18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Copyright © 2006-2011 Intel Corporation 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Authors: 68c2ecf20Sopenharmony_ci * Eric Anholt <eric@anholt.net> 78c2ecf20Sopenharmony_ci */ 88c2ecf20Sopenharmony_ci 98c2ecf20Sopenharmony_ci#include <linux/delay.h> 108c2ecf20Sopenharmony_ci#include <linux/i2c.h> 118c2ecf20Sopenharmony_ci 128c2ecf20Sopenharmony_ci#include <drm/drm_plane_helper.h> 138c2ecf20Sopenharmony_ci 148c2ecf20Sopenharmony_ci#include "framebuffer.h" 158c2ecf20Sopenharmony_ci#include "gma_display.h" 168c2ecf20Sopenharmony_ci#include "power.h" 178c2ecf20Sopenharmony_ci#include "psb_drv.h" 188c2ecf20Sopenharmony_ci#include "psb_intel_drv.h" 198c2ecf20Sopenharmony_ci#include "psb_intel_reg.h" 208c2ecf20Sopenharmony_ci 218c2ecf20Sopenharmony_ci#define INTEL_LIMIT_I9XX_SDVO_DAC 0 228c2ecf20Sopenharmony_ci#define INTEL_LIMIT_I9XX_LVDS 1 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_cistatic const struct gma_limit_t psb_intel_limits[] = { 258c2ecf20Sopenharmony_ci { /* INTEL_LIMIT_I9XX_SDVO_DAC */ 268c2ecf20Sopenharmony_ci .dot = {.min = 20000, .max = 400000}, 278c2ecf20Sopenharmony_ci .vco = {.min = 1400000, .max = 2800000}, 288c2ecf20Sopenharmony_ci .n = {.min = 1, .max = 6}, 298c2ecf20Sopenharmony_ci .m = {.min = 70, .max = 120}, 308c2ecf20Sopenharmony_ci .m1 = {.min = 8, .max = 18}, 318c2ecf20Sopenharmony_ci .m2 = {.min = 3, .max = 7}, 328c2ecf20Sopenharmony_ci .p = {.min = 5, .max = 80}, 338c2ecf20Sopenharmony_ci .p1 = {.min = 1, .max = 8}, 348c2ecf20Sopenharmony_ci .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5}, 358c2ecf20Sopenharmony_ci .find_pll = gma_find_best_pll, 368c2ecf20Sopenharmony_ci }, 378c2ecf20Sopenharmony_ci { /* INTEL_LIMIT_I9XX_LVDS */ 388c2ecf20Sopenharmony_ci .dot = {.min = 20000, .max = 400000}, 398c2ecf20Sopenharmony_ci .vco = {.min = 1400000, .max = 2800000}, 408c2ecf20Sopenharmony_ci .n = {.min = 1, .max = 6}, 418c2ecf20Sopenharmony_ci .m = {.min = 70, .max = 120}, 428c2ecf20Sopenharmony_ci .m1 = {.min = 8, .max = 18}, 438c2ecf20Sopenharmony_ci .m2 = {.min = 3, .max = 7}, 448c2ecf20Sopenharmony_ci .p = {.min = 7, .max = 98}, 458c2ecf20Sopenharmony_ci .p1 = {.min = 1, .max = 8}, 468c2ecf20Sopenharmony_ci /* The single-channel range is 25-112Mhz, and dual-channel 478c2ecf20Sopenharmony_ci * is 80-224Mhz. Prefer single channel as much as possible. 488c2ecf20Sopenharmony_ci */ 498c2ecf20Sopenharmony_ci .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7}, 508c2ecf20Sopenharmony_ci .find_pll = gma_find_best_pll, 518c2ecf20Sopenharmony_ci }, 528c2ecf20Sopenharmony_ci}; 538c2ecf20Sopenharmony_ci 548c2ecf20Sopenharmony_cistatic const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc, 558c2ecf20Sopenharmony_ci int refclk) 568c2ecf20Sopenharmony_ci{ 578c2ecf20Sopenharmony_ci const struct gma_limit_t *limit; 588c2ecf20Sopenharmony_ci 598c2ecf20Sopenharmony_ci if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) 608c2ecf20Sopenharmony_ci limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS]; 618c2ecf20Sopenharmony_ci else 628c2ecf20Sopenharmony_ci limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; 638c2ecf20Sopenharmony_ci return limit; 648c2ecf20Sopenharmony_ci} 658c2ecf20Sopenharmony_ci 668c2ecf20Sopenharmony_cistatic void psb_intel_clock(int refclk, struct gma_clock_t *clock) 678c2ecf20Sopenharmony_ci{ 688c2ecf20Sopenharmony_ci clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); 698c2ecf20Sopenharmony_ci clock->p = clock->p1 * clock->p2; 708c2ecf20Sopenharmony_ci clock->vco = refclk * clock->m / (clock->n + 2); 718c2ecf20Sopenharmony_ci clock->dot = clock->vco / clock->p; 728c2ecf20Sopenharmony_ci} 