xref: /kernel/linux/linux-5.10/drivers/gpu/drm/drm_mm.c (revision 8c2ecf20)
1/**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 *
28 **************************************************************************/
29
30/*
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
33 *
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
38 *
39 * Aligned allocations can also see improvement.
40 *
41 * Authors:
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43 */
44
45#include <linux/export.h>
46#include <linux/interval_tree_generic.h>
47#include <linux/seq_file.h>
48#include <linux/slab.h>
49#include <linux/stacktrace.h>
50
51#include <drm/drm_mm.h>
52
53/**
54 * DOC: Overview
55 *
56 * drm_mm provides a simple range allocator. The drivers are free to use the
57 * resource allocator from the linux core if it suits them, the upside of drm_mm
58 * is that it's in the DRM core. Which means that it's easier to extend for
59 * some of the crazier special purpose needs of gpus.
60 *
61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62 * Drivers are free to embed either of them into their own suitable
63 * datastructures. drm_mm itself will not do any memory allocations of its own,
64 * so if drivers choose not to embed nodes they need to still allocate them
65 * themselves.
66 *
67 * The range allocator also supports reservation of preallocated blocks. This is
68 * useful for taking over initial mode setting configurations from the firmware,
69 * where an object needs to be created which exactly matches the firmware's
70 * scanout target. As long as the range is still free it can be inserted anytime
71 * after the allocator is initialized, which helps with avoiding looped
72 * dependencies in the driver load sequence.
73 *
74 * drm_mm maintains a stack of most recently freed holes, which of all
75 * simplistic datastructures seems to be a fairly decent approach to clustering
76 * allocations and avoiding too much fragmentation. This means free space
77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
78 * something better would be fairly complex and since gfx thrashing is a fairly
79 * steep cliff not a real concern. Removing a node again is O(1).
80 *
81 * drm_mm supports a few features: Alignment and range restrictions can be
82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83 * opaque unsigned long) which in conjunction with a driver callback can be used
84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
85 * this to implement guard pages between incompatible caching domains in the
86 * graphics TT.
87 *
88 * Two behaviors are supported for searching and allocating: bottom-up and
89 * top-down. The default is bottom-up. Top-down allocation can be used if the
90 * memory area has different restrictions, or just to reduce fragmentation.
91 *
92 * Finally iteration helpers to walk all nodes and all holes are provided as are
93 * some basic allocator dumpers for debugging.
94 *
95 * Note that this range allocator is not thread-safe, drivers need to protect
96 * modifications with their own locking. The idea behind this is that for a full
97 * memory manager additional data needs to be protected anyway, hence internal
98 * locking would be fully redundant.
99 */
100
101#ifdef CONFIG_DRM_DEBUG_MM
102#include <linux/stackdepot.h>
103
104#define STACKDEPTH 32
105#define BUFSZ 4096
106
107static noinline void save_stack(struct drm_mm_node *node)
108{
109	unsigned long entries[STACKDEPTH];
110	unsigned int n;
111
112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113
114	/* May be called under spinlock, so avoid sleeping */
115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116}
117
118static void show_leaks(struct drm_mm *mm)
119{
120	struct drm_mm_node *node;
121	unsigned long *entries;
122	unsigned int nr_entries;
123	char *buf;
124
125	buf = kmalloc(BUFSZ, GFP_KERNEL);
126	if (!buf)
127		return;
128
129	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130		if (!node->stack) {
131			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132				  node->start, node->size);
133			continue;
134		}
135
136		nr_entries = stack_depot_fetch(node->stack, &entries);
137		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139			  node->start, node->size, buf);
140	}
141
142	kfree(buf);
143}
144
145#undef STACKDEPTH
146#undef BUFSZ
147#else
148static void save_stack(struct drm_mm_node *node) { }
149static void show_leaks(struct drm_mm *mm) { }
150#endif
151
152#define START(node) ((node)->start)
153#define LAST(node)  ((node)->start + (node)->size - 1)
154
155INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
156		     u64, __subtree_last,
157		     START, LAST, static inline, drm_mm_interval_tree)
158
159struct drm_mm_node *
160__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161{
162	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
164}
165EXPORT_SYMBOL(__drm_mm_interval_first);
166
167static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168					  struct drm_mm_node *node)
169{
170	struct drm_mm *mm = hole_node->mm;
171	struct rb_node **link, *rb;
172	struct drm_mm_node *parent;
173	bool leftmost;
174
175	node->__subtree_last = LAST(node);
176
177	if (drm_mm_node_allocated(hole_node)) {
178		rb = &hole_node->rb;
179		while (rb) {
180			parent = rb_entry(rb, struct drm_mm_node, rb);
181			if (parent->__subtree_last >= node->__subtree_last)
