, DEIER,
582			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
583	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
584	intel_uncore_write(uncore, DEIMR,
585			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
586
587	/* Go back to the starting frequency */
588	gen5_rps_set(rps, rps->idle_freq);
589	mdelay(1);
590	rgvswctl |= MEMCTL_CMD_STS;
591	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
592	mdelay(1);
593
594	spin_unlock_irq(&mchdev_lock);
595}
596
597static u32 rps_limits(struct intel_rps *rps, u8 val)
598{
599	u32 limits;
600
601	/*
602	 * Only set the down limit when we've reached the lowest level to avoid
603	 * getting more interrupts, otherwise leave this clear. This prevents a
604	 * race in the hw when coming out of rc6: There's a tiny window where
605	 * the hw runs at the minimal clock before selecting the desired
606	 * frequency, if the down threshold expires in that window we will not
607	 * receive a down interrupt.
608	 */
609	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
610		limits = rps->max_freq_softlimit << 23;
611		if (val <= rps->min_freq_softlimit)
612			limits |= rps->min_freq_softlimit << 14;
613	} else {
614		limits = rps->max_freq_softlimit << 24;
615		if (val <= rps->min_freq_softlimit)
616			limits |= rps->min_freq_softlimit << 16;
617	}
618
619	return limits;
620}
621
622static void rps_set_power(struct intel_rps *rps, int new_power)
623{
624	struct intel_gt *gt = rps_to_gt(rps);
625	struct intel_uncore *uncore = gt->uncore;
626	u32 threshold_up = 0, threshold_down = 0; /* in % */
627	u32 ei_up = 0, ei_down = 0;
628
629	lockdep_assert_held(&rps->power.mutex);
630
631	if (new_power == rps->power.mode)
632		return;
633
634	threshold_up = 95;
635	threshold_down = 85;
636
637	/* Note the units here are not exactly 1us, but 1280ns. */
638	switch (new_power) {
639	case LOW_POWER:
640		ei_up = 16000;
641		ei_down = 32000;
642		break;
643
644	case BETWEEN:
645		ei_up = 13000;
646		ei_down = 32000;
647		break;
648
649	case HIGH_POWER:
650		ei_up = 10000;
651		ei_down = 32000;
652		break;
653	}
654
655	/* When byt can survive without system hang with dynamic
656	 * sw freq adjustments, this restriction can be lifted.
657	 */
658	if (IS_VALLEYVIEW(gt->i915))
659		goto skip_hw_write;
660
661	GT_TRACE(gt,
662		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
663		 new_power, threshold_up, ei_up, threshold_down, ei_down);
664
665	set(uncore, GEN6_RP_UP_EI,
666	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
667	set(uncore, GEN6_RP_UP_THRESHOLD,
668	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
669
670	set(uncore, GEN6_RP_DOWN_EI,
671	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
672	set(uncore, GEN6_RP_DOWN_THRESHOLD,
673	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
674
675	set(uncore, GEN6_RP_CONTROL,
676	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
677	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
678	    GEN6_RP_MEDIA_IS_GFX |
679	    GEN6_RP_ENABLE |
680	    GEN6_RP_UP_BUSY_AVG |
681	    GEN6_RP_DOWN_IDLE_AVG);
682
683skip_hw_write:
684	rps->power.mode = new_power;
685	rps->power.up_threshold = threshold_up;
686	rps->power.down_threshold = threshold_down;
687}
688
689static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
690{
691	int new_power;
692
693	new_power = rps->power.mode;
694	switch (rps->power.mode) {
695	case LOW_POWER:
696		if (val > rps->efficient_freq + 1 &&
697		    val > rps->cur_freq)
698			new_power = BETWEEN;
699		break;
700
701	case BETWEEN:
702		if (val <= rps->efficient_freq &&
703		    val < rps->cur_freq)
704			new_power = LOW_POWER;
705		else if (val >= rps->rp0_freq &&
706			 val > rps->cur_freq)
707			new_power = HIGH_POWER;
708		break;
709
710	case HIGH_POWER:
711		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
712		    val < rps->cur_freq)
713			new_power = BETWEEN;
714		break;
715	}
716	/* Max/min bins are special */
717	if (val <= rps->min_freq_softlimit)
718		new_power = LOW_POWER;
719	if (val >= rps->max_freq_softlimit)
720		new_power = HIGH_POWER;
721
722	mutex_lock(&rps->power.mutex);
723	if (rps->power.interactive)
724		new_power = HIGH_POWER;
725	rps_set_power(rps, new_power);
726	mutex_unlock(&rps->power.mutex);
727}
728
729void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
730{
731	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
732
733	mutex_lock(&rps->power.mutex);
734	if (interactive) {
735		if (!rps->power.interactive++ && intel_rps_is_active(rps))
736			rps_set_power(rps, HIGH_POWER);
737	} else {
738		GEM_BUG_ON(!rps->power.interactive);
739		rps->power.interactive--;
740	}
741	mutex_unlock(&rps->power.mutex);
742}
743
744static int gen6_rps_set(struct intel_rps *rps, u8 val)
745{
746	struct intel_uncore *uncore = rps_to_uncore(rps);
747	struct drm_i915_private *i915 = rps_to_i915(rps);
748	u32 swreq;
749
750	if (INTEL_GEN(i915) >= 9)
751		swreq = GEN9_FREQUENCY(val);
752	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
753		swreq = HSW_FREQUENCY(val);
754	else
755		swreq = (GEN6_FREQUENCY(val) |
756			 GEN6_OFFSET(0) |
757			 GEN6_AGGRESSIVE_TURBO);
758	set(uncore, GEN6_RPNSWREQ, swreq);
759
760	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
761		 val, intel_gpu_freq(rps, val), swreq);
762
763	return 0;
764}
765
766static int vlv_rps_set(struct intel_rps *rps, u8 val)
767{
768	struct drm_i915_private *i915 = rps_to_i915(rps);
769	int err;
770
771	vlv_punit_get(i915);
772	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
773	vlv_punit_put(i915);
774
775	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
776		 val, intel_gpu_freq(rps, val));
777
778	return err;
779}
780
781static int rps_set(struct intel_rps *rps, u8 val, bool update)
782{
783	struct drm_i915_private *i915 = rps_to_i915(rps);
784	int err;
785
786	if (INTEL_GEN(i915) < 6)
787		return 0;
788
789	if (val == rps->last_freq)
790		return 0;
791
792	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
793		err = vlv_rps_set(rps, val);
794	else
795		err = gen6_rps_set(rps, val);
796	if (err)
797		return err;
798
799	if (update)
800		gen6_rps_set_thresholds(rps, val);
801	rps->last_freq = val;
802
803	return 0;
804}
805
806void intel_rps_unpark(struct intel_rps *rps)
807{
808	if (!intel_rps_is_enabled(rps))
809		return;
810
811	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
812
813	/*
814	 * Use the user's desired frequency as a guide, but for better
815	 * performance, jump directly to RPe as our starting frequency.