738c2ecf20Sopenharmony_ci 748c2ecf20Sopenharmony_ci/** 758c2ecf20Sopenharmony_ci * Return the pipe currently connected to the panel fitter, 768c2ecf20Sopenharmony_ci * or -1 if the panel fitter is not present or not in use 778c2ecf20Sopenharmony_ci */ 788c2ecf20Sopenharmony_cistatic int psb_intel_panel_fitter_pipe(struct drm_device *dev) 798c2ecf20Sopenharmony_ci{ 808c2ecf20Sopenharmony_ci u32 pfit_control; 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_ci pfit_control = REG_READ(PFIT_CONTROL); 838c2ecf20Sopenharmony_ci 848c2ecf20Sopenharmony_ci /* See if the panel fitter is in use */ 858c2ecf20Sopenharmony_ci if ((pfit_control & PFIT_ENABLE) == 0) 868c2ecf20Sopenharmony_ci return -1; 878c2ecf20Sopenharmony_ci /* Must be on PIPE 1 for PSB */ 888c2ecf20Sopenharmony_ci return 1; 898c2ecf20Sopenharmony_ci} 908c2ecf20Sopenharmony_ci 918c2ecf20Sopenharmony_cistatic int psb_intel_crtc_mode_set(struct drm_crtc *crtc, 928c2ecf20Sopenharmony_ci struct drm_display_mode *mode, 938c2ecf20Sopenharmony_ci struct drm_display_mode *adjusted_mode, 948c2ecf20Sopenharmony_ci int x, int y, 958c2ecf20Sopenharmony_ci struct drm_framebuffer *old_fb) 968c2ecf20Sopenharmony_ci{ 978c2ecf20Sopenharmony_ci struct drm_device *dev = crtc->dev; 988c2ecf20Sopenharmony_ci struct drm_psb_private *dev_priv = dev->dev_private; 998c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 1008c2ecf20Sopenharmony_ci const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1018c2ecf20Sopenharmony_ci int pipe = gma_crtc->pipe; 1028c2ecf20Sopenharmony_ci const struct psb_offset *map = &dev_priv->regmap[pipe]; 1038c2ecf20Sopenharmony_ci int refclk; 1048c2ecf20Sopenharmony_ci struct gma_clock_t clock; 1058c2ecf20Sopenharmony_ci u32 dpll = 0, fp = 0, dspcntr, pipeconf; 1068c2ecf20Sopenharmony_ci bool ok, is_sdvo = false; 1078c2ecf20Sopenharmony_ci bool is_lvds = false, is_tv = false; 1088c2ecf20Sopenharmony_ci struct drm_mode_config *mode_config = &dev->mode_config; 1098c2ecf20Sopenharmony_ci struct drm_connector *connector; 1108c2ecf20Sopenharmony_ci const struct gma_limit_t *limit; 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_ci /* No scan out no play */ 1138c2ecf20Sopenharmony_ci if (crtc->primary->fb == NULL) { 1148c2ecf20Sopenharmony_ci crtc_funcs->mode_set_base(crtc, x, y, old_fb); 1158c2ecf20Sopenharmony_ci return 0; 1168c2ecf20Sopenharmony_ci } 1178c2ecf20Sopenharmony_ci 1188c2ecf20Sopenharmony_ci list_for_each_entry(connector, &mode_config->connector_list, head) { 1198c2ecf20Sopenharmony_ci struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 1208c2ecf20Sopenharmony_ci 1218c2ecf20Sopenharmony_ci if (!connector->encoder 1228c2ecf20Sopenharmony_ci || connector->encoder->crtc != crtc) 1238c2ecf20Sopenharmony_ci continue; 1248c2ecf20Sopenharmony_ci 1258c2ecf20Sopenharmony_ci switch (gma_encoder->type) { 1268c2ecf20Sopenharmony_ci case INTEL_OUTPUT_LVDS: 1278c2ecf20Sopenharmony_ci is_lvds = true; 1288c2ecf20Sopenharmony_ci break; 1298c2ecf20Sopenharmony_ci case INTEL_OUTPUT_SDVO: 1308c2ecf20Sopenharmony_ci is_sdvo = true; 1318c2ecf20Sopenharmony_ci break; 1328c2ecf20Sopenharmony_ci case INTEL_OUTPUT_TVOUT: 1338c2ecf20Sopenharmony_ci is_tv = true; 1348c2ecf20Sopenharmony_ci break; 1358c2ecf20Sopenharmony_ci } 1368c2ecf20Sopenharmony_ci } 1378c2ecf20Sopenharmony_ci 1388c2ecf20Sopenharmony_ci refclk = 96000; 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci limit = gma_crtc->clock_funcs->limit(crtc, refclk); 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_ci ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, 1438c2ecf20Sopenharmony_ci &clock); 1448c2ecf20Sopenharmony_ci if (!ok) { 1458c2ecf20Sopenharmony_ci DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d", 1468c2ecf20Sopenharmony_ci adjusted_mode->clock, clock.dot); 1478c2ecf20Sopenharmony_ci return 0; 1488c2ecf20Sopenharmony_ci } 1498c2ecf20Sopenharmony_ci 1508c2ecf20Sopenharmony_ci fp = clock.n << 16 | clock.m1 << 8 | clock.m2; 1518c2ecf20Sopenharmony_ci 1528c2ecf20Sopenharmony_ci dpll = DPLL_VGA_MODE_DIS; 1538c2ecf20Sopenharmony_ci if (is_lvds) { 1548c2ecf20Sopenharmony_ci dpll |= DPLLB_MODE_LVDS; 1558c2ecf20Sopenharmony_ci dpll |= DPLL_DVO_HIGH_SPEED; 1568c2ecf20Sopenharmony_ci } else 1578c2ecf20Sopenharmony_ci dpll |= DPLLB_MODE_DAC_SERIAL; 1588c2ecf20Sopenharmony_ci if (is_sdvo) { 1598c2ecf20Sopenharmony_ci int sdvo_pixel_multiply = 1608c2ecf20Sopenharmony_ci adjusted_mode->clock / mode->clock; 1618c2ecf20Sopenharmony_ci dpll |= DPLL_DVO_HIGH_SPEED; 1628c2ecf20Sopenharmony_ci dpll |= 1638c2ecf20Sopenharmony_ci (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; 1648c2ecf20Sopenharmony_ci } 1658c2ecf20Sopenharmony_ci 1668c2ecf20Sopenharmony_ci /* compute bitmask from p1 value */ 1678c2ecf20Sopenharmony_ci dpll |= (1 << (clock.p1 - 1)) << 16; 1688c2ecf20Sopenharmony_ci switch (clock.p2) { 1698c2ecf20Sopenharmony_ci case 5: 1708c2ecf20Sopenharmony_ci dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 1718c2ecf20Sopenharmony_ci break; 1728c2ecf20Sopenharmony_ci case 7: 1738c2ecf20Sopenharmony_ci dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 1748c2ecf20Sopenharmony_ci break; 1758c2ecf20Sopenharmony_ci case 10: 1768c2ecf20Sopenharmony_ci dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 1778c2ecf20Sopenharmony_ci break; 1788c2ecf20Sopenharmony_ci case 14: 1798c2ecf20Sopenharmony_ci dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 1808c2ecf20Sopenharmony_ci break; 1818c2ecf20Sopenharmony_ci } 1828c2ecf20Sopenharmony_ci 1838c2ecf20Sopenharmony_ci if (is_tv) { 1848c2ecf20Sopenharmony_ci /* XXX: just matching BIOS for now */ 1858c2ecf20Sopenharmony_ci/* dpll |= PLL_REF_INPUT_TVCLKINBC; */ 1868c2ecf20Sopenharmony_ci dpll |= 3; 1878c2ecf20Sopenharmony_ci } 1888c2ecf20Sopenharmony_ci dpll |= PLL_REF_INPUT_DREFCLK; 1898c2ecf20Sopenharmony_ci 1908c2ecf20Sopenharmony_ci /* setup pipeconf */ 1918c2ecf20Sopenharmony_ci pipeconf = REG_READ(map->conf); 1928c2ecf20Sopenharmony_ci 1938c2ecf20Sopenharmony_ci /* Set up the display plane register */ 1948c2ecf20Sopenharmony_ci dspcntr = DISPPLANE_GAMMA_ENABLE; 1958c2ecf20Sopenharmony_ci 1968c2ecf20Sopenharmony_ci if (pipe == 0) 1978c2ecf20Sopenharmony_ci dspcntr |= DISPPLANE_SEL_PIPE_A; 1988c2ecf20Sopenharmony_ci else 1998c2ecf20Sopenharmony_ci dspcntr |= DISPPLANE_SEL_PIPE_B; 2008c2ecf20Sopenharmony_ci 2018c2ecf20Sopenharmony_ci dspcntr |= DISPLAY_PLANE_ENABLE; 2028c2ecf20Sopenharmony_ci pipeconf |= PIPEACONF_ENABLE; 2038c2ecf20Sopenharmony_ci dpll |= DPLL_VCO_ENABLE; 2048c2ecf20Sopenharmony_ci 2058c2ecf20Sopenharmony_ci 2068c2ecf20Sopenharmony_ci /* Disable the panel fitter if it was on our pipe */ 2078c2ecf20Sopenharmony_ci if (psb_intel_panel_fitter_pipe(dev) == pipe) 2088c2ecf20Sopenharmony_ci REG_WRITE(PFIT_CONTROL, 0); 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_ci drm_mode_debug_printmodeline(mode); 2118c2ecf20Sopenharmony_ci 2128c2ecf20Sopenharmony_ci if (dpll & DPLL_VCO_ENABLE) { 2138c2ecf20Sopenharmony_ci REG_WRITE(map->fp0, fp); 2148c2ecf20Sopenharmony_ci REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE); 2158c2ecf20Sopenharmony_ci REG_READ(map->dpll); 2168c2ecf20Sopenharmony_ci udelay(150); 2178c2ecf20Sopenharmony_ci } 2188c2ecf20Sopenharmony_ci 2198c2ecf20Sopenharmony_ci /* The LVDS pin pair needs to be on before the DPLLs are enabled. 