1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_dp_helper.h>
35#include <drm/drm_simple_kms_helper.h>
36
37#include "gma_display.h"
38#include "psb_drv.h"
39#include "psb_intel_drv.h"
40#include "psb_intel_reg.h"
41
42/**
43 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
44 * 				 aux algorithm
45 * @running: set by the algo indicating whether an i2c is ongoing or whether
46 * 	     the i2c bus is quiescent
47 * @address: i2c target address for the currently ongoing transfer
48 * @aux_ch: driver callback to transfer a single byte of the i2c payload
49 */
50struct i2c_algo_dp_aux_data {
51	bool running;
52	u16 address;
53	int (*aux_ch) (struct i2c_adapter *adapter,
54		       int mode, uint8_t write_byte,
55		       uint8_t *read_byte);
56};
57
58/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
59static int
60i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
61			    uint8_t write_byte, uint8_t *read_byte)
62{
63	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
64	int ret;
65
66	ret = (*algo_data->aux_ch)(adapter, mode,
67				   write_byte, read_byte);
68	return ret;
69}
70
71/*
72 * I2C over AUX CH
73 */
74
75/*
76 * Send the address. If the I2C link is running, this 'restarts'
77 * the connection with the new address, this is used for doing
78 * a write followed by a read (as needed for DDC)
79 */
80static int
81i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
82{
83	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
84	int mode = MODE_I2C_START;
85	int ret;
86
87	if (reading)
88		mode |= MODE_I2C_READ;
89	else
90		mode |= MODE_I2C_WRITE;
91	algo_data->address = address;
92	algo_data->running = true;
93	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
94	return ret;
95}
96
97/*
98 * Stop the I2C transaction. This closes out the link, sending
99 * a bare address packet with the MOT bit turned off
100 */
101static void
102i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103{
104	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105	int mode = MODE_I2C_STOP;
106
107	if (reading)
108		mode |= MODE_I2C_READ;
109	else
110		mode |= MODE_I2C_WRITE;
111	if (algo_data->running) {
112		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113		algo_data->running = false;
114	}
115}
116
117/*
118 * Write a single byte to the current I2C address, the
119 * the I2C link must be running or this returns -EIO
120 */
121static int
122i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123{
124	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125	int ret;
126
127	if (!algo_data->running)
128		return -EIO;
129
130	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
131	return ret;
132}
133
134/*
135 * Read a single byte from the current I2C address, the
136 * I2C link must be running or this returns -EIO
137 */
138static int
139i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
140{
141	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
142	int ret;
143
144	if (!algo_data->running)
145		return -EIO;
146
147	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
148	return ret;
149}
150
151static int
152i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
153		     struct i2c_msg *msgs,
154		     int num)
155{
156	int ret = 0;
157	bool reading = false;
158	int m;
159	int b;
160
161	for (m = 0; m < num; m++) {
162		u16 len = msgs[m].len;
163		u8 *buf = msgs[m].buf;
164		reading = (msgs[m].flags & I2C_M_RD) != 0;
165		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
166		if (ret < 0)
167			break;
168		if (reading) {
169			for (b = 0; b < len; b++) {
170				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
171				if (ret < 0)
172					break;
173			}
174		} else {
175			for (b = 0; b < len; b++) {
176				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
177				if (ret < 0)
178					break;
179			}
180		}
181		if (ret < 0)
182			break;
183	}
184	if (ret >= 0)
185		ret = num;
186	i2c_algo_dp_aux_stop(adapter, reading);
187	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
188	return ret;
189}
190
191static u32
192i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
193{
194	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
195	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
196	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
197	       I2C_FUNC_10BIT_ADDR;
198}
199
200static const struct i2c_algorithm i2c_dp_aux_algo = {
201	.master_xfer	= i2c_algo_dp_aux_xfer,
202	.functionality	= i2c_algo_dp_aux_functionality,
203};
204
205static void
206i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
207{
208	(void) i2c_algo_dp_aux_address(adapter, 0, false);
209	(void) i2c_algo_dp_aux_stop(adapter, false);
210}
211
212static int
213i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
214{
215	adapter->algo = &i2c_dp_aux_algo;
216	adapter->retries = 3;
217	i2c_dp_aux_reset_bus(adapter);
218	return 0;
219}
220
221/*
222 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
223 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
224 */
225static int
226i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
227{
228	int error;
229
230	error = i2c_dp_aux_prepare_bus(adapter);
231	if (error)
232		return error;
233	error = i2c_add_adapter(adapter);
234	return error;
235}
236
237#define _wait_for(COND, MS, W) ({ \
238        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
239        int ret__ = 0;                                                  \
240        while (! (COND)) {                                              \
241                if (time_after(jiffies, timeout__)) {                   \
242                        ret__ = -ETIMEDOUT;                             \
243                        break;                                          \
244                }                                                       \
245                if (W && !in_dbg_master()) msleep(W);                   \
246        }                                                               \
247        ret__;                                                          \
248})
249
250#define wait_for(COND, MS) _wait_for(COND, MS, 1)
251
252#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
253
254#define DP_LINK_CONFIGURATION_SIZE	9
255
256#define CDV_FAST_LINK_TRAIN	1
257
258struct cdv_intel_dp {
259	uint32_t output_reg;
260	uint32_t DP;
261	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
262	bool has_audio;
263	int force_audio;
264	uint32_t color_range;
265	uint8_t link_bw;
266	uint8_t lane_count;
267	uint8_t dpcd[4];
268	struct gma_encoder *encoder;
269	struct i2c_adapter adapter;
270	struct i2c_algo_dp_aux_data algo;
271	uint8_t	train_set[4];
272	uint8_t link_status[DP_LINK_STATUS_SIZE];
273	int panel_power_up_delay;
274	int panel_power_down_delay;
275	int panel_power_cycle_delay;
276	int backlight_on_delay;
277	int backlight_off_delay;
278	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
279	bool panel_on;
280};
281
282struct ddi_regoff {
283	uint32_t	PreEmph1;
284	uint32_t	PreEmph2;
285	uint32_t	VSwing1;
286	uint32_t	VSwing2;
287	uint32_t	VSwing3;
288	uint32_t	VSwing4;
289	uint32_t	VSwing5;
290};
291
292static struct ddi_regoff ddi_DP_train_table[] = {
293	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
294	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
295	.VSwing5 = 0x8158,},
296	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
297	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
298	.VSwing5 = 0x8258,},
299};
300
301static uint32_t dp_vswing_premph_table[] = {
302        0x55338954,	0x4000,
303        0x554d8954,	0x2000,
304        0x55668954,	0,
305        0x559ac0d4,	0x6000,
306};
307/**
308 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
309 * @intel_dp: DP struct
310 *
311 * If a CPU or PCH DP output is attached to an eDP panel, this function
312 * will return true, and false otherwise.