816	 */
817	mutex_lock(&rps->lock);
818
819	intel_rps_set_active(rps);
820	intel_rps_set(rps,
821		      clamp(rps->cur_freq,
822			    rps->min_freq_softlimit,
823			    rps->max_freq_softlimit));
824
825	mutex_unlock(&rps->lock);
826
827	rps->pm_iir = 0;
828	if (intel_rps_has_interrupts(rps))
829		rps_enable_interrupts(rps);
830	if (intel_rps_uses_timer(rps))
831		rps_start_timer(rps);
832
833	if (IS_GEN(rps_to_i915(rps), 5))
834		gen5_rps_update(rps);
835}
836
837void intel_rps_park(struct intel_rps *rps)
838{
839	int adj;
840
841	if (!intel_rps_clear_active(rps))
842		return;
843
844	if (intel_rps_uses_timer(rps))
845		rps_stop_timer(rps);
846	if (intel_rps_has_interrupts(rps))
847		rps_disable_interrupts(rps);
848
849	if (rps->last_freq <= rps->idle_freq)
850		return;
851
852	/*
853	 * The punit delays the write of the frequency and voltage until it
854	 * determines the GPU is awake. During normal usage we don't want to
855	 * waste power changing the frequency if the GPU is sleeping (rc6).
856	 * However, the GPU and driver is now idle and we do not want to delay
857	 * switching to minimum voltage (reducing power whilst idle) as we do
858	 * not expect to be woken in the near future and so must flush the
859	 * change by waking the device.
860	 *
861	 * We choose to take the media powerwell (either would do to trick the
862	 * punit into committing the voltage change) as that takes a lot less
863	 * power than the render powerwell.
864	 */
865	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
866	rps_set(rps, rps->idle_freq, false);
867	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
868
869	/*
870	 * Since we will try and restart from the previously requested
871	 * frequency on unparking, treat this idle point as a downclock
872	 * interrupt and reduce the frequency for resume. If we park/unpark
873	 * more frequently than the rps worker can run, we will not respond
874	 * to any EI and never see a change in frequency.
875	 *
876	 * (Note we accommodate Cherryview's limitation of only using an
877	 * even bin by applying it to all.)
878	 */
879	adj = rps->last_adj;
880	if (adj < 0)
881		adj *= 2;
882	else /* CHV needs even encode values */
883		adj = -2;
884	rps->last_adj = adj;
885	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
886	if (rps->cur_freq < rps->efficient_freq) {
887		rps->cur_freq = rps->efficient_freq;
888		rps->last_adj = 0;
889	}
890
891	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
892}
893
894void intel_rps_boost(struct i915_request *rq)
895{
896	struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
897	unsigned long flags;
898
899	if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
900		return;
901
902	/* Serializes with i915_request_retire() */
903	spin_lock_irqsave(&rq->lock, flags);
904	if (!i915_request_has_waitboost(rq) &&
905	    !dma_fence_is_signaled_locked(&rq->fence)) {
906		set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
907
908		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
909			 rq->fence.context, rq->fence.seqno);
910
911		if (!atomic_fetch_inc(&rps->num_waiters) &&
912		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
913			schedule_work(&rps->work);
914
915		atomic_inc(&rps->boosts);
916	}
917	spin_unlock_irqrestore(&rq->lock, flags);
918}
919
920int intel_rps_set(struct intel_rps *rps, u8 val)
921{
922	int err;
923
924	lockdep_assert_held(&rps->lock);
925	GEM_BUG_ON(val > rps->max_freq);
926	GEM_BUG_ON(val < rps->min_freq);
927
928	if (intel_rps_is_active(rps)) {
929		err = rps_set(rps, val, true);
930		if (err)
931			return err;
932
933		/*
934		 * Make sure we continue to get interrupts
935		 * until we hit the minimum or maximum frequencies.
