1/*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 *          Alex Deucher
26 *          Jerome Glisse
27 */
28#include <linux/dma-fence-array.h>
29#include <linux/interval_tree_generic.h>
30#include <linux/idr.h>
31#include <linux/dma-buf.h>
32
33#include <drm/amdgpu_drm.h>
34#include "amdgpu.h"
35#include "amdgpu_trace.h"
36#include "amdgpu_amdkfd.h"
37#include "amdgpu_gmc.h"
38#include "amdgpu_xgmi.h"
39#include "amdgpu_dma_buf.h"
40
41/**
42 * DOC: GPUVM
43 *
44 * GPUVM is similar to the legacy gart on older asics, however
45 * rather than there being a single global gart table
46 * for the entire GPU, there are multiple VM page tables active
47 * at any given time.  The VM page tables can contain a mix
48 * vram pages and system memory pages and system memory pages
49 * can be mapped as snooped (cached system pages) or unsnooped
50 * (uncached system pages).
51 * Each VM has an ID associated with it and there is a page table
52 * associated with each VMID.  When execting a command buffer,
53 * the kernel tells the the ring what VMID to use for that command
54 * buffer.  VMIDs are allocated dynamically as commands are submitted.
55 * The userspace drivers maintain their own address space and the kernel
56 * sets up their pages tables accordingly when they submit their
57 * command buffers and a VMID is assigned.
58 * Cayman/Trinity support up to 8 active VMs at any given time;
59 * SI supports 16.
60 */
61
62#define START(node) ((node)->start)
63#define LAST(node) ((node)->last)
64
65INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66		     START, LAST, static, amdgpu_vm_it)
67
68#undef START
69#undef LAST
70
71/**
72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73 */
74struct amdgpu_prt_cb {
75
76	/**
77	 * @adev: amdgpu device
78	 */
79	struct amdgpu_device *adev;
80
81	/**
82	 * @cb: callback
83	 */
84	struct dma_fence_cb cb;
85};
86
87/*
88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89 * happens while holding this lock anywhere to prevent deadlocks when
90 * an MMU notifier runs in reclaim-FS context.
91 */
92static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93{
94	mutex_lock(&vm->eviction_lock);
95	vm->saved_flags = memalloc_nofs_save();
96}
97
98static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99{
100	if (mutex_trylock(&vm->eviction_lock)) {
101		vm->saved_flags = memalloc_nofs_save();
102		return 1;
103	}
104	return 0;
105}
106
107static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108{
109	memalloc_nofs_restore(vm->saved_flags);
110	mutex_unlock(&vm->eviction_lock);
111}
112
113/**
114 * amdgpu_vm_level_shift - return the addr shift for each level
115 *
116 * @adev: amdgpu_device pointer
117 * @level: VMPT level
118 *
119 * Returns:
120 * The number of bits the pfn needs to be right shifted for a level.
121 */
122static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123				      unsigned level)
124{
125	switch (level) {
126	case AMDGPU_VM_PDB2:
127	case AMDGPU_VM_PDB1:
128	case AMDGPU_VM_PDB0:
129		return 9 * (AMDGPU_VM_PDB0 - level) +
130			adev->vm_manager.block_size;
131	case AMDGPU_VM_PTB:
132		return 0;
133	default:
134		return ~0;
135	}
136}
137
138/**
139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140 *
141 * @adev: amdgpu_device pointer
142 * @level: VMPT level
143 *
144 * Returns:
145 * The number of entries in a page directory or page table.
146 */
147static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148				      unsigned level)
149{
150	unsigned shift = amdgpu_vm_level_shift(adev,
151					       adev->vm_manager.root_level);
152
153	if (level == adev->vm_manager.root_level)
154		/* For the root directory */
155		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156			>> shift;
157	else if (level != AMDGPU_VM_PTB)
158		/* Everything in between */
159		return 512;
160	else
161		/* For the page tables on the leaves */
162		return AMDGPU_VM_PTE_COUNT(adev);
163}
164
165/**
166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167 *
168 * @adev: amdgpu_device pointer
169 *
170 * Returns:
171 * The number of entries in the root page directory which needs the ATS setting.
172 */
173static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174{
175	unsigned shift;
176
177	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179}
180
181/**
182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183 *
184 * @adev: amdgpu_device pointer
185 * @level: VMPT level
186 *
187 * Returns:
188 * The mask to extract the entry number of a PD/PT from an address.
189 */
190static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191				       unsigned int level)
192{
193	if (level <= adev->vm_manager.root_level)
194		return 0xffffffff;
195	else if (level != AMDGPU_VM_PTB)
196		return 0x1ff;
197	else
198		return AMDGPU_VM_PTE_COUNT(adev) - 1;
199}
200
201/**
202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203 *
204 * @adev: amdgpu_device pointer
205 * @level: VMPT level
206 *
207 * Returns:
208 * The size of the BO for a page directory or page table in bytes.
209 */
210static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211{
212	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213}
214
215/**
216 * amdgpu_vm_bo_evicted - vm_bo is evicted
217 *
218 * @vm_bo: vm_bo which is evicted
219 *
220 * State for PDs/PTs and per VM BOs which are not at the location they should
221 * be.
222 */
223static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224{
225	struct amdgpu_vm *vm = vm_bo->vm;
226	struct amdgpu_bo *bo = vm_bo->bo;
227
228	vm_bo->moved = true;
229	if (bo->tbo.type == ttm_bo_type_kernel)
230		list_move(&vm_bo->vm_status, &vm->evicted);
231	else
232		list_move_tail(&vm_bo->vm_status, &vm->evicted);
233}
234/**
235 * amdgpu_vm_bo_moved - vm_bo is moved
236 *
237 * @vm_bo: vm_bo which is moved
238 *
239 * State for per VM BOs which are moved, but that change is not yet reflected
240 * in the page tables.
241 */
242static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243{
244	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245}
246
247/**
248 * amdgpu_vm_bo_idle - vm_bo is idle
249 *
250 * @vm_bo: vm_bo which is now idle
251 *
252 * State for PDs/PTs and per VM BOs which have gone through the state machine
253 * and are now idle.
254 */
255static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256{
257	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258	vm_bo->moved = false;
259}
260
261/**
262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263 *
264 * @vm_bo: vm_bo which is now invalidated
265 *
266 * State for normal BOs which are invalidated and that change not yet reflected
267 * in the PTs.
268 */
269static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270{
271	spin_lock(&vm_bo->vm->invalidated_lock);
272	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273	spin_unlock(&vm_bo->vm->invalidated_lock);
274}
275
276/**
277 * amdgpu_vm_bo_relocated - vm_bo is reloacted
278 *
279 * @vm_bo: vm_bo which is relocated
280 *
281 * State for PDs/PTs which needs to update their parent PD.
282 * For the root PD, just move to idle state.
283 */
284static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285{
286	if (vm_bo->bo->parent)
287		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288	else
289		amdgpu_vm_bo_idle(vm_bo);
290}
291
292/**
293 * amdgpu_vm_bo_done - vm_bo is done
294 *
295 * @vm_bo: vm_bo which is now done
296 *
297 * State for normal BOs which are invalidated and that change has been updated
298 * in the PTs.
299 */
300static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301{
302	spin_lock(&vm_bo->vm->invalidated_lock);
303	list_del_init(&vm_bo->vm_status);
304	spin_unlock(&vm_bo->vm->invalidated_lock);
305}
306
307/**
308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309 *
310 * @base: base structure for tracking BO usage in a VM
311 * @vm: vm to which bo is to be added
312 * @bo: amdgpu buffer object
313 *
314 * Initialize a bo_va_base structure and add it to the appropriate lists
315 *
316 */
317static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318				   struct amdgpu_vm *vm,
319				   struct amdgpu_bo *bo)
320{
321	base->vm = vm;
322	base->bo = bo;
323	base->next = NULL;
324	INIT_LIST_HEAD(&base->vm_status);
325
326	if (!bo)
327		return;
328	base->next = bo->vm_bo;
329	bo->vm_bo = base;
330
331	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332		return;
333
334	vm->bulk_moveable = false;
335	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336		amdgpu_vm_bo_relocated(base);
337	else
338		amdgpu_vm_bo_idle(base);
339
340	if (bo->preferred_domains &
341	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342		return;
343
344	/*
345	 * we checked all the prerequisites, but it looks like this per vm bo
346	 * is currently evicted. add the bo to the evicted list to make sure it
347	 * is validated on next vm use to avoid fault.
348	 * */
349	amdgpu_vm_bo_evicted(base);
350}
351
352/**
353 * amdgpu_vm_pt_parent - get the parent page directory
354 *
355 * @pt: child page table
356 *
357 * Helper to get the parent entry for the child page table. NULL if we are at
358 * the root page directory.
359 */
360static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361{
362	struct amdgpu_bo *parent = pt->base.bo->parent;
363
364	if (!parent)
365		return NULL;
366
367	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368}
369
370/*
371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372 */
373struct amdgpu_vm_pt_cursor {
374	uint64_t pfn;
375	struct amdgpu_vm_pt *parent;
376	struct amdgpu_vm_pt *entry;
377	unsigned level;
378};
379
380/**
381 * amdgpu_vm_pt_start - start PD/PT walk
382 *
383 * @adev: amdgpu_device pointer
384 * @vm: amdgpu_vm structure
385 * @start: start address of the walk
386 * @cursor: state to initialize
387 *
388 * Initialize a amdgpu_vm_pt_cursor to start a walk.
389 */
390static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391			       struct amdgpu_vm *vm, uint64_t start,
392			       struct amdgpu_vm_pt_cursor *cursor)
393{
394	cursor->pfn = start;
395	cursor->parent = NULL;
396	cursor->entry = &vm->root;
397	cursor->level = adev->vm_manager.root_level;
398}
399
400/**
401 * amdgpu_vm_pt_descendant - go to child node
402 *
403 * @adev: amdgpu_device pointer
404 * @cursor: current state
405 *
406 * Walk to the child node of the current node.
407 * Returns:
408 * True if the walk was possible, false otherwise.
409 */
410static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411				    struct amdgpu_vm_pt_cursor *cursor)
412{
413	unsigned mask, shift, idx;
414
415	if (!cursor->entry->entries)
416		return false;
417
418	BUG_ON(!cursor->entry->base.bo);
419	mask = amdgpu_vm_entries_mask(adev, cursor->level);
420	shift = amdgpu_vm_level_shift(adev, cursor->level);
421
422	++cursor->level;
423	idx = (cursor->pfn >> shift) & mask;
424	cursor->parent = cursor->entry;
425	cursor->entry = &cursor->entry->entries[idx];
426	return true;
427}
428
429/**
430 * amdgpu_vm_pt_sibling - go to sibling node
431 *
432 * @adev: amdgpu_device pointer
433 * @cursor: current state
434 *
435 * Walk to the sibling node of the current node.
436 * Returns:
437 * True if the walk was possible, false otherwise.
438 */
439static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440				 struct amdgpu_vm_pt_cursor *cursor)
441{
442	unsigned shift, num_entries;
443
444	/* Root doesn't have a sibling */
445	if (!cursor->parent)
446		return false;
447
448	/* Go to our parents and see if we got a sibling */
449	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451
452	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453		return false;
454
455	cursor->pfn += 1ULL << shift;
456	cursor->pfn &= ~((1ULL << shift) - 1);
457	++cursor->entry;
458	return true;
459}
460
461/**
462 * amdgpu_vm_pt_ancestor - go to parent node
463 *
464 * @cursor: current state
465 *
466 * Walk to the parent node of the current node.
467 * Returns:
468 * True if the walk was possible, false otherwise.