313 */
314static bool is_edp(struct gma_encoder *encoder)
315{
316	return encoder->type == INTEL_OUTPUT_EDP;
317}
318
319
320static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
321static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
322static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
323
324static int
325cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
326{
327	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
328	int max_lane_count = 4;
329
330	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
331		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
332		switch (max_lane_count) {
333		case 1: case 2: case 4:
334			break;
335		default:
336			max_lane_count = 4;
337		}
338	}
339	return max_lane_count;
340}
341
342static int
343cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
344{
345	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
346	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
347
348	switch (max_link_bw) {
349	case DP_LINK_BW_1_62:
350	case DP_LINK_BW_2_7:
351		break;
352	default:
353		max_link_bw = DP_LINK_BW_1_62;
354		break;
355	}
356	return max_link_bw;
357}
358
359static int
360cdv_intel_dp_link_clock(uint8_t link_bw)
361{
362	if (link_bw == DP_LINK_BW_2_7)
363		return 270000;
364	else
365		return 162000;
366}
367
368static int
369cdv_intel_dp_link_required(int pixel_clock, int bpp)
370{
371	return (pixel_clock * bpp + 7) / 8;
372}
373
374static int
375cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
376{
377	return (max_link_clock * max_lanes * 19) / 20;
378}
379
380static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
381{
382	struct drm_device *dev = intel_encoder->base.dev;
383	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
384	u32 pp;
385
386	if (intel_dp->panel_on) {
387		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
388		return;
389	}
390	DRM_DEBUG_KMS("\n");
391
392	pp = REG_READ(PP_CONTROL);
393
394	pp |= EDP_FORCE_VDD;
395	REG_WRITE(PP_CONTROL, pp);
396	REG_READ(PP_CONTROL);
397	msleep(intel_dp->panel_power_up_delay);
398}
399
400static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
401{
402	struct drm_device *dev = intel_encoder->base.dev;
403	u32 pp;
404
405	DRM_DEBUG_KMS("\n");
406	pp = REG_READ(PP_CONTROL);
407
408	pp &= ~EDP_FORCE_VDD;
409	REG_WRITE(PP_CONTROL, pp);
410	REG_READ(PP_CONTROL);
411
412}
413
414/* Returns true if the panel was already on when called */
415static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
416{
417	struct drm_device *dev = intel_encoder->base.dev;
418	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
419	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
420
421	if (intel_dp->panel_on)
422		return true;
423
424	DRM_DEBUG_KMS("\n");
425	pp = REG_READ(PP_CONTROL);
426	pp &= ~PANEL_UNLOCK_MASK;
427
428	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
429	REG_WRITE(PP_CONTROL, pp);
430	REG_READ(PP_CONTROL);
431
432	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
433		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
434		intel_dp->panel_on = false;
435	} else
436		intel_dp->panel_on = true;
437	msleep(intel_dp->panel_power_up_delay);
438
439	return false;
440}
441
442static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
443{
444	struct drm_device *dev = intel_encoder->base.dev;
445	u32 pp, idle_off_mask = PP_ON ;
446	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
447
448	DRM_DEBUG_KMS("\n");
449
450	pp = REG_READ(PP_CONTROL);
451
452	if ((pp & POWER_TARGET_ON) == 0)
453		return;
454
455	intel_dp->panel_on = false;
456	pp &= ~PANEL_UNLOCK_MASK;
457	/* ILK workaround: disable reset around power sequence */
458
459	pp &= ~POWER_TARGET_ON;
460	pp &= ~EDP_FORCE_VDD;
461	pp &= ~EDP_BLC_ENABLE;
462	REG_WRITE(PP_CONTROL, pp);
463	REG_READ(PP_CONTROL);
464	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
465
466	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
467		DRM_DEBUG_KMS("Error in turning off Panel\n");
468	}
469
470	msleep(intel_dp->panel_power_cycle_delay);
471	DRM_DEBUG_KMS("Over\n");
472}
473
474static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
475{
476	struct drm_device *dev = intel_encoder->base.dev;
477	u32 pp;
478
479	DRM_DEBUG_KMS("\n");
480	/*
481	 * If we enable the backlight right away following a panel power
482	 * on, we may see slight flicker as the panel syncs with the eDP
483	 * link.  So delay a bit to make sure the image is solid before
484	 * allowing it to appear.
485	 */
486	msleep(300);
487	pp = REG_READ(PP_CONTROL);
488
489	pp |= EDP_BLC_ENABLE;
490	REG_WRITE(PP_CONTROL, pp);
491	gma_backlight_enable(dev);
492}
493
494static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
495{
496	struct drm_device *dev = intel_encoder->base.dev;
497	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
498	u32 pp;
499
500	DRM_DEBUG_KMS("\n");
501	gma_backlight_disable(dev);
502	msleep(10);
503	pp = REG_READ(PP_CONTROL);
504
505	pp &= ~EDP_BLC_ENABLE;
506	REG_WRITE(PP_CONTROL, pp);
507	msleep(intel_dp->backlight_off_delay);
508}
509
510static enum drm_mode_status
511cdv_intel_dp_mode_valid(struct drm_connector *connector,
512		    struct drm_display_mode *mode)
513{
514	struct gma_encoder *encoder = gma_attached_encoder(connector);
515	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
516	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
517	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
518	struct drm_psb_private *dev_priv = connector->dev->dev_private;
519
520	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
521		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
522			return MODE_PANEL;
523		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
524			return MODE_PANEL;
525	}
526
527	/* only refuse the mode on non eDP since we have seen some weird eDP panels
528	   which are outside spec tolerances but somehow work by magic */
529	if (!is_edp(encoder) &&
530	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
531	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
532		return MODE_CLOCK_HIGH;
533
534	if (is_edp(encoder)) {
535	    if (cdv_intel_dp_link_required(mode->clock, 24)
536	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
537		return MODE_CLOCK_HIGH;
538
539	}
540	if (mode->clock < 10000)
541		return MODE_CLOCK_LOW;
542
543	return MODE_OK;
544}
545
546static uint32_t
547pack_aux(uint8_t *src, int src_bytes)
548{
549	int	i;
550	uint32_t v = 0;
551
552	if (src_bytes > 4)
553		src_bytes = 4;
554	for (i = 0; i < src_bytes; i++)
555		v |= ((uint32_t) src[i]) << ((3-i) * 8);
556	return v;
557}
558
559static void
560unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
561{
562	int i;
563	if (dst_bytes > 4)
564		dst_bytes = 4;
565	for (i = 0; i < dst_bytes; i++)
566		dst[i] = src >> ((3-i) * 8);
567}
568
569static int
570cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
571		uint8_t *send, int send_bytes,
572		uint8_t *recv, int recv_size)
573{
574	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
575	uint32_t output_reg = intel_dp->output_reg;
576	struct drm_device *dev = encoder->base.dev;
577	uint32_t ch_ctl = output_reg + 0x10;
578	uint32_t ch_data = ch_ctl + 4;
579	int i;
580	int recv_bytes;
581	uint32_t status;
582	uint32_t aux_clock_divider;
583	int try, precharge;
584
585	/* The clock divider is based off the hrawclk,
586	 * and would like to run at 2MHz. So, take the
587	 * hrawclk value and divide by 2 and use that
588	 * On CDV platform it uses 200MHz as hrawclk.