936		 */
937		if (intel_rps_has_interrupts(rps)) {
938			struct intel_uncore *uncore = rps_to_uncore(rps);
939
940			set(uncore,
941			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
942
943			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
944		}
945	}
946
947	rps->cur_freq = val;
948	return 0;
949}
950
951static void gen6_rps_init(struct intel_rps *rps)
952{
953	struct drm_i915_private *i915 = rps_to_i915(rps);
954	struct intel_uncore *uncore = rps_to_uncore(rps);
955
956	/* All of these values are in units of 50MHz */
957
958	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
959	if (IS_GEN9_LP(i915)) {
960		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
961
962		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
963		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
964		rps->min_freq = (rp_state_cap >>  0) & 0xff;
965	} else {
966		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
967
968		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
969		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
970		rps->min_freq = (rp_state_cap >> 16) & 0xff;
971	}
972
973	/* hw_max = RP0 until we check for overclocking */
974	rps->max_freq = rps->rp0_freq;
975
976	rps->efficient_freq = rps->rp1_freq;
977	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
978	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
979		u32 ddcc_status = 0;
980
981		if (sandybridge_pcode_read(i915,
982					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
983					   &ddcc_status, NULL) == 0)
984			rps->efficient_freq =
985				clamp_t(u8,
986					(ddcc_status >> 8) & 0xff,
987					rps->min_freq,
988					rps->max_freq);
989	}
990
991	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
992		/* Store the frequency values in 16.66 MHZ units, which is
993		 * the natural hardware unit for SKL
994		 */
995		rps->rp0_freq *= GEN9_FREQ_SCALER;
996		rps->rp1_freq *= GEN9_FREQ_SCALER;
997		rps->min_freq *= GEN9_FREQ_SCALER;
998		rps->max_freq *= GEN9_FREQ_SCALER;
999		rps->efficient_freq *= GEN9_FREQ_SCALER;
1000	}
1001}
1002
1003static bool rps_reset(struct intel_rps *rps)
1004{
1005	struct drm_i915_private *i915 = rps_to_i915(rps);
1006
1007	/* force a reset */
1008	rps->power.mode = -1;
1009	rps->last_freq = -1;
1010
1011	if (rps_set(rps, rps->min_freq, true)) {
1012		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1013		return false;
1014	}
1015
1016	rps->cur_freq = rps->min_freq;
1017	return true;
1018}
1019
1020/* See the Gen9_GT_PM_Programming_Guide doc for the below */
1021static bool gen9_rps_enable(struct intel_rps *rps)
1022{
1023	struct intel_gt *gt = rps_to_gt(rps);
1024	struct intel_uncore *uncore = gt->uncore;
1025
1026	/* Program defaults and thresholds for RPS */
1027	if (IS_GEN(gt->i915, 9))
1028		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1029				      GEN9_FREQUENCY(rps->rp1_freq));
1030
1031	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1032
1033	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1034
1035	return rps_reset(rps);
1036}
1037
1038static bool gen8_rps_enable(struct intel_rps *rps)
1039{
1040	struct intel_uncore *uncore = rps_to_uncore(rps);
1041
1042	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1043			      HSW_FREQUENCY(rps->rp1_freq));
1044
1045	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1046
1047	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1048
1049	return rps_reset(rps);
1050}
1051
1052static bool gen6_rps_enable(struct intel_rps *rps)
1053{
1054	struct intel_uncore *uncore = rps_to_uncore(rps);
1055
1056	/* Power down if completely idle for over 50ms */
1057	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1058	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1059
1060	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1061			  GEN6_PM_RP_DOWN_THRESHOLD |
1062			  GEN6_PM_RP_DOWN_TIMEOUT);
1063
1064	return rps_reset(rps);
1065}
1066
1067static int chv_rps_max_freq(struct intel_rps *rps)
1068{
1069	struct drm_i915_private *i915 = rps_to_i915(rps);
1070	struct intel_gt *gt = rps_to_gt(rps);
1071	u32 val;
1072
1073	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1074
1075	switch (gt->info.sseu.eu_total) {
1076	case 8:
1077		/* (2 * 4) config */
1078		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1079		break;
1080	case 12:
1081		/* (2 * 6) config */
1082		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1083		break;
1084	case 16:
1085		/* (2 * 8) config */
1086	default:
1087		/* Setting (2 * 8) Min RP0 for any other combination */
1088		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1089		break;
1090	}
1091
1092	return val & FB_GFX_FREQ_FUSE_MASK;
1093}
1094
1095static int chv_rps_rpe_freq(struct intel_rps *rps)
1096{
1097	struct drm_i915_private *i915 = rps_to_i915(rps);
1098	u32 val;
1099
1100	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1101	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1102
1103	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1104}
1105
1106static int chv_rps_guar_freq(struct intel_rps *rps)
1107{
1108	struct drm_i915_private *i915 = rps_to_i915(rps);
1109	u32 val;
1110
1111	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1112
1113	return val & FB_GFX_FREQ_FUSE_MASK;
1114}
1115
1116static u32 chv_rps_min_freq(struct intel_rps *rps)
1117{
1118	struct drm_i915_private *i915 = rps_to_i915(rps);
1119	u32 val;
1120
1121	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1122	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1123
1124	return val & FB_GFX_FREQ_FUSE_MASK;
1125}
1126
1127static bool chv_rps_enable(struct intel_rps *rps)
1128{
1129	struct intel_uncore *uncore = rps_to_uncore(rps);
1130	struct drm_i915_private *i915 = rps_to_i915(rps);
1131	u32 val;
1132
1133	/* 1: Program defaults and thresholds for RPS*/
1134	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1135	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1136	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1137	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1138	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1139
1140	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1141
1142	/* 2: Enable RPS */
1143	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1144			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1145			      GEN6_RP_MEDIA_IS_GFX |
1146			      GEN6_RP_ENABLE |
1147			      GEN6_RP_UP_BUSY_AVG |
1148			      GEN6_RP_DOWN_IDLE_AVG);
1149
1150	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1151			  GEN6_PM_RP_DOWN_THRESHOLD |
1152			  GEN6_PM_RP_DOWN_TIMEOUT);
1153
1154	/* Setting Fixed Bias */
1155	vlv_punit_get(i915);
1156
1157	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1158	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1159
1160	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1161
1162	vlv_punit_put(i915);
1163
1164	/* RPS code assumes GPLL is used */
1165	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1166		      "GPLL not enabled\n");
1167
1168	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1169	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1170
1171	return rps_reset(rps);
1172}
1173
1174static int vlv_rps_guar_freq(struct intel_rps *rps)
1175{
1176	struct drm_i915_private *i915 = rps_to_i915(rps);
1177	u32 val, rp1;
1178
1179	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1180
1181	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1182	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1183
1184	return rp1;
1185}
1186
1187static int vlv_rps_max_freq(struct intel_rps *rps)
1188{
1189	struct drm_i915_private *i915 = rps_to_i915(rps);
1190	u32 val, rp0;
1191
1192	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1193
1194	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1195	/* Clamp to max */
1196	rp0 = min_t(u32, rp0, 0xea);
1197
1198	return rp0;
1199}
1200
1201static int vlv_rps_rpe_freq(struct intel_rps *rps)
1202{
1203	struct drm_i915_private *i915 = rps_to_i915(rps);
1204	u32 val, rpe;
1205
1206	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1207	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1208	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1209	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1210
1211	return rpe;
1212}
1213
1214static int vlv_rps_min_freq(struct intel_rps *rps)
1215{
1216	struct drm_i915_private *i915 = rps_to_i915(rps);
1217	u32 val;
1218
1219	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1220	/*
1221	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1222	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1223	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1224	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1225	 * to make sure it matches what Punit accepts.