2208c2ecf20Sopenharmony_ci * This is an exception to the general rule that mode_set doesn't turn 2218c2ecf20Sopenharmony_ci * things on. 2228c2ecf20Sopenharmony_ci */ 2238c2ecf20Sopenharmony_ci if (is_lvds) { 2248c2ecf20Sopenharmony_ci u32 lvds = REG_READ(LVDS); 2258c2ecf20Sopenharmony_ci 2268c2ecf20Sopenharmony_ci lvds &= ~LVDS_PIPEB_SELECT; 2278c2ecf20Sopenharmony_ci if (pipe == 1) 2288c2ecf20Sopenharmony_ci lvds |= LVDS_PIPEB_SELECT; 2298c2ecf20Sopenharmony_ci 2308c2ecf20Sopenharmony_ci lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP; 2318c2ecf20Sopenharmony_ci /* Set the B0-B3 data pairs corresponding to 2328c2ecf20Sopenharmony_ci * whether we're going to 2338c2ecf20Sopenharmony_ci * set the DPLLs for dual-channel mode or not. 2348c2ecf20Sopenharmony_ci */ 2358c2ecf20Sopenharmony_ci lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); 2368c2ecf20Sopenharmony_ci if (clock.p2 == 7) 2378c2ecf20Sopenharmony_ci lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; 2388c2ecf20Sopenharmony_ci 2398c2ecf20Sopenharmony_ci /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) 2408c2ecf20Sopenharmony_ci * appropriately here, but we need to look more 2418c2ecf20Sopenharmony_ci * thoroughly into how panels behave in the two modes. 2428c2ecf20Sopenharmony_ci */ 2438c2ecf20Sopenharmony_ci 2448c2ecf20Sopenharmony_ci REG_WRITE(LVDS, lvds); 2458c2ecf20Sopenharmony_ci REG_READ(LVDS); 2468c2ecf20Sopenharmony_ci } 2478c2ecf20Sopenharmony_ci 2488c2ecf20Sopenharmony_ci REG_WRITE(map->fp0, fp); 2498c2ecf20Sopenharmony_ci REG_WRITE(map->dpll, dpll); 2508c2ecf20Sopenharmony_ci REG_READ(map->dpll); 2518c2ecf20Sopenharmony_ci /* Wait for the clocks to stabilize. */ 2528c2ecf20Sopenharmony_ci udelay(150); 2538c2ecf20Sopenharmony_ci 2548c2ecf20Sopenharmony_ci /* write it again -- the BIOS does, after all */ 2558c2ecf20Sopenharmony_ci REG_WRITE(map->dpll, dpll); 2568c2ecf20Sopenharmony_ci 2578c2ecf20Sopenharmony_ci REG_READ(map->dpll); 2588c2ecf20Sopenharmony_ci /* Wait for the clocks to stabilize. */ 2598c2ecf20Sopenharmony_ci udelay(150); 2608c2ecf20Sopenharmony_ci 2618c2ecf20Sopenharmony_ci REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) | 2628c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_htotal - 1) << 16)); 2638c2ecf20Sopenharmony_ci REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) | 2648c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_hblank_end - 1) << 16)); 2658c2ecf20Sopenharmony_ci REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) | 2668c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_hsync_end - 1) << 16)); 2678c2ecf20Sopenharmony_ci REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) | 2688c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_vtotal - 1) << 16)); 2698c2ecf20Sopenharmony_ci REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) | 2708c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_vblank_end - 1) << 16)); 2718c2ecf20Sopenharmony_ci REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) | 2728c2ecf20Sopenharmony_ci ((adjusted_mode->crtc_vsync_end - 1) << 16)); 2738c2ecf20Sopenharmony_ci /* pipesrc and dspsize control the size that is scaled from, 2748c2ecf20Sopenharmony_ci * which should always be the user's requested size. 2758c2ecf20Sopenharmony_ci */ 2768c2ecf20Sopenharmony_ci REG_WRITE(map->size, 2778c2ecf20Sopenharmony_ci ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); 2788c2ecf20Sopenharmony_ci REG_WRITE(map->pos, 0); 2798c2ecf20Sopenharmony_ci REG_WRITE(map->src, 2808c2ecf20Sopenharmony_ci ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); 2818c2ecf20Sopenharmony_ci REG_WRITE(map->conf, pipeconf); 2828c2ecf20Sopenharmony_ci REG_READ(map->conf); 