18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright © 2006-2011 Intel Corporation
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Authors:
68c2ecf20Sopenharmony_ci *	Eric Anholt <eric@anholt.net>
78c2ecf20Sopenharmony_ci */
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci#include <linux/delay.h>
108c2ecf20Sopenharmony_ci#include <linux/i2c.h>
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci#include <drm/drm_plane_helper.h>
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include "framebuffer.h"
158c2ecf20Sopenharmony_ci#include "gma_display.h"
168c2ecf20Sopenharmony_ci#include "power.h"
178c2ecf20Sopenharmony_ci#include "psb_drv.h"
188c2ecf20Sopenharmony_ci#include "psb_intel_drv.h"
198c2ecf20Sopenharmony_ci#include "psb_intel_reg.h"
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci#define INTEL_LIMIT_I9XX_SDVO_DAC   0
228c2ecf20Sopenharmony_ci#define INTEL_LIMIT_I9XX_LVDS	    1
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_cistatic const struct gma_limit_t psb_intel_limits[] = {
258c2ecf20Sopenharmony_ci	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
268c2ecf20Sopenharmony_ci	 .dot = {.min = 20000, .max = 400000},
278c2ecf20Sopenharmony_ci	 .vco = {.min = 1400000, .max = 2800000},
288c2ecf20Sopenharmony_ci	 .n = {.min = 1, .max = 6},
298c2ecf20Sopenharmony_ci	 .m = {.min = 70, .max = 120},
308c2ecf20Sopenharmony_ci	 .m1 = {.min = 8, .max = 18},
318c2ecf20Sopenharmony_ci	 .m2 = {.min = 3, .max = 7},
328c2ecf20Sopenharmony_ci	 .p = {.min = 5, .max = 80},
338c2ecf20Sopenharmony_ci	 .p1 = {.min = 1, .max = 8},
348c2ecf20Sopenharmony_ci	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
358c2ecf20Sopenharmony_ci	 .find_pll = gma_find_best_pll,
368c2ecf20Sopenharmony_ci	 },
378c2ecf20Sopenharmony_ci	{			/* INTEL_LIMIT_I9XX_LVDS */
388c2ecf20Sopenharmony_ci	 .dot = {.min = 20000, .max = 400000},
398c2ecf20Sopenharmony_ci	 .vco = {.min = 1400000, .max = 2800000},
408c2ecf20Sopenharmony_ci	 .n = {.min = 1, .max = 6},
418c2ecf20Sopenharmony_ci	 .m = {.min = 70, .max = 120},
428c2ecf20Sopenharmony_ci	 .m1 = {.min = 8, .max = 18},
438c2ecf20Sopenharmony_ci	 .m2 = {.min = 3, .max = 7},
448c2ecf20Sopenharmony_ci	 .p = {.min = 7, .max = 98},
458c2ecf20Sopenharmony_ci	 .p1 = {.min = 1, .max = 8},
468c2ecf20Sopenharmony_ci	 /* The single-channel range is 25-112Mhz, and dual-channel
478c2ecf20Sopenharmony_ci	  * is 80-224Mhz.  Prefer single channel as much as possible.
488c2ecf20Sopenharmony_ci	  */
498c2ecf20Sopenharmony_ci	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
508c2ecf20Sopenharmony_ci	 .find_pll = gma_find_best_pll,
518c2ecf20Sopenharmony_ci	 },
528c2ecf20Sopenharmony_ci};
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_cistatic const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
558c2ecf20Sopenharmony_ci						 int refclk)
568c2ecf20Sopenharmony_ci{
578c2ecf20Sopenharmony_ci	const struct gma_limit_t *limit;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
608c2ecf20Sopenharmony_ci		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
618c2ecf20Sopenharmony_ci	else
628c2ecf20Sopenharmony_ci		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
638c2ecf20Sopenharmony_ci	return limit;
648c2ecf20Sopenharmony_ci}
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_cistatic void psb_intel_clock(int refclk, struct gma_clock_t *clock)
678c2ecf20Sopenharmony_ci{
688c2ecf20Sopenharmony_ci	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
698c2ecf20Sopenharmony_ci	clock->p = clock->p1 * clock->p2;
708c2ecf20Sopenharmony_ci	clock->vco = refclk * clock->m / (clock->n + 2);
718c2ecf20Sopenharmony_ci	clock->dot = clock->vco / clock->p;