182				break;
183
184			parent->__subtree_last = node->__subtree_last;
185			rb = rb_parent(rb);
186		}
187
188		rb = &hole_node->rb;
189		link = &hole_node->rb.rb_right;
190		leftmost = false;
191	} else {
192		rb = NULL;
193		link = &mm->interval_tree.rb_root.rb_node;
194		leftmost = true;
195	}
196
197	while (*link) {
198		rb = *link;
199		parent = rb_entry(rb, struct drm_mm_node, rb);
200		if (parent->__subtree_last < node->__subtree_last)
201			parent->__subtree_last = node->__subtree_last;
202		if (node->start < parent->start) {
203			link = &parent->rb.rb_left;
204		} else {
205			link = &parent->rb.rb_right;
206			leftmost = false;
207		}
208	}
209
210	rb_link_node(&node->rb, rb, link);
211	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212				   &drm_mm_interval_tree_augment);
213}
214
215#define HOLE_SIZE(NODE) ((NODE)->hole_size)
216#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
217
218static u64 rb_to_hole_size(struct rb_node *rb)
219{
220	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
221}
222
223static void insert_hole_size(struct rb_root_cached *root,
224			     struct drm_mm_node *node)
225{
226	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
227	u64 x = node->hole_size;
228	bool first = true;
229
230	while (*link) {
231		rb = *link;
232		if (x > rb_to_hole_size(rb)) {
233			link = &rb->rb_left;
234		} else {
235			link = &rb->rb_right;
236			first = false;
237		}
238	}
239
240	rb_link_node(&node->rb_hole_size, rb, link);
241	rb_insert_color_cached(&node->rb_hole_size, root, first);
242}
243
244RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
245			 struct drm_mm_node, rb_hole_addr,
246			 u64, subtree_max_hole, HOLE_SIZE)
247
248static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
249{
250	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
251	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
252	struct drm_mm_node *parent;
253
254	while (*link) {
255		rb_parent = *link;
256		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
257		if (parent->subtree_max_hole < subtree_max_hole)
258			parent->subtree_max_hole = subtree_max_hole;
259		if (start < HOLE_ADDR(parent))
260			link = &parent->rb_hole_addr.rb_left;
261		else
262			link = &parent->rb_hole_addr.rb_right;
263	}
264
265	rb_link_node(&node->rb_hole_addr, rb_parent, link);
266	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
267}
268
269static void add_hole(struct drm_mm_node *node)
270{
271	struct drm_mm *mm = node->mm;
272
273	node->hole_size =
274		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
275	node->subtree_max_hole = node->hole_size;
276	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
277
278	insert_hole_size(&mm->holes_size, node);
279	insert_hole_addr(&mm->holes_addr, node);
280
281	list_add(&node->hole_stack, &mm->hole_stack);
282}
283
284static void rm_hole(struct drm_mm_node *node)
285{
286	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
287
288	list_del(&node->hole_stack);
289	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
290	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
291			   &augment_callbacks);
292	node->hole_size = 0;
293	node->subtree_max_hole = 0;
294
295	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
296}
297
298static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
299{
300	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
301}
302
303static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
304{
305	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
306}
307
308static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
309{
310	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
311	struct drm_mm_node *best = NULL;
312
313	do {
314		struct drm_mm_node *node =
315			rb_entry(rb, struct drm_mm_node, rb_hole_size);
316
317		if (size <= node->hole_size) {
318			best = node;
319			rb = rb->rb_right;
320		} else {
321			rb = rb->rb_left;
322		}
323	} while (rb);
324
325	return best;
326}
327
328static bool usable_hole_addr(struct rb_node *rb, u64 size)
329{
330	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
331}
332
333static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
334{
335	struct rb_node *rb = mm->holes_addr.rb_node;
336	struct drm_mm_node *node = NULL;
337
338	while (rb) {
339		u64 hole_start;
340
341		if (!usable_hole_addr(rb, size))
342			break;
343
344		node = rb_hole_addr_to_node(rb);
345		hole_start = __drm_mm_hole_node_start(node);
346
347		if (addr < hole_start)
348			rb = node->rb_hole_addr.rb_left;
349		else if (addr > hole_start + node->hole_size)
350			rb = node->rb_hole_addr.rb_right;
351		else
352			break;
353	}
354
355	return node;
356}
357
358static struct drm_mm_node *
359first_hole(struct drm_mm *mm,
360	   u64 start, u64 end, u64 size,
361	   enum drm_mm_insert_mode mode)
362{
363	switch (mode) {
364	default:
365	case DRM_MM_INSERT_BEST:
366		return best_hole(mm, size);
367
368	case DRM_MM_INSERT_LOW:
369		return find_hole_addr(mm, start, size);
370
371	case DRM_MM_INSERT_HIGH:
372		return find_hole_addr(mm, end, size);
373
374	case DRM_MM_INSERT_EVICT:
375		return list_first_entry_or_null(&mm->hole_stack,
376						struct drm_mm_node,
377						hole_stack);
378	}
379}
380
381/**
382 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
383 * @name: name of function to declare
384 * @first: first rb member to traverse (either rb_left or rb_right).
