1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#ifndef KFD_PRIV_H_INCLUDED
24#define KFD_PRIV_H_INCLUDED
25
26#include <linux/hashtable.h>
27#include <linux/mmu_notifier.h>
28#include <linux/mutex.h>
29#include <linux/types.h>
30#include <linux/atomic.h>
31#include <linux/workqueue.h>
32#include <linux/spinlock.h>
33#include <linux/kfd_ioctl.h>
34#include <linux/idr.h>
35#include <linux/kfifo.h>
36#include <linux/seq_file.h>
37#include <linux/kref.h>
38#include <linux/sysfs.h>
39#include <linux/device_cgroup.h>
40#include <drm/drm_file.h>
41#include <drm/drm_drv.h>
42#include <drm/drm_device.h>
43#include <drm/drm_ioctl.h>
44#include <kgd_kfd_interface.h>
45#include <linux/swap.h>
46
47#include "amd_shared.h"
48
49#define KFD_MAX_RING_ENTRY_SIZE	8
50
51#define KFD_SYSFS_FILE_MODE 0444
52
53/* GPU ID hash width in bits */
54#define KFD_GPU_ID_HASH_WIDTH 16
55
56/* Use upper bits of mmap offset to store KFD driver specific information.
57 * BITS[63:62] - Encode MMAP type
58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59 * BITS[45:0]  - MMAP offset value
60 *
61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62 *  defines are w.r.t to PAGE_SIZE
63 */
64#define KFD_MMAP_TYPE_SHIFT	62
65#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70
71#define KFD_MMAP_GPU_ID_SHIFT 46
72#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73				<< KFD_MMAP_GPU_ID_SHIFT)
74#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75				& KFD_MMAP_GPU_ID_MASK)
76#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77				>> KFD_MMAP_GPU_ID_SHIFT)
78
79/*
80 * When working with cp scheduler we should assign the HIQ manually or via
81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82 * definitions for Kaveri. In Kaveri only the first ME queues participates
83 * in the cp scheduling taking that in mind we set the HIQ slot in the
84 * second ME.
85 */
86#define KFD_CIK_HIQ_PIPE 4
87#define KFD_CIK_HIQ_QUEUE 0
88
89/* Macro for allocating structures */
90#define kfd_alloc_struct(ptr_to_struct)	\
91	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92
93#define KFD_MAX_NUM_OF_PROCESSES 512
94#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95
96/*
97 * Size of the per-process TBA+TMA buffer: 2 pages
98 *
99 * The first page is the TBA used for the CWSR ISA code. The second
100 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101 */
102#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104
105#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106	(KFD_MAX_NUM_OF_PROCESSES *			\
107			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108
109#define KFD_KERNEL_QUEUE_SIZE 2048
110
111#define KFD_UNMAP_LATENCY_MS	(4000)
112
113/*
114 * 512 = 0x200
115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120 */
121#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122
123
124/*
125 * Kernel module parameter to specify maximum number of supported queues per
126 * device
127 */
128extern int max_num_of_queues_per_device;
129
130
131/* Kernel module parameter to specify the scheduling policy */
132extern int sched_policy;
133
134/*
135 * Kernel module parameter to specify the maximum process
136 * number per HW scheduler
137 */
138extern int hws_max_conc_proc;
139
140extern int cwsr_enable;
141
142/*
143 * Kernel module parameter to specify whether to send sigterm to HSA process on
144 * unhandled exception
145 */
146extern int send_sigterm;
147
148/*
149 * This kernel module is used to simulate large bar machine on non-large bar
150 * enabled machines.