589	 *
590	 */
591	aux_clock_divider = 200 / 2;
592
593	precharge = 4;
594	if (is_edp(encoder))
595		precharge = 10;
596
597	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
598		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
599			  REG_READ(ch_ctl));
600		return -EBUSY;
601	}
602
603	/* Must try at least 3 times according to DP spec */
604	for (try = 0; try < 5; try++) {
605		/* Load the send data into the aux channel data registers */
606		for (i = 0; i < send_bytes; i += 4)
607			REG_WRITE(ch_data + i,
608				   pack_aux(send + i, send_bytes - i));
609
610		/* Send the command and wait for it to complete */
611		REG_WRITE(ch_ctl,
612			   DP_AUX_CH_CTL_SEND_BUSY |
613			   DP_AUX_CH_CTL_TIME_OUT_400us |
614			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
615			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
616			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
617			   DP_AUX_CH_CTL_DONE |
618			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
619			   DP_AUX_CH_CTL_RECEIVE_ERROR);
620		for (;;) {
621			status = REG_READ(ch_ctl);
622			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
623				break;
624			udelay(100);
625		}
626
627		/* Clear done status and any errors */
628		REG_WRITE(ch_ctl,
629			   status |
630			   DP_AUX_CH_CTL_DONE |
631			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
632			   DP_AUX_CH_CTL_RECEIVE_ERROR);
633		if (status & DP_AUX_CH_CTL_DONE)
634			break;
635	}
636
637	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
638		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
639		return -EBUSY;
640	}
641
642	/* Check for timeout or receive error.
643	 * Timeouts occur when the sink is not connected
644	 */
645	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
646		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
647		return -EIO;
648	}
649
650	/* Timeouts occur when the device isn't connected, so they're
651	 * "normal" -- don't fill the kernel log with these */
652	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
653		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
654		return -ETIMEDOUT;
655	}
656
657	/* Unload any bytes sent back from the other side */
658	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
659		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
660	if (recv_bytes > recv_size)
661		recv_bytes = recv_size;
662
663	for (i = 0; i < recv_bytes; i += 4)
664		unpack_aux(REG_READ(ch_data + i),
665			   recv + i, recv_bytes - i);
666
667	return recv_bytes;
668}
669
670/* Write data to the aux channel in native mode */
671static int
672cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
673			  uint16_t address, uint8_t *send, int send_bytes)
674{
675	int ret;
676	uint8_t	msg[20];
677	int msg_bytes;
678	uint8_t	ack;
679
680	if (send_bytes > 16)
681		return -1;
682	msg[0] = DP_AUX_NATIVE_WRITE << 4;
683	msg[1] = address >> 8;
684	msg[2] = address & 0xff;
685	msg[3] = send_bytes - 1;
686	memcpy(&msg[4], send, send_bytes);
687	msg_bytes = send_bytes + 4;
688	for (;;) {
689		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
690		if (ret < 0)
691			return ret;
692		ack >>= 4;
693		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
694			break;
695		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
696			udelay(100);
697		else
698			return -EIO;
699	}
700	return send_bytes;
701}
702
703/* Write a single byte to the aux channel in native mode */
704static int
705cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
706			    uint16_t address, uint8_t byte)
707{
708	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
709}
710
711/* read bytes from a native aux channel */
712static int
713cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
714			 uint16_t address, uint8_t *recv, int recv_bytes)
715{
716	uint8_t msg[4];
717	int msg_bytes;
718	uint8_t reply[20];
719	int reply_bytes;
720	uint8_t ack;
721	int ret;
722
723	msg[0] = DP_AUX_NATIVE_READ << 4;
724	msg[1] = address >> 8;
725	msg[2] = address & 0xff;
726	msg[3] = recv_bytes - 1;
727
728	msg_bytes = 4;
729	reply_bytes = recv_bytes + 1;
730
731	for (;;) {
732		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
733				      reply, reply_bytes);
734		if (ret == 0)
735			return -EPROTO;
736		if (ret < 0)
737			return ret;
738		ack = reply[0] >> 4;
739		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
740			memcpy(recv, reply + 1, ret - 1);
741			return ret - 1;
742		}
743		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
744			udelay(100);
745		else
746			return -EIO;
747	}
748}
749
750static int
751cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
752		    uint8_t write_byte, uint8_t *read_byte)
753{
754	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
755	struct cdv_intel_dp *intel_dp = container_of(adapter,
756						struct cdv_intel_dp,
757						adapter);
758	struct gma_encoder *encoder = intel_dp->encoder;
759	uint16_t address = algo_data->address;
760	uint8_t msg[5];
761	uint8_t reply[2];
762	unsigned retry;
763	int msg_bytes;
764	int reply_bytes;
765	int ret;
766
767	/* Set up the command byte */
768	if (mode & MODE_I2C_READ)
769		msg[0] = DP_AUX_I2C_READ << 4;
770	else
771		msg[0] = DP_AUX_I2C_WRITE << 4;
772
773	if (!(mode & MODE_I2C_STOP))
774		msg[0] |= DP_AUX_I2C_MOT << 4;
775
776	msg[1] = address >> 8;
777	msg[2] = address;
778
779	switch (mode) {
780	case MODE_I2C_WRITE:
781		msg[3] = 0;
782		msg[4] = write_byte;
783		msg_bytes = 5;
784		reply_bytes = 1;
785		break;
786	case MODE_I2C_READ:
787		msg[3] = 0;
788		msg_bytes = 4;
789		reply_bytes = 2;
790		break;
791	default:
792		msg_bytes = 3;
793		reply_bytes = 1;
794		break;
795	}
796
797	for (retry = 0; retry < 5; retry++) {
798		ret = cdv_intel_dp_aux_ch(encoder,
799				      msg, msg_bytes,
800				      reply, reply_bytes);
801		if (ret < 0) {
802			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
803			return ret;
804		}
805
806		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
807		case DP_AUX_NATIVE_REPLY_ACK:
808			/* I2C-over-AUX Reply field is only valid
809			 * when paired with AUX ACK.