1226	 */
1227	return max_t(u32, val, 0xc0);
1228}
1229
1230static bool vlv_rps_enable(struct intel_rps *rps)
1231{
1232	struct intel_uncore *uncore = rps_to_uncore(rps);
1233	struct drm_i915_private *i915 = rps_to_i915(rps);
1234	u32 val;
1235
1236	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1237	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1238	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1239	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1240	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1241
1242	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1243
1244	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1245			      GEN6_RP_MEDIA_TURBO |
1246			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1247			      GEN6_RP_MEDIA_IS_GFX |
1248			      GEN6_RP_ENABLE |
1249			      GEN6_RP_UP_BUSY_AVG |
1250			      GEN6_RP_DOWN_IDLE_CONT);
1251
1252	/* WaGsvRC0ResidencyMethod:vlv */
1253	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1254
1255	vlv_punit_get(i915);
1256
1257	/* Setting Fixed Bias */
1258	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1259	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1260
1261	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1262
1263	vlv_punit_put(i915);
1264
1265	/* RPS code assumes GPLL is used */
1266	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1267		      "GPLL not enabled\n");
1268
1269	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1270	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1271
1272	return rps_reset(rps);
1273}
1274
1275static unsigned long __ips_gfx_val(struct intel_ips *ips)
1276{
1277	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1278	struct intel_uncore *uncore = rps_to_uncore(rps);
1279	unsigned long t, corr, state1, corr2, state2;
1280	u32 pxvid, ext_v;
1281
1282	lockdep_assert_held(&mchdev_lock);
1283
1284	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1285	pxvid = (pxvid >> 24) & 0x7f;
1286	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1287
1288	state1 = ext_v;
1289
1290	/* Revel in the empirically derived constants */
1291
1292	/* Correction factor in 1/100000 units */
1293	t = ips_mch_val(uncore);
1294	if (t > 80)
1295		corr = t * 2349 + 135940;
1296	else if (t >= 50)
1297		corr = t * 964 + 29317;
1298	else /* < 50 */
1299		corr = t * 301 + 1004;
1300
1301	corr = corr * 150142 * state1 / 10000 - 78642;
1302	corr /= 100000;
1303	corr2 = corr * ips->corr;
1304
1305	state2 = corr2 * state1 / 10000;
1306	state2 /= 100; /* convert to mW */
1307
1308	__gen5_ips_update(ips);
1309
1310	return ips->gfx_power + state2;
1311}
1312
1313static bool has_busy_stats(struct intel_rps *rps)
1314{
1315	struct intel_engine_cs *engine;
1316	enum intel_engine_id id;
1317
1318	for_each_engine(engine, rps_to_gt(rps), id) {
1319		if (!intel_engine_supports_stats(engine))
1320			return false;
1321	}
1322
1323	return true;
1324}
1325
1326void intel_rps_enable(struct intel_rps *rps)
1327{
1328	struct drm_i915_private *i915 = rps_to_i915(rps);
1329	struct intel_uncore *uncore = rps_to_uncore(rps);
1330	bool enabled = false;
1331
1332	if (!HAS_RPS(i915))
1333		return;
1334
1335	intel_gt_check_clock_frequency(rps_to_gt(rps));
1336
1337	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1338	if (rps->max_freq <= rps->min_freq)
1339		/* leave disabled, no room for dynamic reclocking */;
1340	else if (IS_CHERRYVIEW(i915))
1341		enabled = chv_rps_enable(rps);
1342	else if (IS_VALLEYVIEW(i915))
1343		enabled = vlv_rps_enable(rps);
1344	else if (INTEL_GEN(i915) >= 9)
1345		enabled = gen9_rps_enable(rps);
1346	else if (INTEL_GEN(i915) >= 8)
1347		enabled = gen8_rps_enable(rps);
1348	else if (INTEL_GEN(i915) >= 6)
1349		enabled = gen6_rps_enable(rps);
1350	else if (IS_IRONLAKE_M(i915))
1351		enabled = gen5_rps_enable(rps);
1352	else
1353		MISSING_CASE(INTEL_GEN(i915));
1354	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1355	if (!enabled)
1356		return;
1357
1358	GT_TRACE(rps_to_gt(rps),
1359		 "min:%x, max:%x, freq:[%d, %d]\n",
1360		 rps->min_freq, rps->max_freq,
1361		 intel_gpu_freq(rps, rps->min_freq),
1362		 intel_gpu_freq(rps, rps->max_freq));
1363
1364	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1365	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1366
1367	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1368	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1369
1370	if (has_busy_stats(rps))
1371		intel_rps_set_timer(rps);
1372	else if (INTEL_GEN(i915) >= 6)
1373		intel_rps_set_interrupts(rps);
1374	else
1375		/* Ironlake currently uses intel_ips.ko */ {}
1376
1377	intel_rps_set_enabled(rps);
1378}
1379
1380static void gen6_rps_disable(struct intel_rps *rps)
1381{
1382	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1383}
1384
1385void intel_rps_disable(struct intel_rps *rps)
1386{
1387	struct drm_i915_private *i915 = rps_to_i915(rps);
1388
1389	intel_rps_clear_enabled(rps);
1390	intel_rps_clear_interrupts(rps);
1391	intel_rps_clear_timer(rps);
1392
1393	if (INTEL_GEN(i915) >= 6)
1394		gen6_rps_disable(rps);
1395	else if (IS_IRONLAKE_M(i915))