385 * @last: last rb member to traverse (either rb_right or rb_left).
386 *
387 * This macro declares a function to return the next hole of the addr rb tree.
388 * While traversing the tree we take the searched size into account and only
389 * visit branches with potential big enough holes.
390 */
391
392#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
393static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
394{									\
395	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
396									\
397	if (!entry || RB_EMPTY_NODE(node))				\
398		return NULL;						\
399									\
400	if (usable_hole_addr(node->first, size)) {			\
401		node = node->first;					\
402		while (usable_hole_addr(node->last, size))		\
403			node = node->last;				\
404		return rb_hole_addr_to_node(node);			\
405	}								\
406									\
407	while ((parent = rb_parent(node)) && node == parent->first)	\
408		node = parent;						\
409									\
410	return rb_hole_addr_to_node(parent);				\
411}
412
413DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
414DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
415
416static struct drm_mm_node *
417next_hole(struct drm_mm *mm,
418	  struct drm_mm_node *node,
419	  u64 size,
420	  enum drm_mm_insert_mode mode)
421{
422	switch (mode) {
423	default:
424	case DRM_MM_INSERT_BEST:
425		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
426
427	case DRM_MM_INSERT_LOW:
428		return next_hole_low_addr(node, size);
429
430	case DRM_MM_INSERT_HIGH:
431		return next_hole_high_addr(node, size);
432
433	case DRM_MM_INSERT_EVICT:
434		node = list_next_entry(node, hole_stack);
435		return &node->hole_stack == &mm->hole_stack ? NULL : node;
436	}
437}
438
439/**
440 * drm_mm_reserve_node - insert an pre-initialized node
441 * @mm: drm_mm allocator to insert @node into
442 * @node: drm_mm_node to insert
443 *
444 * This functions inserts an already set-up &drm_mm_node into the allocator,
445 * meaning that start, size and color must be set by the caller. All other
446 * fields must be cleared to 0. This is useful to initialize the allocator with
447 * preallocated objects which must be set-up before the range allocator can be
448 * set-up, e.g. when taking over a firmware framebuffer.
449 *
450 * Returns:
451 * 0 on success, -ENOSPC if there's no hole where @node is.
452 */
453int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
454{
455	struct drm_mm_node *hole;
456	u64 hole_start, hole_end;
457	u64 adj_start, adj_end;
458	u64 end;
459
460	end = node->start + node->size;
461	if (unlikely(end <= node->start))
462		return -ENOSPC;
463
464	/* Find the relevant hole to add our node to */
465	hole = find_hole_addr(mm, node->start, 0);
466	if (!hole)
467		return -ENOSPC;
468
469	adj_start = hole_start = __drm_mm_hole_node_start(hole);
470	adj_end = hole_end = hole_start + hole->hole_size;
471
472	if (mm->color_adjust)
473		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
474
475	if (adj_start > node->start || adj_end < end)
476		return -ENOSPC;
477
478	node->mm = mm;
479
480	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
481	list_add(&node->node_list, &hole->node_list);
482	drm_mm_interval_tree_add_node(hole, node);
483	node->hole_size = 0;
484
485	rm_hole(hole);
486	if (node->start > hole_start)
487		add_hole(hole);
488	if (end < hole_end)
489		add_hole(node);
490
491	save_stack(node);
492	return 0;
493}
494EXPORT_SYMBOL(drm_mm_reserve_node);
495
496static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
497{
498	return rb ? rb_to_hole_size(rb) : 0;
499}
500
501/**
502 * drm_mm_insert_node_in_range - ranged search for space and insert @node
503 * @mm: drm_mm to allocate from
504 * @node: preallocate node to insert
505 * @size: size of the allocation
506 * @alignment: alignment of the allocation
507 * @color: opaque tag value to use for this node
508 * @range_start: start of the allowed range for this node
509 * @range_end: end of the allowed range for this node
510 * @mode: fine-tune the allocation search and placement
511 *
512 * The preallocated @node must be cleared to 0.