728c2ecf20Sopenharmony_ci}
738c2ecf20Sopenharmony_ci
748c2ecf20Sopenharmony_ci/**
758c2ecf20Sopenharmony_ci * Return the pipe currently connected to the panel fitter,
768c2ecf20Sopenharmony_ci * or -1 if the panel fitter is not present or not in use
778c2ecf20Sopenharmony_ci */
788c2ecf20Sopenharmony_cistatic int psb_intel_panel_fitter_pipe(struct drm_device *dev)
798c2ecf20Sopenharmony_ci{
808c2ecf20Sopenharmony_ci	u32 pfit_control;
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci	pfit_control = REG_READ(PFIT_CONTROL);
838c2ecf20Sopenharmony_ci
848c2ecf20Sopenharmony_ci	/* See if the panel fitter is in use */
858c2ecf20Sopenharmony_ci	if ((pfit_control & PFIT_ENABLE) == 0)
868c2ecf20Sopenharmony_ci		return -1;
878c2ecf20Sopenharmony_ci	/* Must be on PIPE 1 for PSB */
888c2ecf20Sopenharmony_ci	return 1;
898c2ecf20Sopenharmony_ci}
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_cistatic int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
928c2ecf20Sopenharmony_ci			       struct drm_display_mode *mode,
938c2ecf20Sopenharmony_ci			       struct drm_display_mode *adjusted_mode,
948c2ecf20Sopenharmony_ci			       int x, int y,
958c2ecf20Sopenharmony_ci			       struct drm_framebuffer *old_fb)
968c2ecf20Sopenharmony_ci{
978c2ecf20Sopenharmony_ci	struct drm_device *dev = crtc->dev;
988c2ecf20Sopenharmony_ci	struct drm_psb_private *dev_priv = dev->dev_private;
998c2ecf20Sopenharmony_ci	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1008c2ecf20Sopenharmony_ci	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1018c2ecf20Sopenharmony_ci	int pipe = gma_crtc->pipe;
1028c2ecf20Sopenharmony_ci	const struct psb_offset *map = &dev_priv->regmap[pipe];
1038c2ecf20Sopenharmony_ci	int refclk;
1048c2ecf20Sopenharmony_ci	struct gma_clock_t clock;
1058c2ecf20Sopenharmony_ci	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1068c2ecf20Sopenharmony_ci	bool ok, is_sdvo = false;
1078c2ecf20Sopenharmony_ci	bool is_lvds = false, is_tv = false;
1088c2ecf20Sopenharmony_ci	struct drm_mode_config *mode_config = &dev->mode_config;
1098c2ecf20Sopenharmony_ci	struct drm_connector *connector;
1108c2ecf20Sopenharmony_ci	const struct gma_limit_t *limit;
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	/* No scan out no play */
1138c2ecf20Sopenharmony_ci	if (crtc->primary->fb == NULL) {
1148c2ecf20Sopenharmony_ci		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
1158c2ecf20Sopenharmony_ci		return 0;
1168c2ecf20Sopenharmony_ci	}
1178c2ecf20Sopenharmony_ci
1188c2ecf20Sopenharmony_ci	list_for_each_entry(connector, &mode_config->connector_list, head) {
1198c2ecf20Sopenharmony_ci		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci		if (!connector->encoder
1228c2ecf20Sopenharmony_ci		    || connector->encoder->crtc != crtc)
1238c2ecf20Sopenharmony_ci			continue;
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci		switch (gma_encoder->type) {
1268c2ecf20Sopenharmony_ci		case INTEL_OUTPUT_LVDS:
1278c2ecf20Sopenharmony_ci			is_lvds = true;
1288c2ecf20Sopenharmony_ci			break;
1298c2ecf20Sopenharmony_ci		case INTEL_OUTPUT_SDVO:
1308c2ecf20Sopenharmony_ci			is_sdvo = true;
1318c2ecf20Sopenharmony_ci			break;
1328c2ecf20Sopenharmony_ci		case INTEL_OUTPUT_TVOUT:
1338c2ecf20Sopenharmony_ci			is_tv = true;
1348c2ecf20Sopenharmony_ci			break;
1358c2ecf20Sopenharmony_ci		}
1368c2ecf20Sopenharmony_ci	}
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci	refclk = 96000;
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
1438c2ecf20Sopenharmony_ci				 &clock);
1448c2ecf20Sopenharmony_ci	if (!ok) {
1458c2ecf20Sopenharmony_ci		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