469 */
470static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471{
472	if (!cursor->parent)
473		return false;
474
475	--cursor->level;
476	cursor->entry = cursor->parent;
477	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478	return true;
479}
480
481/**
482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483 *
484 * @adev: amdgpu_device pointer
485 * @cursor: current state
486 *
487 * Walk the PD/PT tree to the next node.
488 */
489static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490			      struct amdgpu_vm_pt_cursor *cursor)
491{
492	/* First try a newborn child */
493	if (amdgpu_vm_pt_descendant(adev, cursor))
494		return;
495
496	/* If that didn't worked try to find a sibling */
497	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498		/* No sibling, go to our parents and grandparents */
499		if (!amdgpu_vm_pt_ancestor(cursor)) {
500			cursor->pfn = ~0ll;
501			return;
502		}
503	}
504}
505
506/**
507 * amdgpu_vm_pt_first_dfs - start a deep first search
508 *
509 * @adev: amdgpu_device structure
510 * @vm: amdgpu_vm structure
511 * @start: optional cursor to start with
512 * @cursor: state to initialize
513 *
514 * Starts a deep first traversal of the PD/PT tree.
515 */
516static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517				   struct amdgpu_vm *vm,
518				   struct amdgpu_vm_pt_cursor *start,
519				   struct amdgpu_vm_pt_cursor *cursor)
520{
521	if (start)
522		*cursor = *start;
523	else
524		amdgpu_vm_pt_start(adev, vm, 0, cursor);
525	while (amdgpu_vm_pt_descendant(adev, cursor));
526}
527
528/**
529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530 *
531 * @start: starting point for the search
532 * @entry: current entry
533 *
534 * Returns:
535 * True when the search should continue, false otherwise.
536 */
537static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538				      struct amdgpu_vm_pt *entry)
539{
540	return entry && (!start || entry != start->entry);
541}
542
543/**
544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545 *
546 * @adev: amdgpu_device structure
547 * @cursor: current state
548 *
549 * Move the cursor to the next node in a deep first search.
550 */
551static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552				  struct amdgpu_vm_pt_cursor *cursor)
553{
554	if (!cursor->entry)
555		return;
556
557	if (!cursor->parent)
558		cursor->entry = NULL;
559	else if (amdgpu_vm_pt_sibling(adev, cursor))
560		while (amdgpu_vm_pt_descendant(adev, cursor));
561	else
562		amdgpu_vm_pt_ancestor(cursor);
563}
564
565/*
566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567 */
568#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
569	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
570	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
572	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573
574/**
575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576 *
577 * @vm: vm providing the BOs
578 * @validated: head of validation list
579 * @entry: entry to add
580 *
581 * Add the page directory to the list of BOs to
582 * validate for command submission.
583 */
584void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585			 struct list_head *validated,
586			 struct amdgpu_bo_list_entry *entry)
587{
588	entry->priority = 0;
589	entry->tv.bo = &vm->root.base.bo->tbo;
590	/* Two for VM updates, one for TTM and one for the CS job */
591	entry->tv.num_shared = 4;
592	entry->user_pages = NULL;
593	list_add(&entry->tv.head, validated);
594}
595
596/**
597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598 *
599 * @bo: BO which was removed from the LRU
600 *
601 * Make sure the bulk_moveable flag is updated when a BO is removed from the
602 * LRU.
603 */
604void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605{
606	struct amdgpu_bo *abo;
607	struct amdgpu_vm_bo_base *bo_base;
608
609	if (!amdgpu_bo_is_amdgpu_bo(bo))
610		return;
611
612	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613		return;
614
615	abo = ttm_to_amdgpu_bo(bo);
616	if (!abo->parent)
617		return;
618	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619		struct amdgpu_vm *vm = bo_base->vm;
620
621		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622			vm->bulk_moveable = false;
623	}
624
625}
626/**
627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628 *
629 * @adev: amdgpu device pointer
630 * @vm: vm providing the BOs
631 *
632 * Move all BOs to the end of LRU and remember their positions to put them
633 * together.
634 */
635void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636				struct amdgpu_vm *vm)
637{
638	struct amdgpu_vm_bo_base *bo_base;
639
640	if (vm->bulk_moveable) {
641		spin_lock(&ttm_bo_glob.lru_lock);
642		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643		spin_unlock(&ttm_bo_glob.lru_lock);
644		return;
645	}
646
647	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648
649	spin_lock(&ttm_bo_glob.lru_lock);
650	list_for_each_entry(bo_base, &vm->idle, vm_status) {
651		struct amdgpu_bo *bo = bo_base->bo;
652
653		if (!bo->parent)
654			continue;
655
656		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657		if (bo->shadow)
658			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659						&vm->lru_bulk_move);
660	}
661	spin_unlock(&ttm_bo_glob.lru_lock);
662
663	vm->bulk_moveable = true;
664}
665
666/**
667 * amdgpu_vm_validate_pt_bos - validate the page table BOs
668 *
669 * @adev: amdgpu device pointer
670 * @vm: vm providing the BOs
671 * @validate: callback to do the validation
672 * @param: parameter for the validation callback
673 *
674 * Validate the page table BOs on command submission if neccessary.
675 *
676 * Returns:
677 * Validation result.
678 */
679int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680			      int (*validate)(void *p, struct amdgpu_bo *bo),
681			      void *param)
682{
683	struct amdgpu_vm_bo_base *bo_base, *tmp;
684	int r;
685
686	vm->bulk_moveable &= list_empty(&vm->evicted);
687
688	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689		struct amdgpu_bo *bo = bo_base->bo;
690
691		r = validate(param, bo);
692		if (r)
693			return r;
694
695		if (bo->tbo.type != ttm_bo_type_kernel) {
696			amdgpu_vm_bo_moved(bo_base);
697		} else {
698			vm->update_funcs->map_table(bo);
699			amdgpu_vm_bo_relocated(bo_base);
700		}
701	}
702
703	amdgpu_vm_eviction_lock(vm);
704	vm->evicting = false;
705	amdgpu_vm_eviction_unlock(vm);
706
707	return 0;
708}
709
710/**
711 * amdgpu_vm_ready - check VM is ready for updates
712 *
713 * @vm: VM to check
714 *
715 * Check if all VM PDs/PTs are ready for updates
716 *
717 * Returns:
718 * True if VM is not evicting.
719 */
720bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721{
722	bool ret;
723
724	amdgpu_vm_eviction_lock(vm);
725	ret = !vm->evicting;
726	amdgpu_vm_eviction_unlock(vm);
727
728	return ret && list_empty(&vm->evicted);
729}
730
731/**
732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
733 *
734 * @adev: amdgpu_device pointer
735 * @vm: VM to clear BO from
736 * @bo: BO to clear
737 * @immediate: use an immediate update
738 *
739 * Root PD needs to be reserved when calling this.
740 *
741 * Returns:
742 * 0 on success, errno otherwise.
743 */
744static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
745			      struct amdgpu_vm *vm,
746			      struct amdgpu_bo *bo,
747			      bool immediate)
748{
749	struct ttm_operation_ctx ctx = { true, false };
750	unsigned level = adev->vm_manager.root_level;
751	struct amdgpu_vm_update_params params;
752	struct amdgpu_bo *ancestor = bo;
753	unsigned entries, ats_entries;
754	uint64_t addr;
755	int r;
756
757	/* Figure out our place in the hierarchy */
758	if (ancestor->parent) {
759		++level;
760		while (ancestor->parent->parent) {
761			++level;
762			ancestor = ancestor->parent;
763		}
764	}
765
766	entries = amdgpu_bo_size(bo) / 8;
767	if (!vm->pte_support_ats) {
768		ats_entries = 0;
769
770	} else if (!bo->parent) {
771		ats_entries = amdgpu_vm_num_ats_entries(adev);
772		ats_entries = min(ats_entries, entries);
773		entries -= ats_entries;
774
775	} else {
776		struct amdgpu_vm_pt *pt;
777
778		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
779		ats_entries = amdgpu_vm_num_ats_entries(adev);
780		if ((pt - vm->root.entries) >= ats_entries) {
781			ats_entries = 0;
782		} else {
783			ats_entries = entries;
784			entries = 0;
785		}
786	}
787
788	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
789	if (r)
790		return r;
791
792	if (bo->shadow) {
793		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
794				    &ctx);
795		if (r)
796			return r;
797	}
798
799	r = vm->update_funcs->map_table(bo);
800	if (r)
801		return r;
802
803	memset(&params, 0, sizeof(params));
804	params.adev = adev;
805	params.vm = vm;
806	params.immediate = immediate;
807
808	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
809	if (r)
810		return r;
811
812	addr = 0;
813	if (ats_entries) {
814		uint64_t value = 0, flags;
815
816		flags = AMDGPU_PTE_DEFAULT_ATC;
817		if (level != AMDGPU_VM_PTB) {
818			/* Handle leaf PDEs as PTEs */
819			flags |= AMDGPU_PDE_PTE;
820			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
821		}
822
823		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
824					     value, flags);
825		if (r)
826			return r;
827
828		addr += ats_entries * 8;
829	}
830
831	if (entries) {
832		uint64_t value = 0, flags = 0;
833
834		if (adev->asic_type >= CHIP_VEGA10) {
835			if (level != AMDGPU_VM_PTB) {
836				/* Handle leaf PDEs as PTEs */
837				flags |= AMDGPU_PDE_PTE;
838				amdgpu_gmc_get_vm_pde(adev, level,
839						      &value, &flags);
840			} else {
841				/* Workaround for fault priority problem on GMC9 */
842				flags = AMDGPU_PTE_EXECUTABLE;
843			}
844		}
845
846		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
847					     value, flags);
848		if (r)
849			return r;
850	}
851
852	return vm->update_funcs->commit(&params, NULL);
853}
854
855/**
856 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
857 *
858 * @adev: amdgpu_device pointer
859 * @vm: requesting vm
860 * @level: the page table level
861 * @immediate: use a immediate update
862 * @bp: resulting BO allocation parameters
863 */
864static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
865			       int level, bool immediate,
866			       struct amdgpu_bo_param *bp)
867{
868	memset(bp, 0, sizeof(*bp));
869
870	bp->size = amdgpu_vm_bo_size(adev, level);
871	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
872	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
873	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
874	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
875		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
876	if (vm->use_cpu_for_update)
877		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
878	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
879		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
880	bp->type = ttm_bo_type_kernel;
881	bp->no_wait_gpu = immediate;
882	if (vm->root.base.bo)
883		bp->resv = vm->root.base.bo->tbo.base.resv;
884}
885
886/**
887 * amdgpu_vm_alloc_pts - Allocate a specific page table
888 *
889 * @adev: amdgpu_device pointer
890 * @vm: VM to allocate page tables for
891 * @cursor: Which page table to allocate
892 * @immediate: use an immediate update
893 *
894 * Make sure a specific page table or directory is allocated.
895 *
896 * Returns:
897 * 1 if page table needed to be allocated, 0 if page table was already
898 * allocated, negative errno if an error occurred.
899 */
900static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
901			       struct amdgpu_vm *vm,
902			       struct amdgpu_vm_pt_cursor *cursor,
903			       bool immediate)
904{
905	struct amdgpu_vm_pt *entry = cursor->entry;
906	struct amdgpu_bo_param bp;
907	struct amdgpu_bo *pt;
908	int r;
909
910	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
911		unsigned num_entries;
912
913		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
914		entry->entries = kvmalloc_array(num_entries,
915						sizeof(*entry->entries),
916						GFP_KERNEL | __GFP_ZERO);
917		if (!entry->entries)
918			return -ENOMEM;
919	}
920
921	if (entry->base.bo)
922		return 0;
923
924	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
925
926	r = amdgpu_bo_create(adev, &bp, &pt);
927	if (r)
928		return r;
929
930	/* Keep a reference to the root directory to avoid
931	 * freeing them up in the wrong order.