151 */
152extern int debug_largebar;
153
154/*
155 * Ignore CRAT table during KFD initialization, can be used to work around
156 * broken CRAT tables on some AMD systems
157 */
158extern int ignore_crat;
159
160/* Set sh_mem_config.retry_disable on GFX v9 */
161extern int amdgpu_noretry;
162
163/* Halt if HWS hang is detected */
164extern int halt_if_hws_hang;
165
166/* Whether MEC FW support GWS barriers */
167extern bool hws_gws_support;
168
169/* Queue preemption timeout in ms */
170extern int queue_preemption_timeout_ms;
171
172/* Enable eviction debug messages */
173extern bool debug_evictions;
174
175enum cache_policy {
176	cache_policy_coherent,
177	cache_policy_noncoherent
178};
179
180#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181
182struct kfd_event_interrupt_class {
183	bool (*interrupt_isr)(struct kfd_dev *dev,
184			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185			bool *patched_flag);
186	void (*interrupt_wq)(struct kfd_dev *dev,
187			const uint32_t *ih_ring_entry);
188};
189
190struct kfd_device_info {
191	enum amd_asic_type asic_family;
192	const char *asic_name;
193	const struct kfd_event_interrupt_class *event_interrupt_class;
194	unsigned int max_pasid_bits;
195	unsigned int max_no_of_hqd;
196	unsigned int doorbell_size;
197	size_t ih_ring_entry_size;
198	uint8_t num_of_watch_points;
199	uint16_t mqd_size_aligned;
200	bool supports_cwsr;
201	bool needs_iommu_device;
202	bool needs_pci_atomics;
203	unsigned int num_sdma_engines;
204	unsigned int num_xgmi_sdma_engines;
205	unsigned int num_sdma_queues_per_engine;
206};
207
208struct kfd_mem_obj {
209	uint32_t range_start;
210	uint32_t range_end;
211	uint64_t gpu_addr;
212	uint32_t *cpu_ptr;
213	void *gtt_mem;
214};
215
216struct kfd_vmid_info {
217	uint32_t first_vmid_kfd;
218	uint32_t last_vmid_kfd;
219	uint32_t vmid_num_kfd;
220};
221
222struct kfd_dev {
223	struct kgd_dev *kgd;
224
225	const struct kfd_device_info *device_info;
226	struct pci_dev *pdev;
227	struct drm_device *ddev;
228
229	unsigned int id;		/* topology stub index */
230
231	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
232					 * KFD. It is aligned for mapping
233					 * into user mode
234					 */
235	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
236					 * doorbell BAR to the first KFD
237					 * doorbell in dwords. GFX reserves
238					 * the segment before this offset.
239					 */
240	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241					   * page used by kernel queue
242					   */
243
244	struct kgd2kfd_shared_resources shared_resources;
245	struct kfd_vmid_info vm_info;
246
247	const struct kfd2kgd_calls *kfd2kgd;
248	struct mutex doorbell_mutex;
249	DECLARE_BITMAP(doorbell_available_index,
250			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251
252	void *gtt_mem;
253	uint64_t gtt_start_gpu_addr;
254	void *gtt_start_cpu_ptr;
255	void *gtt_sa_bitmap;
256	struct mutex gtt_sa_lock;
257	unsigned int gtt_sa_chunk_size;
258	unsigned int gtt_sa_num_of_chunks;
259
260	/* Interrupts */
261	struct kfifo ih_fifo;
262	struct workqueue_struct *ih_wq;
263	struct work_struct interrupt_work;
264	spinlock_t interrupt_lock;
265
266	/* QCM Device instance */
267	struct device_queue_manager *dqm;
268
269	bool init_complete;
270	/*
271	 * Interrupts of interest to KFD are copied
272	 * from the HW ring into a SW ring.
273	 */
274	bool interrupts_active;
275
276	/* Debug manager */
277	struct kfd_dbgmgr *dbgmgr;
278
279	/* Firmware versions */
280	uint16_t mec_fw_version;
281	uint16_t mec2_fw_version;
282	uint16_t sdma_fw_version;
283
284	/* Maximum process number mapped to HW scheduler */
285	unsigned int max_proc_per_quantum;
286
287	/* CWSR */
288	bool cwsr_enabled;
289	const void *cwsr_isa;
290	unsigned int cwsr_isa_size;
291
292	/* xGMI */
293	uint64_t hive_id;
294
295	/* UUID */
296	uint64_t unique_id;
297
298	bool pci_atomic_requested;
299
300	/* Use IOMMU v2 flag */
301	bool use_iommu_v2;
302
303	/* SRAM ECC flag */
304	atomic_t sram_ecc_flag;
305
306	/* Compute Profile ref. count */
307	atomic_t compute_profile;
308
309	/* Global GWS resource shared between processes */
310	void *gws;
311
312	/* Clients watching SMI events */
313	struct list_head smi_clients;
314	spinlock_t smi_lock;
315
316	uint32_t reset_seq_num;
317
318	struct ida doorbell_ida;
319	unsigned int max_doorbell_slices;
320
321	int noretry;
322};
323
324enum kfd_mempool {
325	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
326	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
327	KFD_MEMPOOL_FRAMEBUFFER = 3,
328};
329
330/* Character device interface */
331int kfd_chardev_init(void);
332void kfd_chardev_exit(void);
333struct device *kfd_chardev(void);
334
335/**
336 * enum kfd_unmap_queues_filter - Enum for queue filters.