513 *
514 * Returns:
515 * 0 on success, -ENOSPC if there's no suitable hole.
516 */
517int drm_mm_insert_node_in_range(struct drm_mm * const mm,
518				struct drm_mm_node * const node,
519				u64 size, u64 alignment,
520				unsigned long color,
521				u64 range_start, u64 range_end,
522				enum drm_mm_insert_mode mode)
523{
524	struct drm_mm_node *hole;
525	u64 remainder_mask;
526	bool once;
527
528	DRM_MM_BUG_ON(range_start > range_end);
529
530	if (unlikely(size == 0 || range_end - range_start < size))
531		return -ENOSPC;
532
533	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
534		return -ENOSPC;
535
536	if (alignment <= 1)
537		alignment = 0;
538
539	once = mode & DRM_MM_INSERT_ONCE;
540	mode &= ~DRM_MM_INSERT_ONCE;
541
542	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
543	for (hole = first_hole(mm, range_start, range_end, size, mode);
544	     hole;
545	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
546		u64 hole_start = __drm_mm_hole_node_start(hole);
547		u64 hole_end = hole_start + hole->hole_size;
548		u64 adj_start, adj_end;
549		u64 col_start, col_end;
550
551		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
552			break;
553
554		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
555			break;
556
557		col_start = hole_start;
558		col_end = hole_end;
559		if (mm->color_adjust)
560			mm->color_adjust(hole, color, &col_start, &col_end);
561
562		adj_start = max(col_start, range_start);
563		adj_end = min(col_end, range_end);
564
565		if (adj_end <= adj_start || adj_end - adj_start < size)
566			continue;
567
568		if (mode == DRM_MM_INSERT_HIGH)
569			adj_start = adj_end - size;
570
571		if (alignment) {
572			u64 rem;
573
574			if (likely(remainder_mask))
575				rem = adj_start & remainder_mask;
576			else
577				div64_u64_rem(adj_start, alignment, &rem);
578			if (rem) {
579				adj_start -= rem;
580				if (mode != DRM_MM_INSERT_HIGH)
581					adj_start += alignment;
582
583				if (adj_start < max(col_start, range_start) ||
584				    min(col_end, range_end) - adj_start < size)
585					continue;
586
587				if (adj_end <= adj_start ||
588				    adj_end - adj_start < size)
589					continue;
590			}
591		}
592
593		node->mm = mm;
594		node->size = size;
595		node->start = adj_start;
596		node->color = color;
597		node->hole_size = 0;
598
599		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
600		list_add(&node->node_list, &hole->node_list);
601		drm_mm_interval_tree_add_node(hole, node);
602
603		rm_hole(hole);
604		if (adj_start > hole_start)
605			add_hole(hole);
606		if (adj_start + size < hole_end)
607			add_hole(node);
608
609		save_stack(node);
610		return 0;
611	}
612
613	return -ENOSPC;
614}
615EXPORT_SYMBOL(drm_mm_insert_node_in_range);
616
617static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
618{
619	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
620}
621
622/**
623 * drm_mm_remove_node - Remove a memory node from the allocator.
624 * @node: drm_mm_node to remove
625 *
626 * This just removes a node from its drm_mm allocator. The node does not need to
627 * be cleared again before it can be re-inserted into this or any other drm_mm
628 * allocator. It is a bug to call this function on a unallocated node.