932	 */
933	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
934	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
935
936	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
937	if (r)
938		goto error_free_pt;
939
940	return 0;
941
942error_free_pt:
943	amdgpu_bo_unref(&pt->shadow);
944	amdgpu_bo_unref(&pt);
945	return r;
946}
947
948/**
949 * amdgpu_vm_free_table - fre one PD/PT
950 *
951 * @entry: PDE to free
952 */
953static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
954{
955	if (entry->base.bo) {
956		entry->base.bo->vm_bo = NULL;
957		list_del(&entry->base.vm_status);
958		amdgpu_bo_unref(&entry->base.bo->shadow);
959		amdgpu_bo_unref(&entry->base.bo);
960	}
961	kvfree(entry->entries);
962	entry->entries = NULL;
963}
964
965/**
966 * amdgpu_vm_free_pts - free PD/PT levels
967 *
968 * @adev: amdgpu device structure
969 * @vm: amdgpu vm structure
970 * @start: optional cursor where to start freeing PDs/PTs
971 *
972 * Free the page directory or page table level and all sub levels.
973 */
974static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
975			       struct amdgpu_vm *vm,
976			       struct amdgpu_vm_pt_cursor *start)
977{
978	struct amdgpu_vm_pt_cursor cursor;
979	struct amdgpu_vm_pt *entry;
980
981	vm->bulk_moveable = false;
982
983	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
984		amdgpu_vm_free_table(entry);
985
986	if (start)
987		amdgpu_vm_free_table(start->entry);
988}
989
990/**
991 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
992 *
993 * @adev: amdgpu_device pointer
994 */
995void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
996{
997	const struct amdgpu_ip_block *ip_block;
998	bool has_compute_vm_bug;
999	struct amdgpu_ring *ring;
1000	int i;
1001
1002	has_compute_vm_bug = false;
1003
1004	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1005	if (ip_block) {
1006		/* Compute has a VM bug for GFX version < 7.
1007		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1008		if (ip_block->version->major <= 7)
1009			has_compute_vm_bug = true;
1010		else if (ip_block->version->major == 8)
1011			if (adev->gfx.mec_fw_version < 673)
1012				has_compute_vm_bug = true;
1013	}
1014
1015	for (i = 0; i < adev->num_rings; i++) {
1016		ring = adev->rings[i];
1017		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1018			/* only compute rings */
1019			ring->has_compute_vm_bug = has_compute_vm_bug;
1020		else
1021			ring->has_compute_vm_bug = false;
1022	}
1023}
1024
1025/**
1026 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1027 *
1028 * @ring: ring on which the job will be submitted
1029 * @job: job to submit
1030 *
1031 * Returns:
1032 * True if sync is needed.
1033 */
1034bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1035				  struct amdgpu_job *job)
1036{
1037	struct amdgpu_device *adev = ring->adev;
1038	unsigned vmhub = ring->funcs->vmhub;
1039	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1040	struct amdgpu_vmid *id;
1041	bool gds_switch_needed;
1042	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1043
1044	if (job->vmid == 0)
1045		return false;
1046	id = &id_mgr->ids[job->vmid];
1047	gds_switch_needed = ring->funcs->emit_gds_switch && (
1048		id->gds_base != job->gds_base ||
1049		id->gds_size != job->gds_size ||
1050		id->gws_base != job->gws_base ||
1051		id->gws_size != job->gws_size ||
1052		id->oa_base != job->oa_base ||
1053		id->oa_size != job->oa_size);
1054
1055	if (amdgpu_vmid_had_gpu_reset(adev, id))
1056		return true;
1057
1058	return vm_flush_needed || gds_switch_needed;
1059}
1060
1061/**
1062 * amdgpu_vm_flush - hardware flush the vm
1063 *
1064 * @ring: ring to use for flush
1065 * @job:  related job
1066 * @need_pipe_sync: is pipe sync needed
1067 *
1068 * Emit a VM flush when it is necessary.
1069 *
1070 * Returns:
1071 * 0 on success, errno otherwise.
1072 */
1073int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1074		    bool need_pipe_sync)
1075{
1076	struct amdgpu_device *adev = ring->adev;
1077	unsigned vmhub = ring->funcs->vmhub;
1078	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1079	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1080	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1081		id->gds_base != job->gds_base ||
1082		id->gds_size != job->gds_size ||
1083		id->gws_base != job->gws_base ||
1084		id->gws_size != job->gws_size ||
1085		id->oa_base != job->oa_base ||
1086		id->oa_size != job->oa_size);
1087	bool vm_flush_needed = job->vm_needs_flush;
1088	struct dma_fence *fence = NULL;
1089	bool pasid_mapping_needed = false;
1090	unsigned patch_offset = 0;
1091	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1092	int r;
1093
1094	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1095		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1096
1097	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1098		gds_switch_needed = true;
1099		vm_flush_needed = true;
1100		pasid_mapping_needed = true;
1101	}
1102
1103	mutex_lock(&id_mgr->lock);
1104	if (id->pasid != job->pasid || !id->pasid_mapping ||
1105	    !dma_fence_is_signaled(id->pasid_mapping))
1106		pasid_mapping_needed = true;
1107	mutex_unlock(&id_mgr->lock);
1108
1109	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1110	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1111			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1112	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1113		ring->funcs->emit_wreg;
1114
1115	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1116		return 0;
1117
1118	if (ring->funcs->init_cond_exec)
1119		patch_offset = amdgpu_ring_init_cond_exec(ring);
1120
1121	if (need_pipe_sync)
1122		amdgpu_ring_emit_pipeline_sync(ring);
1123
1124	if (vm_flush_needed) {
1125		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1126		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1127	}
1128
1129	if (pasid_mapping_needed)
1130		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1131
1132	if (vm_flush_needed || pasid_mapping_needed) {
1133		r = amdgpu_fence_emit(ring, &fence, 0);
1134		if (r)
1135			return r;
1136	}
1137
1138	if (vm_flush_needed) {
1139		mutex_lock(&id_mgr->lock);
1140		dma_fence_put(id->last_flush);
1141		id->last_flush = dma_fence_get(fence);
1142		id->current_gpu_reset_count =
1143			atomic_read(&adev->gpu_reset_counter);
1144		mutex_unlock(&id_mgr->lock);
1145	}
1146
1147	if (pasid_mapping_needed) {
1148		mutex_lock(&id_mgr->lock);
1149		id->pasid = job->pasid;
1150		dma_fence_put(id->pasid_mapping);
1151		id->pasid_mapping = dma_fence_get(fence);
1152		mutex_unlock(&id_mgr->lock);
1153	}
1154	dma_fence_put(fence);
1155
1156	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1157		id->gds_base = job->gds_base;
1158		id->gds_size = job->gds_size;
1159		id->gws_base = job->gws_base;
1160		id->gws_size = job->gws_size;
1161		id->oa_base = job->oa_base;
1162		id->oa_size = job->oa_size;
1163		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1164					    job->gds_size, job->gws_base,
1165					    job->gws_size, job->oa_base,
1166					    job->oa_size);
1167	}
1168
1169	if (ring->funcs->patch_cond_exec)
1170		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1171
1172	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1173	if (ring->funcs->emit_switch_buffer) {
1174		amdgpu_ring_emit_switch_buffer(ring);
1175		amdgpu_ring_emit_switch_buffer(ring);
1176	}
1177	return 0;
1178}
1179
1180/**
1181 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1182 *
1183 * @vm: requested vm
1184 * @bo: requested buffer object
1185 *
1186 * Find @bo inside the requested vm.
1187 * Search inside the @bos vm list for the requested vm
1188 * Returns the found bo_va or NULL if none is found
1189 *
1190 * Object has to be reserved!
1191 *
1192 * Returns:
1193 * Found bo_va or NULL.
1194 */
1195struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1196				       struct amdgpu_bo *bo)
1197{
1198	struct amdgpu_vm_bo_base *base;
1199
1200	for (base = bo->vm_bo; base; base = base->next) {
1201		if (base->vm != vm)
1202			continue;
1203
1204		return container_of(base, struct amdgpu_bo_va, base);
1205	}
1206	return NULL;
1207}
1208
1209/**
1210 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1211 *
1212 * @pages_addr: optional DMA address to use for lookup
1213 * @addr: the unmapped addr
1214 *
1215 * Look up the physical address of the page that the pte resolves
1216 * to.
1217 *
1218 * Returns:
1219 * The pointer for the page table entry.
1220 */
1221uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1222{
1223	uint64_t result;
1224
1225	/* page table offset */
1226	result = pages_addr[addr >> PAGE_SHIFT];
1227
1228	/* in case cpu page size != gpu page size*/
1229	result |= addr & (~PAGE_MASK);
1230
1231	result &= 0xFFFFFFFFFFFFF000ULL;
1232
1233	return result;
1234}
1235
1236/**
1237 * amdgpu_vm_update_pde - update a single level in the hierarchy
1238 *
1239 * @params: parameters for the update
1240 * @vm: requested vm
1241 * @entry: entry to update
1242 *
1243 * Makes sure the requested entry in parent is up to date.
1244 */
1245static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1246				struct amdgpu_vm *vm,
1247				struct amdgpu_vm_pt *entry)
1248{
1249	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1250	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1251	uint64_t pde, pt, flags;
1252	unsigned level;
1253
1254	for (level = 0, pbo = bo->parent; pbo; ++level)
1255		pbo = pbo->parent;
1256
1257	level += params->adev->vm_manager.root_level;
1258	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1259	pde = (entry - parent->entries) * 8;
1260	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1261}
1262
1263/**
1264 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1265 *
1266 * @adev: amdgpu_device pointer
1267 * @vm: related vm
1268 *
1269 * Mark all PD level as invalid after an error.
1270 */
1271static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1272				     struct amdgpu_vm *vm)
1273{
1274	struct amdgpu_vm_pt_cursor cursor;
1275	struct amdgpu_vm_pt *entry;
1276
1277	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1278		if (entry->base.bo && !entry->base.moved)
1279			amdgpu_vm_bo_relocated(&entry->base);
1280}
1281
1282/**
1283 * amdgpu_vm_update_pdes - make sure that all directories are valid
1284 *
1285 * @adev: amdgpu_device pointer
1286 * @vm: requested vm
1287 * @immediate: submit immediately to the paging queue
1288 *
1289 * Makes sure all directories are up to date.
1290 *
1291 * Returns:
1292 * 0 for success, error for failure.
1293 */
1294int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1295			  struct amdgpu_vm *vm, bool immediate)
1296{
1297	struct amdgpu_vm_update_params params;
1298	int r;
1299
1300	if (list_empty(&vm->relocated))
1301		return 0;
1302
1303	memset(&params, 0, sizeof(params));
1304	params.adev = adev;
1305	params.vm = vm;
1306	params.immediate = immediate;
1307
1308	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1309	if (r)
1310		return r;
1311
1312	while (!list_empty(&vm->relocated)) {
1313		struct amdgpu_vm_pt *entry;
1314
1315		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1316					 base.vm_status);
1317		amdgpu_vm_bo_idle(&entry->base);
1318
1319		r = amdgpu_vm_update_pde(&params, vm, entry);
1320		if (r)
1321			goto error;
1322	}
1323
1324	r = vm->update_funcs->commit(&params, &vm->last_update);
1325	if (r)
1326		goto error;
1327	return 0;
1328
1329error:
1330	amdgpu_vm_invalidate_pds(adev, vm);
1331	return r;
1332}
1333
1334/*
1335 * amdgpu_vm_update_flags - figure out flags for PTE updates
1336 *
1337 * Make sure to set the right flags for the PTEs at the desired level.