1396		gen5_rps_disable(rps);
1397}
1398
1399static int byt_gpu_freq(struct intel_rps *rps, int val)
1400{
1401	/*
1402	 * N = val - 0xb7
1403	 * Slow = Fast = GPLL ref * N
1404	 */
1405	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1406}
1407
1408static int byt_freq_opcode(struct intel_rps *rps, int val)
1409{
1410	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1411}
1412
1413static int chv_gpu_freq(struct intel_rps *rps, int val)
1414{
1415	/*
1416	 * N = val / 2
1417	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1418	 */
1419	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1420}
1421
1422static int chv_freq_opcode(struct intel_rps *rps, int val)
1423{
1424	/* CHV needs even values */
1425	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1426}
1427
1428int intel_gpu_freq(struct intel_rps *rps, int val)
1429{
1430	struct drm_i915_private *i915 = rps_to_i915(rps);
1431
1432	if (INTEL_GEN(i915) >= 9)
1433		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1434					 GEN9_FREQ_SCALER);
1435	else if (IS_CHERRYVIEW(i915))
1436		return chv_gpu_freq(rps, val);
1437	else if (IS_VALLEYVIEW(i915))
1438		return byt_gpu_freq(rps, val);
1439	else
1440		return val * GT_FREQUENCY_MULTIPLIER;
1441}
1442
1443int intel_freq_opcode(struct intel_rps *rps, int val)
1444{
1445	struct drm_i915_private *i915 = rps_to_i915(rps);
1446
1447	if (INTEL_GEN(i915) >= 9)
1448		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1449					 GT_FREQUENCY_MULTIPLIER);
1450	else if (IS_CHERRYVIEW(i915))
1451		return chv_freq_opcode(rps, val);
1452	else if (IS_VALLEYVIEW(i915))
1453		return byt_freq_opcode(rps, val);
1454	else
1455		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1456}
1457
1458static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1459{
1460	struct drm_i915_private *i915 = rps_to_i915(rps);
1461
1462	rps->gpll_ref_freq =
1463		vlv_get_cck_clock(i915, "GPLL ref",
1464				  CCK_GPLL_CLOCK_CONTROL,
1465				  i915->czclk_freq);
1466
1467	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1468		rps->gpll_ref_freq);
1469}
1470
1471static void vlv_rps_init(struct intel_rps *rps)
1472{
1473	struct drm_i915_private *i915 = rps_to_i915(rps);
1474	u32 val;
1475
1476	vlv_iosf_sb_get(i915,
1477			BIT(VLV_IOSF_SB_PUNIT) |
1478			BIT(VLV_IOSF_SB_NC) |
1479			BIT(VLV_IOSF_SB_CCK));
1480
1481	vlv_init_gpll_ref_freq(rps);
1482
1483	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1484	switch ((val >> 6) & 3) {
1485	case 0:
1486	case 1:
1487		i915->mem_freq = 800;
1488		break;
1489	case 2:
1490		i915->mem_freq = 1066;
1491		break;
1492	case 3:
1493		i915->mem_freq = 1333;
1494		break;
1495	}
1496	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1497
1498	rps->max_freq = vlv_rps_max_freq(rps);
1499	rps->rp0_freq = rps->max_freq;
1500	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1501		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1502
1503	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1504	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1505		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1506
1507	rps->rp1_freq = vlv_rps_guar_freq(rps);
1508	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1509		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1510
1511	rps->min_freq = vlv_rps_min_freq(rps);
1512	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1513		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1514
1515	vlv_iosf_sb_put(i915,
1516			BIT(VLV_IOSF_SB_PUNIT) |
1517			BIT(VLV_IOSF_SB_NC) |
1518			BIT(VLV_IOSF_SB_CCK));
1519}
1520
1521static void chv_rps_init(struct intel_rps *rps)
1522{
1523	struct drm_i915_private *i915 = rps_to_i915(rps);
1524	u32 val;
1525
1526	vlv_iosf_sb_get(i915,
1527			BIT(VLV_IOSF_SB_PUNIT) |
1528			BIT(VLV_IOSF_SB_NC) |
1529			BIT(VLV_IOSF_SB_CCK));
1530
1531	vlv_init_gpll_ref_freq(rps);
1532
1533	val = vlv_cck_read(i915, CCK_FUSE_REG);
1534
1535	switch ((val >> 2) & 0x7) {
1536	case 3:
1537		i915->mem_freq = 2000;
1538		break;
1539	default:
1540		i915->mem_freq = 1600;
1541		break;
1542	}
1543	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1544
1545	rps->max_freq = chv_rps_max_freq(rps);
1546	rps->rp0_freq = rps->max_freq;
1547	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1548		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1549
1550	rps->efficient_freq = chv_rps_rpe_freq(rps);
1551	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1552		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1553
1554	rps->rp1_freq = chv_rps_guar_freq(rps);
1555	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1556		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1557
1558	rps->min_freq = chv_rps_min_freq(rps);
1559	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1560		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1561
1562	vlv_iosf_sb_put(i915,
1563			BIT(VLV_IOSF_SB_PUNIT) |
1564			BIT(VLV_IOSF_SB_NC) |
1565			BIT(VLV_IOSF_SB_CCK));
1566
1567	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1568				   rps->rp1_freq | rps->min_freq) & 1,
1569		      "Odd GPU freq values\n");
1570}