337 *
338 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
339 *
340 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
341 *						running queues list.
342 *
343 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
344 *						specific process.
345 *
346 */
347enum kfd_unmap_queues_filter {
348	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
349	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
350	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
351	KFD_UNMAP_QUEUES_FILTER_BY_PASID
352};
353
354/**
355 * enum kfd_queue_type - Enum for various queue types.
356 *
357 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
358 *
359 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
360 *
361 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
362 *
363 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
364 *
365 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
366 */
367enum kfd_queue_type  {
368	KFD_QUEUE_TYPE_COMPUTE,
369	KFD_QUEUE_TYPE_SDMA,
370	KFD_QUEUE_TYPE_HIQ,
371	KFD_QUEUE_TYPE_DIQ,
372	KFD_QUEUE_TYPE_SDMA_XGMI
373};
374
375enum kfd_queue_format {
376	KFD_QUEUE_FORMAT_PM4,
377	KFD_QUEUE_FORMAT_AQL
378};
379
380enum KFD_QUEUE_PRIORITY {
381	KFD_QUEUE_PRIORITY_MINIMUM = 0,
382	KFD_QUEUE_PRIORITY_MAXIMUM = 15
383};
384
385/**
386 * struct queue_properties
387 *
388 * @type: The queue type.
389 *
390 * @queue_id: Queue identifier.
391 *
392 * @queue_address: Queue ring buffer address.
393 *
394 * @queue_size: Queue ring buffer size.
395 *
396 * @priority: Defines the queue priority relative to other queues in the
397 * process.
398 * This is just an indication and HW scheduling may override the priority as
399 * necessary while keeping the relative prioritization.
400 * the priority granularity is from 0 to f which f is the highest priority.
401 * currently all queues are initialized with the highest priority.
402 *
403 * @queue_percent: This field is partially implemented and currently a zero in
404 * this field defines that the queue is non active.
405 *
406 * @read_ptr: User space address which points to the number of dwords the
407 * cp read from the ring buffer. This field updates automatically by the H/W.
408 *
409 * @write_ptr: Defines the number of dwords written to the ring buffer.
410 *
411 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
412 * buffer. This field should be similar to write_ptr and the user should
413 * update this field after updating the write_ptr.
414 *
415 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
416 *
417 * @is_interop: Defines if this is a interop queue. Interop queue means that
418 * the queue can access both graphics and compute resources.
419 *
420 * @is_evicted: Defines if the queue is evicted. Only active queues
421 * are evicted, rendering them inactive.
422 *
423 * @is_active: Defines if the queue is active or not. @is_active and
424 * @is_evicted are protected by the DQM lock.
425 *
426 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
427 * @is_gws should be protected by the DQM lock, since changing it can yield the
428 * possibility of updating DQM state on number of GWS queues.
429 *
430 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
431 * of the queue.
432 *
433 * This structure represents the queue properties for each queue no matter if
434 * it's user mode or kernel mode queue.
435 *
436 */
437struct queue_properties {
438	enum kfd_queue_type type;
439	enum kfd_queue_format format;
440	unsigned int queue_id;
441	uint64_t queue_address;
442	uint64_t  queue_size;
443	uint32_t priority;
444	uint32_t queue_percent;
445	uint32_t *read_ptr;
446	uint32_t *write_ptr;
447	void __iomem *doorbell_ptr;
448	uint32_t doorbell_off;
449	bool is_interop;
450	bool is_evicted;
451	bool is_active;
452	bool is_gws;
453	/* Not relevant for user mode queues in cp scheduling */
454	unsigned int vmid;
455	/* Relevant only for sdma queues*/
456	uint32_t sdma_engine_id;
457	uint32_t sdma_queue_id;
458	uint32_t sdma_vm_addr;
459	/* Relevant only for VI */
460	uint64_t eop_ring_buffer_address;
461	uint32_t eop_ring_buffer_size;
462	uint64_t ctx_save_restore_area_address;
463	uint32_t ctx_save_restore_area_size;
464	uint32_t ctl_stack_size;
465	uint64_t tba_addr;
466	uint64_t tma_addr;
467	/* Relevant for CU */
468	uint32_t cu_mask_count; /* Must be a multiple of 32 */
469	uint32_t *cu_mask;
470};
471
472#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
473			    (q).queue_address != 0 &&	\
474			    (q).queue_percent > 0 &&	\
475			    !(q).is_evicted)
476
477/**
478 * struct queue
479 *
480 * @list: Queue linked list.