1338 */
1339static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1340				   struct amdgpu_bo *bo, unsigned level,
1341				   uint64_t pe, uint64_t addr,
1342				   unsigned count, uint32_t incr,
1343				   uint64_t flags)
1344
1345{
1346	if (level != AMDGPU_VM_PTB) {
1347		flags |= AMDGPU_PDE_PTE;
1348		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1349
1350	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1351		   !(flags & AMDGPU_PTE_VALID) &&
1352		   !(flags & AMDGPU_PTE_PRT)) {
1353
1354		/* Workaround for fault priority problem on GMC9 */
1355		flags |= AMDGPU_PTE_EXECUTABLE;
1356	}
1357
1358	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1359					 flags);
1360}
1361
1362/**
1363 * amdgpu_vm_fragment - get fragment for PTEs
1364 *
1365 * @params: see amdgpu_vm_update_params definition
1366 * @start: first PTE to handle
1367 * @end: last PTE to handle
1368 * @flags: hw mapping flags
1369 * @frag: resulting fragment size
1370 * @frag_end: end of this fragment
1371 *
1372 * Returns the first possible fragment for the start and end address.
1373 */
1374static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1375			       uint64_t start, uint64_t end, uint64_t flags,
1376			       unsigned int *frag, uint64_t *frag_end)
1377{
1378	/**
1379	 * The MC L1 TLB supports variable sized pages, based on a fragment
1380	 * field in the PTE. When this field is set to a non-zero value, page
1381	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1382	 * flags are considered valid for all PTEs within the fragment range
1383	 * and corresponding mappings are assumed to be physically contiguous.
1384	 *
1385	 * The L1 TLB can store a single PTE for the whole fragment,
1386	 * significantly increasing the space available for translation
1387	 * caching. This leads to large improvements in throughput when the
1388	 * TLB is under pressure.
1389	 *
1390	 * The L2 TLB distributes small and large fragments into two
1391	 * asymmetric partitions. The large fragment cache is significantly
1392	 * larger. Thus, we try to use large fragments wherever possible.
1393	 * Userspace can support this by aligning virtual base address and
1394	 * allocation size to the fragment size.
1395	 *
1396	 * Starting with Vega10 the fragment size only controls the L1. The L2
1397	 * is now directly feed with small/huge/giant pages from the walker.
1398	 */
1399	unsigned max_frag;
1400
1401	if (params->adev->asic_type < CHIP_VEGA10)
1402		max_frag = params->adev->vm_manager.fragment_size;
1403	else
1404		max_frag = 31;
1405
1406	/* system pages are non continuously */
1407	if (params->pages_addr) {
1408		*frag = 0;
1409		*frag_end = end;
1410		return;
1411	}
1412
1413	/* This intentionally wraps around if no bit is set */
1414	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1415	if (*frag >= max_frag) {
1416		*frag = max_frag;
1417		*frag_end = end & ~((1ULL << max_frag) - 1);
1418	} else {
1419		*frag_end = start + (1 << *frag);
1420	}
1421}
1422
1423/**
1424 * amdgpu_vm_update_ptes - make sure that page tables are valid
1425 *
1426 * @params: see amdgpu_vm_update_params definition
1427 * @start: start of GPU address range
1428 * @end: end of GPU address range
1429 * @dst: destination address to map to, the next dst inside the function
1430 * @flags: mapping flags
1431 *
1432 * Update the page tables in the range @start - @end.
1433 *
1434 * Returns:
1435 * 0 for success, -EINVAL for failure.
1436 */
1437static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1438				 uint64_t start, uint64_t end,
1439				 uint64_t dst, uint64_t flags)
1440{
1441	struct amdgpu_device *adev = params->adev;
1442	struct amdgpu_vm_pt_cursor cursor;
1443	uint64_t frag_start = start, frag_end;
1444	unsigned int frag;
1445	int r;
1446
1447	/* figure out the initial fragment */
1448	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1449
1450	/* walk over the address space and update the PTs */
1451	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1452	while (cursor.pfn < end) {
1453		unsigned shift, parent_shift, mask;
1454		uint64_t incr, entry_end, pe_start;
1455		struct amdgpu_bo *pt;
1456
1457		if (!params->unlocked) {
1458			/* make sure that the page tables covering the
1459			 * address range are actually allocated
1460			 */
1461			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1462						&cursor, params->immediate);
1463			if (r)
1464				return r;
1465		}
1466
1467		shift = amdgpu_vm_level_shift(adev, cursor.level);
1468		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1469		if (params->unlocked) {
1470			/* Unlocked updates are only allowed on the leaves */
1471			if (amdgpu_vm_pt_descendant(adev, &cursor))
1472				continue;
1473		} else if (adev->asic_type < CHIP_VEGA10 &&
1474			   (flags & AMDGPU_PTE_VALID)) {
1475			/* No huge page support before GMC v9 */
1476			if (cursor.level != AMDGPU_VM_PTB) {
1477				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1478					return -ENOENT;
1479				continue;
1480			}
1481		} else if (frag < shift) {
1482			/* We can't use this level when the fragment size is
1483			 * smaller than the address shift. Go to the next
1484			 * child entry and try again.
1485			 */
1486			if (amdgpu_vm_pt_descendant(adev, &cursor))
1487				continue;
1488		} else if (frag >= parent_shift) {
1489			/* If the fragment size is even larger than the parent
1490			 * shift we should go up one level and check it again.
1491			 */
1492			if (!amdgpu_vm_pt_ancestor(&cursor))
1493				return -EINVAL;
1494			continue;
1495		}
1496
1497		pt = cursor.entry->base.bo;
1498		if (!pt) {
1499			/* We need all PDs and PTs for mapping something, */
1500			if (flags & AMDGPU_PTE_VALID)
1501				return -ENOENT;
1502
1503			/* but unmapping something can happen at a higher
1504			 * level.
1505			 */
1506			if (!amdgpu_vm_pt_ancestor(&cursor))
1507				return -EINVAL;
1508
1509			pt = cursor.entry->base.bo;
1510			shift = parent_shift;
1511			frag_end = max(frag_end, ALIGN(frag_start + 1,
1512				   1ULL << shift));
1513		}
1514
1515		/* Looks good so far, calculate parameters for the update */
1516		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1517		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1518		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1519		entry_end = ((uint64_t)mask + 1) << shift;
1520		entry_end += cursor.pfn & ~(entry_end - 1);
1521		entry_end = min(entry_end, end);
1522
1523		do {
1524			struct amdgpu_vm *vm = params->vm;
1525			uint64_t upd_end = min(entry_end, frag_end);
1526			unsigned nptes = (upd_end - frag_start) >> shift;
1527			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1528
1529			/* This can happen when we set higher level PDs to
1530			 * silent to stop fault floods.
1531			 */
1532			nptes = max(nptes, 1u);
1533
1534			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1535						    nptes, dst, incr, upd_flags,
1536						    vm->task_info.pid,
1537						    vm->immediate.fence_context);
1538			amdgpu_vm_update_flags(params, pt, cursor.level,
1539					       pe_start, dst, nptes, incr,
1540					       upd_flags);
1541
1542			pe_start += nptes * 8;
1543			dst += nptes * incr;
1544
1545			frag_start = upd_end;
1546			if (frag_start >= frag_end) {
1547				/* figure out the next fragment */
1548				amdgpu_vm_fragment(params, frag_start, end,
1549						   flags, &frag, &frag_end);
1550				if (frag < shift)
1551					break;
1552			}
1553		} while (frag_start < entry_end);
1554
1555		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1556			/* Free all child entries.
1557			 * Update the tables with the flags and addresses and free up subsequent
1558			 * tables in the case of huge pages or freed up areas.
1559			 * This is the maximum you can free, because all other page tables are not
1560			 * completely covered by the range and so potentially still in use.
1561			 */
1562			while (cursor.pfn < frag_start) {
1563				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1564				amdgpu_vm_pt_next(adev, &cursor);
1565			}
1566
1567		} else if (frag >= shift) {
1568			/* or just move on to the next on the same level. */
1569			amdgpu_vm_pt_next(adev, &cursor);
1570		}
1571	}
1572
1573	return 0;
1574}
1575
1576/**
1577 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1578 *
1579 * @adev: amdgpu_device pointer
1580 * @vm: requested vm
1581 * @immediate: immediate submission in a page fault
1582 * @unlocked: unlocked invalidation during MM callback
1583 * @resv: fences we need to sync to
1584 * @start: start of mapped range
1585 * @last: last mapped entry
1586 * @flags: flags for the entries
1587 * @addr: addr to set the area to
1588 * @pages_addr: DMA addresses to use for mapping
1589 * @fence: optional resulting fence
1590 *
1591 * Fill in the page table entries between @start and @last.
1592 *
1593 * Returns:
1594 * 0 for success, -EINVAL for failure.
1595 */
1596static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1597				       struct amdgpu_vm *vm, bool immediate,
1598				       bool unlocked, struct dma_resv *resv,
1599				       uint64_t start, uint64_t last,
1600				       uint64_t flags, uint64_t addr,
1601				       dma_addr_t *pages_addr,
1602				       struct dma_fence **fence)
1603{
1604	struct amdgpu_vm_update_params params;
1605	enum amdgpu_sync_mode sync_mode;
1606	int r;
1607
1608	memset(&params, 0, sizeof(params));
1609	params.adev = adev;
1610	params.vm = vm;
1611	params.immediate = immediate;
1612	params.pages_addr = pages_addr;
1613	params.unlocked = unlocked;
1614
1615	/* Implicitly sync to command submissions in the same VM before
1616	 * unmapping. Sync to moving fences before mapping.
1617	 */
1618	if (!(flags & AMDGPU_PTE_VALID))
1619		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1620	else
1621		sync_mode = AMDGPU_SYNC_EXPLICIT;
1622
1623	amdgpu_vm_eviction_lock(vm);
1624	if (vm->evicting) {
1625		r = -EBUSY;
1626		goto error_unlock;
1627	}
1628
1629	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1630		struct dma_fence *tmp = dma_fence_get_stub();
1631
1632		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1633		swap(vm->last_unlocked, tmp);
1634		dma_fence_put(tmp);
1635	}
1636
1637	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1638	if (r)
1639		goto error_unlock;
1640
1641	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1642	if (r)
1643		goto error_unlock;
1644
1645	r = vm->update_funcs->commit(&params, fence);
1646
1647error_unlock:
1648	amdgpu_vm_eviction_unlock(vm);
1649	return r;
1650}
1651
1652/**
1653 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1654 *
1655 * @adev: amdgpu_device pointer
1656 * @resv: fences we need to sync to
1657 * @pages_addr: DMA addresses to use for mapping
1658 * @vm: requested vm
1659 * @mapping: mapped range and flags to use for the update
1660 * @flags: HW flags for the mapping
1661 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1662 * @nodes: array of drm_mm_nodes with the MC addresses
1663 * @fence: optional resulting fence
1664 *
1665 * Split the mapping into smaller chunks so that each update fits
1666 * into a SDMA IB.
1667 *
1668 * Returns:
1669 * 0 for success, -EINVAL for failure.
