1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/mm_types.h>
24#include <linux/slab.h>
25#include <linux/types.h>
26#include <linux/sched/signal.h>
27#include <linux/sched/mm.h>
28#include <linux/uaccess.h>
29#include <linux/mman.h>
30#include <linux/memory.h>
31#include "kfd_priv.h"
32#include "kfd_events.h"
33#include "kfd_iommu.h"
34#include <linux/device.h>
35
36/*
37 * Wrapper around wait_queue_entry_t
38 */
39struct kfd_event_waiter {
40	wait_queue_entry_t wait;
41	struct kfd_event *event; /* Event to wait for */
42	bool activated;		 /* Becomes true when event is signaled */
43};
44
45/*
46 * Each signal event needs a 64-bit signal slot where the signaler will write
47 * a 1 before sending an interrupt. (This is needed because some interrupts
48 * do not contain enough spare data bits to identify an event.)
49 * We get whole pages and map them to the process VA.
50 * Individual signal events use their event_id as slot index.
51 */
52struct kfd_signal_page {
53	uint64_t *kernel_address;
54	uint64_t __user *user_address;
55	bool need_to_free_pages;
56};
57
58
59static uint64_t *page_slots(struct kfd_signal_page *page)
60{
61	return page->kernel_address;
62}
63
64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
65{
66	void *backing_store;
67	struct kfd_signal_page *page;
68
69	page = kzalloc(sizeof(*page), GFP_KERNEL);
70	if (!page)
71		return NULL;
72
73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
75	if (!backing_store)
76		goto fail_alloc_signal_store;
77
78	/* Initialize all events to unsignaled */
79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
80	       KFD_SIGNAL_EVENT_LIMIT * 8);
81
82	page->kernel_address = backing_store;
83	page->need_to_free_pages = true;
84	pr_debug("Allocated new event signal page at %p, for process %p\n",
85			page, p);
86
87	return page;
88
89fail_alloc_signal_store:
90	kfree(page);
91	return NULL;
92}
93
94static int allocate_event_notification_slot(struct kfd_process *p,
95					    struct kfd_event *ev)
96{
97	int id;
98
99	if (!p->signal_page) {
100		p->signal_page = allocate_signal_page(p);
101		if (!p->signal_page)
102			return -ENOMEM;
103		/* Oldest user mode expects 256 event slots */
104		p->signal_mapped_size = 256*8;
105	}
106
107	/*
108	 * Compatibility with old user mode: Only use signal slots
109	 * user mode has mapped, may be less than
110	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
111	 * of the event limit without breaking user mode.
112	 */
113	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
114		       GFP_KERNEL);
115	if (id < 0)
116		return id;
117
118	ev->event_id = id;
119	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
120
121	return 0;
122}
123
124/*
125 * Assumes that p->event_mutex is held and of course that p is not going
126 * away (current or locked).
127 */
128static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
129{
130	return idr_find(&p->event_idr, id);
131}
132
133/**
134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
135 * @p:     Pointer to struct kfd_process
136 * @id:    ID to look up
137 * @bits:  Number of valid bits in @id
138 *
139 * Finds the first signaled event with a matching partial ID. If no
140 * matching signaled event is found, returns NULL. In that case the
141 * caller should assume that the partial ID is invalid and do an
142 * exhaustive search of all siglaned events.
143 *
144 * If multiple events with the same partial ID signal at the same
145 * time, they will be found one interrupt at a time, not necessarily
146 * in the same order the interrupts occurred. As long as the number of
147 * interrupts is correct, all signaled events will be seen by the
148 * driver.
149 */
150static struct kfd_event *lookup_signaled_event_by_partial_id(
151	struct kfd_process *p, uint32_t id, uint32_t bits)
152{
153	struct kfd_event *ev;
154
155	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
156		return NULL;
157
158	/* Fast path for the common case that @id is not a partial ID
159	 * and we only need a single lookup.
160	 */
161	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
162		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
163			return NULL;
164
165		return idr_find(&p->event_idr, id);
166	}
167
168	/* General case for partial IDs: Iterate over all matching IDs
169	 * and find the first one that has signaled.