810			 */
811			break;
812		case DP_AUX_NATIVE_REPLY_NACK:
813			DRM_DEBUG_KMS("aux_ch native nack\n");
814			return -EREMOTEIO;
815		case DP_AUX_NATIVE_REPLY_DEFER:
816			udelay(100);
817			continue;
818		default:
819			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
820				  reply[0]);
821			return -EREMOTEIO;
822		}
823
824		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
825		case DP_AUX_I2C_REPLY_ACK:
826			if (mode == MODE_I2C_READ) {
827				*read_byte = reply[1];
828			}
829			return reply_bytes - 1;
830		case DP_AUX_I2C_REPLY_NACK:
831			DRM_DEBUG_KMS("aux_i2c nack\n");
832			return -EREMOTEIO;
833		case DP_AUX_I2C_REPLY_DEFER:
834			DRM_DEBUG_KMS("aux_i2c defer\n");
835			udelay(100);
836			break;
837		default:
838			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
839			return -EREMOTEIO;
840		}
841	}
842
843	DRM_ERROR("too many retries, giving up\n");
844	return -EREMOTEIO;
845}
846
847static int
848cdv_intel_dp_i2c_init(struct gma_connector *connector,
849		      struct gma_encoder *encoder, const char *name)
850{
851	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
852	int ret;
853
854	DRM_DEBUG_KMS("i2c_init %s\n", name);
855
856	intel_dp->algo.running = false;
857	intel_dp->algo.address = 0;
858	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
859
860	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
861	intel_dp->adapter.owner = THIS_MODULE;
862	intel_dp->adapter.class = I2C_CLASS_DDC;
863	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
864	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
865	intel_dp->adapter.algo_data = &intel_dp->algo;
866	intel_dp->adapter.dev.parent = connector->base.kdev;
867
868	if (is_edp(encoder))
869		cdv_intel_edp_panel_vdd_on(encoder);
870	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
871	if (is_edp(encoder))
872		cdv_intel_edp_panel_vdd_off(encoder);
873
874	return ret;
875}
876
877static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
878	struct drm_display_mode *adjusted_mode)
879{
880	adjusted_mode->hdisplay = fixed_mode->hdisplay;
881	adjusted_mode->hsync_start = fixed_mode->hsync_start;
882	adjusted_mode->hsync_end = fixed_mode->hsync_end;
883	adjusted_mode->htotal = fixed_mode->htotal;
884
885	adjusted_mode->vdisplay = fixed_mode->vdisplay;
886	adjusted_mode->vsync_start = fixed_mode->vsync_start;
887	adjusted_mode->vsync_end = fixed_mode->vsync_end;
888	adjusted_mode->vtotal = fixed_mode->vtotal;
889
890	adjusted_mode->clock = fixed_mode->clock;
891
892	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
893}
894
895static bool
896cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
897		    struct drm_display_mode *adjusted_mode)
898{
899	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
900	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
901	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
902	int lane_count, clock;
903	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
904	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
905	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
906	int refclock = mode->clock;
907	int bpp = 24;
908
909	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
910		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
911		refclock = intel_dp->panel_fixed_mode->clock;
912		bpp = dev_priv->edp.bpp;
913	}
914
915	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
916		for (clock = max_clock; clock >= 0; clock--) {
917			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
918
919			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
920				intel_dp->link_bw = bws[clock];
921				intel_dp->lane_count = lane_count;
922				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
923				DRM_DEBUG_KMS("Display port link bw %02x lane "
924						"count %d clock %d\n",
925				       intel_dp->link_bw, intel_dp->lane_count,
926				       adjusted_mode->clock);
927				return true;
928			}
929		}
930	}
931	if (is_edp(intel_encoder)) {
932		/* okay we failed just pick the highest */
933		intel_dp->lane_count = max_lane_count;
934		intel_dp->link_bw = bws[max_clock];
935		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
936		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
937			      "count %d clock %d\n",
938			      intel_dp->link_bw, intel_dp->lane_count,
939			      adjusted_mode->clock);
940
941		return true;
942	}
943	return false;
944}
945
946struct cdv_intel_dp_m_n {
947	uint32_t	tu;
948	uint32_t	gmch_m;
949	uint32_t	gmch_n;
950	uint32_t	link_m;
951	uint32_t	link_n;
952};
953
954static void
955cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
956{
957	/*
958	while (*num > 0xffffff || *den > 0xffffff) {
959		*num >>= 1;
960		*den >>= 1;
961	}*/
962	uint64_t value, m;
963	m = *num;
964	value = m * (0x800000);
965	m = do_div(value, *den);
966	*num = value;
967	*den = 0x800000;
968}
969
970static void
971cdv_intel_dp_compute_m_n(int bpp,
972		     int nlanes,
973		     int pixel_clock,
974		     int link_clock,
975		     struct cdv_intel_dp_m_n *m_n)
976{
977	m_n->tu = 64;
978	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
979	m_n->gmch_n = link_clock * nlanes;
980	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
981	m_n->link_m = pixel_clock;
982	m_n->link_n = link_clock;
983	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
984}
985
986void
987cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
988		 struct drm_display_mode *adjusted_mode)
989{
990	struct drm_device *dev = crtc->dev;
991	struct drm_psb_private *dev_priv = dev->dev_private;
992	struct drm_mode_config *mode_config = &dev->mode_config;
993	struct drm_encoder *encoder;
994	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
995	int lane_count = 4, bpp = 24;
996	struct cdv_intel_dp_m_n m_n;
997	int pipe = gma_crtc->pipe;
998
999	/*
1000	 * Find the lane count in the intel_encoder private
1001	 */
1002	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1003		struct gma_encoder *intel_encoder;
1004		struct cdv_intel_dp *intel_dp;
1005
1006		if (encoder->crtc != crtc)
1007			continue;
1008
1009		intel_encoder = to_gma_encoder(encoder);
1010		intel_dp = intel_encoder->dev_priv;
1011		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1012			lane_count = intel_dp->lane_count;
1013			break;
1014		} else if (is_edp(intel_encoder)) {
1015			lane_count = intel_dp->lane_count;
1016			bpp = dev_priv->edp.bpp;
1017			break;
1018		}
1019	}
1020
1021	/*
1022	 * Compute the GMCH and Link ratios. The '3' here is
1023	 * the number of bytes_per_pixel post-LUT, which we always
1024	 * set up for 8-bits of R/G/B, or 3 bytes total.