1670 */
1671static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1672				      struct dma_resv *resv,
1673				      dma_addr_t *pages_addr,
1674				      struct amdgpu_vm *vm,
1675				      struct amdgpu_bo_va_mapping *mapping,
1676				      uint64_t flags,
1677				      struct amdgpu_device *bo_adev,
1678				      struct drm_mm_node *nodes,
1679				      struct dma_fence **fence)
1680{
1681	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1682	uint64_t pfn, start = mapping->start;
1683	int r;
1684
1685	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1686	 * but in case of something, we filter the flags in first place
1687	 */
1688	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1689		flags &= ~AMDGPU_PTE_READABLE;
1690	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1691		flags &= ~AMDGPU_PTE_WRITEABLE;
1692
1693	/* Apply ASIC specific mapping flags */
1694	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1695
1696	trace_amdgpu_vm_bo_update(mapping);
1697
1698	pfn = mapping->offset >> PAGE_SHIFT;
1699	if (nodes) {
1700		while (pfn >= nodes->size) {
1701			pfn -= nodes->size;
1702			++nodes;
1703		}
1704	}
1705
1706	do {
1707		dma_addr_t *dma_addr = NULL;
1708		uint64_t max_entries;
1709		uint64_t addr, last;
1710
1711		max_entries = mapping->last - start + 1;
1712		if (nodes) {
1713			addr = nodes->start << PAGE_SHIFT;
1714			max_entries = min((nodes->size - pfn) *
1715				AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1716		} else {
1717			addr = 0;
1718		}
1719
1720		if (pages_addr) {
1721			uint64_t count;
1722
1723			for (count = 1;
1724			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1725			     ++count) {
1726				uint64_t idx = pfn + count;
1727
1728				if (pages_addr[idx] !=
1729				    (pages_addr[idx - 1] + PAGE_SIZE))
1730					break;
1731			}
1732
1733			if (count < min_linear_pages) {
1734				addr = pfn << PAGE_SHIFT;
1735				dma_addr = pages_addr;
1736			} else {
1737				addr = pages_addr[pfn];
1738				max_entries = count *
1739					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1740			}
1741
1742		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1743			addr += bo_adev->vm_manager.vram_base_offset;
1744			addr += pfn << PAGE_SHIFT;
1745		}
1746
1747		last = start + max_entries - 1;
1748		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1749						start, last, flags, addr,
1750						dma_addr, fence);
1751		if (r)
1752			return r;
1753
1754		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1755		if (nodes && nodes->size == pfn) {
1756			pfn = 0;
1757			++nodes;
1758		}
1759		start = last + 1;
1760
1761	} while (unlikely(start != mapping->last + 1));
1762
1763	return 0;
1764}
1765
1766/**
1767 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1768 *
1769 * @adev: amdgpu_device pointer
1770 * @bo_va: requested BO and VM object
1771 * @clear: if true clear the entries
1772 *
1773 * Fill in the page table entries for @bo_va.
1774 *
1775 * Returns:
1776 * 0 for success, -EINVAL for failure.
1777 */
1778int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1779			bool clear)
1780{
1781	struct amdgpu_bo *bo = bo_va->base.bo;
1782	struct amdgpu_vm *vm = bo_va->base.vm;
1783	struct amdgpu_bo_va_mapping *mapping;
1784	dma_addr_t *pages_addr = NULL;
1785	struct ttm_resource *mem;
1786	struct drm_mm_node *nodes;
1787	struct dma_fence **last_update;
1788	struct dma_resv *resv;
1789	uint64_t flags;
1790	struct amdgpu_device *bo_adev = adev;
1791	int r;
1792
1793	if (clear || !bo) {
1794		mem = NULL;
1795		nodes = NULL;
1796		resv = vm->root.base.bo->tbo.base.resv;
1797	} else {
1798		struct drm_gem_object *obj = &bo->tbo.base;
1799		struct ttm_dma_tt *ttm;
1800
1801		resv = bo->tbo.base.resv;
1802		if (obj->import_attach && bo_va->is_xgmi) {
1803			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1804			struct drm_gem_object *gobj = dma_buf->priv;
1805			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1806
1807			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1808				bo = gem_to_amdgpu_bo(gobj);
1809		}
1810		mem = &bo->tbo.mem;
1811		nodes = mem->mm_node;
1812		if (mem->mem_type == TTM_PL_TT) {
1813			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1814			pages_addr = ttm->dma_address;
1815		}
1816	}
1817
1818	if (bo) {
1819		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1820
1821		if (amdgpu_bo_encrypted(bo))
1822			flags |= AMDGPU_PTE_TMZ;
1823
1824		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1825	} else {
1826		flags = 0x0;
1827	}
1828
1829	if (clear || (bo && bo->tbo.base.resv ==
1830		      vm->root.base.bo->tbo.base.resv))
1831		last_update = &vm->last_update;
1832	else
1833		last_update = &bo_va->last_pt_update;
1834
1835	if (!clear && bo_va->base.moved) {
1836		bo_va->base.moved = false;
1837		list_splice_init(&bo_va->valids, &bo_va->invalids);
1838
1839	} else if (bo_va->cleared != clear) {
1840		list_splice_init(&bo_va->valids, &bo_va->invalids);
1841	}
1842
1843	list_for_each_entry(mapping, &bo_va->invalids, list) {
1844		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1845					       mapping, flags, bo_adev, nodes,
1846					       last_update);
1847		if (r)
1848			return r;
1849	}
1850
1851	/* If the BO is not in its preferred location add it back to
1852	 * the evicted list so that it gets validated again on the
1853	 * next command submission.
1854	 */
1855	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1856		uint32_t mem_type = bo->tbo.mem.mem_type;
1857
1858		if (!(bo->preferred_domains &
1859		      amdgpu_mem_type_to_domain(mem_type)))
1860			amdgpu_vm_bo_evicted(&bo_va->base);
1861		else
1862			amdgpu_vm_bo_idle(&bo_va->base);
1863	} else {
1864		amdgpu_vm_bo_done(&bo_va->base);
1865	}
1866
1867	list_splice_init(&bo_va->invalids, &bo_va->valids);
1868	bo_va->cleared = clear;
1869
1870	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1871		list_for_each_entry(mapping, &bo_va->valids, list)
1872			trace_amdgpu_vm_bo_mapping(mapping);
1873	}
1874
1875	return 0;
1876}
1877
1878/**
1879 * amdgpu_vm_update_prt_state - update the global PRT state
1880 *
1881 * @adev: amdgpu_device pointer
1882 */
1883static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1884{
1885	unsigned long flags;
1886	bool enable;
1887
1888	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1889	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1890	adev->gmc.gmc_funcs->set_prt(adev, enable);
1891	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1892}
1893
1894/**
1895 * amdgpu_vm_prt_get - add a PRT user
1896 *
1897 * @adev: amdgpu_device pointer
1898 */
1899static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1900{
1901	if (!adev->gmc.gmc_funcs->set_prt)
1902		return;
1903
1904	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1905		amdgpu_vm_update_prt_state(adev);
1906}
1907
1908/**
1909 * amdgpu_vm_prt_put - drop a PRT user
1910 *
1911 * @adev: amdgpu_device pointer
1912 */
1913static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1914{
1915	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1916		amdgpu_vm_update_prt_state(adev);
1917}
1918
1919/**
1920 * amdgpu_vm_prt_cb - callback for updating the PRT status
1921 *
1922 * @fence: fence for the callback
1923 * @_cb: the callback function
1924 */
1925static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1926{
1927	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1928
1929	amdgpu_vm_prt_put(cb->adev);
1930	kfree(cb);
1931}
1932
1933/**
1934 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1935 *
1936 * @adev: amdgpu_device pointer
1937 * @fence: fence for the callback
1938 */
1939static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1940				 struct dma_fence *fence)
1941{
1942	struct amdgpu_prt_cb *cb;
1943
1944	if (!adev->gmc.gmc_funcs->set_prt)
1945		return;
1946
1947	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1948	if (!cb) {
1949		/* Last resort when we are OOM */
1950		if (fence)
1951			dma_fence_wait(fence, false);
1952
1953		amdgpu_vm_prt_put(adev);
1954	} else {
1955		cb->adev = adev;
1956		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1957						     amdgpu_vm_prt_cb))
1958			amdgpu_vm_prt_cb(fence, &cb->cb);
1959	}
1960}
1961
1962/**
1963 * amdgpu_vm_free_mapping - free a mapping
1964 *
1965 * @adev: amdgpu_device pointer
1966 * @vm: requested vm
1967 * @mapping: mapping to be freed
1968 * @fence: fence of the unmap operation
1969 *
1970 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1971 */
1972static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1973				   struct amdgpu_vm *vm,
1974				   struct amdgpu_bo_va_mapping *mapping,
1975				   struct dma_fence *fence)
1976{
1977	if (mapping->flags & AMDGPU_PTE_PRT)
1978		amdgpu_vm_add_prt_cb(adev, fence);
1979	kfree(mapping);
1980}
1981
1982/**
1983 * amdgpu_vm_prt_fini - finish all prt mappings
1984 *
1985 * @adev: amdgpu_device pointer
1986 * @vm: requested vm
1987 *
1988 * Register a cleanup callback to disable PRT support after VM dies.
1989 */
1990static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1991{
1992	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1993	struct dma_fence *excl, **shared;
1994	unsigned i, shared_count;
1995	int r;
1996
1997	r = dma_resv_get_fences_rcu(resv, &excl,
1998					      &shared_count, &shared);
1999	if (r) {
2000		/* Not enough memory to grab the fence list, as last resort
2001		 * block for all the fences to complete.
2002		 */
2003		dma_resv_wait_timeout_rcu(resv, true, false,
2004						    MAX_SCHEDULE_TIMEOUT);
2005		return;
2006	}
2007
2008	/* Add a callback for each fence in the reservation object */
2009	amdgpu_vm_prt_get(adev);
2010	amdgpu_vm_add_prt_cb(adev, excl);
2011
2012	for (i = 0; i < shared_count; ++i) {
2013		amdgpu_vm_prt_get(adev);
2014		amdgpu_vm_add_prt_cb(adev, shared[i]);
2015	}
2016
2017	kfree(shared);
2018}
2019
2020/**
2021 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2022 *
2023 * @adev: amdgpu_device pointer
2024 * @vm: requested vm
2025 * @fence: optional resulting fence (unchanged if no work needed to be done
2026 * or if an error occurred)
2027 *
2028 * Make sure all freed BOs are cleared in the PT.
2029 * PTs have to be reserved and mutex must be locked!
2030 *
2031 * Returns:
2032 * 0 for success.
2033 *
2034 */
2035int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2036			  struct amdgpu_vm *vm,
2037			  struct dma_fence **fence)
2038{
2039	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2040	struct amdgpu_bo_va_mapping *mapping;
2041	uint64_t init_pte_value = 0;
2042	struct dma_fence *f = NULL;
2043	int r;
2044
2045	while (!list_empty(&vm->freed)) {
2046		mapping = list_first_entry(&vm->freed,
2047			struct amdgpu_bo_va_mapping, list);
2048		list_del(&mapping->list);
2049
2050		if (vm->pte_support_ats &&
2051		    mapping->start < AMDGPU_GMC_HOLE_START)
2052			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2053
2054		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2055						mapping->start, mapping->last,
2056						init_pte_value, 0, NULL, &f);
2057		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2058		if (r) {
2059			dma_fence_put(f);
2060			return r;
2061		}
2062	}
2063
2064	if (fence && f) {
2065		dma_fence_put(*fence);
2066		*fence = f;
2067	} else {
2068		dma_fence_put(f);
2069	}
2070
2071	return 0;
2072
2073}
2074
2075/**
2076 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2077 *
2078 * @adev: amdgpu_device pointer
2079 * @vm: requested vm
2080 *
2081 * Make sure all BOs which are moved are updated in the PTs.
2082 *
2083 * Returns:
2084 * 0 for success.
2085 *
2086 * PTs have to be reserved!