170	 */
171	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
172		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
173			continue;
174
175		ev = idr_find(&p->event_idr, id);
176	}
177
178	return ev;
179}
180
181static int create_signal_event(struct file *devkfd,
182				struct kfd_process *p,
183				struct kfd_event *ev)
184{
185	int ret;
186
187	if (p->signal_mapped_size &&
188	    p->signal_event_count == p->signal_mapped_size / 8) {
189		if (!p->signal_event_limit_reached) {
190			pr_debug("Signal event wasn't created because limit was reached\n");
191			p->signal_event_limit_reached = true;
192		}
193		return -ENOSPC;
194	}
195
196	ret = allocate_event_notification_slot(p, ev);
197	if (ret) {
198		pr_warn("Signal event wasn't created because out of kernel memory\n");
199		return ret;
200	}
201
202	p->signal_event_count++;
203
204	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
205	pr_debug("Signal event number %zu created with id %d, address %p\n",
206			p->signal_event_count, ev->event_id,
207			ev->user_signal_address);
208
209	return 0;
210}
211
212static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
213{
214	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
215	 * intentional integer overflow to -1 without a compiler
216	 * warning. idr_alloc treats a negative value as "maximum
217	 * signed integer".
218	 */
219	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
220			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
221			   GFP_KERNEL);
222
223	if (id < 0)
224		return id;
225	ev->event_id = id;
226
227	return 0;
228}
229
230void kfd_event_init_process(struct kfd_process *p)
231{
232	mutex_init(&p->event_mutex);
233	idr_init(&p->event_idr);
234	p->signal_page = NULL;
235	p->signal_event_count = 0;
236}
237
238static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
239{
240	struct kfd_event_waiter *waiter;
241
242	/* Wake up pending waiters. They will return failure */
243	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
244		waiter->event = NULL;
245	wake_up_all(&ev->wq);
246
247	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
248	    ev->type == KFD_EVENT_TYPE_DEBUG)
249		p->signal_event_count--;
250
251	idr_remove(&p->event_idr, ev->event_id);
252	kfree(ev);
253}
254
255static void destroy_events(struct kfd_process *p)
256{
257	struct kfd_event *ev;
258	uint32_t id;
259
260	idr_for_each_entry(&p->event_idr, ev, id)
261		destroy_event(p, ev);
262	idr_destroy(&p->event_idr);
263}
264
265/*
266 * We assume that the process is being destroyed and there is no need to
267 * unmap the pages or keep bookkeeping data in order.
268 */
269static void shutdown_signal_page(struct kfd_process *p)
270{
271	struct kfd_signal_page *page = p->signal_page;
272
273	if (page) {
274		if (page->need_to_free_pages)
275			free_pages((unsigned long)page->kernel_address,
276				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
277		kfree(page);
278	}
279}
280
281void kfd_event_free_process(struct kfd_process *p)
282{
283	destroy_events(p);
284	shutdown_signal_page(p);
285}
286
287static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
288{
289	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
290					ev->type == KFD_EVENT_TYPE_DEBUG;
291}
292
293static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
294{
295	return ev->type == KFD_EVENT_TYPE_SIGNAL;
296}
297
298int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
299		       uint64_t size)
300{
301	struct kfd_signal_page *page;
302
303	if (p->signal_page)
304		return -EBUSY;
305
306	page = kzalloc(sizeof(*page), GFP_KERNEL);
307	if (!page)
308		return -ENOMEM;
309
310	/* Initialize all events to unsignaled */
311	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
312	       KFD_SIGNAL_EVENT_LIMIT * 8);
313
314	page->kernel_address = kernel_address;
315
316	p->signal_page = page;
317	p->signal_mapped_size = size;
318
319	return 0;
320}
321
322int kfd_event_create(struct file *devkfd, struct kfd_process *p,
323		     uint32_t event_type, bool auto_reset, uint32_t node_id,