2838c2ecf20Sopenharmony_ci 2848c2ecf20Sopenharmony_ci gma_wait_for_vblank(dev); 2858c2ecf20Sopenharmony_ci 2868c2ecf20Sopenharmony_ci REG_WRITE(map->cntr, dspcntr); 2878c2ecf20Sopenharmony_ci 2888c2ecf20Sopenharmony_ci /* Flush the plane changes */ 2898c2ecf20Sopenharmony_ci crtc_funcs->mode_set_base(crtc, x, y, old_fb); 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci gma_wait_for_vblank(dev); 2928c2ecf20Sopenharmony_ci 2938c2ecf20Sopenharmony_ci return 0; 2948c2ecf20Sopenharmony_ci} 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci/* Returns the clock of the currently programmed mode of the given pipe. */ 2978c2ecf20Sopenharmony_cistatic int psb_intel_crtc_clock_get(struct drm_device *dev, 2988c2ecf20Sopenharmony_ci struct drm_crtc *crtc) 2998c2ecf20Sopenharmony_ci{ 3008c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 3018c2ecf20Sopenharmony_ci struct drm_psb_private *dev_priv = dev->dev_private; 3028c2ecf20Sopenharmony_ci int pipe = gma_crtc->pipe; 3038c2ecf20Sopenharmony_ci const struct psb_offset *map = &dev_priv->regmap[pipe]; 3048c2ecf20Sopenharmony_ci u32 dpll; 3058c2ecf20Sopenharmony_ci u32 fp; 3068c2ecf20Sopenharmony_ci struct gma_clock_t clock; 3078c2ecf20Sopenharmony_ci bool is_lvds; 3088c2ecf20Sopenharmony_ci struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci if (gma_power_begin(dev, false)) { 3118c2ecf20Sopenharmony_ci dpll = REG_READ(map->dpll); 3128c2ecf20Sopenharmony_ci if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 3138c2ecf20Sopenharmony_ci fp = REG_READ(map->fp0); 3148c2ecf20Sopenharmony_ci else 3158c2ecf20Sopenharmony_ci fp = REG_READ(map->fp1); 3168c2ecf20Sopenharmony_ci is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); 3178c2ecf20Sopenharmony_ci gma_power_end(dev); 3188c2ecf20Sopenharmony_ci } else { 3198c2ecf20Sopenharmony_ci dpll = p->dpll; 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 3228c2ecf20Sopenharmony_ci fp = p->fp0; 3238c2ecf20Sopenharmony_ci else 3248c2ecf20Sopenharmony_ci fp = p->fp1; 3258c2ecf20Sopenharmony_ci 3268c2ecf20Sopenharmony_ci is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS & 3278c2ecf20Sopenharmony_ci LVDS_PORT_EN); 3288c2ecf20Sopenharmony_ci } 3298c2ecf20Sopenharmony_ci 3308c2ecf20Sopenharmony_ci clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 3318c2ecf20Sopenharmony_ci clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 3328c2ecf20Sopenharmony_ci clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_ci if (is_lvds) { 3358c2ecf20Sopenharmony_ci clock.p1 = 3368c2ecf20Sopenharmony_ci ffs((dpll & 3378c2ecf20Sopenharmony_ci DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 3388c2ecf20Sopenharmony_ci DPLL_FPA01_P1_POST_DIV_SHIFT); 3398c2ecf20Sopenharmony_ci clock.p2 = 14; 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci if ((dpll & PLL_REF_INPUT_MASK) == 3428c2ecf20Sopenharmony_ci PLLB_REF_INPUT_SPREADSPECTRUMIN) { 3438c2ecf20Sopenharmony_ci /* XXX: might not be 66MHz */ 3448c2ecf20Sopenharmony_ci psb_intel_clock(66000, &clock); 3458c2ecf20Sopenharmony_ci } else 3468c2ecf20Sopenharmony_ci psb_intel_clock(48000, &clock); 3478c2ecf20Sopenharmony_ci } else { 3488c2ecf20Sopenharmony_ci if (dpll & PLL_P1_DIVIDE_BY_TWO) 3498c2ecf20Sopenharmony_ci clock.p1 = 2; 3508c2ecf20Sopenharmony_ci else { 3518c2ecf20Sopenharmony_ci clock.p1 = 3528c2ecf20Sopenharmony_ci ((dpll & 3538c2ecf20Sopenharmony_ci DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 3548c2ecf20Sopenharmony_ci DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 3558c2ecf20Sopenharmony_ci } 3568c2ecf20Sopenharmony_ci if (dpll & PLL_P2_DIVIDE_BY_4) 3578c2ecf20Sopenharmony_ci clock.p2 = 4; 3588c2ecf20Sopenharmony_ci else 3598c2ecf20Sopenharmony_ci clock.p2 = 2; 3608c2ecf20Sopenharmony_ci 3618c2ecf20Sopenharmony_ci psb_intel_clock(48000, &clock); 3628c2ecf20Sopenharmony_ci } 3638c2ecf20Sopenharmony_ci 3648c2ecf20Sopenharmony_ci /* XXX: It would be nice to validate the clocks, but we can't reuse 3658c2ecf20Sopenharmony_ci * i830PllIsValid() because it relies on the xf86_config connector 3668c2ecf20Sopenharmony_ci * configuration being accurate, which it isn't necessarily. 