2087 */
2088int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2089			   struct amdgpu_vm *vm)
2090{
2091	struct amdgpu_bo_va *bo_va, *tmp;
2092	struct dma_resv *resv;
2093	bool clear;
2094	int r;
2095
2096	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2097		/* Per VM BOs never need to bo cleared in the page tables */
2098		r = amdgpu_vm_bo_update(adev, bo_va, false);
2099		if (r)
2100			return r;
2101	}
2102
2103	spin_lock(&vm->invalidated_lock);
2104	while (!list_empty(&vm->invalidated)) {
2105		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2106					 base.vm_status);
2107		resv = bo_va->base.bo->tbo.base.resv;
2108		spin_unlock(&vm->invalidated_lock);
2109
2110		/* Try to reserve the BO to avoid clearing its ptes */
2111		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2112			clear = false;
2113		/* Somebody else is using the BO right now */
2114		else
2115			clear = true;
2116
2117		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2118		if (r)
2119			return r;
2120
2121		if (!clear)
2122			dma_resv_unlock(resv);
2123		spin_lock(&vm->invalidated_lock);
2124	}
2125	spin_unlock(&vm->invalidated_lock);
2126
2127	return 0;
2128}
2129
2130/**
2131 * amdgpu_vm_bo_add - add a bo to a specific vm
2132 *
2133 * @adev: amdgpu_device pointer
2134 * @vm: requested vm
2135 * @bo: amdgpu buffer object
2136 *
2137 * Add @bo into the requested vm.
2138 * Add @bo to the list of bos associated with the vm
2139 *
2140 * Returns:
2141 * Newly added bo_va or NULL for failure
2142 *
2143 * Object has to be reserved!
2144 */
2145struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2146				      struct amdgpu_vm *vm,
2147				      struct amdgpu_bo *bo)
2148{
2149	struct amdgpu_bo_va *bo_va;
2150
2151	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2152	if (bo_va == NULL) {
2153		return NULL;
2154	}
2155	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2156
2157	bo_va->ref_count = 1;
2158	INIT_LIST_HEAD(&bo_va->valids);
2159	INIT_LIST_HEAD(&bo_va->invalids);
2160
2161	if (!bo)
2162		return bo_va;
2163
2164	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2165		bo_va->is_xgmi = true;
2166		/* Power up XGMI if it can be potentially used */
2167		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2168	}
2169
2170	return bo_va;
2171}
2172
2173
2174/**
2175 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2176 *
2177 * @adev: amdgpu_device pointer
2178 * @bo_va: bo_va to store the address
2179 * @mapping: the mapping to insert
2180 *
2181 * Insert a new mapping into all structures.
2182 */
2183static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2184				    struct amdgpu_bo_va *bo_va,
2185				    struct amdgpu_bo_va_mapping *mapping)
2186{
2187	struct amdgpu_vm *vm = bo_va->base.vm;
2188	struct amdgpu_bo *bo = bo_va->base.bo;
2189
2190	mapping->bo_va = bo_va;
2191	list_add(&mapping->list, &bo_va->invalids);
2192	amdgpu_vm_it_insert(mapping, &vm->va);
2193
2194	if (mapping->flags & AMDGPU_PTE_PRT)
2195		amdgpu_vm_prt_get(adev);
2196
2197	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2198	    !bo_va->base.moved) {
2199		list_move(&bo_va->base.vm_status, &vm->moved);
2200	}
2201	trace_amdgpu_vm_bo_map(bo_va, mapping);
2202}
2203
2204/* Validate operation parameters to prevent potential abuse */
2205static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
2206					  struct amdgpu_bo *bo,
2207					  uint64_t saddr,
2208					  uint64_t offset,
2209					  uint64_t size)
2210{
2211	uint64_t tmp, lpfn;
2212
2213	if (saddr & AMDGPU_GPU_PAGE_MASK
2214	    || offset & AMDGPU_GPU_PAGE_MASK
2215	    || size & AMDGPU_GPU_PAGE_MASK)
2216		return -EINVAL;
2217
2218	if (check_add_overflow(saddr, size, &tmp)
2219	    || check_add_overflow(offset, size, &tmp)
2220	    || size == 0 /* which also leads to end < begin */)
2221		return -EINVAL;
2222
2223	/* make sure object fit at this offset */
2224	if (bo && offset + size > amdgpu_bo_size(bo))
2225		return -EINVAL;
2226
2227	/* Ensure last pfn not exceed max_pfn */
2228	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
2229	if (lpfn >= adev->vm_manager.max_pfn)
2230		return -EINVAL;
2231
2232	return 0;
2233}
2234
2235/**
2236 * amdgpu_vm_bo_map - map bo inside a vm
2237 *
2238 * @adev: amdgpu_device pointer
2239 * @bo_va: bo_va to store the address
2240 * @saddr: where to map the BO
2241 * @offset: requested offset in the BO
2242 * @size: BO size in bytes
2243 * @flags: attributes of pages (read/write/valid/etc.)
2244 *
2245 * Add a mapping of the BO at the specefied addr into the VM.
2246 *
2247 * Returns:
2248 * 0 for success, error for failure.
2249 *
2250 * Object has to be reserved and unreserved outside!
2251 */
2252int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2253		     struct amdgpu_bo_va *bo_va,
2254		     uint64_t saddr, uint64_t offset,
2255		     uint64_t size, uint64_t flags)
2256{
2257	struct amdgpu_bo_va_mapping *mapping, *tmp;
2258	struct amdgpu_bo *bo = bo_va->base.bo;
2259	struct amdgpu_vm *vm = bo_va->base.vm;
2260	uint64_t eaddr;
2261	int r;
2262
2263	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
2264	if (r)
2265		return r;
2266
2267	saddr /= AMDGPU_GPU_PAGE_SIZE;
2268	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
2269
2270	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2271	if (tmp) {
2272		/* bo and tmp overlap, invalid addr */
2273		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2274			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2275			tmp->start, tmp->last + 1);
2276		return -EINVAL;
2277	}
2278
2279	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2280	if (!mapping)
2281		return -ENOMEM;
2282
2283	mapping->start = saddr;
2284	mapping->last = eaddr;
2285	mapping->offset = offset;
2286	mapping->flags = flags;
2287
2288	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2289
2290	return 0;
2291}
2292
2293/**
2294 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2295 *
2296 * @adev: amdgpu_device pointer
2297 * @bo_va: bo_va to store the address
2298 * @saddr: where to map the BO
2299 * @offset: requested offset in the BO
2300 * @size: BO size in bytes
2301 * @flags: attributes of pages (read/write/valid/etc.)
2302 *
2303 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2304 * mappings as we do so.
2305 *
2306 * Returns:
2307 * 0 for success, error for failure.
2308 *
2309 * Object has to be reserved and unreserved outside!
2310 */
2311int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2312			     struct amdgpu_bo_va *bo_va,
2313			     uint64_t saddr, uint64_t offset,
2314			     uint64_t size, uint64_t flags)
2315{
2316	struct amdgpu_bo_va_mapping *mapping;
2317	struct amdgpu_bo *bo = bo_va->base.bo;
2318	uint64_t eaddr;
2319	int r;
2320
2321	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
2322	if (r)
2323		return r;
2324
2325	/* Allocate all the needed memory */
2326	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2327	if (!mapping)
2328		return -ENOMEM;
2329
2330	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2331	if (r) {
2332		kfree(mapping);
2333		return r;
2334	}
2335
2336	saddr /= AMDGPU_GPU_PAGE_SIZE;
2337	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
2338
2339	mapping->start = saddr;
2340	mapping->last = eaddr;
2341	mapping->offset = offset;
2342	mapping->flags = flags;
2343
2344	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2345
2346	return 0;
2347}
2348
2349/**
2350 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2351 *
2352 * @adev: amdgpu_device pointer
2353 * @bo_va: bo_va to remove the address from
2354 * @saddr: where to the BO is mapped
2355 *
2356 * Remove a mapping of the BO at the specefied addr from the VM.
2357 *
2358 * Returns:
2359 * 0 for success, error for failure.
2360 *
2361 * Object has to be reserved and unreserved outside!
2362 */
2363int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2364		       struct amdgpu_bo_va *bo_va,
2365		       uint64_t saddr)
2366{
2367	struct amdgpu_bo_va_mapping *mapping;
2368	struct amdgpu_vm *vm = bo_va->base.vm;
2369	bool valid = true;
2370
2371	saddr /= AMDGPU_GPU_PAGE_SIZE;
2372
2373	list_for_each_entry(mapping, &bo_va->valids, list) {
2374		if (mapping->start == saddr)
2375			break;
2376	}
2377
2378	if (&mapping->list == &bo_va->valids) {
2379		valid = false;
2380
2381		list_for_each_entry(mapping, &bo_va->invalids, list) {
2382			if (mapping->start == saddr)
2383				break;
2384		}
2385
2386		if (&mapping->list == &bo_va->invalids)
2387			return -ENOENT;
2388	}
2389
2390	list_del(&mapping->list);
2391	amdgpu_vm_it_remove(mapping, &vm->va);
2392	mapping->bo_va = NULL;
2393	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2394
2395	if (valid)
2396		list_add(&mapping->list, &vm->freed);
2397	else
2398		amdgpu_vm_free_mapping(adev, vm, mapping,
2399				       bo_va->last_pt_update);
2400
2401	return 0;
2402}
2403
2404/**
2405 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2406 *
2407 * @adev: amdgpu_device pointer
2408 * @vm: VM structure to use
2409 * @saddr: start of the range
2410 * @size: size of the range
2411 *
2412 * Remove all mappings in a range, split them as appropriate.
2413 *
2414 * Returns:
2415 * 0 for success, error for failure.
2416 */
2417int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2418				struct amdgpu_vm *vm,
2419				uint64_t saddr, uint64_t size)
2420{
2421	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2422	LIST_HEAD(removed);
2423	uint64_t eaddr;
2424	int r;
2425
2426	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
2427	if (r)
2428		return r;
2429
2430	saddr /= AMDGPU_GPU_PAGE_SIZE;
2431	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
2432
2433	/* Allocate all the needed memory */
2434	before = kzalloc(sizeof(*before), GFP_KERNEL);
2435	if (!before)
2436		return -ENOMEM;
2437	INIT_LIST_HEAD(&before->list);
2438
2439	after = kzalloc(sizeof(*after), GFP_KERNEL);
2440	if (!after) {
2441		kfree(before);
2442		return -ENOMEM;
2443	}
2444	INIT_LIST_HEAD(&after->list);
2445
2446	/* Now gather all removed mappings */
2447	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2448	while (tmp) {
2449		/* Remember mapping split at the start */
2450		if (tmp->start < saddr) {
2451			before->start = tmp->start;
2452			before->last = saddr - 1;
2453			before->offset = tmp->offset;
2454			before->flags = tmp->flags;
2455			before->bo_va = tmp->bo_va;
2456			list_add(&before->list, &tmp->bo_va->invalids);
2457		}
2458
2459		/* Remember mapping split at the end */
2460		if (tmp->last > eaddr) {
2461			after->start = eaddr + 1;
2462			after->last = tmp->last;
2463			after->offset = tmp->offset;
2464			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2465			after->flags = tmp->flags;
2466			after->bo_va = tmp->bo_va;
2467			list_add(&after->list, &tmp->bo_va->invalids);
2468		}
2469
2470		list_del(&tmp->list);
2471		list_add(&tmp->list, &removed);
2472
2473		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2474	}
2475
2476	/* And free them up */
2477	list_for_each_entry_safe(tmp, next, &removed, list) {
2478		amdgpu_vm_it_remove(tmp, &vm->va);
2479		list_del(&tmp->list);
2480
2481		if (tmp->start < saddr)
2482		    tmp->start = saddr;
2483		if (tmp->last > eaddr)
2484		    tmp->last = eaddr;
2485
2486		tmp->bo_va = NULL;
2487		list_add(&tmp->list, &vm->freed);
2488		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2489	}
2490
2491	/* Insert partial mapping before the range */
2492	if (!list_empty(&before->list)) {
2493		amdgpu_vm_it_insert(before, &vm->va);
2494		if (before->flags & AMDGPU_PTE_PRT)
2495			amdgpu_vm_prt_get(adev);
2496	} else {
2497		kfree(before);
2498	}
2499
2500	/* Insert partial mapping after the range */
2501	if (!list_empty(&after->list)) {
2502		amdgpu_vm_it_insert(after, &vm->va);
2503		if (after->flags & AMDGPU_PTE_PRT)
2504			amdgpu_vm_prt_get(adev);
2505	} else {
2506		kfree(after);
2507	}
2508
2509	return 0;
2510}
2511
2512/**
2513 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2514 *
2515 * @vm: the requested VM
2516 * @addr: the address
2517 *
2518 * Find a mapping by it's address.