324		     uint32_t *event_id, uint32_t *event_trigger_data,
325		     uint64_t *event_page_offset, uint32_t *event_slot_index)
326{
327	int ret = 0;
328	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
329
330	if (!ev)
331		return -ENOMEM;
332
333	ev->type = event_type;
334	ev->auto_reset = auto_reset;
335	ev->signaled = false;
336
337	init_waitqueue_head(&ev->wq);
338
339	*event_page_offset = 0;
340
341	mutex_lock(&p->event_mutex);
342
343	switch (event_type) {
344	case KFD_EVENT_TYPE_SIGNAL:
345	case KFD_EVENT_TYPE_DEBUG:
346		ret = create_signal_event(devkfd, p, ev);
347		if (!ret) {
348			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
349			*event_slot_index = ev->event_id;
350		}
351		break;
352	default:
353		ret = create_other_event(p, ev);
354		break;
355	}
356
357	if (!ret) {
358		*event_id = ev->event_id;
359		*event_trigger_data = ev->event_id;
360	} else {
361		kfree(ev);
362	}
363
364	mutex_unlock(&p->event_mutex);
365
366	return ret;
367}
368
369/* Assumes that p is current. */
370int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
371{
372	struct kfd_event *ev;
373	int ret = 0;
374
375	mutex_lock(&p->event_mutex);
376
377	ev = lookup_event_by_id(p, event_id);
378
379	if (ev)
380		destroy_event(p, ev);
381	else
382		ret = -EINVAL;
383
384	mutex_unlock(&p->event_mutex);
385	return ret;
386}
387
388static void set_event(struct kfd_event *ev)
389{
390	struct kfd_event_waiter *waiter;
391
392	/* Auto reset if the list is non-empty and we're waking
393	 * someone. waitqueue_active is safe here because we're
394	 * protected by the p->event_mutex, which is also held when
395	 * updating the wait queues in kfd_wait_on_events.
396	 */
397	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
398
399	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
400		waiter->activated = true;
401
402	wake_up_all(&ev->wq);
403}
404
405/* Assumes that p is current. */
406int kfd_set_event(struct kfd_process *p, uint32_t event_id)
407{
408	int ret = 0;
409	struct kfd_event *ev;
410
411	mutex_lock(&p->event_mutex);
412
413	ev = lookup_event_by_id(p, event_id);
414
415	if (ev && event_can_be_cpu_signaled(ev))
416		set_event(ev);
417	else
418		ret = -EINVAL;
419
420	mutex_unlock(&p->event_mutex);
421	return ret;
422}
423
424static void reset_event(struct kfd_event *ev)
425{
426	ev->signaled = false;
427}
428
429/* Assumes that p is current. */
430int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
431{
432	int ret = 0;
433	struct kfd_event *ev;
434
435	mutex_lock(&p->event_mutex);
436
437	ev = lookup_event_by_id(p, event_id);
438
439	if (ev && event_can_be_cpu_signaled(ev))
440		reset_event(ev);
441	else
442		ret = -EINVAL;
443
444	mutex_unlock(&p->event_mutex);
445	return ret;
446
447}
448
449static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
450{
451	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
452}
453
454static void set_event_from_interrupt(struct kfd_process *p,
455					struct kfd_event *ev)
456{
457	if (ev && event_can_be_gpu_signaled(ev)) {
458		acknowledge_signal(p, ev);
459		set_event(ev);
460	}
461}
462
463void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
464				uint32_t valid_id_bits)
465{
466	struct kfd_event *ev = NULL;
467
468	/*
469	 * Because we are called from arbitrary context (workqueue) as opposed
470	 * to process context, kfd_process could attempt to exit while we are
471	 * running so the lookup function increments the process ref count.
472	 */
473	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
474
475	if (!p)
476		return; /* Presumably process exited. */
477
478	mutex_lock(&p->event_mutex);
479
480	if (valid_id_bits)
481		ev = lookup_signaled_event_by_partial_id(p, partial_id,
482							 valid_id_bits);
483	if (ev) {
484		set_event_from_interrupt(p, ev);
485	} else if (p->signal_page) {
486		/*
487		 * Partial ID lookup failed. Assume that the event ID
488		 * in the interrupt payload was invalid and do an
489		 * exhaustive search of signaled events.