1571
1572static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1573{
1574	ei->ktime = ktime_get_raw();
1575	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1576	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1577}
1578
1579static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1580{
1581	struct intel_uncore *uncore = rps_to_uncore(rps);
1582	const struct intel_rps_ei *prev = &rps->ei;
1583	struct intel_rps_ei now;
1584	u32 events = 0;
1585
1586	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1587		return 0;
1588
1589	vlv_c0_read(uncore, &now);
1590
1591	if (prev->ktime) {
1592		u64 time, c0;
1593		u32 render, media;
1594
1595		time = ktime_us_delta(now.ktime, prev->ktime);
1596
1597		time *= rps_to_i915(rps)->czclk_freq;
1598
1599		/* Workload can be split between render + media,
1600		 * e.g. SwapBuffers being blitted in X after being rendered in
1601		 * mesa. To account for this we need to combine both engines
1602		 * into our activity counter.
1603		 */
1604		render = now.render_c0 - prev->render_c0;
1605		media = now.media_c0 - prev->media_c0;
1606		c0 = max(render, media);
1607		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1608
1609		if (c0 > time * rps->power.up_threshold)
1610			events = GEN6_PM_RP_UP_THRESHOLD;
1611		else if (c0 < time * rps->power.down_threshold)
1612			events = GEN6_PM_RP_DOWN_THRESHOLD;
1613	}
1614
1615	rps->ei = now;
1616	return events;
1617}
1618
1619static void rps_work(struct work_struct *work)
1620{
1621	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1622	struct intel_gt *gt = rps_to_gt(rps);
1623	struct drm_i915_private *i915 = rps_to_i915(rps);
1624	bool client_boost = false;
1625	int new_freq, adj, min, max;
1626	u32 pm_iir = 0;
1627
1628	spin_lock_irq(&gt->irq_lock);
1629	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1630	client_boost = atomic_read(&rps->num_waiters);
1631	spin_unlock_irq(&gt->irq_lock);
1632
1633	/* Make sure we didn't queue anything we're not going to process. */
1634	if (!pm_iir && !client_boost)
1635		goto out;
1636
1637	mutex_lock(&rps->lock);
1638	if (!intel_rps_is_active(rps)) {
1639		mutex_unlock(&rps->lock);
1640		return;
1641	}
1642
1643	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1644
1645	adj = rps->last_adj;
1646	new_freq = rps->cur_freq;
1647	min = rps->min_freq_softlimit;
1648	max = rps->max_freq_softlimit;
1649	if (client_boost)
1650		max = rps->max_freq;
1651
1652	GT_TRACE(gt,
1653		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1654		 pm_iir, yesno(client_boost),
1655		 adj, new_freq, min, max);
1656
1657	if (client_boost && new_freq < rps->boost_freq) {
1658		new_freq = rps->boost_freq;
1659		adj = 0;
1660	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1661		if (adj > 0)
1662			adj *= 2;
1663		else /* CHV needs even encode values */
1664			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1665
1666		if (new_freq >= rps->max_freq_softlimit)
1667			adj = 0;
1668	} else if (client_boost) {
1669		adj = 0;
1670	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1671		if (rps->cur_freq > rps->efficient_freq)
1672			new_freq = rps->efficient_freq;
1673		else if (rps->cur_freq > rps->min_freq_softlimit)
1674			new_freq = rps->min_freq_softlimit;
1675		adj = 0;
1676	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1677		if (adj < 0)
1678			adj *= 2;
1679		else /* CHV needs even encode values */
1680			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1681
1682		if (new_freq <= rps->min_freq_softlimit)
1683			adj = 0;
1684	} else { /* unknown event */
1685		adj = 0;
1686	}
1687
1688	/*
1689	 * sysfs frequency limits may have snuck in while
1690	 * servicing the interrupt
1691	 */
1692	new_freq += adj;
1693	new_freq = clamp_t(int, new_freq, min, max);
1694
1695	if (intel_rps_set(rps, new_freq)) {
1696		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1697		adj = 0;
1698	}
1699	rps->last_adj = adj;
1700
1701	mutex_unlock(&rps->lock);
1702
1703out:
1704	spin_lock_irq(&gt->irq_lock);
1705	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1706	spin_unlock_irq(&gt->irq_lock);
1707}
1708
1709void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1710{
1711	struct intel_gt *gt = rps_to_gt(rps);
1712	const u32 events = rps->pm_events & pm_iir;
1713
1714	lockdep_assert_held(&gt->irq_lock);
1715
1716	if (unlikely(!events))
1717		return;
1718
1719	GT_TRACE(gt, "irq events:%x\n", events);
1720
1721	gen6_gt_pm_mask_irq(gt, events);
1722
1723	rps->pm_iir |= events;
1724	schedule_work(&rps->work);
1725}
1726
1727void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1728{
1729	struct intel_gt *gt = rps_to_gt(rps);
1730	u32 events;
1731
1732	events = pm_iir & rps->pm_events;
1733	if (events) {
1734		spin_lock(&gt->irq_lock);
1735
1736		GT_TRACE(gt, "irq events:%x\n", events);
1737
1738		gen6_gt_pm_mask_irq(gt, events);
1739		rps->pm_iir |= events;
1740
1741		schedule_work(&rps->work);
1742		spin_unlock(&gt->irq_lock);
1743	}
1744
1745	if (INTEL_GEN(gt->i915) >= 8)
1746		return;
1747
1748	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1749		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1750