481 *
482 * @mqd: The queue MQD (memory queue descriptor).
483 *
484 * @mqd_mem_obj: The MQD local gpu memory object.
485 *
486 * @gart_mqd_addr: The MQD gart mc address.
487 *
488 * @properties: The queue properties.
489 *
490 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
491 *	 that the queue should be executed on.
492 *
493 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
494 *	  id.
495 *
496 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
497 *
498 * @process: The kfd process that created this queue.
499 *
500 * @device: The kfd device that created this queue.
501 *
502 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
503 * otherwise.
504 *
505 * This structure represents user mode compute queues.
506 * It contains all the necessary data to handle such queues.
507 *
508 */
509
510struct queue {
511	struct list_head list;
512	void *mqd;
513	struct kfd_mem_obj *mqd_mem_obj;
514	uint64_t gart_mqd_addr;
515	struct queue_properties properties;
516
517	uint32_t mec;
518	uint32_t pipe;
519	uint32_t queue;
520
521	unsigned int sdma_id;
522	unsigned int doorbell_id;
523
524	struct kfd_process	*process;
525	struct kfd_dev		*device;
526	void *gws;
527
528	/* procfs */
529	struct kobject kobj;
530};
531
532enum KFD_MQD_TYPE {
533	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
534	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
535	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
536	KFD_MQD_TYPE_DIQ,		/* for diq */
537	KFD_MQD_TYPE_MAX
538};
539
540enum KFD_PIPE_PRIORITY {
541	KFD_PIPE_PRIORITY_CS_LOW = 0,
542	KFD_PIPE_PRIORITY_CS_MEDIUM,
543	KFD_PIPE_PRIORITY_CS_HIGH
544};
545
546struct scheduling_resources {
547	unsigned int vmid_mask;
548	enum kfd_queue_type type;
549	uint64_t queue_mask;
550	uint64_t gws_mask;
551	uint32_t oac_mask;
552	uint32_t gds_heap_base;
553	uint32_t gds_heap_size;
554};
555
556struct process_queue_manager {
557	/* data */
558	struct kfd_process	*process;
559	struct list_head	queues;
560	unsigned long		*queue_slot_bitmap;
561};
562
563struct qcm_process_device {
564	/* The Device Queue Manager that owns this data */
565	struct device_queue_manager *dqm;
566	struct process_queue_manager *pqm;
567	/* Queues list */
568	struct list_head queues_list;
569	struct list_head priv_queue_list;
570
571	unsigned int queue_count;
572	unsigned int vmid;
573	bool is_debug;
574	unsigned int evicted; /* eviction counter, 0=active */
575
576	/* This flag tells if we should reset all wavefronts on
577	 * process termination
578	 */
579	bool reset_wavefronts;
580
581	/* This flag tells us if this process has a GWS-capable
582	 * queue that will be mapped into the runlist. It's
583	 * possible to request a GWS BO, but not have the queue
584	 * currently mapped, and this changes how the MAP_PROCESS
585	 * PM4 packet is configured.