1025	 */
1026	cdv_intel_dp_compute_m_n(bpp, lane_count,
1027			     mode->clock, adjusted_mode->clock, &m_n);
1028
1029	{
1030		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1031			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1032			   m_n.gmch_m);
1033		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1034		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1035		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1036	}
1037}
1038
1039static void
1040cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1041		  struct drm_display_mode *adjusted_mode)
1042{
1043	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1044	struct drm_crtc *crtc = encoder->crtc;
1045	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1046	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1047	struct drm_device *dev = encoder->dev;
1048
1049	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050	intel_dp->DP |= intel_dp->color_range;
1051
1052	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1053		intel_dp->DP |= DP_SYNC_HS_HIGH;
1054	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1055		intel_dp->DP |= DP_SYNC_VS_HIGH;
1056
1057	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058
1059	switch (intel_dp->lane_count) {
1060	case 1:
1061		intel_dp->DP |= DP_PORT_WIDTH_1;
1062		break;
1063	case 2:
1064		intel_dp->DP |= DP_PORT_WIDTH_2;
1065		break;
1066	case 4:
1067		intel_dp->DP |= DP_PORT_WIDTH_4;
1068		break;
1069	}
1070	if (intel_dp->has_audio)
1071		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1072
1073	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1074	intel_dp->link_configuration[0] = intel_dp->link_bw;
1075	intel_dp->link_configuration[1] = intel_dp->lane_count;
1076
1077	/*
1078	 * Check for DPCD version > 1.1 and enhanced framing support
1079	 */
1080	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1081	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1082		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1083		intel_dp->DP |= DP_ENHANCED_FRAMING;
1084	}
1085
1086	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1087	if (gma_crtc->pipe == 1)
1088		intel_dp->DP |= DP_PIPEB_SELECT;
1089
1090	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1091	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1092	if (is_edp(intel_encoder)) {
1093		uint32_t pfit_control;
1094		cdv_intel_edp_panel_on(intel_encoder);
1095
1096		if (mode->hdisplay != adjusted_mode->hdisplay ||
1097			    mode->vdisplay != adjusted_mode->vdisplay)
1098			pfit_control = PFIT_ENABLE;
1099		else
1100			pfit_control = 0;
1101
1102		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1103
1104		REG_WRITE(PFIT_CONTROL, pfit_control);
1105	}
1106}
1107
1108
1109/* If the sink supports it, try to set the power state appropriately */
1110static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1111{
1112	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113	int ret, i;
1114
1115	/* Should have a valid DPCD by this point */
1116	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1117		return;
1118
1119	if (mode != DRM_MODE_DPMS_ON) {
1120		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1121						  DP_SET_POWER_D3);
1122		if (ret != 1)
1123			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1124	} else {
1125		/*
1126		 * When turning on, we need to retry for 1ms to give the sink
1127		 * time to wake up.
1128		 */
1129		for (i = 0; i < 3; i++) {
1130			ret = cdv_intel_dp_aux_native_write_1(encoder,
1131							  DP_SET_POWER,
1132							  DP_SET_POWER_D0);
1133			if (ret == 1)
1134				break;
1135			udelay(1000);
1136		}
1137	}
1138}
1139
1140static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1141{
1142	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1143	int edp = is_edp(intel_encoder);
1144
1145	if (edp) {
1146		cdv_intel_edp_backlight_off(intel_encoder);
1147		cdv_intel_edp_panel_off(intel_encoder);
1148		cdv_intel_edp_panel_vdd_on(intel_encoder);
1149        }
1150	/* Wake up the sink first */
1151	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1152	cdv_intel_dp_link_down(intel_encoder);
1153	if (edp)
1154		cdv_intel_edp_panel_vdd_off(intel_encoder);
1155}
1156
1157static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1158{
1159	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1160	int edp = is_edp(intel_encoder);
1161
1162	if (edp)
1163		cdv_intel_edp_panel_on(intel_encoder);
1164	cdv_intel_dp_start_link_train(intel_encoder);
1165	cdv_intel_dp_complete_link_train(intel_encoder);
1166	if (edp)
1167		cdv_intel_edp_backlight_on(intel_encoder);
1168}
1169
1170static void
1171cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1172{
1173	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1174	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1175	struct drm_device *dev = encoder->dev;
1176	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1177	int edp = is_edp(intel_encoder);
1178
1179	if (mode != DRM_MODE_DPMS_ON) {
1180		if (edp) {
1181			cdv_intel_edp_backlight_off(intel_encoder);
1182			cdv_intel_edp_panel_vdd_on(intel_encoder);
1183		}
1184		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1185		cdv_intel_dp_link_down(intel_encoder);
1186		if (edp) {
1187			cdv_intel_edp_panel_vdd_off(intel_encoder);
1188			cdv_intel_edp_panel_off(intel_encoder);
1189		}
1190	} else {
1191        	if (edp)
1192			cdv_intel_edp_panel_on(intel_encoder);
1193		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1194		if (!(dp_reg & DP_PORT_EN)) {
1195			cdv_intel_dp_start_link_train(intel_encoder);
1196			cdv_intel_dp_complete_link_train(intel_encoder);
1197		}
1198		if (edp)
1199        		cdv_intel_edp_backlight_on(intel_encoder);
1200	}
1201}
1202
1203/*
1204 * Native read with retry for link status and receiver capability reads for
1205 * cases where the sink may still be asleep.
1206 */
1207static bool
1208cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1209			       uint8_t *recv, int recv_bytes)
1210{
1211	int ret, i;
1212
1213	/*
1214	 * Sinks are *supposed* to come up within 1ms from an off state,
1215	 * but we're also supposed to retry 3 times per the spec.
1216	 */
1217	for (i = 0; i < 3; i++) {
1218		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1219					       recv_bytes);
1220		if (ret == recv_bytes)
1221			return true;
1222		udelay(1000);
1223	}
1224
1225	return false;
1226}
1227
1228/*
1229 * Fetch AUX CH registers 0x202 - 0x207 which contain
1230 * link status information
1231 */
1232static bool
1233cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1234{
1235	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1236	return cdv_intel_dp_aux_native_read_retry(encoder,
1237					      DP_LANE0_1_STATUS,
1238					      intel_dp->link_status,
1239					      DP_LINK_STATUS_SIZE);
1240}
1241
1242static uint8_t
1243cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1244		     int r)
1245{
1246	return link_status[r - DP_LANE0_1_STATUS];
1247}
1248
1249static uint8_t
1250cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1251				 int lane)
1252{
1253	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1254	int	    s = ((lane & 1) ?
1255			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1256			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1257	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1258
1259	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1260}
1261
1262static uint8_t
1263cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264				      int lane)
1265{
1266	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1267	int	    s = ((lane & 1) ?