1468c2ecf20Sopenharmony_ci			  adjusted_mode->clock, clock.dot);
1478c2ecf20Sopenharmony_ci		return 0;
1488c2ecf20Sopenharmony_ci	}
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
1518c2ecf20Sopenharmony_ci
1528c2ecf20Sopenharmony_ci	dpll = DPLL_VGA_MODE_DIS;
1538c2ecf20Sopenharmony_ci	if (is_lvds) {
1548c2ecf20Sopenharmony_ci		dpll |= DPLLB_MODE_LVDS;
1558c2ecf20Sopenharmony_ci		dpll |= DPLL_DVO_HIGH_SPEED;
1568c2ecf20Sopenharmony_ci	} else
1578c2ecf20Sopenharmony_ci		dpll |= DPLLB_MODE_DAC_SERIAL;
1588c2ecf20Sopenharmony_ci	if (is_sdvo) {
1598c2ecf20Sopenharmony_ci		int sdvo_pixel_multiply =
1608c2ecf20Sopenharmony_ci			    adjusted_mode->clock / mode->clock;
1618c2ecf20Sopenharmony_ci		dpll |= DPLL_DVO_HIGH_SPEED;
1628c2ecf20Sopenharmony_ci		dpll |=
1638c2ecf20Sopenharmony_ci		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
1648c2ecf20Sopenharmony_ci	}
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_ci	/* compute bitmask from p1 value */
1678c2ecf20Sopenharmony_ci	dpll |= (1 << (clock.p1 - 1)) << 16;
1688c2ecf20Sopenharmony_ci	switch (clock.p2) {
1698c2ecf20Sopenharmony_ci	case 5:
1708c2ecf20Sopenharmony_ci		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1718c2ecf20Sopenharmony_ci		break;
1728c2ecf20Sopenharmony_ci	case 7:
1738c2ecf20Sopenharmony_ci		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1748c2ecf20Sopenharmony_ci		break;
1758c2ecf20Sopenharmony_ci	case 10:
1768c2ecf20Sopenharmony_ci		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1778c2ecf20Sopenharmony_ci		break;
1788c2ecf20Sopenharmony_ci	case 14:
1798c2ecf20Sopenharmony_ci		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1808c2ecf20Sopenharmony_ci		break;
1818c2ecf20Sopenharmony_ci	}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_ci	if (is_tv) {
1848c2ecf20Sopenharmony_ci		/* XXX: just matching BIOS for now */
1858c2ecf20Sopenharmony_ci/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
1868c2ecf20Sopenharmony_ci		dpll |= 3;
1878c2ecf20Sopenharmony_ci	}
1888c2ecf20Sopenharmony_ci	dpll |= PLL_REF_INPUT_DREFCLK;
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	/* setup pipeconf */
1918c2ecf20Sopenharmony_ci	pipeconf = REG_READ(map->conf);
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_ci	/* Set up the display plane register */
1948c2ecf20Sopenharmony_ci	dspcntr = DISPPLANE_GAMMA_ENABLE;
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	if (pipe == 0)
1978c2ecf20Sopenharmony_ci		dspcntr |= DISPPLANE_SEL_PIPE_A;
1988c2ecf20Sopenharmony_ci	else
1998c2ecf20Sopenharmony_ci		dspcntr |= DISPPLANE_SEL_PIPE_B;
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci	dspcntr |= DISPLAY_PLANE_ENABLE;
2028c2ecf20Sopenharmony_ci	pipeconf |= PIPEACONF_ENABLE;
2038c2ecf20Sopenharmony_ci	dpll |= DPLL_VCO_ENABLE;
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci	/* Disable the panel fitter if it was on our pipe */
2078c2ecf20Sopenharmony_ci	if (psb_intel_panel_fitter_pipe(dev) == pipe)
2088c2ecf20Sopenharmony_ci		REG_WRITE(PFIT_CONTROL, 0);
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci	drm_mode_debug_printmodeline(mode);
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci	if (dpll & DPLL_VCO_ENABLE) {
2138c2ecf20Sopenharmony_ci		REG_WRITE(map->fp0, fp);
2148c2ecf20Sopenharmony_ci		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
2158c2ecf20Sopenharmony_ci		REG_READ(map->dpll);
2168c2ecf20Sopenharmony_ci		udelay(150);
2178c2ecf20Sopenharmony_ci	}
2188c2ecf20Sopenharmony_ci
2198c2ecf20Sopenharmony_ci	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
2208c2ecf20Sopenharmony_ci	 * This is an exception to the general rule that mode_set doesn't turn
2218c2ecf20Sopenharmony_ci	 * things on.