3678c2ecf20Sopenharmony_ci */ 3688c2ecf20Sopenharmony_ci 3698c2ecf20Sopenharmony_ci return clock.dot; 3708c2ecf20Sopenharmony_ci} 3718c2ecf20Sopenharmony_ci 3728c2ecf20Sopenharmony_ci/** Returns the currently programmed mode of the given pipe. */ 3738c2ecf20Sopenharmony_cistruct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev, 3748c2ecf20Sopenharmony_ci struct drm_crtc *crtc) 3758c2ecf20Sopenharmony_ci{ 3768c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 3778c2ecf20Sopenharmony_ci int pipe = gma_crtc->pipe; 3788c2ecf20Sopenharmony_ci struct drm_display_mode *mode; 3798c2ecf20Sopenharmony_ci int htot; 3808c2ecf20Sopenharmony_ci int hsync; 3818c2ecf20Sopenharmony_ci int vtot; 3828c2ecf20Sopenharmony_ci int vsync; 3838c2ecf20Sopenharmony_ci struct drm_psb_private *dev_priv = dev->dev_private; 3848c2ecf20Sopenharmony_ci struct psb_pipe *p = &dev_priv->regs.pipe[pipe]; 3858c2ecf20Sopenharmony_ci const struct psb_offset *map = &dev_priv->regmap[pipe]; 3868c2ecf20Sopenharmony_ci 3878c2ecf20Sopenharmony_ci if (gma_power_begin(dev, false)) { 3888c2ecf20Sopenharmony_ci htot = REG_READ(map->htotal); 3898c2ecf20Sopenharmony_ci hsync = REG_READ(map->hsync); 3908c2ecf20Sopenharmony_ci vtot = REG_READ(map->vtotal); 3918c2ecf20Sopenharmony_ci vsync = REG_READ(map->vsync); 3928c2ecf20Sopenharmony_ci gma_power_end(dev); 3938c2ecf20Sopenharmony_ci } else { 3948c2ecf20Sopenharmony_ci htot = p->htotal; 3958c2ecf20Sopenharmony_ci hsync = p->hsync; 3968c2ecf20Sopenharmony_ci vtot = p->vtotal; 3978c2ecf20Sopenharmony_ci vsync = p->vsync; 3988c2ecf20Sopenharmony_ci } 3998c2ecf20Sopenharmony_ci 4008c2ecf20Sopenharmony_ci mode = kzalloc(sizeof(*mode), GFP_KERNEL); 4018c2ecf20Sopenharmony_ci if (!mode) 4028c2ecf20Sopenharmony_ci return NULL; 4038c2ecf20Sopenharmony_ci 4048c2ecf20Sopenharmony_ci mode->clock = psb_intel_crtc_clock_get(dev, crtc); 4058c2ecf20Sopenharmony_ci mode->hdisplay = (htot & 0xffff) + 1; 4068c2ecf20Sopenharmony_ci mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 4078c2ecf20Sopenharmony_ci mode->hsync_start = (hsync & 0xffff) + 1; 4088c2ecf20Sopenharmony_ci mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 4098c2ecf20Sopenharmony_ci mode->vdisplay = (vtot & 0xffff) + 1; 4108c2ecf20Sopenharmony_ci mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 4118c2ecf20Sopenharmony_ci mode->vsync_start = (vsync & 0xffff) + 1; 4128c2ecf20Sopenharmony_ci mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 4138c2ecf20Sopenharmony_ci 4148c2ecf20Sopenharmony_ci drm_mode_set_name(mode); 4158c2ecf20Sopenharmony_ci drm_mode_set_crtcinfo(mode, 0); 4168c2ecf20Sopenharmony_ci 4178c2ecf20Sopenharmony_ci return mode; 4188c2ecf20Sopenharmony_ci} 4198c2ecf20Sopenharmony_ci 4208c2ecf20Sopenharmony_ciconst struct drm_crtc_helper_funcs psb_intel_helper_funcs = { 4218c2ecf20Sopenharmony_ci .dpms = gma_crtc_dpms, 4228c2ecf20Sopenharmony_ci .mode_set = psb_intel_crtc_mode_set, 4238c2ecf20Sopenharmony_ci .mode_set_base = gma_pipe_set_base, 4248c2ecf20Sopenharmony_ci .prepare = gma_crtc_prepare, 4258c2ecf20Sopenharmony_ci .commit = gma_crtc_commit, 4268c2ecf20Sopenharmony_ci .disable = gma_crtc_disable, 4278c2ecf20Sopenharmony_ci}; 4288c2ecf20Sopenharmony_ci 4298c2ecf20Sopenharmony_ciconst