490		 */
491		uint64_t *slots = page_slots(p->signal_page);
492		uint32_t id;
493
494		if (valid_id_bits)
495			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
496					     partial_id, valid_id_bits);
497
498		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
499			/* With relatively few events, it's faster to
500			 * iterate over the event IDR
501			 */
502			idr_for_each_entry(&p->event_idr, ev, id) {
503				if (id >= KFD_SIGNAL_EVENT_LIMIT)
504					break;
505
506				if (slots[id] != UNSIGNALED_EVENT_SLOT)
507					set_event_from_interrupt(p, ev);
508			}
509		} else {
510			/* With relatively many events, it's faster to
511			 * iterate over the signal slots and lookup
512			 * only signaled events from the IDR.
513			 */
514			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
515				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
516					ev = lookup_event_by_id(p, id);
517					set_event_from_interrupt(p, ev);
518				}
519		}
520	}
521
522	mutex_unlock(&p->event_mutex);
523	kfd_unref_process(p);
524}
525
526static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
527{
528	struct kfd_event_waiter *event_waiters;
529	uint32_t i;
530
531	event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
532				GFP_KERNEL);
533	if (!event_waiters)
534		return NULL;
535
536	for (i = 0; i < num_events; i++)
537		init_wait(&event_waiters[i].wait);
538
539	return event_waiters;
540}
541
542static int init_event_waiter_get_status(struct kfd_process *p,
543		struct kfd_event_waiter *waiter,
544		uint32_t event_id)
545{
546	struct kfd_event *ev = lookup_event_by_id(p, event_id);
547
548	if (!ev)
549		return -EINVAL;
550
551	waiter->event = ev;
552	waiter->activated = ev->signaled;
553	ev->signaled = ev->signaled && !ev->auto_reset;
554
555	return 0;
556}
557
558static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
559{
560	struct kfd_event *ev = waiter->event;
561
562	/* Only add to the wait list if we actually need to
563	 * wait on this event.
564	 */
565	if (!waiter->activated)
566		add_wait_queue(&ev->wq, &waiter->wait);
567}
568
569/* test_event_condition - Test condition of events being waited for
570 * @all:           Return completion only if all events have signaled
571 * @num_events:    Number of events to wait for
572 * @event_waiters: Array of event waiters, one per event
573 *
574 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
575 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
576 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
577 * the events have been destroyed.
578 */
579static uint32_t test_event_condition(bool all, uint32_t num_events,
580				struct kfd_event_waiter *event_waiters)
581{
582	uint32_t i;
583	uint32_t activated_count = 0;
584
585	for (i = 0; i < num_events; i++) {
586		if (!event_waiters[i].event)
587			return KFD_IOC_WAIT_RESULT_FAIL;
588
589		if (event_waiters[i].activated) {
590			if (!all)
591				return KFD_IOC_WAIT_RESULT_COMPLETE;
592
593			activated_count++;
594		}
595	}
596
597	return activated_count == num_events ?
598		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
599}
600
601/*
602 * Copy event specific data, if defined.
603 * Currently only memory exception events have additional data to copy to user
604 */
605static int copy_signaled_event_data(uint32_t num_events,
606		struct kfd_event_waiter *event_waiters,
607		struct kfd_event_data __user *data)
608{
609	struct kfd_hsa_memory_exception_data *src;
610	struct kfd_hsa_memory_exception_data __user *dst;
611	struct kfd_event_waiter *waiter;
612	struct kfd_event *event;
613	uint32_t i;
614
615	for (i = 0; i < num_events; i++) {
616		waiter = &event_waiters[i];
617		event = waiter->event;
618		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
619			dst = &data[i].memory_exception_data;
620			src = &event->memory_exception_data;
621			if (copy_to_user(dst, src,
622				sizeof(struct kfd_hsa_memory_exception_data)))
623				return -EFAULT;
624		}
625	}
626
627	return 0;
628
629}
630
631
632
633static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
634{
635	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
636		return 0;
637
638	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
639		return MAX_SCHEDULE_TIMEOUT;
640
641	/*
642	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
643	 * but we consider them finite.
644	 * This hack is wrong, but nobody is likely to notice.