2519 *
2520 * Returns:
2521 * The amdgpu_bo_va_mapping matching for addr or NULL
2522 *
2523 */
2524struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2525							 uint64_t addr)
2526{
2527	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2528}
2529
2530/**
2531 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2532 *
2533 * @vm: the requested vm
2534 * @ticket: CS ticket
2535 *
2536 * Trace all mappings of BOs reserved during a command submission.
2537 */
2538void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2539{
2540	struct amdgpu_bo_va_mapping *mapping;
2541
2542	if (!trace_amdgpu_vm_bo_cs_enabled())
2543		return;
2544
2545	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2546	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2547		if (mapping->bo_va && mapping->bo_va->base.bo) {
2548			struct amdgpu_bo *bo;
2549
2550			bo = mapping->bo_va->base.bo;
2551			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2552			    ticket)
2553				continue;
2554		}
2555
2556		trace_amdgpu_vm_bo_cs(mapping);
2557	}
2558}
2559
2560/**
2561 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2562 *
2563 * @adev: amdgpu_device pointer
2564 * @bo_va: requested bo_va
2565 *
2566 * Remove @bo_va->bo from the requested vm.
2567 *
2568 * Object have to be reserved!
2569 */
2570void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2571		      struct amdgpu_bo_va *bo_va)
2572{
2573	struct amdgpu_bo_va_mapping *mapping, *next;
2574	struct amdgpu_bo *bo = bo_va->base.bo;
2575	struct amdgpu_vm *vm = bo_va->base.vm;
2576	struct amdgpu_vm_bo_base **base;
2577
2578	if (bo) {
2579		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2580			vm->bulk_moveable = false;
2581
2582		for (base = &bo_va->base.bo->vm_bo; *base;
2583		     base = &(*base)->next) {
2584			if (*base != &bo_va->base)
2585				continue;
2586
2587			*base = bo_va->base.next;
2588			break;
2589		}
2590	}
2591
2592	spin_lock(&vm->invalidated_lock);
2593	list_del(&bo_va->base.vm_status);
2594	spin_unlock(&vm->invalidated_lock);
2595
2596	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2597		list_del(&mapping->list);
2598		amdgpu_vm_it_remove(mapping, &vm->va);
2599		mapping->bo_va = NULL;
2600		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2601		list_add(&mapping->list, &vm->freed);
2602	}
2603	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2604		list_del(&mapping->list);
2605		amdgpu_vm_it_remove(mapping, &vm->va);
2606		amdgpu_vm_free_mapping(adev, vm, mapping,
2607				       bo_va->last_pt_update);
2608	}
2609
2610	dma_fence_put(bo_va->last_pt_update);
2611
2612	if (bo && bo_va->is_xgmi)
2613		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2614
2615	kfree(bo_va);
2616}
2617
2618/**
2619 * amdgpu_vm_evictable - check if we can evict a VM
2620 *
2621 * @bo: A page table of the VM.
2622 *
2623 * Check if it is possible to evict a VM.
2624 */
2625bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2626{
2627	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2628
2629	/* Page tables of a destroyed VM can go away immediately */
2630	if (!bo_base || !bo_base->vm)
2631		return true;
2632
2633	/* Don't evict VM page tables while they are busy */
2634	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2635		return false;
2636
2637	/* Try to block ongoing updates */
2638	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2639		return false;
2640
2641	/* Don't evict VM page tables while they are updated */
2642	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2643		amdgpu_vm_eviction_unlock(bo_base->vm);
2644		return false;
2645	}
2646
2647	bo_base->vm->evicting = true;
2648	amdgpu_vm_eviction_unlock(bo_base->vm);
2649	return true;
2650}
2651
2652/**
2653 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2654 *
2655 * @adev: amdgpu_device pointer
2656 * @bo: amdgpu buffer object
2657 * @evicted: is the BO evicted
2658 *
2659 * Mark @bo as invalid.
2660 */
2661void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2662			     struct amdgpu_bo *bo, bool evicted)
2663{
2664	struct amdgpu_vm_bo_base *bo_base;
2665
2666	/* shadow bo doesn't have bo base, its validation needs its parent */
2667	if (bo->parent && bo->parent->shadow == bo)
2668		bo = bo->parent;
2669
2670	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2671		struct amdgpu_vm *vm = bo_base->vm;
2672
2673		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2674			amdgpu_vm_bo_evicted(bo_base);
2675			continue;
2676		}
2677
2678		if (bo_base->moved)
2679			continue;
2680		bo_base->moved = true;
2681
2682		if (bo->tbo.type == ttm_bo_type_kernel)
2683			amdgpu_vm_bo_relocated(bo_base);
2684		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2685			amdgpu_vm_bo_moved(bo_base);
2686		else
2687			amdgpu_vm_bo_invalidated(bo_base);
2688	}
2689}
2690
2691/**
2692 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2693 *
2694 * @vm_size: VM size
2695 *
2696 * Returns:
2697 * VM page table as power of two
2698 */
2699static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2700{
2701	/* Total bits covered by PD + PTs */
2702	unsigned bits = ilog2(vm_size) + 18;
2703
2704	/* Make sure the PD is 4K in size up to 8GB address space.
2705	   Above that split equal between PD and PTs */
2706	if (vm_size <= 8)
2707		return (bits - 9);
2708	else
2709		return ((bits + 3) / 2);
2710}
2711
2712/**
2713 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2714 *
2715 * @adev: amdgpu_device pointer
2716 * @min_vm_size: the minimum vm size in GB if it's set auto
2717 * @fragment_size_default: Default PTE fragment size
2718 * @max_level: max VMPT level
2719 * @max_bits: max address space size in bits
2720 *
2721 */
2722void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2723			   uint32_t fragment_size_default, unsigned max_level,
2724			   unsigned max_bits)
2725{
2726	unsigned int max_size = 1 << (max_bits - 30);
2727	unsigned int vm_size;
2728	uint64_t tmp;
2729
2730	/* adjust vm size first */
2731	if (amdgpu_vm_size != -1) {
2732		vm_size = amdgpu_vm_size;
2733		if (vm_size > max_size) {
2734			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2735				 amdgpu_vm_size, max_size);
2736			vm_size = max_size;
2737		}
2738	} else {
2739		struct sysinfo si;
2740		unsigned int phys_ram_gb;
2741
2742		/* Optimal VM size depends on the amount of physical
2743		 * RAM available. Underlying requirements and
2744		 * assumptions:
2745		 *
2746		 *  - Need to map system memory and VRAM from all GPUs
2747		 *     - VRAM from other GPUs not known here
2748		 *     - Assume VRAM <= system memory
2749		 *  - On GFX8 and older, VM space can be segmented for
2750		 *    different MTYPEs
2751		 *  - Need to allow room for fragmentation, guard pages etc.
2752		 *
2753		 * This adds up to a rough guess of system memory x3.
2754		 * Round up to power of two to maximize the available
2755		 * VM size with the given page table size.
2756		 */
2757		si_meminfo(&si);
2758		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2759			       (1 << 30) - 1) >> 30;
2760		vm_size = roundup_pow_of_two(
2761			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2762	}
2763
2764	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2765
2766	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2767	if (amdgpu_vm_block_size != -1)
2768		tmp >>= amdgpu_vm_block_size - 9;
2769	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2770	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2771	switch (adev->vm_manager.num_level) {
2772	case 3:
2773		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2774		break;
2775	case 2:
2776		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2777		break;
2778	case 1:
2779		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2780		break;
2781	default:
2782		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2783	}
2784	/* block size depends on vm size and hw setup*/
2785	if (amdgpu_vm_block_size != -1)
2786		adev->vm_manager.block_size =
2787			min((unsigned)amdgpu_vm_block_size, max_bits
2788			    - AMDGPU_GPU_PAGE_SHIFT
2789			    - 9 * adev->vm_manager.num_level);
2790	else if (adev->vm_manager.num_level > 1)
2791		adev->vm_manager.block_size = 9;
2792	else
2793		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2794
2795	if (amdgpu_vm_fragment_size == -1)
2796		adev->vm_manager.fragment_size = fragment_size_default;
2797	else
2798		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2799
2800	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2801		 vm_size, adev->vm_manager.num_level + 1,
2802		 adev->vm_manager.block_size,
2803		 adev->vm_manager.fragment_size);
2804}
2805
2806/**
2807 * amdgpu_vm_wait_idle - wait for the VM to become idle
2808 *
2809 * @vm: VM object to wait for
2810 * @timeout: timeout to wait for VM to become idle
2811 */
2812long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2813{
2814	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2815					    true, true, timeout);
2816	if (timeout <= 0)
2817		return timeout;
2818
2819	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2820}
2821
2822/**
2823 * amdgpu_vm_init - initialize a vm instance
2824 *
2825 * @adev: amdgpu_device pointer
2826 * @vm: requested vm
2827 * @vm_context: Indicates if it GFX or Compute context
2828 * @pasid: Process address space identifier
2829 *
2830 * Init @vm fields.
2831 *
2832 * Returns:
2833 * 0 for success, error for failure.