586	 */
587	bool mapped_gws_queue;
588
589	/* All the memory management data should be here too */
590	uint64_t gds_context_area;
591	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
592	uint64_t page_table_base;
593	uint32_t sh_mem_config;
594	uint32_t sh_mem_bases;
595	uint32_t sh_mem_ape1_base;
596	uint32_t sh_mem_ape1_limit;
597	uint32_t gds_size;
598	uint32_t num_gws;
599	uint32_t num_oac;
600	uint32_t sh_hidden_private_base;
601
602	/* CWSR memory */
603	void *cwsr_kaddr;
604	uint64_t cwsr_base;
605	uint64_t tba_addr;
606	uint64_t tma_addr;
607
608	/* IB memory */
609	uint64_t ib_base;
610	void *ib_kaddr;
611
612	/* doorbell resources per process per device */
613	unsigned long *doorbell_bitmap;
614};
615
616/* KFD Memory Eviction */
617
618/* Approx. wait time before attempting to restore evicted BOs */
619#define PROCESS_RESTORE_TIME_MS 100
620/* Approx. back off time if restore fails due to lack of memory */
621#define PROCESS_BACK_OFF_TIME_MS 100
622/* Approx. time before evicting the process again */
623#define PROCESS_ACTIVE_TIME_MS 10
624
625/* 8 byte handle containing GPU ID in the most significant 4 bytes and
626 * idr_handle in the least significant 4 bytes
627 */
628#define MAKE_HANDLE(gpu_id, idr_handle) \
629	(((uint64_t)(gpu_id) << 32) + idr_handle)
630#define GET_GPU_ID(handle) (handle >> 32)
631#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
632
633enum kfd_pdd_bound {
634	PDD_UNBOUND = 0,
635	PDD_BOUND,
636	PDD_BOUND_SUSPENDED,
637};
638
639#define MAX_SYSFS_FILENAME_LEN 15
640
641/*
642 * SDMA counter runs at 100MHz frequency.
643 * We display SDMA activity in microsecond granularity in sysfs.
644 * As a result, the divisor is 100.
645 */
646#define SDMA_ACTIVITY_DIVISOR  100
647
648/* Data that is per-process-per device. */
649struct kfd_process_device {
650	/*
651	 * List of all per-device data for a process.
652	 * Starts from kfd_process.per_device_data.
653	 */
654	struct list_head per_device_list;
655
656	/* The device that owns this data. */
657	struct kfd_dev *dev;
658
659	/* The process that owns this kfd_process_device. */
660	struct kfd_process *process;
661
662	/* per-process-per device QCM data structure */
663	struct qcm_process_device qpd;
664
665	/*Apertures*/
666	uint64_t lds_base;
667	uint64_t lds_limit;
668	uint64_t gpuvm_base;
669	uint64_t gpuvm_limit;
670	uint64_t scratch_base;
671	uint64_t scratch_limit;
672
673	/* VM context for GPUVM allocations */
674	struct file *drm_file;
675	void *vm;
676
677	/* GPUVM allocations storage */
678	struct idr alloc_idr;
679
680	/* Flag used to tell the pdd has dequeued from the dqm.
681	 * This is used to prevent dev->dqm->ops.process_termination() from
682	 * being called twice when it is already called in IOMMU callback
683	 * function.
684	 */
685	bool already_dequeued;
686	bool runtime_inuse;
687
688	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
689	enum kfd_pdd_bound bound;
690
691	/* VRAM usage */
692	uint64_t vram_usage;
693	struct attribute attr_vram;
694	char vram_filename[MAX_SYSFS_FILENAME_LEN];
695
696	/* SDMA activity tracking */
697	uint64_t sdma_past_activity_counter;
698	struct attribute attr_sdma;
699	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
700
701	/* Eviction activity tracking */
702	uint64_t last_evict_timestamp;
703	atomic64_t evict_duration_counter;
704	struct attribute attr_evict;
705
706	struct kobject *kobj_stats;
707	unsigned int doorbell_index;
708
709	/*
710	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
711	 * that is associated with device encoded by "this" struct instance. The
712	 * value reflects CU usage by all of the waves launched by this process
713	 * on this device. A very important property of occupancy parameter is
714	 * that its value is a snapshot of current use.
715	 *
716	 * Following is to be noted regarding how this parameter is reported:
717	 *
718	 *  The number of waves that a CU can launch is limited by couple of
719	 *  parameters. These are encoded by struct amdgpu_cu_info instance
720	 *  that is part of every device definition. For GFX9 devices this
721	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
722	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
723	 *  when they do use scratch memory. This could change for future
724	 *  devices and therefore this example should be considered as a guide.
725	 *
726	 *  All CU's of a device are available for the process. This may not be true
727	 *  under certain conditions - e.g. CU masking.