1751	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1752		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1753}
1754
1755void gen5_rps_irq_handler(struct intel_rps *rps)
1756{
1757	struct intel_uncore *uncore = rps_to_uncore(rps);
1758	u32 busy_up, busy_down, max_avg, min_avg;
1759	u8 new_freq;
1760
1761	spin_lock(&mchdev_lock);
1762
1763	intel_uncore_write16(uncore,
1764			     MEMINTRSTS,
1765			     intel_uncore_read(uncore, MEMINTRSTS));
1766
1767	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1768	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1769	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1770	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1771	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1772
1773	/* Handle RCS change request from hw */
1774	new_freq = rps->cur_freq;
1775	if (busy_up > max_avg)
1776		new_freq++;
1777	else if (busy_down < min_avg)
1778		new_freq--;
1779	new_freq = clamp(new_freq,
1780			 rps->min_freq_softlimit,
1781			 rps->max_freq_softlimit);
1782
1783	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1784		rps->cur_freq = new_freq;
1785
1786	spin_unlock(&mchdev_lock);
1787}
1788
1789void intel_rps_init_early(struct intel_rps *rps)
1790{
1791	mutex_init(&rps->lock);
1792	mutex_init(&rps->power.mutex);
1793
1794	INIT_WORK(&rps->work, rps_work);
1795	timer_setup(&rps->timer, rps_timer, 0);
1796
1797	atomic_set(&rps->num_waiters, 0);
1798}
1799
1800void intel_rps_init(struct intel_rps *rps)
1801{
1802	struct drm_i915_private *i915 = rps_to_i915(rps);
1803
1804	if (IS_CHERRYVIEW(i915))
1805		chv_rps_init(rps);
1806	else if (IS_VALLEYVIEW(i915))
1807		vlv_rps_init(rps);
1808	else if (INTEL_GEN(i915) >= 6)
1809		gen6_rps_init(rps);
1810	else if (IS_IRONLAKE_M(i915))
1811		gen5_rps_init(rps);
1812
1813	/* Derive initial user preferences/limits from the hardware limits */
1814	rps->max_freq_softlimit = rps->max_freq;
1815	rps->min_freq_softlimit = rps->min_freq;
1816
1817	/* After setting max-softlimit, find the overclock max freq */
1818	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1819		u32 params = 0;
1820
1821		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1822				       &params, NULL);
1823		if (params & BIT(31)) { /* OC supported */
1824			drm_dbg(&i915->drm,
1825				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1826				(rps->max_freq & 0xff) * 50,
1827				(params & 0xff) * 50);
1828			rps->max_freq = params & 0xff;
1829		}
1830	}
1831
1832	/* Finally allow us to boost to max by default */
1833	rps->boost_freq = rps->max_freq;
1834	rps->idle_freq = rps->min_freq;
1835
1836	/* Start in the middle, from here we will autotune based on workload */
1837	rps->cur_freq = rps->efficient_freq;
1838
1839	rps->pm_intrmsk_mbz = 0;
1840
1841	/*
1842	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1843	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1844	 *
1845	 * TODO: verify if this can be reproduced on VLV,CHV.
1846	 */
1847	if (INTEL_GEN(i915) <= 7)
1848		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1849
1850	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1851		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1852}
1853
1854void intel_rps_sanitize(struct intel_rps *rps)
1855{
1856	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1857		rps_disable_interrupts(rps);
1858}
1859
1860u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1861{
1862	struct drm_i915_private *i915 = rps_to_i915(rps);
1863	u32 cagf;
1864
1865	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1866		cagf = (rpstat >> 8) & 0xff;
1867	else if (INTEL_GEN(i915) >= 9)
1868		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1869	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1870		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1871	else
1872		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1873
1874	return cagf;
1875}
1876
1877static u32 read_cagf(struct intel_rps *rps)
1878{
1879	struct drm_i915_private *i915 = rps_to_i915(rps);
1880	u32 freq;
1881
1882	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1883		vlv_punit_get(i915);
1884		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1885		vlv_punit_put(i915);
1886	} else {
1887		freq = intel_uncore_read(rps_to_uncore(rps), GEN6_RPSTAT1);
1888	}
1889
1890	return intel_rps_get_cagf(rps, freq);
1891}
1892
1893u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1894{
1895	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1896	intel_wakeref_t wakeref;
1897	u32 freq = 0;
1898
1899	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1900		freq = intel_gpu_freq(rps, read_cagf(rps));
1901
1902	return freq;
1903}
1904
1905/* External interface for intel_ips.ko */
1906
1907static struct drm_i915_private __rcu *ips_mchdev;
1908
1909/**
1910 * Tells the intel_ips driver that the i915 driver is now loaded, if
1911 * IPS got loaded first.
1912 *
1913 * This awkward dance is so that neither module has to depend on the
1914 * other in order for IPS to do the appropriate communication of
1915 * GPU turbo limits to i915.