1268			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1269			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1270	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1271
1272	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1273}
1274
1275#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1276
1277static void
1278cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1279{
1280	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1281	uint8_t v = 0;
1282	uint8_t p = 0;
1283	int lane;
1284
1285	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1286		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1287		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1288
1289		if (this_v > v)
1290			v = this_v;
1291		if (this_p > p)
1292			p = this_p;
1293	}
1294
1295	if (v >= CDV_DP_VOLTAGE_MAX)
1296		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1297
1298	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1299		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1300
1301	for (lane = 0; lane < 4; lane++)
1302		intel_dp->train_set[lane] = v | p;
1303}
1304
1305
1306static uint8_t
1307cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1308		      int lane)
1309{
1310	int i = DP_LANE0_1_STATUS + (lane >> 1);
1311	int s = (lane & 1) * 4;
1312	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1313
1314	return (l >> s) & 0xf;
1315}
1316
1317/* Check for clock recovery is done on all channels */
1318static bool
1319cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1320{
1321	int lane;
1322	uint8_t lane_status;
1323
1324	for (lane = 0; lane < lane_count; lane++) {
1325		lane_status = cdv_intel_get_lane_status(link_status, lane);
1326		if ((lane_status & DP_LANE_CR_DONE) == 0)
1327			return false;
1328	}
1329	return true;
1330}
1331
1332/* Check to see if channel eq is done on all channels */
1333#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1334			 DP_LANE_CHANNEL_EQ_DONE|\
1335			 DP_LANE_SYMBOL_LOCKED)
1336static bool
1337cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1338{
1339	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1340	uint8_t lane_align;
1341	uint8_t lane_status;
1342	int lane;
1343
1344	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1345					  DP_LANE_ALIGN_STATUS_UPDATED);
1346	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1347		return false;
1348	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1349		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1350		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1351			return false;
1352	}
1353	return true;
1354}
1355
1356static bool
1357cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1358			uint32_t dp_reg_value,
1359			uint8_t dp_train_pat)
1360{
1361
1362	struct drm_device *dev = encoder->base.dev;
1363	int ret;
1364	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1365
1366	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1367	REG_READ(intel_dp->output_reg);
1368
1369	ret = cdv_intel_dp_aux_native_write_1(encoder,
1370				    DP_TRAINING_PATTERN_SET,
1371				    dp_train_pat);
1372
1373	if (ret != 1) {
1374		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1375				dp_train_pat);
1376		return false;
1377	}
1378
1379	return true;
1380}
1381
1382
1383static bool
1384cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1385			uint8_t dp_train_pat)
1386{
1387
1388	int ret;
1389	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1390
1391	ret = cdv_intel_dp_aux_native_write(encoder,
1392					DP_TRAINING_LANE0_SET,
1393					intel_dp->train_set,
1394					intel_dp->lane_count);
1395
1396	if (ret != intel_dp->lane_count) {
1397		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1398				intel_dp->train_set[0], intel_dp->lane_count);
1399		return false;
1400	}
1401	return true;
1402}
1403
1404static void
1405cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1406{
1407	struct drm_device *dev = encoder->base.dev;
1408	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1409	struct ddi_regoff *ddi_reg;
1410	int vswing, premph, index;
1411
1412	if (intel_dp->output_reg == DP_B)
1413		ddi_reg = &ddi_DP_train_table[0];
1414	else
1415		ddi_reg = &ddi_DP_train_table[1];
1416
1417	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1418	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1419				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1420
1421	if (vswing + premph > 3)
1422		return;
1423#ifdef CDV_FAST_LINK_TRAIN
1424	return;
1425#endif
1426	DRM_DEBUG_KMS("Test2\n");
1427	//return ;
1428	cdv_sb_reset(dev);
1429	/* ;Swing voltage programming
1430        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1431	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1432
1433	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1434	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1435
1436	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1437	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1438	 */
1439	index = (vswing + premph) * 2;
1440	if (premph == 1 && vswing == 1) {
1441		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1442	} else
1443		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1444
1445	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1446	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1447		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1448	else
1449		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1450
1451	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1452	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1453
1454	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1455	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1456
1457	/* ;Pre emphasis programming
1458	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1459	 */
1460	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1461
1462	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1463	index = 2 * premph + 1;
1464	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1465	return;
1466}
1467
1468
1469/* Enable corresponding port and start training pattern 1 */
1470static void
1471cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1472{
1473	struct drm_device *dev = encoder->base.dev;
1474	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1475	int i;
1476	uint8_t voltage;
1477	bool clock_recovery = false;
1478	int tries;
1479	u32 reg;
1480	uint32_t DP = intel_dp->DP;
1481
1482	DP |= DP_PORT_EN;
1483	DP &= ~DP_LINK_TRAIN_MASK;
1484
1485	reg = DP;
1486	reg |= DP_LINK_TRAIN_PAT_1;
1487	/* Enable output, wait for it to become active */
1488	REG_WRITE(intel_dp->output_reg, reg);
1489	REG_READ(intel_dp->output_reg);
1490	gma_wait_for_vblank(dev);
1491
1492	DRM_DEBUG_KMS("Link config\n");
1493	/* Write the link configuration data */
1494	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1495				  intel_dp->link_configuration,
1496				  2);
1497
1498	memset(intel_dp->train_set, 0, 4);
1499	voltage = 0;
1500	tries = 0;
1501	clock_recovery = false;
1502
1503	DRM_DEBUG_KMS("Start train\n");
1504		reg = DP | DP_LINK_TRAIN_PAT_1;
1505
1506
1507	for (;;) {
1508		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1509		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1510				intel_dp->train_set[0],
1511				intel_dp->link_configuration[0],
1512				intel_dp->link_configuration[1]);
1513
1514		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1515			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1516		}
1517		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1518		/* Set training pattern 1 */
1519
1520		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1521
1522		udelay(200);
1523		if (!cdv_intel_dp_get_link_status(encoder))
1524			break;
1525
1526		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1527				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1528				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1529
1530		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1531			DRM_DEBUG_KMS("PT1 train is done\n");
1532			clock_recovery = true;
1533			break;
1534		}
1535
1536		/* Check to see if we've tried the max voltage */
1537		for (i = 0; i < intel_dp->lane_count; i++)
1538			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1539				break;
1540		if (i == intel_dp->lane_count)
1541			break;
1542
1543		/* Check to see if we've tried the same voltage 5 times */
1544		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1545			++tries;
1546			if (tries == 5)
1547				break;
1548		} else
1549			tries = 0;
1550		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1551
1552		/* Compute new intel_dp->train_set as requested by target */
1553		cdv_intel_get_adjust_train(encoder);
1554
1555	}
1556
1557	if (!clock_recovery) {
1558		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1559	}
1560
1561	intel_dp->DP = DP;
1562}
1563
1564static void
1565cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1566{
1567	struct drm_device *dev = encoder->base.dev;
1568	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1569	int tries, cr_tries;
1570	u32 reg;
1571	uint32_t DP = intel_dp->DP;
1572
1573	/* channel equalization */
1574	tries = 0;
1575	cr_tries = 0;
1576
1577	DRM_DEBUG_KMS("\n");
1578		reg = DP | DP_LINK_TRAIN_PAT_2;
1579
1580	for (;;) {
1581
1582		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1583				intel_dp->train_set[0],
1584				intel_dp->link_configuration[0],
1585				intel_dp->link_configuration[1]);
1586        	/* channel eq pattern */
1587
1588		if (!cdv_intel_dp_set_link_train(encoder, reg,
1589					     DP_TRAINING_PATTERN_2)) {
1590			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1591		}
1592		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1593
1594		if (cr_tries > 5) {
1595			DRM_ERROR("failed to train DP, aborting\n");
1596			cdv_intel_dp_link_down(encoder);
1597			break;
1598		}
1599
1600		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1601
1602		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1603
1604		udelay(1000);
1605		if (!cdv_intel_dp_get_link_status(encoder))
1606			break;
1607
1608		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1609				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1610				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1611
1612		/* Make sure clock is still ok */
1613		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1614			cdv_intel_dp_start_link_train(encoder);
1615			cr_tries++;
1616			continue;
1617		}
1618
1619		if (cdv_intel_channel_eq_ok(encoder)) {
1620			DRM_DEBUG_KMS("PT2 train is done\n");
1621			break;
1622		}
1623
1624		/* Try 5 times, then try clock recovery if that fails */
1625		if (tries > 5) {
1626			cdv_intel_dp_link_down(encoder);
1627			cdv_intel_dp_start_link_train(encoder);
1628			tries = 0;
1629			cr_tries++;
1630			continue;
1631		}
1632
1633		/* Compute new intel_dp->train_set as requested by target */
1634		cdv_intel_get_adjust_train(encoder);
1635		++tries;
1636
1637	}
1638
1639	reg = DP | DP_LINK_TRAIN_OFF;
1640
1641	REG_WRITE(intel_dp->output_reg, reg);
1642	REG_READ(intel_dp->output_reg);
1643	cdv_intel_dp_aux_native_write_1(encoder,
1644				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1645}
1646
1647static void
1648cdv_intel_dp_link_down(struct gma_encoder *encoder)
1649{
1650	struct drm_device *dev = encoder->base.dev;
1651	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1652	uint32_t DP = intel_dp->DP;
1653
1654	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1655		return;
1656
1657	DRM_DEBUG_KMS("\n");
1658
1659
1660	{
1661		DP &= ~DP_LINK_TRAIN_MASK;
1662		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1663	}
1664	REG_READ(intel_dp->output_reg);
1665
1666	msleep(17);
1667
1668	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1669	REG_READ(intel_dp->output_reg);
1670}
1671
1672static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1673{
1674	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1675	enum drm_connector_status status;
1676
1677	status = connector_status_disconnected;
1678	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1679				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1680	{
1681		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1682			status = connector_status_connected;
1683	}
1684	if (status == connector_status_connected)
1685		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1686			intel_dp->dpcd[0], intel_dp->dpcd[1],
1687			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1688	return status;
1689}
1690
1691/**
1692 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1693 *
1694 * \return true if DP port is connected.