728	 *
729	 *  Finally number of CU's that are occupied by a process is affected by both
730	 *  number of CU's a device has along with number of other competing processes
731	 */
732	struct attribute attr_cu_occupancy;
733};
734
735#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
736
737/* Process data */
738struct kfd_process {
739	/*
740	 * kfd_process are stored in an mm_struct*->kfd_process*
741	 * hash table (kfd_processes in kfd_process.c)
742	 */
743	struct hlist_node kfd_processes;
744
745	/*
746	 * Opaque pointer to mm_struct. We don't hold a reference to
747	 * it so it should never be dereferenced from here. This is
748	 * only used for looking up processes by their mm.
749	 */
750	void *mm;
751
752	struct kref ref;
753	struct work_struct release_work;
754
755	struct mutex mutex;
756
757	/*
758	 * In any process, the thread that started main() is the lead
759	 * thread and outlives the rest.
760	 * It is here because amd_iommu_bind_pasid wants a task_struct.
761	 * It can also be used for safely getting a reference to the
762	 * mm_struct of the process.
763	 */
764	struct task_struct *lead_thread;
765
766	/* We want to receive a notification when the mm_struct is destroyed */
767	struct mmu_notifier mmu_notifier;
768
769	u32 pasid;
770
771	/*
772	 * List of kfd_process_device structures,
773	 * one for each device the process is using.
774	 */
775	struct list_head per_device_data;
776
777	struct process_queue_manager pqm;
778
779	/*Is the user space process 32 bit?*/
780	bool is_32bit_user_mode;
781
782	/* Event-related data */
783	struct mutex event_mutex;
784	/* Event ID allocator and lookup */
785	struct idr event_idr;
786	/* Event page */
787	struct kfd_signal_page *signal_page;
788	size_t signal_mapped_size;
789	size_t signal_event_count;
790	bool signal_event_limit_reached;
791
792	/* Information used for memory eviction */
793	void *kgd_process_info;
794	/* Eviction fence that is attached to all the BOs of this process. The
795	 * fence will be triggered during eviction and new one will be created
796	 * during restore
797	 */
798	struct dma_fence *ef;
799
800	/* Work items for evicting and restoring BOs */
801	struct delayed_work eviction_work;
802	struct delayed_work restore_work;
803	/* seqno of the last scheduled eviction */
804	unsigned int last_eviction_seqno;
805	/* Approx. the last timestamp (in jiffies) when the process was
806	 * restored after an eviction
807	 */
808	unsigned long last_restore_timestamp;
809
810	/* Kobj for our procfs */
811	struct kobject *kobj;
812	struct kobject *kobj_queues;
813	struct attribute attr_pasid;
814};
815
816#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
817extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
818extern struct srcu_struct kfd_processes_srcu;
819
820/**
821 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
822 *
823 * @filep: pointer to file structure.
824 * @p: amdkfd process pointer.
825 * @data: pointer to arg that was copied from user.
826 *
827 * Return: returns ioctl completion code.
828 */
829typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
830				void *data);
831
832struct amdkfd_ioctl_desc {
833	unsigned int cmd;
834	int flags;
835	amdkfd_ioctl_t *func;
836	unsigned int cmd_drv;
837	const char *name;
838};
839bool kfd_dev_is_large_bar(struct kfd_dev *dev);
840
841int kfd_process_create_wq(void);
842void kfd_process_destroy_wq(void);
843struct kfd_process *kfd_create_process(struct file *filep);
844struct kfd_process *kfd_get_process(const struct task_struct *);
845struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
846struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
847void kfd_unref_process(struct kfd_process *p);
848int kfd_process_evict_queues(struct kfd_process *p);
849int kfd_process_restore_queues(struct kfd_process *p);
850void kfd_suspend_all_processes(void);
851int kfd_resume_all_processes(void);
852
853int kfd_process_device_init_vm(struct kfd_process_device *pdd,
854			       struct file *drm_file);
855struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
856						struct kfd_process *p);
857struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
858							struct kfd_process *p);
859struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
860							struct kfd_process *p);
861
862int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
863			  struct vm_area_struct *vma);
864
865/* KFD process API for creating and translating handles */
866int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
867					void *mem);
868void *kfd_process_device_translate_handle(struct kfd_process_device *p,
869					int handle);
870void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
871					int handle);
872
873/* Process device data iterator */
874struct kfd_process_device *kfd_get_first_process_device_data(
875							struct kfd_process *p);
876struct kfd_process_device *kfd_get_next_process_device_data(
877						struct kfd_process *p,
878						struct kfd_process_device *pdd);
879bool kfd_has_process_device_data(struct kfd_process *p);
880
881/* PASIDs */
882int kfd_pasid_init(void);
883void kfd_pasid_exit(void);
884bool kfd_set_pasid_limit(unsigned int new_limit);
885unsigned int kfd_get_pasid_limit(void);
886u32 kfd_pasid_alloc(void);
887void kfd_pasid_free(u32 pasid);
888
889/* Doorbells */
890size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