2228c2ecf20Sopenharmony_ci	 */
2238c2ecf20Sopenharmony_ci	if (is_lvds) {
2248c2ecf20Sopenharmony_ci		u32 lvds = REG_READ(LVDS);
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci		lvds &= ~LVDS_PIPEB_SELECT;
2278c2ecf20Sopenharmony_ci		if (pipe == 1)
2288c2ecf20Sopenharmony_ci			lvds |= LVDS_PIPEB_SELECT;
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
2318c2ecf20Sopenharmony_ci		/* Set the B0-B3 data pairs corresponding to
2328c2ecf20Sopenharmony_ci		 * whether we're going to
2338c2ecf20Sopenharmony_ci		 * set the DPLLs for dual-channel mode or not.
2348c2ecf20Sopenharmony_ci		 */
2358c2ecf20Sopenharmony_ci		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2368c2ecf20Sopenharmony_ci		if (clock.p2 == 7)
2378c2ecf20Sopenharmony_ci			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2408c2ecf20Sopenharmony_ci		 * appropriately here, but we need to look more
2418c2ecf20Sopenharmony_ci		 * thoroughly into how panels behave in the two modes.
2428c2ecf20Sopenharmony_ci		 */
2438c2ecf20Sopenharmony_ci
2448c2ecf20Sopenharmony_ci		REG_WRITE(LVDS, lvds);
2458c2ecf20Sopenharmony_ci		REG_READ(LVDS);
2468c2ecf20Sopenharmony_ci	}
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	REG_WRITE(map->fp0, fp);
2498c2ecf20Sopenharmony_ci	REG_WRITE(map->dpll, dpll);
2508c2ecf20Sopenharmony_ci	REG_READ(map->dpll);
2518c2ecf20Sopenharmony_ci	/* Wait for the clocks to stabilize. */
2528c2ecf20Sopenharmony_ci	udelay(150);
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_ci	/* write it again -- the BIOS does, after all */
2558c2ecf20Sopenharmony_ci	REG_WRITE(map->dpll, dpll);
2568c2ecf20Sopenharmony_ci
2578c2ecf20Sopenharmony_ci	REG_READ(map->dpll);
2588c2ecf20Sopenharmony_ci	/* Wait for the clocks to stabilize. */
2598c2ecf20Sopenharmony_ci	udelay(150);
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
2628c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_htotal - 1) << 16));
2638c2ecf20Sopenharmony_ci	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
2648c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
2658c2ecf20Sopenharmony_ci	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
2668c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
2678c2ecf20Sopenharmony_ci	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
2688c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_vtotal - 1) << 16));
2698c2ecf20Sopenharmony_ci	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
2708c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
2718c2ecf20Sopenharmony_ci	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
2728c2ecf20Sopenharmony_ci		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
2738c2ecf20Sopenharmony_ci	/* pipesrc and dspsize control the size that is scaled from,
2748c2ecf20Sopenharmony_ci	 * which should always be the user's requested size.
2758c2ecf20Sopenharmony_ci	 */
2768c2ecf20Sopenharmony_ci	REG_WRITE(map->size,
2778c2ecf20Sopenharmony_ci		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
2788c2ecf20Sopenharmony_ci	REG_WRITE(map->pos, 0);
2798c2ecf20Sopenharmony_ci	REG_WRITE(map->src,
2808c2ecf20Sopenharmony_ci		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2818c2ecf20Sopenharmony_ci	REG_WRITE(map->conf, pipeconf);
2828c2ecf20Sopenharmony_ci	REG_READ(map->conf);
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_ci	gma_wait_for_vblank(dev);
2858c2ecf20Sopenharmony_ci
2868c2ecf20Sopenharmony_ci	REG_WRITE(map->cntr, dspcntr);
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ci	/* Flush the plane changes */
2898c2ecf20Sopenharmony_ci	crtc_funcs->mode_set_base(crtc, x, y, old_fb);
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	gma_wait_for_vblank(dev);
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	return 0;
2948c2ecf20Sopenharmony_ci}