1695 * \return false if DP port is disconnected.
1696 */
1697static enum drm_connector_status
1698cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1699{
1700	struct gma_encoder *encoder = gma_attached_encoder(connector);
1701	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1702	enum drm_connector_status status;
1703	struct edid *edid = NULL;
1704	int edp = is_edp(encoder);
1705
1706	intel_dp->has_audio = false;
1707
1708	if (edp)
1709		cdv_intel_edp_panel_vdd_on(encoder);
1710	status = cdv_dp_detect(encoder);
1711	if (status != connector_status_connected) {
1712		if (edp)
1713			cdv_intel_edp_panel_vdd_off(encoder);
1714		return status;
1715        }
1716
1717	if (intel_dp->force_audio) {
1718		intel_dp->has_audio = intel_dp->force_audio > 0;
1719	} else {
1720		edid = drm_get_edid(connector, &intel_dp->adapter);
1721		if (edid) {
1722			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1723			kfree(edid);
1724		}
1725	}
1726	if (edp)
1727		cdv_intel_edp_panel_vdd_off(encoder);
1728
1729	return connector_status_connected;
1730}
1731
1732static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1733{
1734	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1735	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1736	struct edid *edid = NULL;
1737	int ret = 0;
1738	int edp = is_edp(intel_encoder);
1739
1740
1741	edid = drm_get_edid(connector, &intel_dp->adapter);
1742	if (edid) {
1743		drm_connector_update_edid_property(connector, edid);
1744		ret = drm_add_edid_modes(connector, edid);
1745		kfree(edid);
1746	}
1747
1748	if (is_edp(intel_encoder)) {
1749		struct drm_device *dev = connector->dev;
1750		struct drm_psb_private *dev_priv = dev->dev_private;
1751
1752		cdv_intel_edp_panel_vdd_off(intel_encoder);
1753		if (ret) {
1754			if (edp && !intel_dp->panel_fixed_mode) {
1755				struct drm_display_mode *newmode;
1756				list_for_each_entry(newmode, &connector->probed_modes,
1757					    head) {
1758					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1759						intel_dp->panel_fixed_mode =
1760							drm_mode_duplicate(dev, newmode);
1761						break;
1762					}
1763				}
1764			}
1765
1766			return ret;
1767		}
1768		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1769			intel_dp->panel_fixed_mode =
1770				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1771			if (intel_dp->panel_fixed_mode) {
1772				intel_dp->panel_fixed_mode->type |=
1773					DRM_MODE_TYPE_PREFERRED;
1774			}
1775		}
1776		if (intel_dp->panel_fixed_mode != NULL) {
1777			struct drm_display_mode *mode;
1778			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1779			drm_mode_probed_add(connector, mode);
1780			return 1;
1781		}
1782	}
1783
1784	return ret;
1785}
1786
1787static bool
1788cdv_intel_dp_detect_audio(struct drm_connector *connector)
1789{
1790	struct gma_encoder *encoder = gma_attached_encoder(connector);
1791	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1792	struct edid *edid;
1793	bool has_audio = false;
1794	int edp = is_edp(encoder);
1795
1796	if (edp)
1797		cdv_intel_edp_panel_vdd_on(encoder);
1798
1799	edid = drm_get_edid(connector, &intel_dp->adapter);
1800	if (edid) {
1801		has_audio = drm_detect_monitor_audio(edid);
1802		kfree(edid);
1803	}
1804	if (edp)
1805		cdv_intel_edp_panel_vdd_off(encoder);
1806
1807	return has_audio;
1808}
1809
1810static int
1811cdv_intel_dp_set_property(struct drm_connector *connector,
1812		      struct drm_property *property,
1813		      uint64_t val)
1814{
1815	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1816	struct gma_encoder *encoder = gma_attached_encoder(connector);
1817	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1818	int ret;
1819
1820	ret = drm_object_property_set_value(&connector->base, property, val);
1821	if (ret)
1822		return ret;
1823
1824	if (property == dev_priv->force_audio_property) {
1825		int i = val;
1826		bool has_audio;
1827
1828		if (i == intel_dp->force_audio)
1829			return 0;
1830
1831		intel_dp->force_audio = i;
1832
1833		if (i == 0)
1834			has_audio = cdv_intel_dp_detect_audio(connector);
1835		else
1836			has_audio = i > 0;
1837
1838		if (has_audio == intel_dp->has_audio)
1839			return 0;
1840
1841		intel_dp->has_audio = has_audio;
1842		goto done;
1843	}
1844
1845	if (property == dev_priv->broadcast_rgb_property) {
1846		if (val == !!intel_dp->color_range)
1847			return 0;
1848
1849		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1850		goto done;
1851	}
1852
1853	return -EINVAL;
1854
1855done:
1856	if (encoder->base.crtc) {
1857		struct drm_crtc *crtc = encoder->base.crtc;
1858		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1859					 crtc->x, crtc->y,
1860					 crtc->primary->fb);
1861	}
1862
1863	return 0;
1864}
1865
1866static void
1867cdv_intel_dp_destroy(struct drm_connector *connector)
1868{
1869	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1870	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1871
1872	if (is_edp(gma_encoder)) {
1873	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1874		kfree(intel_dp->panel_fixed_mode);
1875		intel_dp->panel_fixed_mode = NULL;
1876	}
1877	i2c_del_adapter(&intel_dp->adapter);
1878	drm_connector_unregister(connector);
1879	drm_connector_cleanup(connector);
1880	kfree(connector);
1881}
1882
1883static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1884	.dpms = cdv_intel_dp_dpms,
1885	.mode_fixup = cdv_intel_dp_mode_fixup,
1886	.prepare = cdv_intel_dp_prepare,
1887	.mode_set = cdv_intel_dp_mode_set,
1888	.commit = cdv_intel_dp_commit,
1889};
1890
1891static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1892	.dpms = drm_helper_connector_dpms,
1893	.detect = cdv_intel_dp_detect,
1894	.fill_modes = drm_helper_probe_single_connector_modes,
1895	.set_property = cdv_intel_dp_set_property,
1896	.destroy = cdv_intel_dp_destroy,
1897};
1898
1899static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1900	.get_modes = cdv_intel_dp_get_modes,
1901	.mode_valid = cdv_intel_dp_mode_valid,
1902	.best_encoder = gma_best_encoder,
1903};
1904
1905static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1906{
1907	cdv_intel_attach_force_audio_property(connector);
1908	cdv_intel_attach_broadcast_rgb_property(connector);
1909}
1910
1911/* check the VBT to see whether the eDP is on DP-D port */
1912static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1913{
1914	struct drm_psb_private *dev_priv = dev->dev_private;
1915	struct child_device_config *p_child;
1916	int i;
1917