struct drm_crtc_funcs psb_intel_crtc_funcs = { 4308c2ecf20Sopenharmony_ci .cursor_set = gma_crtc_cursor_set, 4318c2ecf20Sopenharmony_ci .cursor_move = gma_crtc_cursor_move, 4328c2ecf20Sopenharmony_ci .gamma_set = gma_crtc_gamma_set, 4338c2ecf20Sopenharmony_ci .set_config = gma_crtc_set_config, 4348c2ecf20Sopenharmony_ci .destroy = gma_crtc_destroy, 4358c2ecf20Sopenharmony_ci .page_flip = gma_crtc_page_flip, 4368c2ecf20Sopenharmony_ci .enable_vblank = psb_enable_vblank, 4378c2ecf20Sopenharmony_ci .disable_vblank = psb_disable_vblank, 4388c2ecf20Sopenharmony_ci .get_vblank_counter = psb_get_vblank_counter, 4398c2ecf20Sopenharmony_ci}; 4408c2ecf20Sopenharmony_ci 4418c2ecf20Sopenharmony_ciconst struct gma_clock_funcs psb_clock_funcs = { 4428c2ecf20Sopenharmony_ci .clock = psb_intel_clock, 4438c2ecf20Sopenharmony_ci .limit = psb_intel_limit, 4448c2ecf20Sopenharmony_ci .pll_is_valid = gma_pll_is_valid, 4458c2ecf20Sopenharmony_ci}; 4468c2ecf20Sopenharmony_ci 4478c2ecf20Sopenharmony_ci/* 4488c2ecf20Sopenharmony_ci * Set the default value of cursor control and base register 4498c2ecf20Sopenharmony_ci * to zero. This is a workaround for h/w defect on Oaktrail 4508c2ecf20Sopenharmony_ci */ 4518c2ecf20Sopenharmony_cistatic void psb_intel_cursor_init(struct drm_device *dev, 4528c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc) 4538c2ecf20Sopenharmony_ci{ 4548c2ecf20Sopenharmony_ci struct drm_psb_private *dev_priv = dev->dev_private; 4558c2ecf20Sopenharmony_ci u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR }; 4568c2ecf20Sopenharmony_ci u32 base[3] = { CURABASE, CURBBASE, CURCBASE }; 4578c2ecf20Sopenharmony_ci struct gtt_range *cursor_gt; 4588c2ecf20Sopenharmony_ci 4598c2ecf20Sopenharmony_ci if (dev_priv->ops->cursor_needs_phys) { 4608c2ecf20Sopenharmony_ci /* Allocate 4 pages of stolen mem for a hardware cursor. That 4618c2ecf20Sopenharmony_ci * is enough for the 64 x 64 ARGB cursors we support. 4628c2ecf20Sopenharmony_ci */ 4638c2ecf20Sopenharmony_ci cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1, 4648c2ecf20Sopenharmony_ci PAGE_SIZE); 4658c2ecf20Sopenharmony_ci if (!cursor_gt) { 4668c2ecf20Sopenharmony_ci gma_crtc->cursor_gt = NULL; 4678c2ecf20Sopenharmony_ci goto out; 4688c2ecf20Sopenharmony_ci } 4698c2ecf20Sopenharmony_ci gma_crtc->cursor_gt = cursor_gt; 4708c2ecf20Sopenharmony_ci gma_crtc->cursor_addr = dev_priv->stolen_base + 4718c2ecf20Sopenharmony_ci cursor_gt->offset; 4728c2ecf20Sopenharmony_ci } else { 4738c2ecf20Sopenharmony_ci gma_crtc->cursor_gt = NULL; 4748c2ecf20Sopenharmony_ci } 4758c2ecf20Sopenharmony_ci 4768c2ecf20Sopenharmony_ciout: 4778c2ecf20Sopenharmony_ci REG_WRITE(control[gma_crtc->pipe], 0); 4788c2ecf20Sopenharmony_ci REG_WRITE(base[gma_crtc->pipe], 0); 4798c2ecf20Sopenharmony_ci} 4808c2ecf20Sopenharmony_ci 4818c2ecf20Sopenharmony_civoid psb_intel_crtc_init(struct drm_device *dev, int pipe, 4828c2ecf20Sopenharmony_ci struct psb_intel_mode_device *mode_dev) 4838c2ecf20Sopenharmony_ci{ 4848c2ecf20Sopenharmony_ci struct drm_psb_private *dev_priv = dev->dev_private; 4858c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc; 4868c2ecf20Sopenharmony_ci int i; 4878c2ecf20Sopenharmony_ci 4888c2ecf20Sopenharmony_ci /* We allocate a extra array of drm_connector pointers 4898c2ecf20Sopenharmony_ci * for fbdev after the crtc */ 4908c2ecf20Sopenharmony_ci gma_crtc = kzalloc(sizeof(struct gma_crtc) + 4918c2ecf20Sopenharmony_ci (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), 4928c2ecf20Sopenharmony_ci GFP_KERNEL); 4938c2ecf20Sopenharmony_ci if (gma_crtc == NULL) 4948c2ecf20Sopenharmony_ci return; 4958c2ecf20Sopenharmony_ci 4968c2ecf20Sopenharmony_ci gma_crtc->crtc_state = 