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci/* Returns the clock of the currently programmed mode of the given pipe. */
2978c2ecf20Sopenharmony_cistatic int psb_intel_crtc_clock_get(struct drm_device *dev,
2988c2ecf20Sopenharmony_ci				struct drm_crtc *crtc)
2998c2ecf20Sopenharmony_ci{
3008c2ecf20Sopenharmony_ci	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
3018c2ecf20Sopenharmony_ci	struct drm_psb_private *dev_priv = dev->dev_private;
3028c2ecf20Sopenharmony_ci	int pipe = gma_crtc->pipe;
3038c2ecf20Sopenharmony_ci	const struct psb_offset *map = &dev_priv->regmap[pipe];
3048c2ecf20Sopenharmony_ci	u32 dpll;
3058c2ecf20Sopenharmony_ci	u32 fp;
3068c2ecf20Sopenharmony_ci	struct gma_clock_t clock;
3078c2ecf20Sopenharmony_ci	bool is_lvds;
3088c2ecf20Sopenharmony_ci	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci	if (gma_power_begin(dev, false)) {
3118c2ecf20Sopenharmony_ci		dpll = REG_READ(map->dpll);
3128c2ecf20Sopenharmony_ci		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3138c2ecf20Sopenharmony_ci			fp = REG_READ(map->fp0);
3148c2ecf20Sopenharmony_ci		else
3158c2ecf20Sopenharmony_ci			fp = REG_READ(map->fp1);
3168c2ecf20Sopenharmony_ci		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
3178c2ecf20Sopenharmony_ci		gma_power_end(dev);
3188c2ecf20Sopenharmony_ci	} else {
3198c2ecf20Sopenharmony_ci		dpll = p->dpll;
3208c2ecf20Sopenharmony_ci
3218c2ecf20Sopenharmony_ci		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3228c2ecf20Sopenharmony_ci			fp = p->fp0;
3238c2ecf20Sopenharmony_ci		else
3248c2ecf20Sopenharmony_ci		        fp = p->fp1;
3258c2ecf20Sopenharmony_ci
3268c2ecf20Sopenharmony_ci		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
3278c2ecf20Sopenharmony_ci								LVDS_PORT_EN);
3288c2ecf20Sopenharmony_ci	}
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ci	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3318c2ecf20Sopenharmony_ci	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3328c2ecf20Sopenharmony_ci	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_ci	if (is_lvds) {
3358c2ecf20Sopenharmony_ci		clock.p1 =
3368c2ecf20Sopenharmony_ci		    ffs((dpll &
3378c2ecf20Sopenharmony_ci			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3388c2ecf20Sopenharmony_ci			DPLL_FPA01_P1_POST_DIV_SHIFT);
3398c2ecf20Sopenharmony_ci		clock.p2 = 14;
3408c2ecf20Sopenharmony_ci
3418c2ecf20Sopenharmony_ci		if ((dpll & PLL_REF_INPUT_MASK) ==
3428c2ecf20Sopenharmony_ci		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3438c2ecf20Sopenharmony_ci			/* XXX: might not be 66MHz */
3448c2ecf20Sopenharmony_ci			psb_intel_clock(66000, &clock);
3458c2ecf20Sopenharmony_ci		} else
3468c2ecf20Sopenharmony_ci			psb_intel_clock(48000, &clock);
3478c2ecf20Sopenharmony_ci	} else {
3488c2ecf20Sopenharmony_ci		if (dpll & PLL_P1_DIVIDE_BY_TWO)
3498c2ecf20Sopenharmony_ci			clock.p1 = 2;
3508c2ecf20Sopenharmony_ci		else {
3518c2ecf20Sopenharmony_ci			clock.p1 =
3528c2ecf20Sopenharmony_ci			    ((dpll &
3538c2ecf20Sopenharmony_ci			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3548c2ecf20Sopenharmony_ci			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3558c2ecf20Sopenharmony_ci		}
3568c2ecf20Sopenharmony_ci		if (dpll & PLL_P2_DIVIDE_BY_4)
3578c2ecf20Sopenharmony_ci			clock.p2 = 4;
3588c2ecf20Sopenharmony_ci		else
3598c2ecf20Sopenharmony_ci			clock.p2 = 2;
3608c2ecf20Sopenharmony_ci
3618c2ecf20Sopenharmony_ci		psb_intel_clock(48000, &clock);
3628c2ecf20Sopenharmony_ci	}
3638c2ecf20Sopenharmony_ci
3648c2ecf20Sopenharmony_ci	/* XXX: It would be nice to validate the clocks, but we can't reuse
3658c2ecf20Sopenharmony_ci	 * i830PllIsValid() because it relies on the xf86_config connector
3668c2ecf20Sopenharmony_ci	 * configuration being accurate, which it isn't necessarily.