891int kfd_doorbell_init(struct kfd_dev *kfd);
892void kfd_doorbell_fini(struct kfd_dev *kfd);
893int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
894		      struct vm_area_struct *vma);
895void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
896					unsigned int *doorbell_off);
897void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
898u32 read_kernel_doorbell(u32 __iomem *db);
899void write_kernel_doorbell(void __iomem *db, u32 value);
900void write_kernel_doorbell64(void __iomem *db, u64 value);
901unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
902					struct kfd_process_device *pdd,
903					unsigned int doorbell_id);
904phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
905int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
906				unsigned int *doorbell_index);
907void kfd_free_process_doorbells(struct kfd_dev *kfd,
908				unsigned int doorbell_index);
909/* GTT Sub-Allocator */
910
911int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
912			struct kfd_mem_obj **mem_obj);
913
914int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
915
916extern struct device *kfd_device;
917
918/* KFD's procfs */
919void kfd_procfs_init(void);
920void kfd_procfs_shutdown(void);
921int kfd_procfs_add_queue(struct queue *q);
922void kfd_procfs_del_queue(struct queue *q);
923
924/* Topology */
925int kfd_topology_init(void);
926void kfd_topology_shutdown(void);
927int kfd_topology_add_device(struct kfd_dev *gpu);
928int kfd_topology_remove_device(struct kfd_dev *gpu);
929struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
930						uint32_t proximity_domain);
931struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
932struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
933struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
934struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
935int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
936int kfd_numa_node_to_apic_id(int numa_node_id);
937void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
938
939/* Interrupts */
940int kfd_interrupt_init(struct kfd_dev *dev);
941void kfd_interrupt_exit(struct kfd_dev *dev);
942bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
943bool interrupt_is_wanted(struct kfd_dev *dev,
944				const uint32_t *ih_ring_entry,
945				uint32_t *patched_ihre, bool *flag);
946
947/* amdkfd Apertures */
948int kfd_init_apertures(struct kfd_process *process);
949
950/* Queue Context Management */
951int init_queue(struct queue **q, const struct queue_properties *properties);
952void uninit_queue(struct queue *q);
953void print_queue_properties(struct queue_properties *q);
954void print_queue(struct queue *q);
955
956struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
957		struct kfd_dev *dev);
958struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
959		struct kfd_dev *dev);
960struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
961		struct kfd_dev *dev);
962struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
963		struct kfd_dev *dev);
964struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
965		struct kfd_dev *dev);
966struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
967		struct kfd_dev *dev);
968struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
969void device_queue_manager_uninit(struct device_queue_manager *dqm);
970struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
971					enum kfd_queue_type type);
972void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
973int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
974
975/* Process Queue Manager */
976struct process_queue_node {
977	struct queue *q;
978	struct kernel_queue *kq;
979	struct list_head process_queue_list;
980};
981
982void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
983void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
984int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
985void pqm_uninit(struct process_queue_manager *pqm);
986int pqm_create_queue(struct process_queue_manager *pqm,
987			    struct kfd_dev *dev,
988			    struct file *f,
989			    struct queue_properties *properties,
990			    unsigned int *qid,
991			    uint32_t *p_doorbell_offset_in_process);
992int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
993int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
994			struct queue_properties *p);
995int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
996			struct queue_properties *p);
997int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
998			void *gws);
999struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1000						unsigned int qid);
1001struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1002						unsigned int qid);
1003int pqm_get_wave_state(struct process_queue_manager *pqm,
1004		       unsigned int qid,
1005		       void __user *ctl_stack,
1006		       u32 *ctl_stack_used_size,
1007		       u32 *save_area_used_size);
1008
1009int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1010			      uint64_t fence_value,
1011			      unsigned int timeout_ms);
1012
1013/* Packet Manager */
1014
1015#define KFD_FENCE_COMPLETED (100)
1016#define KFD_FENCE_INIT   (10)
1017
1018struct packet_manager {
1019	struct device_queue_manager *dqm;
1020	struct kernel_queue *priv_queue;
1021	struct mutex lock;
1022	bool allocated;