645	 */
646	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
647
648	return msecs_to_jiffies(user_timeout_ms) + 1;
649}
650
651static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
652{
653	uint32_t i;
654
655	for (i = 0; i < num_events; i++)
656		if (waiters[i].event)
657			remove_wait_queue(&waiters[i].event->wq,
658					  &waiters[i].wait);
659
660	kfree(waiters);
661}
662
663int kfd_wait_on_events(struct kfd_process *p,
664		       uint32_t num_events, void __user *data,
665		       bool all, uint32_t user_timeout_ms,
666		       uint32_t *wait_result)
667{
668	struct kfd_event_data __user *events =
669			(struct kfd_event_data __user *) data;
670	uint32_t i;
671	int ret = 0;
672
673	struct kfd_event_waiter *event_waiters = NULL;
674	long timeout = user_timeout_to_jiffies(user_timeout_ms);
675
676	event_waiters = alloc_event_waiters(num_events);
677	if (!event_waiters) {
678		ret = -ENOMEM;
679		goto out;
680	}
681
682	mutex_lock(&p->event_mutex);
683
684	for (i = 0; i < num_events; i++) {
685		struct kfd_event_data event_data;
686
687		if (copy_from_user(&event_data, &events[i],
688				sizeof(struct kfd_event_data))) {
689			ret = -EFAULT;
690			goto out_unlock;
691		}
692
693		ret = init_event_waiter_get_status(p, &event_waiters[i],
694				event_data.event_id);
695		if (ret)
696			goto out_unlock;
697	}
698
699	/* Check condition once. */
700	*wait_result = test_event_condition(all, num_events, event_waiters);
701	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
702		ret = copy_signaled_event_data(num_events,
703					       event_waiters, events);
704		goto out_unlock;
705	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
706		/* This should not happen. Events shouldn't be
707		 * destroyed while we're holding the event_mutex
708		 */
709		goto out_unlock;
710	}
711
712	/* Add to wait lists if we need to wait. */
713	for (i = 0; i < num_events; i++)
714		init_event_waiter_add_to_waitlist(&event_waiters[i]);
715
716	mutex_unlock(&p->event_mutex);
717
718	while (true) {
719		if (fatal_signal_pending(current)) {
720			ret = -EINTR;
721			break;
722		}
723
724		if (signal_pending(current)) {
725			/*
726			 * This is wrong when a nonzero, non-infinite timeout
727			 * is specified. We need to use
728			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
729			 * contains a union with data for each user and it's
730			 * in generic kernel code that I don't want to
731			 * touch yet.
732			 */
733			ret = -ERESTARTSYS;
734			break;
735		}
736
737		/* Set task state to interruptible sleep before
738		 * checking wake-up conditions. A concurrent wake-up
739		 * will put the task back into runnable state. In that
740		 * case schedule_timeout will not put the task to
741		 * sleep and we'll get a chance to re-check the
742		 * updated conditions almost immediately. Otherwise,
743		 * this race condition would lead to a soft hang or a
744		 * very long sleep.
745		 */
746		set_current_state(TASK_INTERRUPTIBLE);
747
748		*wait_result = test_event_condition(all, num_events,
749						    event_waiters);
750		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
751			break;
752
753		if (timeout <= 0)
754			break;
755
756		timeout = schedule_timeout(timeout);
757	}
758	__set_current_state(TASK_RUNNING);
759
760	/* copy_signaled_event_data may sleep. So this has to happen
761	 * after the task state is set back to RUNNING.