3678c2ecf20Sopenharmony_ci	 */
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci	return clock.dot;
3708c2ecf20Sopenharmony_ci}
3718c2ecf20Sopenharmony_ci
3728c2ecf20Sopenharmony_ci/** Returns the currently programmed mode of the given pipe. */
3738c2ecf20Sopenharmony_cistruct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
3748c2ecf20Sopenharmony_ci					     struct drm_crtc *crtc)
3758c2ecf20Sopenharmony_ci{
3768c2ecf20Sopenharmony_ci	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
3778c2ecf20Sopenharmony_ci	int pipe = gma_crtc->pipe;
3788c2ecf20Sopenharmony_ci	struct drm_display_mode *mode;
3798c2ecf20Sopenharmony_ci	int htot;
3808c2ecf20Sopenharmony_ci	int hsync;
3818c2ecf20Sopenharmony_ci	int vtot;
3828c2ecf20Sopenharmony_ci	int vsync;
3838c2ecf20Sopenharmony_ci	struct drm_psb_private *dev_priv = dev->dev_private;
3848c2ecf20Sopenharmony_ci	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
3858c2ecf20Sopenharmony_ci	const struct psb_offset *map = &dev_priv->regmap[pipe];
3868c2ecf20Sopenharmony_ci
3878c2ecf20Sopenharmony_ci	if (gma_power_begin(dev, false)) {
3888c2ecf20Sopenharmony_ci		htot = REG_READ(map->htotal);
3898c2ecf20Sopenharmony_ci		hsync = REG_READ(map->hsync);
3908c2ecf20Sopenharmony_ci		vtot = REG_READ(map->vtotal);
3918c2ecf20Sopenharmony_ci		vsync = REG_READ(map->vsync);
3928c2ecf20Sopenharmony_ci		gma_power_end(dev);
3938c2ecf20Sopenharmony_ci	} else {
3948c2ecf20Sopenharmony_ci		htot = p->htotal;
3958c2ecf20Sopenharmony_ci		hsync = p->hsync;
3968c2ecf20Sopenharmony_ci		vtot = p->vtotal;
3978c2ecf20Sopenharmony_ci		vsync = p->vsync;
3988c2ecf20Sopenharmony_ci	}
3998c2ecf20Sopenharmony_ci
4008c2ecf20Sopenharmony_ci	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4018c2ecf20Sopenharmony_ci	if (!mode)
4028c2ecf20Sopenharmony_ci		return NULL;
4038c2ecf20Sopenharmony_ci
4048c2ecf20Sopenharmony_ci	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
4058c2ecf20Sopenharmony_ci	mode->hdisplay = (htot & 0xffff) + 1;
4068c2ecf20Sopenharmony_ci	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4078c2ecf20Sopenharmony_ci	mode->hsync_start = (hsync & 0xffff) + 1;
4088c2ecf20Sopenharmony_ci	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4098c2ecf20Sopenharmony_ci	mode->vdisplay = (vtot & 0xffff) + 1;
4108c2ecf20Sopenharmony_ci	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4118c2ecf20Sopenharmony_ci	mode->vsync_start = (vsync & 0xffff) + 1;
4128c2ecf20Sopenharmony_ci	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci	drm_mode_set_name(mode);
4158c2ecf20Sopenharmony_ci	drm_mode_set_crtcinfo(mode, 0);
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci	return mode;
4188c2ecf20Sopenharmony_ci}
4198c2ecf20Sopenharmony_ci
4208c2ecf20Sopenharmony_ciconst struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
4218c2ecf20Sopenharmony_ci	.dpms = gma_crtc_dpms,
4228c2ecf20Sopenharmony_ci	.mode_set = psb_intel_crtc_mode_set,
4238c2ecf20Sopenharmony_ci	.mode_set_base = gma_pipe_set_base,
4248c2ecf20Sopenharmony_ci	.prepare = gma_crtc_prepare,
4258c2ecf20Sopenharmony_ci	.commit = gma_crtc_commit,
4268c2ecf20Sopenharmony_ci	.disable = gma_crtc_disable,
4278c2ecf20Sopenharmony_ci};
4288c2ecf20Sopenharmony_ci
4298c2ecf20Sopenharmony_ciconst struct drm_crtc_funcs psb_intel_crtc_funcs = {
4308c2ecf20Sopenharmony_ci	.cursor_set = gma_crtc_cursor_set,
4318c2ecf20Sopenharmony_ci	.cursor_move = gma_crtc_cursor_move,
4328c2ecf20Sopenharmony_ci	.gamma_set = gma_crtc_gamma_set,
4338c2ecf20Sopenharmony_ci	.set_config = gma_crtc_set_config,