1023	struct kfd_mem_obj *ib_buffer_obj;
1024	unsigned int ib_size_bytes;
1025	bool is_over_subscription;
1026
1027	const struct packet_manager_funcs *pmf;
1028};
1029
1030struct packet_manager_funcs {
1031	/* Support ASIC-specific packet formats for PM4 packets */
1032	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1033			struct qcm_process_device *qpd);
1034	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1035			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1036	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1037			struct scheduling_resources *res);
1038	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1039			struct queue *q, bool is_static);
1040	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1041			enum kfd_queue_type type,
1042			enum kfd_unmap_queues_filter mode,
1043			uint32_t filter_param, bool reset,
1044			unsigned int sdma_engine);
1045	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1046			uint64_t fence_address,	uint64_t fence_value);
1047	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1048
1049	/* Packet sizes */
1050	int map_process_size;
1051	int runlist_size;
1052	int set_resources_size;
1053	int map_queues_size;
1054	int unmap_queues_size;
1055	int query_status_size;
1056	int release_mem_size;
1057};
1058
1059extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1060extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1061
1062int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1063void pm_uninit(struct packet_manager *pm, bool hanging);
1064int pm_send_set_resources(struct packet_manager *pm,
1065				struct scheduling_resources *res);
1066int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1067int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1068				uint64_t fence_value);
1069
1070int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1071			enum kfd_unmap_queues_filter mode,
1072			uint32_t filter_param, bool reset,
1073			unsigned int sdma_engine);
1074
1075void pm_release_ib(struct packet_manager *pm);
1076
1077/* Following PM funcs can be shared among VI and AI */
1078unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1079
1080uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1081
1082/* Events */
1083extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1084extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1085
1086extern const struct kfd_device_global_init_class device_global_init_class_cik;
1087
1088void kfd_event_init_process(struct kfd_process *p);
1089void kfd_event_free_process(struct kfd_process *p);
1090int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1091int kfd_wait_on_events(struct kfd_process *p,
1092		       uint32_t num_events, void __user *data,
1093		       bool all, uint32_t user_timeout_ms,
1094		       uint32_t *wait_result);
1095void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1096				uint32_t valid_id_bits);
1097void kfd_signal_iommu_event(struct kfd_dev *dev,
1098			    u32 pasid, unsigned long address,
1099			    bool is_write_requested, bool is_execute_requested);
1100void kfd_signal_hw_exception_event(u32 pasid);
1101int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1102int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1103int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1104		       uint64_t size);
1105int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1106		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1107		     uint32_t *event_id, uint32_t *event_trigger_data,
1108		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1109int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1110
1111void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1112				struct kfd_vm_fault_info *info);
1113
1114void kfd_signal_reset_event(struct kfd_dev *dev);
1115
1116void kfd_flush_tlb(struct kfd_process_device *pdd);
1117
1118int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1119
1120bool kfd_is_locked(void);
1121
1122/* Compute profile */
1123void kfd_inc_compute_active(struct kfd_dev *dev);
1124void kfd_dec_compute_active(struct kfd_dev *dev);
1125
1126/* Cgroup Support */
1127/* Check with device cgroup if @kfd device is accessible */
1128static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1129{
1130#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1131	struct drm_device *ddev = kfd->ddev;
1132
1133	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1134					  ddev->render->index,
1135					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1136#else
1137	return 0;
1138#endif
1139}
1140
1141/* Debugfs */
1142#if defined(CONFIG_DEBUG_FS)
1143
1144void kfd_debugfs_init(void);
1145void kfd_debugfs_fini(void);
1146int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1147int pqm_debugfs_mqds(struct seq_file *m, void *data);
1148int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1149int dqm_debugfs_hqds(struct seq_file *m, void *data);
1150int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1151int pm_debugfs_runlist(struct seq_file *m, void *data);
1152
1153int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1154int pm_debugfs_hang_hws(struct packet_manager *pm);
1155int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1156
1157#else
1158
1159static inline void kfd_debugfs_init(void) {}
1160static inline void kfd_debugfs_fini(void) {}
1161
1162#endif
1163
1164#endif
1165