762	 */
763	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
764		ret = copy_signaled_event_data(num_events,
765					       event_waiters, events);
766
767	mutex_lock(&p->event_mutex);
768out_unlock:
769	free_waiters(num_events, event_waiters);
770	mutex_unlock(&p->event_mutex);
771out:
772	if (ret)
773		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
774	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
775		ret = -EIO;
776
777	return ret;
778}
779
780int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
781{
782	unsigned long pfn;
783	struct kfd_signal_page *page;
784	int ret;
785
786	/* check required size doesn't exceed the allocated size */
787	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
788			get_order(vma->vm_end - vma->vm_start)) {
789		pr_err("Event page mmap requested illegal size\n");
790		return -EINVAL;
791	}
792
793	page = p->signal_page;
794	if (!page) {
795		/* Probably KFD bug, but mmap is user-accessible. */
796		pr_debug("Signal page could not be found\n");
797		return -EINVAL;
798	}
799
800	pfn = __pa(page->kernel_address);
801	pfn >>= PAGE_SHIFT;
802
803	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
804		       | VM_DONTDUMP | VM_PFNMAP;
805
806	pr_debug("Mapping signal page\n");
807	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
808	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
809	pr_debug("     pfn                 == 0x%016lX\n", pfn);
810	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
811	pr_debug("     size                == 0x%08lX\n",
812			vma->vm_end - vma->vm_start);
813
814	page->user_address = (uint64_t __user *)vma->vm_start;
815
816	/* mapping the page to user process */
817	ret = remap_pfn_range(vma, vma->vm_start, pfn,
818			vma->vm_end - vma->vm_start, vma->vm_page_prot);
819	if (!ret)
820		p->signal_mapped_size = vma->vm_end - vma->vm_start;
821
822	return ret;
823}
824
825/*
826 * Assumes that p->event_mutex is held and of course
827 * that p is not going away (current or locked).
828 */
829static void lookup_events_by_type_and_signal(struct kfd_process *p,
830		int type, void *event_data)
831{
832	struct kfd_hsa_memory_exception_data *ev_data;
833	struct kfd_event *ev;
834	uint32_t id;
835	bool send_signal = true;
836
837	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
838
839	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
840	idr_for_each_entry_continue(&p->event_idr, ev, id)
841		if (ev->type == type) {
842			send_signal = false;
843			dev_dbg(kfd_device,
844					"Event found: id %X type %d",
845					ev->event_id, ev->type);
846			set_event(ev);
847			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
848				ev->memory_exception_data = *ev_data;
849		}
850
851	if (type == KFD_EVENT_TYPE_MEMORY) {
852		dev_warn(kfd_device,
853			"Sending SIGSEGV to process %d (pasid 0x%x)",
854				p->lead_thread->pid, p->pasid);
855		send_sig(SIGSEGV, p->lead_thread, 0);
856	}
857
858	/* Send SIGTERM no event of type "type" has been found*/
859	if (send_signal) {
860		if (send_sigterm) {
861			dev_warn(kfd_device,
862				"Sending SIGTERM to process %d (pasid 0x%x)",
863					p->lead_thread->pid, p->pasid);
864			send_sig(SIGTERM, p->lead_thread, 0);
865		} else {
866			dev_err(kfd_device,
867				"Process %d (pasid 0x%x) got unhandled exception",
868				p->lead_thread->pid, p->pasid);
869		}
870	}
871}
872
873#ifdef KFD_SUPPORT_IOMMU_V2
874void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
875		unsigned long address, bool is_write_requested,
876		bool is_execute_requested)
877{
878	struct kfd_hsa_memory_exception_data memory_exception_data;
879	struct vm_area_struct *vma;
880
881	/*
882	 * Because we are called from arbitrary context (workqueue) as opposed
883	 * to process context, kfd_process could attempt to exit while we are
884	 * running so the lookup function increments the process ref count.
885	 */
886	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
887	struct mm_struct *mm;
888
889	if (!p)
890		return; /* Presumably process exited. */
891
892	/* Take a safe reference to the mm_struct, which may otherwise
893	 * disappear even while the kfd_process is still referenced.