629 */
630void drm_mm_remove_node(struct drm_mm_node *node)
631{
632	struct drm_mm *mm = node->mm;
633	struct drm_mm_node *prev_node;
634
635	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
636	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
637
638	prev_node = list_prev_entry(node, node_list);
639
640	if (drm_mm_hole_follows(node))
641		rm_hole(node);
642
643	drm_mm_interval_tree_remove(node, &mm->interval_tree);
644	list_del(&node->node_list);
645
646	if (drm_mm_hole_follows(prev_node))
647		rm_hole(prev_node);
648	add_hole(prev_node);
649
650	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
651}
652EXPORT_SYMBOL(drm_mm_remove_node);
653
654/**
655 * drm_mm_replace_node - move an allocation from @old to @new
656 * @old: drm_mm_node to remove from the allocator
657 * @new: drm_mm_node which should inherit @old's allocation
658 *
659 * This is useful for when drivers embed the drm_mm_node structure and hence
660 * can't move allocations by reassigning pointers. It's a combination of remove
661 * and insert with the guarantee that the allocation start will match.
662 */
663void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
664{
665	struct drm_mm *mm = old->mm;
666
667	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
668
669	*new = *old;
670
671	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
672	list_replace(&old->node_list, &new->node_list);
673	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
674
675	if (drm_mm_hole_follows(old)) {
676		list_replace(&old->hole_stack, &new->hole_stack);
677		rb_replace_node_cached(&old->rb_hole_size,
678				       &new->rb_hole_size,
679				       &mm->holes_size);
680		rb_replace_node(&old->rb_hole_addr,
681				&new->rb_hole_addr,
682				&mm->holes_addr);
683	}
684
685	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
686}
687EXPORT_SYMBOL(drm_mm_replace_node);
688
689/**
690 * DOC: lru scan roster
691 *
692 * Very often GPUs need to have continuous allocations for a given object. When
693 * evicting objects to make space for a new one it is therefore not most
694 * efficient when we simply start to select all objects from the tail of an LRU
695 * until there's a suitable hole: Especially for big objects or nodes that
696 * otherwise have special allocation constraints there's a good chance we evict
697 * lots of (smaller) objects unnecessarily.
698 *
699 * The DRM range allocator supports this use-case through the scanning
700 * interfaces. First a scan operation needs to be initialized with
701 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
702 * objects to the roster, probably by walking an LRU list, but this can be
703 * freely implemented. Eviction candiates are added using
704 * drm_mm_scan_add_block() until a suitable hole is found or there are no
705 * further evictable objects. Eviction roster metadata is tracked in &struct
706 * drm_mm_scan.
707 *
708 * The driver must walk through all objects again in exactly the reverse
709 * order to restore the allocator state. Note that while the allocator is used
710 * in the scan mode no other operation is allowed.
711 *
712 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
713 * reported true) in the scan, and any overlapping nodes after color adjustment
714 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
715 * since freeing a node is also O(1) the overall complexity is
716 * O(scanned_objects). So like the free stack which needs to be walked before a
717 * scan operation even begins this is linear in the number of objects. It
718 * doesn't seem to hurt too badly.
719 */
720
721/**
722 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
723 * @scan: scan state
724 * @mm: drm_mm to scan
725 * @size: size of the allocation
726 * @alignment: alignment of the allocation
727 * @color: opaque tag value to use for the allocation
728 * @start: start of the allowed range for the allocation
729 * @end: end of the allowed range for the allocation
730 * @mode: fine-tune the allocation search and placement
731 *
732 * This simply sets up the scanning routines with the parameters for the desired
733 * hole.
734 *
735 * Warning:
736 * As long as the scan list is non-empty, no other operations than
737 * adding/removing nodes to/from the scan list are allowed.
738 */
739void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
740				 struct drm_mm *mm,
741				 u64 size,
742				 u64 alignment,
743				 unsigned long color,
744				 u64 start,
745				 u64 end,
746				 enum drm_mm_insert_mode mode)
747{
748	DRM_MM_BUG_ON(start >= end);
749	DRM_MM_BUG_ON(!size || size > end - start);
750	DRM_MM_BUG_ON(mm->scan_active);
751
752	scan->mm = mm;
753
754	if (alignment <= 1)
755		alignment = 0;
756
757	scan->color = color;
758	scan->alignment = alignment;
759	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
760	scan->size = size;
761	scan->mode = mode;
762
763	DRM_MM_BUG_ON(end <= start);
764	scan->range_start = start;
765	scan->range_end = end;
766
767	scan->hit_start = U64_MAX;
768	scan->hit_end = 0;
769}
770EXPORT_SYMBOL(drm_mm_scan_init_with_range);
771
772/**
773 * drm_mm_scan_add_block - add a node to the scan list
774 * @scan: the active drm_mm scanner
775 * @node: drm_mm_node to add
776 *
777 * Add a node to the scan list that might be freed to make space for the desired
778 * hole.