4348c2ecf20Sopenharmony_ci	.destroy = gma_crtc_destroy,
4358c2ecf20Sopenharmony_ci	.page_flip = gma_crtc_page_flip,
4368c2ecf20Sopenharmony_ci	.enable_vblank = psb_enable_vblank,
4378c2ecf20Sopenharmony_ci	.disable_vblank = psb_disable_vblank,
4388c2ecf20Sopenharmony_ci	.get_vblank_counter = psb_get_vblank_counter,
4398c2ecf20Sopenharmony_ci};
4408c2ecf20Sopenharmony_ci
4418c2ecf20Sopenharmony_ciconst struct gma_clock_funcs psb_clock_funcs = {
4428c2ecf20Sopenharmony_ci	.clock = psb_intel_clock,
4438c2ecf20Sopenharmony_ci	.limit = psb_intel_limit,
4448c2ecf20Sopenharmony_ci	.pll_is_valid = gma_pll_is_valid,
4458c2ecf20Sopenharmony_ci};
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci/*
4488c2ecf20Sopenharmony_ci * Set the default value of cursor control and base register
4498c2ecf20Sopenharmony_ci * to zero. This is a workaround for h/w defect on Oaktrail
4508c2ecf20Sopenharmony_ci */
4518c2ecf20Sopenharmony_cistatic void psb_intel_cursor_init(struct drm_device *dev,
4528c2ecf20Sopenharmony_ci				  struct gma_crtc *gma_crtc)
4538c2ecf20Sopenharmony_ci{
4548c2ecf20Sopenharmony_ci	struct drm_psb_private *dev_priv = dev->dev_private;
4558c2ecf20Sopenharmony_ci	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
4568c2ecf20Sopenharmony_ci	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
4578c2ecf20Sopenharmony_ci	struct gtt_range *cursor_gt;
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_ci	if (dev_priv->ops->cursor_needs_phys) {
4608c2ecf20Sopenharmony_ci		/* Allocate 4 pages of stolen mem for a hardware cursor. That
4618c2ecf20Sopenharmony_ci		 * is enough for the 64 x 64 ARGB cursors we support.
4628c2ecf20Sopenharmony_ci		 */
4638c2ecf20Sopenharmony_ci		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
4648c2ecf20Sopenharmony_ci						PAGE_SIZE);
4658c2ecf20Sopenharmony_ci		if (!cursor_gt) {
4668c2ecf20Sopenharmony_ci			gma_crtc->cursor_gt = NULL;
4678c2ecf20Sopenharmony_ci			goto out;
4688c2ecf20Sopenharmony_ci		}
4698c2ecf20Sopenharmony_ci		gma_crtc->cursor_gt = cursor_gt;
4708c2ecf20Sopenharmony_ci		gma_crtc->cursor_addr = dev_priv->stolen_base +
4718c2ecf20Sopenharmony_ci							cursor_gt->offset;
4728c2ecf20Sopenharmony_ci	} else {
4738c2ecf20Sopenharmony_ci		gma_crtc->cursor_gt = NULL;
4748c2ecf20Sopenharmony_ci	}
4758c2ecf20Sopenharmony_ci
4768c2ecf20Sopenharmony_ciout:
4778c2ecf20Sopenharmony_ci	REG_WRITE(control[gma_crtc->pipe], 0);
4788c2ecf20Sopenharmony_ci	REG_WRITE(base[gma_crtc->pipe], 0);
4798c2ecf20Sopenharmony_ci}
4808c2ecf20Sopenharmony_ci
4818c2ecf20Sopenharmony_civoid psb_intel_crtc_init(struct drm_device *dev, int pipe,
4828c2ecf20Sopenharmony_ci		     struct psb_intel_mode_device *mode_dev)
4838c2ecf20Sopenharmony_ci{
4848c2ecf20Sopenharmony_ci	struct drm_psb_private *dev_priv = dev->dev_private;
4858c2ecf20Sopenharmony_ci	struct gma_crtc *gma_crtc;
4868c2ecf20Sopenharmony_ci	int i;
4878c2ecf20Sopenharmony_ci
4888c2ecf20Sopenharmony_ci	/* We allocate a extra array of drm_connector pointers
4898c2ecf20Sopenharmony_ci	 * for fbdev after the crtc */
4908c2ecf20Sopenharmony_ci	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
4918c2ecf20Sopenharmony_ci			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
4928c2ecf20Sopenharmony_ci			GFP_KERNEL);
4938c2ecf20Sopenharmony_ci	if (gma_crtc == NULL)
4948c2ecf20Sopenharmony_ci		return;
4958c2ecf20Sopenharmony_ci
4968c2ecf20Sopenharmony_ci	gma_crtc->crtc_state =
4978c2ecf20Sopenharmony_ci		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