1916 */
1917static void
1918ips_ping_for_i915_load(void)
1919{
1920	void (*link)(void);
1921
1922	link = symbol_get(ips_link_to_i915_driver);
1923	if (link) {
1924		link();
1925		symbol_put(ips_link_to_i915_driver);
1926	}
1927}
1928
1929void intel_rps_driver_register(struct intel_rps *rps)
1930{
1931	struct intel_gt *gt = rps_to_gt(rps);
1932
1933	/*
1934	 * We only register the i915 ips part with intel-ips once everything is
1935	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1936	 */
1937	if (IS_GEN(gt->i915, 5)) {
1938		GEM_BUG_ON(ips_mchdev);
1939		rcu_assign_pointer(ips_mchdev, gt->i915);
1940		ips_ping_for_i915_load();
1941	}
1942}
1943
1944void intel_rps_driver_unregister(struct intel_rps *rps)
1945{
1946	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1947		rcu_assign_pointer(ips_mchdev, NULL);
1948}
1949
1950static struct drm_i915_private *mchdev_get(void)
1951{
1952	struct drm_i915_private *i915;
1953
1954	rcu_read_lock();
1955	i915 = rcu_dereference(ips_mchdev);
1956	if (!kref_get_unless_zero(&i915->drm.ref))
1957		i915 = NULL;
1958	rcu_read_unlock();
1959
1960	return i915;
1961}
1962
1963/**
1964 * i915_read_mch_val - return value for IPS use
1965 *
1966 * Calculate and return a value for the IPS driver to use when deciding whether
1967 * we have thermal and power headroom to increase CPU or GPU power budget.
1968 */
1969unsigned long i915_read_mch_val(void)
1970{
1971	struct drm_i915_private *i915;
1972	unsigned long chipset_val = 0;
1973	unsigned long graphics_val = 0;
1974	intel_wakeref_t wakeref;
1975
1976	i915 = mchdev_get();
1977	if (!i915)
1978		return 0;
1979
1980	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
1981		struct intel_ips *ips = &i915->gt.rps.ips;
1982
1983		spin_lock_irq(&mchdev_lock);
1984		chipset_val = __ips_chipset_val(ips);
1985		graphics_val = __ips_gfx_val(ips);
1986		spin_unlock_irq(&mchdev_lock);
1987	}
1988
1989	drm_dev_put(&i915->drm);
1990	return chipset_val + graphics_val;
1991}
1992EXPORT_SYMBOL_GPL(i915_read_mch_val);
1993
1994/**
1995 * i915_gpu_raise - raise GPU frequency limit
1996 *
1997 * Raise the limit; IPS indicates we have thermal headroom.
1998 */
1999bool i915_gpu_raise(void)
2000{
2001	struct drm_i915_private *i915;
2002	struct intel_rps *rps;
2003
2004	i915 = mchdev_get();
2005	if (!i915)
2006		return false;
2007
2008	rps = &i915->gt.rps;
2009
2010	spin_lock_irq(&mchdev_lock);
2011	if (rps->max_freq_softlimit < rps->max_freq)
2012		rps->max_freq_softlimit++;
2013	spin_unlock_irq(&mchdev_lock);
2014
2015	drm_dev_put(&i915->drm);
2016	return true;
2017}
2018EXPORT_SYMBOL_GPL(i915_gpu_raise);
2019
2020/**
2021 * i915_gpu_lower - lower GPU frequency limit
2022 *
2023 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2024 * frequency maximum.
2025 */
2026bool i915_gpu_lower(void)
2027{
2028	struct drm_i915_private *i915;
2029	struct intel_rps *rps;
2030
2031	i915 = mchdev_get();
2032	if (!i915)
2033		return false;
2034
2035	rps = &i915->gt.rps;
2036
2037	spin_lock_irq(&mchdev_lock);
2038	if (rps->max_freq_softlimit > rps->min_freq)
2039		rps->max_freq_softlimit--;
2040	spin_unlock_irq(&mchdev_lock);
2041
2042	drm_dev_put(&i915->drm);
2043	return true;
2044}
2045EXPORT_SYMBOL_GPL(i915_gpu_lower);
2046
2047/**
2048 * i915_gpu_busy - indicate GPU business to IPS
2049 *
2050 * Tell the IPS driver whether or not the GPU is busy.
2051 */
2052bool i915_gpu_busy(void)
2053{
2054	struct drm_i915_private *i915;
2055	bool ret;
2056
2057	i915 = mchdev_get();
2058	if (!i915)
2059		return false;
2060
2061	ret = i915->gt.awake;
2062
2063	drm_dev_put(&i915->drm);
2064	return ret;
2065}
2066EXPORT_SYMBOL_GPL(i915_gpu_busy);
2067
2068/**
2069 * i915_gpu_turbo_disable - disable graphics turbo
2070 *
2071 * Disable graphics turbo by resetting the max frequency and setting the
2072 * current frequency to the default.
2073 */
2074bool i915_gpu_turbo_disable(void)
2075{
2076	struct drm_i915_private *i915;
2077	struct intel_rps *rps;
2078	bool ret;
2079
2080	i915 = mchdev_get();
2081	if (!i915)
2082		return false;
2083
2084	rps = &i915->gt.rps;
2085
2086	spin_lock_irq(&mchdev_lock);
2087	rps->max_freq_softlimit = rps->min_freq;
2088	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
2089	spin_unlock_irq(&mchdev_lock);
2090
2091	drm_dev_put(&i915->drm);
2092	return ret;
2093}
2094EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2095
2096#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2097#include "selftest_rps.c"
2098#endif
2099