779 *
780 * Returns:
781 * True if a hole has been found, false otherwise.
782 */
783bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
784			   struct drm_mm_node *node)
785{
786	struct drm_mm *mm = scan->mm;
787	struct drm_mm_node *hole;
788	u64 hole_start, hole_end;
789	u64 col_start, col_end;
790	u64 adj_start, adj_end;
791
792	DRM_MM_BUG_ON(node->mm != mm);
793	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
794	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
795	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
796	mm->scan_active++;
797
798	/* Remove this block from the node_list so that we enlarge the hole
799	 * (distance between the end of our previous node and the start of
800	 * or next), without poisoning the link so that we can restore it
801	 * later in drm_mm_scan_remove_block().
802	 */
803	hole = list_prev_entry(node, node_list);
804	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
805	__list_del_entry(&node->node_list);
806
807	hole_start = __drm_mm_hole_node_start(hole);
808	hole_end = __drm_mm_hole_node_end(hole);
809
810	col_start = hole_start;
811	col_end = hole_end;
812	if (mm->color_adjust)
813		mm->color_adjust(hole, scan->color, &col_start, &col_end);
814
815	adj_start = max(col_start, scan->range_start);
816	adj_end = min(col_end, scan->range_end);
817	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
818		return false;
819
820	if (scan->mode == DRM_MM_INSERT_HIGH)
821		adj_start = adj_end - scan->size;
822
823	if (scan->alignment) {
824		u64 rem;
825
826		if (likely(scan->remainder_mask))
827			rem = adj_start & scan->remainder_mask;
828		else
829			div64_u64_rem(adj_start, scan->alignment, &rem);
830		if (rem) {
831			adj_start -= rem;
832			if (scan->mode != DRM_MM_INSERT_HIGH)
833				adj_start += scan->alignment;
834			if (adj_start < max(col_start, scan->range_start) ||
835			    min(col_end, scan->range_end) - adj_start < scan->size)
836				return false;
837
838			if (adj_end <= adj_start ||
839			    adj_end - adj_start < scan->size)
840				return false;
841		}
842	}
843
844	scan->hit_start = adj_start;
845	scan->hit_end = adj_start + scan->size;
846
847	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
848	DRM_MM_BUG_ON(scan->hit_start < hole_start);
849	DRM_MM_BUG_ON(scan->hit_end > hole_end);
850
851	return true;
852}
853EXPORT_SYMBOL(drm_mm_scan_add_block);
854
855/**
856 * drm_mm_scan_remove_block - remove a node from the scan list
857 * @scan: the active drm_mm scanner
858 * @node: drm_mm_node to remove
859 *
860 * Nodes **must** be removed in exactly the reverse order from the scan list as
861 * they have been added (e.g. using list_add() as they are added and then
862 * list_for_each() over that eviction list to remove), otherwise the internal
863 * state of the memory manager will be corrupted.
864 *
865 * When the scan list is empty, the selected memory nodes can be freed. An
866 * immediately following drm_mm_insert_node_in_range_generic() or one of the
867 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
868 * the just freed block (because it's at the top of the free_stack list).
869 *
870 * Returns:
871 * True if this block should be evicted, false otherwise. Will always
872 * return false when no hole has been found.
873 */
874bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
875			      struct drm_mm_node *node)
876{
877	struct drm_mm_node *prev_node;
878
879	DRM_MM_BUG_ON(node->mm != scan->mm);
880	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
881	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
882
883	DRM_MM_BUG_ON(!node->mm->scan_active);
884	node->mm->scan_active--;
885
886	/* During drm_mm_scan_add_block() we decoupled this node leaving
887	 * its pointers intact. Now that the caller is walking back along
888	 * the eviction list we can restore this block into its rightful
889	 * place on the full node_list. To confirm that the caller is walking
890	 * backwards correctly we check that prev_node->next == node->next,
891	 * i.e. both believe the same node should be on the other side of the
892	 * hole.