4988c2ecf20Sopenharmony_ci	if (!gma_crtc->crtc_state) {
4998c2ecf20Sopenharmony_ci		dev_err(dev->dev, "Crtc state error: No memory\n");
5008c2ecf20Sopenharmony_ci		kfree(gma_crtc);
5018c2ecf20Sopenharmony_ci		return;
5028c2ecf20Sopenharmony_ci	}
5038c2ecf20Sopenharmony_ci
5048c2ecf20Sopenharmony_ci	/* Set the CRTC operations from the chip specific data */
5058c2ecf20Sopenharmony_ci	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
5068c2ecf20Sopenharmony_ci
5078c2ecf20Sopenharmony_ci	/* Set the CRTC clock functions from chip specific data */
5088c2ecf20Sopenharmony_ci	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
5118c2ecf20Sopenharmony_ci	gma_crtc->pipe = pipe;
5128c2ecf20Sopenharmony_ci	gma_crtc->plane = pipe;
5138c2ecf20Sopenharmony_ci
5148c2ecf20Sopenharmony_ci	for (i = 0; i < 256; i++)
5158c2ecf20Sopenharmony_ci		gma_crtc->lut_adj[i] = 0;
5168c2ecf20Sopenharmony_ci
5178c2ecf20Sopenharmony_ci	gma_crtc->mode_dev = mode_dev;
5188c2ecf20Sopenharmony_ci	gma_crtc->cursor_addr = 0;
5198c2ecf20Sopenharmony_ci
5208c2ecf20Sopenharmony_ci	drm_crtc_helper_add(&gma_crtc->base,
5218c2ecf20Sopenharmony_ci						dev_priv->ops->crtc_helper);
5228c2ecf20Sopenharmony_ci
5238c2ecf20Sopenharmony_ci	/* Setup the array of drm_connector pointer array */
5248c2ecf20Sopenharmony_ci	gma_crtc->mode_set.crtc = &gma_crtc->base;
5258c2ecf20Sopenharmony_ci	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5268c2ecf20Sopenharmony_ci	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
5278c2ecf20Sopenharmony_ci	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
5288c2ecf20Sopenharmony_ci	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
5298c2ecf20Sopenharmony_ci	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
5308c2ecf20Sopenharmony_ci	gma_crtc->mode_set.num_connectors = 0;
5318c2ecf20Sopenharmony_ci	psb_intel_cursor_init(dev, gma_crtc);
5328c2ecf20Sopenharmony_ci
5338c2ecf20Sopenharmony_ci	/* Set to true so that the pipe is forced off on initial config. */
5348c2ecf20Sopenharmony_ci	gma_crtc->active = true;
5358c2ecf20Sopenharmony_ci}
5368c2ecf20Sopenharmony_ci
5378c2ecf20Sopenharmony_cistruct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
5388c2ecf20Sopenharmony_ci{
5398c2ecf20Sopenharmony_ci	struct drm_crtc *crtc;
5408c2ecf20Sopenharmony_ci
5418c2ecf20Sopenharmony_ci	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5428c2ecf20Sopenharmony_ci		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
5438c2ecf20Sopenharmony_ci
5448c2ecf20Sopenharmony_ci		if (gma_crtc->pipe == pipe)
5458c2ecf20Sopenharmony_ci			return crtc;
5468c2ecf20Sopenharmony_ci	}
5478c2ecf20Sopenharmony_ci	return NULL;
5488c2ecf20Sopenharmony_ci}
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ciint gma_connector_clones(struct drm_device *dev, int type_mask)
5518c2ecf20Sopenharmony_ci{
5528c2ecf20Sopenharmony_ci	int index_mask = 0;
5538c2ecf20Sopenharmony_ci	struct drm_connector *connector;
5548c2ecf20Sopenharmony_ci	int entry = 0;
5558c2ecf20Sopenharmony_ci
5568c2ecf20Sopenharmony_ci	list_for_each_entry(connector, &dev->mode_config.connector_list,
5578c2ecf20Sopenharmony_ci			    head) {
5588c2ecf20Sopenharmony_ci		struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
5598c2ecf20Sopenharmony_ci		if (type_mask & (1 << gma_encoder->type))
5608c2ecf20Sopenharmony_ci			index_mask |= (1 << entry);
5618c2ecf20Sopenharmony_ci		entry++;
5628c2ecf20Sopenharmony_ci	}
5638c2ecf20Sopenharmony_ci	return index_mask;
5648c2ecf20Sopenharmony_ci}
565