1918	if (!dev_priv->child_dev_num)
1919		return false;
1920
1921	for (i = 0; i < dev_priv->child_dev_num; i++) {
1922		p_child = dev_priv->child_dev + i;
1923
1924		if (p_child->dvo_port == PORT_IDPC &&
1925		    p_child->device_type == DEVICE_TYPE_eDP)
1926			return true;
1927	}
1928	return false;
1929}
1930
1931/* Cedarview display clock gating
1932
1933   We need this disable dot get correct behaviour while enabling
1934   DP/eDP. TODO - investigate if we can turn it back to normality
1935   after enabling */
1936static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1937{
1938	u32 reg_value;
1939	reg_value = REG_READ(DSPCLK_GATE_D);
1940
1941	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1942			DPUNIT_PIPEA_GATE_DISABLE |
1943			DPCUNIT_CLOCK_GATE_DISABLE |
1944			DPLSUNIT_CLOCK_GATE_DISABLE |
1945			DPOUNIT_CLOCK_GATE_DISABLE |
1946		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1947
1948	REG_WRITE(DSPCLK_GATE_D, reg_value);
1949
1950	udelay(500);
1951}
1952
1953void
1954cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1955{
1956	struct gma_encoder *gma_encoder;
1957	struct gma_connector *gma_connector;
1958	struct drm_connector *connector;
1959	struct drm_encoder *encoder;
1960	struct cdv_intel_dp *intel_dp;
1961	const char *name = NULL;
1962	int type = DRM_MODE_CONNECTOR_DisplayPort;
1963
1964	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1965	if (!gma_encoder)
1966		return;
1967        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1968        if (!gma_connector)
1969                goto err_connector;
1970	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1971	if (!intel_dp)
1972	        goto err_priv;
1973
1974	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1975		type = DRM_MODE_CONNECTOR_eDP;
1976
1977	connector = &gma_connector->base;
1978	encoder = &gma_encoder->base;
1979
1980	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1981	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1982
1983	gma_connector_attach_encoder(gma_connector, gma_encoder);
1984
1985	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1986		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1987        else
1988		gma_encoder->type = INTEL_OUTPUT_EDP;
1989
1990
1991	gma_encoder->dev_priv=intel_dp;
1992	intel_dp->encoder = gma_encoder;
1993	intel_dp->output_reg = output_reg;
1994
1995	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1996	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1997
1998	connector->polled = DRM_CONNECTOR_POLL_HPD;
1999	connector->interlace_allowed = false;
2000	connector->doublescan_allowed = false;
2001
2002	drm_connector_register(connector);
2003
2004	/* Set up the DDC bus. */
2005	switch (output_reg) {
2006		case DP_B:
2007			name = "DPDDC-B";
2008			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2009			break;
2010		case DP_C:
2011			name = "DPDDC-C";
2012			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2013			break;
2014	}
2015
2016	cdv_disable_intel_clock_gating(dev);
2017
2018	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2019        /* FIXME:fail check */
2020	cdv_intel_dp_add_properties(connector);
2021
2022	if (is_edp(gma_encoder)) {
2023		int ret;
2024		struct edp_power_seq cur;
2025                u32 pp_on, pp_off, pp_div;
2026		u32 pwm_ctrl;
2027
2028		pp_on = REG_READ(PP_CONTROL);
2029		pp_on &= ~PANEL_UNLOCK_MASK;
2030	        pp_on |= PANEL_UNLOCK_REGS;
2031
2032		REG_WRITE(PP_CONTROL, pp_on);
2033
2034		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2035		pwm_ctrl |= PWM_PIPE_B;
2036		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2037
2038                pp_on = REG_READ(PP_ON_DELAYS);
2039                pp_off = REG_READ(PP_OFF_DELAYS);
2040                pp_div = REG_READ(PP_DIVISOR);
2041
2042		/* Pull timing values out of registers */
2043                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2044                        PANEL_POWER_UP_DELAY_SHIFT;
2045
2046                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2047                        PANEL_LIGHT_ON_DELAY_SHIFT;
2048
2049                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2050                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2051
2052                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2053                        PANEL_POWER_DOWN_DELAY_SHIFT;
2054
2055                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2056                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2057
2058                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2059                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2060
2061
2062		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2063                intel_dp->backlight_on_delay = cur.t8 / 10;
2064                intel_dp->backlight_off_delay = cur.t9 / 10;
2065                intel_dp->panel_power_down_delay = cur.t10 / 10;
2066                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2067
2068                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2069                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2070                              intel_dp->panel_power_cycle_delay);
2071
2072                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2073                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2074
2075
2076		cdv_intel_edp_panel_vdd_on(gma_encoder);
2077		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2078					       intel_dp->dpcd,
2079					       sizeof(intel_dp->dpcd));
2080		cdv_intel_edp_panel_vdd_off(gma_encoder);
2081		if (ret <= 0) {
2082			/* if this fails, presume the device is a ghost */
2083			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2084			drm_encoder_cleanup(encoder);
2085			cdv_intel_dp_destroy(connector);
2086			goto err_connector;
2087		} else {
2088        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2089				intel_dp->dpcd[0], intel_dp->dpcd[1],
2090				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2091
2092		}
2093		/* The CDV reference driver moves pnale backlight setup into the displays that
2094		   have a backlight: this is a good idea and one we should probably adopt, however
2095		   we need to migrate all the drivers before we can do that */
2096                /*cdv_intel_panel_setup_backlight(dev); */
2097	}
2098	return;
2099
2100err_priv:
2101	kfree(gma_connector);
2102err_connector:
2103	kfree(gma_encoder);
2104}
2105