893	 */
894	prev_node = list_prev_entry(node, node_list);
895	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
896		      list_next_entry(node, node_list));
897	list_add(&node->node_list, &prev_node->node_list);
898
899	return (node->start + node->size > scan->hit_start &&
900		node->start < scan->hit_end);
901}
902EXPORT_SYMBOL(drm_mm_scan_remove_block);
903
904/**
905 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
906 * @scan: drm_mm scan with target hole
907 *
908 * After completing an eviction scan and removing the selected nodes, we may
909 * need to remove a few more nodes from either side of the target hole if
910 * mm.color_adjust is being used.
911 *
912 * Returns:
913 * A node to evict, or NULL if there are no overlapping nodes.
914 */
915struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
916{
917	struct drm_mm *mm = scan->mm;
918	struct drm_mm_node *hole;
919	u64 hole_start, hole_end;
920
921	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
922
923	if (!mm->color_adjust)
924		return NULL;
925
926	/*
927	 * The hole found during scanning should ideally be the first element
928	 * in the hole_stack list, but due to side-effects in the driver it
929	 * may not be.
930	 */
931	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
932		hole_start = __drm_mm_hole_node_start(hole);
933		hole_end = hole_start + hole->hole_size;
934
935		if (hole_start <= scan->hit_start &&
936		    hole_end >= scan->hit_end)
937			break;
938	}
939
940	/* We should only be called after we found the hole previously */
941	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
942	if (unlikely(&hole->hole_stack == &mm->hole_stack))
943		return NULL;
944
945	DRM_MM_BUG_ON(hole_start > scan->hit_start);
946	DRM_MM_BUG_ON(hole_end < scan->hit_end);
947
948	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
949	if (hole_start > scan->hit_start)
950		return hole;
951	if (hole_end < scan->hit_end)
952		return list_next_entry(hole, node_list);
953
954	return NULL;
955}
956EXPORT_SYMBOL(drm_mm_scan_color_evict);
957
958/**
959 * drm_mm_init - initialize a drm-mm allocator
960 * @mm: the drm_mm structure to initialize
961 * @start: start of the range managed by @mm
962 * @size: end of the range managed by @mm
963 *
964 * Note that @mm must be cleared to 0 before calling this function.
965 */
966void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
967{
968	DRM_MM_BUG_ON(start + size <= start);
969
970	mm->color_adjust = NULL;
971
972	INIT_LIST_HEAD(&mm->hole_stack);
973	mm->interval_tree = RB_ROOT_CACHED;
974	mm->holes_size = RB_ROOT_CACHED;
975	mm->holes_addr = RB_ROOT;
976
977	/* Clever trick to avoid a special case in the free hole tracking. */
978	INIT_LIST_HEAD(&mm->head_node.node_list);
979	mm->head_node.flags = 0;
980	mm->head_node.mm = mm;
981	mm->head_node.start = start + size;
982	mm->head_node.size = -size;
983	add_hole(&mm->head_node);
984
985	mm->scan_active = 0;
986}
987EXPORT_SYMBOL(drm_mm_init);
988
989/**
990 * drm_mm_takedown - clean up a drm_mm allocator
991 * @mm: drm_mm allocator to clean up
992 *
993 * Note that it is a bug to call this function on an allocator which is not
994 * clean.
995 */
996void drm_mm_takedown(struct drm_mm *mm)
997{
998	if (WARN(!drm_mm_clean(mm),
999		 "Memory manager not clean during takedown.\n"))
1000		show_leaks(mm);
1001}
1002EXPORT_SYMBOL(drm_mm_takedown);
1003
1004static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1005{
1006	u64 start, size;
1007
1008	size = entry->hole_size;
1009	if (size) {
1010		start = drm_mm_hole_node_start(entry);
1011		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1012			   start, start + size, size);
1013	}
1014
1015	return size;
1016}
1017/**
1018 * drm_mm_print - print allocator state
1019 * @mm: drm_mm allocator to print
1020 * @p: DRM printer to use
1021 */
1022void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1023{
1024	const struct drm_mm_node *entry;
1025	u64 total_used = 0, total_free = 0, total = 0;
1026
1027	total_free += drm_mm_dump_hole(p, &mm->head_node);
1028
1029	drm_mm_for_each_node(entry, mm) {
1030		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1031			   entry->start + entry->size, entry->size);
1032		total_used += entry->size;
1033		total_free += drm_mm_dump_hole(p, entry);
1034	}
1035	total = total_free + total_used;
1036
1037	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1038		   total_used, total_free);
1039}
1040EXPORT_SYMBOL(drm_mm_print);
1041