4978c2ecf20Sopenharmony_ci kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL); 4988c2ecf20Sopenharmony_ci if (!gma_crtc->crtc_state) { 4998c2ecf20Sopenharmony_ci dev_err(dev->dev, "Crtc state error: No memory\n"); 5008c2ecf20Sopenharmony_ci kfree(gma_crtc); 5018c2ecf20Sopenharmony_ci return; 5028c2ecf20Sopenharmony_ci } 5038c2ecf20Sopenharmony_ci 5048c2ecf20Sopenharmony_ci /* Set the CRTC operations from the chip specific data */ 5058c2ecf20Sopenharmony_ci drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs); 5068c2ecf20Sopenharmony_ci 5078c2ecf20Sopenharmony_ci /* Set the CRTC clock functions from chip specific data */ 5088c2ecf20Sopenharmony_ci gma_crtc->clock_funcs = dev_priv->ops->clock_funcs; 5098c2ecf20Sopenharmony_ci 5108c2ecf20Sopenharmony_ci drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256); 5118c2ecf20Sopenharmony_ci gma_crtc->pipe = pipe; 5128c2ecf20Sopenharmony_ci gma_crtc->plane = pipe; 5138c2ecf20Sopenharmony_ci 5148c2ecf20Sopenharmony_ci for (i = 0; i < 256; i++) 5158c2ecf20Sopenharmony_ci gma_crtc->lut_adj[i] = 0; 5168c2ecf20Sopenharmony_ci 5178c2ecf20Sopenharmony_ci gma_crtc->mode_dev = mode_dev; 5188c2ecf20Sopenharmony_ci gma_crtc->cursor_addr = 0; 5198c2ecf20Sopenharmony_ci 5208c2ecf20Sopenharmony_ci drm_crtc_helper_add(&gma_crtc->base, 5218c2ecf20Sopenharmony_ci dev_priv->ops->crtc_helper); 5228c2ecf20Sopenharmony_ci 5238c2ecf20Sopenharmony_ci /* Setup the array of drm_connector pointer array */ 5248c2ecf20Sopenharmony_ci gma_crtc->mode_set.crtc = &gma_crtc->base; 5258c2ecf20Sopenharmony_ci BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 5268c2ecf20Sopenharmony_ci dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL); 5278c2ecf20Sopenharmony_ci dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base; 5288c2ecf20Sopenharmony_ci dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base; 5298c2ecf20Sopenharmony_ci gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1); 5308c2ecf20Sopenharmony_ci gma_crtc->mode_set.num_connectors = 0; 5318c2ecf20Sopenharmony_ci psb_intel_cursor_init(dev, gma_crtc); 5328c2ecf20Sopenharmony_ci 5338c2ecf20Sopenharmony_ci /* Set to true so that the pipe is forced off on initial config. */ 5348c2ecf20Sopenharmony_ci gma_crtc->active = true; 5358c2ecf20Sopenharmony_ci} 5368c2ecf20Sopenharmony_ci 5378c2ecf20Sopenharmony_cistruct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe) 5388c2ecf20Sopenharmony_ci{ 5398c2ecf20Sopenharmony_ci struct drm_crtc *crtc; 5408c2ecf20Sopenharmony_ci 5418c2ecf20Sopenharmony_ci list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 5428c2ecf20Sopenharmony_ci struct gma_crtc *gma_crtc = to_gma_crtc(crtc); 5438c2ecf20Sopenharmony_ci 5448c2ecf20Sopenharmony_ci if (gma_crtc->pipe == pipe) 5458c2ecf20Sopenharmony_ci return crtc; 5468c2ecf20Sopenharmony_ci } 5478c2ecf20Sopenharmony_ci return NULL; 5488c2ecf20Sopenharmony_ci} 5498c2ecf20Sopenharmony_ci 5508c2ecf20Sopenharmony_ciint gma_connector_clones(struct drm_device *dev, int type_mask) 5518c2ecf20Sopenharmony_ci{ 5528c2ecf20Sopenharmony_ci int index_mask = 0; 5538c2ecf20Sopenharmony_ci struct drm_connector *connector; 5548c2ecf20Sopenharmony_ci int entry = 0; 5558c2ecf20Sopenharmony_ci 5568c2ecf20Sopenharmony_ci list_for_each_entry(connector, &dev->mode_config.connector_list, 5578c2ecf20Sopenharmony_ci head) { 5588c2ecf20Sopenharmony_ci struct gma_encoder *gma_encoder = gma_attached_encoder(connector); 5598c2ecf20Sopenharmony_ci if (type_mask & (1 << gma_encoder->type)) 5608c2ecf20Sopenharmony_ci index_mask |= (1 << entry); 5618c2ecf20Sopenharmony_ci entry++; 5628c2ecf20Sopenharmony_ci } 5638c2ecf20Sopenharmony_ci return index_mask; 5648c2ecf20Sopenharmony_ci} 565