894	 */
895	mm = get_task_mm(p->lead_thread);
896	if (!mm) {
897		kfd_unref_process(p);
898		return; /* Process is exiting */
899	}
900
901	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
902
903	mmap_read_lock(mm);
904	vma = find_vma(mm, address);
905
906	memory_exception_data.gpu_id = dev->id;
907	memory_exception_data.va = address;
908	/* Set failure reason */
909	memory_exception_data.failure.NotPresent = 1;
910	memory_exception_data.failure.NoExecute = 0;
911	memory_exception_data.failure.ReadOnly = 0;
912	if (vma && address >= vma->vm_start) {
913		memory_exception_data.failure.NotPresent = 0;
914
915		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
916			memory_exception_data.failure.ReadOnly = 1;
917		else
918			memory_exception_data.failure.ReadOnly = 0;
919
920		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
921			memory_exception_data.failure.NoExecute = 1;
922		else
923			memory_exception_data.failure.NoExecute = 0;
924	}
925
926	mmap_read_unlock(mm);
927	mmput(mm);
928
929	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
930			memory_exception_data.failure.NotPresent,
931			memory_exception_data.failure.NoExecute,
932			memory_exception_data.failure.ReadOnly);
933
934	/* Workaround on Raven to not kill the process when memory is freed
935	 * before IOMMU is able to finish processing all the excessive PPRs
936	 */
937	if (dev->device_info->asic_family != CHIP_RAVEN &&
938	    dev->device_info->asic_family != CHIP_RENOIR) {
939		mutex_lock(&p->event_mutex);
940
941		/* Lookup events by type and signal them */
942		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
943				&memory_exception_data);
944
945		mutex_unlock(&p->event_mutex);
946	}
947
948	kfd_unref_process(p);
949}
950#endif /* KFD_SUPPORT_IOMMU_V2 */
951
952void kfd_signal_hw_exception_event(u32 pasid)
953{
954	/*
955	 * Because we are called from arbitrary context (workqueue) as opposed
956	 * to process context, kfd_process could attempt to exit while we are
957	 * running so the lookup function increments the process ref count.
958	 */
959	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
960
961	if (!p)
962		return; /* Presumably process exited. */
963
964	mutex_lock(&p->event_mutex);
965
966	/* Lookup events by type and signal them */
967	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
968
969	mutex_unlock(&p->event_mutex);
970	kfd_unref_process(p);
971}
972
973void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
974				struct kfd_vm_fault_info *info)
975{
976	struct kfd_event *ev;
977	uint32_t id;
978	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
979	struct kfd_hsa_memory_exception_data memory_exception_data;
980
981	if (!p)
982		return; /* Presumably process exited. */
983	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
984	memory_exception_data.gpu_id = dev->id;
985	memory_exception_data.failure.imprecise = true;
986	/* Set failure reason */
987	if (info) {
988		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
989		memory_exception_data.failure.NotPresent =
990			info->prot_valid ? 1 : 0;
991		memory_exception_data.failure.NoExecute =
992			info->prot_exec ? 1 : 0;
993		memory_exception_data.failure.ReadOnly =
994			info->prot_write ? 1 : 0;
995		memory_exception_data.failure.imprecise = 0;
996	}
997	mutex_lock(&p->event_mutex);
998
999	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1000	idr_for_each_entry_continue(&p->event_idr, ev, id)
1001		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1002			ev->memory_exception_data = memory_exception_data;
1003			set_event(ev);
1004		}
1005
1006	mutex_unlock(&p->event_mutex);
1007	kfd_unref_process(p);
1008}
1009
1010void kfd_signal_reset_event(struct kfd_dev *dev)
1011{
1012	struct kfd_hsa_hw_exception_data hw_exception_data;
1013	struct kfd_hsa_memory_exception_data memory_exception_data;
1014	struct kfd_process *p;
1015	struct kfd_event *ev;
1016	unsigned int temp;
1017	uint32_t id, idx;
1018	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1019			KFD_HW_EXCEPTION_ECC :
1020			KFD_HW_EXCEPTION_GPU_HANG;
1021
1022	/* Whole gpu reset caused by GPU hang and memory is lost */
1023	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1024	hw_exception_data.gpu_id = dev->id;
1025	hw_exception_data.memory_lost = 1;
1026	hw_exception_data.reset_cause = reset_cause;
1027
1028	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1029	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1030	memory_exception_data.gpu_id = dev->id;
1031	memory_exception_data.failure.imprecise = true;
1032
1033	idx = srcu_read_lock(&kfd_processes_srcu);
1034	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1035		mutex_lock(&p->event_mutex);
1036		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1037		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1038			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1039				ev->hw_exception_data = hw_exception_data;
1040				set_event(ev);
1041			}
1042			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1043			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1044				ev->memory_exception_data = memory_exception_data;
1045				set_event(ev);
1046			}
1047		}
1048		mutex_unlock(&p->event_mutex);
1049	}
1050	srcu_read_unlock(&kfd_processes_srcu, idx);
1051}
1052