2834 */
2835int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2836		   int vm_context, u32 pasid)
2837{
2838	struct amdgpu_bo_param bp;
2839	struct amdgpu_bo *root;
2840	int r, i;
2841
2842	vm->va = RB_ROOT_CACHED;
2843	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2844		vm->reserved_vmid[i] = NULL;
2845	INIT_LIST_HEAD(&vm->evicted);
2846	INIT_LIST_HEAD(&vm->relocated);
2847	INIT_LIST_HEAD(&vm->moved);
2848	INIT_LIST_HEAD(&vm->idle);
2849	INIT_LIST_HEAD(&vm->invalidated);
2850	spin_lock_init(&vm->invalidated_lock);
2851	INIT_LIST_HEAD(&vm->freed);
2852
2853
2854	/* create scheduler entities for page table updates */
2855	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2856				  adev->vm_manager.vm_pte_scheds,
2857				  adev->vm_manager.vm_pte_num_scheds, NULL);
2858	if (r)
2859		return r;
2860
2861	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2862				  adev->vm_manager.vm_pte_scheds,
2863				  adev->vm_manager.vm_pte_num_scheds, NULL);
2864	if (r)
2865		goto error_free_immediate;
2866
2867	vm->pte_support_ats = false;
2868	vm->is_compute_context = false;
2869
2870	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2871		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2872						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2873
2874		if (adev->asic_type == CHIP_RAVEN)
2875			vm->pte_support_ats = true;
2876	} else {
2877		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2878						AMDGPU_VM_USE_CPU_FOR_GFX);
2879	}
2880	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2881			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2882	WARN_ONCE((vm->use_cpu_for_update &&
2883		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2884		  "CPU update of VM recommended only for large BAR system\n");
2885
2886	if (vm->use_cpu_for_update)
2887		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2888	else
2889		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2890	vm->last_update = NULL;
2891	vm->last_unlocked = dma_fence_get_stub();
2892
2893	mutex_init(&vm->eviction_lock);
2894	vm->evicting = false;
2895
2896	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2897	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2898		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2899	r = amdgpu_bo_create(adev, &bp, &root);
2900	if (r)
2901		goto error_free_delayed;
2902
2903	r = amdgpu_bo_reserve(root, true);
2904	if (r)
2905		goto error_free_root;
2906
2907	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2908	if (r)
2909		goto error_unreserve;
2910
2911	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2912
2913	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2914	if (r)
2915		goto error_unreserve;
2916
2917	amdgpu_bo_unreserve(vm->root.base.bo);
2918
2919	if (pasid) {
2920		unsigned long flags;
2921
2922		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2923		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2924			      GFP_ATOMIC);
2925		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2926		if (r < 0)
2927			goto error_free_root;
2928
2929		vm->pasid = pasid;
2930	}
2931
2932	INIT_KFIFO(vm->faults);
2933
2934	return 0;
2935
2936error_unreserve:
2937	amdgpu_bo_unreserve(vm->root.base.bo);
2938
2939error_free_root:
2940	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2941	amdgpu_bo_unref(&vm->root.base.bo);
2942	vm->root.base.bo = NULL;
2943
2944error_free_delayed:
2945	dma_fence_put(vm->last_unlocked);
2946	drm_sched_entity_destroy(&vm->delayed);
2947
2948error_free_immediate:
2949	drm_sched_entity_destroy(&vm->immediate);
2950
2951	return r;
2952}
2953
2954/**
2955 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2956 *
2957 * @adev: amdgpu_device pointer
2958 * @vm: the VM to check
2959 *
2960 * check all entries of the root PD, if any subsequent PDs are allocated,
2961 * it means there are page table creating and filling, and is no a clean
2962 * VM
2963 *
2964 * Returns:
2965 *	0 if this VM is clean
2966 */
2967static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2968	struct amdgpu_vm *vm)
2969{
2970	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2971	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2972	unsigned int i = 0;
2973
2974	if (!(vm->root.entries))
2975		return 0;
2976
2977	for (i = 0; i < entries; i++) {
2978		if (vm->root.entries[i].base.bo)
2979			return -EINVAL;
2980	}
2981
2982	return 0;
2983}
2984
2985/**
2986 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2987 *
2988 * @adev: amdgpu_device pointer
2989 * @vm: requested vm
2990 * @pasid: pasid to use
2991 *
2992 * This only works on GFX VMs that don't have any BOs added and no
2993 * page tables allocated yet.
2994 *
2995 * Changes the following VM parameters:
2996 * - use_cpu_for_update
2997 * - pte_supports_ats
2998 * - pasid (old PASID is released, because compute manages its own PASIDs)
2999 *
3000 * Reinitializes the page directory to reflect the changed ATS
3001 * setting.
3002 *
3003 * Returns:
3004 * 0 for success, -errno for errors.
3005 */
3006int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3007			   u32 pasid)
3008{
3009	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3010	int r;
3011
3012	r = amdgpu_bo_reserve(vm->root.base.bo, true);
3013	if (r)
3014		return r;
3015
3016	/* Sanity checks */
3017	r = amdgpu_vm_check_clean_reserved(adev, vm);
3018	if (r)
3019		goto unreserve_bo;
3020
3021	if (pasid) {
3022		unsigned long flags;
3023
3024		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3025		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3026			      GFP_ATOMIC);
3027		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3028
3029		if (r == -ENOSPC)
3030			goto unreserve_bo;
3031		r = 0;
3032	}
3033
3034	/* Check if PD needs to be reinitialized and do it before
3035	 * changing any other state, in case it fails.
3036	 */
3037	if (pte_support_ats != vm->pte_support_ats) {
3038		vm->pte_support_ats = pte_support_ats;
3039		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3040		if (r)
3041			goto free_idr;
3042	}
3043
3044	/* Update VM state */
3045	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3046				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3047	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3048			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3049	WARN_ONCE((vm->use_cpu_for_update &&
3050		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3051		  "CPU update of VM recommended only for large BAR system\n");
3052
3053	if (vm->use_cpu_for_update) {
3054		/* Sync with last SDMA update/clear before switching to CPU */
3055		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3056					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3057		if (r)
3058			goto free_idr;
3059
3060		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3061	} else {
3062		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3063	}
3064	dma_fence_put(vm->last_update);
3065	vm->last_update = NULL;
3066	vm->is_compute_context = true;
3067
3068	if (vm->pasid) {
3069		unsigned long flags;
3070
3071		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3072		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3073		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3074
3075		/* Free the original amdgpu allocated pasid
3076		 * Will be replaced with kfd allocated pasid
3077		 */
3078		amdgpu_pasid_free(vm->pasid);
3079		vm->pasid = 0;
3080	}
3081
3082	/* Free the shadow bo for compute VM */
3083	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3084
3085	if (pasid)
3086		vm->pasid = pasid;
3087
3088	goto unreserve_bo;
3089
3090free_idr:
3091	if (pasid) {
3092		unsigned long flags;
3093
3094		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3095		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3096		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3097	}
3098unreserve_bo:
3099	amdgpu_bo_unreserve(vm->root.base.bo);
3100	return r;
3101}
3102
3103/**
3104 * amdgpu_vm_release_compute - release a compute vm
3105 * @adev: amdgpu_device pointer
3106 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3107 *
3108 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3109 * pasid from vm. Compute should stop use of vm after this call.
3110 */
3111void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3112{
3113	if (vm->pasid) {
3114		unsigned long flags;
3115
3116		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3117		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3118		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3119	}
3120	vm->pasid = 0;
3121	vm->is_compute_context = false;
3122}
3123
3124/**
3125 * amdgpu_vm_fini - tear down a vm instance
3126 *
3127 * @adev: amdgpu_device pointer
3128 * @vm: requested vm
3129 *
3130 * Tear down @vm.
3131 * Unbind the VM and remove all bos from the vm bo list
3132 */
3133void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3134{
3135	struct amdgpu_bo_va_mapping *mapping, *tmp;
3136	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3137	struct amdgpu_bo *root;
3138	int i;
3139
3140	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3141
3142	root = amdgpu_bo_ref(vm->root.base.bo);
3143	amdgpu_bo_reserve(root, true);
3144	if (vm->pasid) {
3145		unsigned long flags;
3146
3147		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3148		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3149		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3150		vm->pasid = 0;
3151	}
3152
3153	dma_fence_wait(vm->last_unlocked, false);
3154	dma_fence_put(vm->last_unlocked);
3155
3156	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3157		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3158			amdgpu_vm_prt_fini(adev, vm);
3159			prt_fini_needed = false;
3160		}
3161
3162		list_del(&mapping->list);
3163		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3164	}
3165
3166	amdgpu_vm_free_pts(adev, vm, NULL);
3167	amdgpu_bo_unreserve(root);
3168	amdgpu_bo_unref(&root);
3169	WARN_ON(vm->root.base.bo);
3170
3171	drm_sched_entity_destroy(&vm->immediate);
3172	drm_sched_entity_destroy(&vm->delayed);
3173
3174	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3175		dev_err(adev->dev, "still active bo inside vm\n");
3176	}
3177	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3178					     &vm->va.rb_root, rb) {
3179		/* Don't remove the mapping here, we don't want to trigger a
3180		 * rebalance and the tree is about to be destroyed anyway.
3181		 */
3182		list_del(&mapping->list);
3183		kfree(mapping);
3184	}
3185
3186	dma_fence_put(vm->last_update);
3187	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3188		amdgpu_vmid_free_reserved(adev, vm, i);
3189}
3190
3191/**
3192 * amdgpu_vm_manager_init - init the VM manager
3193 *
3194 * @adev: amdgpu_device pointer
3195 *
3196 * Initialize the VM manager structures
3197 */
3198void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3199{
3200	unsigned i;
3201
3202	/* Concurrent flushes are only possible starting with Vega10 and
3203	 * are broken on Navi10 and Navi14.
3204	 */
3205	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3206					      adev->asic_type == CHIP_NAVI10 ||
3207					      adev->asic_type == CHIP_NAVI14);
3208	amdgpu_vmid_mgr_init(adev);
3209
3210	adev->vm_manager.fence_context =
3211		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3212	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3213		adev->vm_manager.seqno[i] = 0;
3214
3215	spin_lock_init(&adev->vm_manager.prt_lock);
3216	atomic_set(&adev->vm_manager.num_prt_users, 0);
3217
3218	/* If not overridden by the user, by default, only in large BAR systems
3219	 * Compute VM tables will be updated by CPU
3220	 */
3221#ifdef CONFIG_X86_64
3222	if (amdgpu_vm_update_mode == -1) {
3223		/* For asic with VF MMIO access protection
3224		 * avoid using CPU for VM table updates
3225		 */
3226		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
3227		    !amdgpu_sriov_vf_mmio_access_protection(adev))
3228			adev->vm_manager.vm_update_mode =
3229				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3230		else
3231			adev->vm_manager.vm_update_mode = 0;
3232	} else
3233		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3234#else
3235	adev->vm_manager.vm_update_mode = 0;
3236#endif
3237
3238	idr_init(&adev->vm_manager.pasid_idr);
3239	spin_lock_init(&adev->vm_manager.pasid_lock);
3240}
3241
3242/**
3243 * amdgpu_vm_manager_fini - cleanup VM manager
3244 *
3245 * @adev: amdgpu_device pointer
3246 *
3247 * Cleanup the VM manager and free resources.
3248 */
3249void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3250{
3251	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3252	idr_destroy(&adev->vm_manager.pasid_idr);
3253
3254	amdgpu_vmid_mgr_fini(adev);
3255}
3256
3257/**
3258 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3259 *
3260 * @dev: drm device pointer
3261 * @data: drm_amdgpu_vm
3262 * @filp: drm file pointer
3263 *
3264 * Returns:
3265 * 0 for success, -errno for errors.
3266 */
3267int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3268{
3269	union drm_amdgpu_vm *args = data;
3270	struct amdgpu_device *adev = drm_to_adev(dev);
3271	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3272	long timeout = msecs_to_jiffies(2000);
3273	int r;
3274
3275	/* No valid flags defined yet */
3276	if (args->in.flags)
3277		return -EINVAL;
3278
3279	switch (args->in.op) {
3280	case AMDGPU_VM_OP_RESERVE_VMID:
3281		/* We only have requirement to reserve vmid from gfxhub */
3282		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3283					       AMDGPU_GFXHUB_0);
3284		if (r)
3285			return r;
3286		break;
3287	case AMDGPU_VM_OP_UNRESERVE_VMID:
3288		if (amdgpu_sriov_runtime(adev))
3289			timeout = 8 * timeout;
3290
3291		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3292		 * not referenced anymore.
3293		 */
3294		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3295		if (r)
3296			return r;
3297
3298		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3299		if (r < 0)
3300			return r;
3301
3302		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3303		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3304		break;
3305	default:
3306		return -EINVAL;
3307	}
3308
3309	return 0;
3310}
3311
3312/**
3313 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3314 *
3315 * @adev: drm device pointer
3316 * @pasid: PASID identifier for VM
3317 * @task_info: task_info to fill.
3318 */
3319void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3320			 struct amdgpu_task_info *task_info)
3321{
3322	struct amdgpu_vm *vm;
3323	unsigned long flags;
3324
3325	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3326
3327	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3328	if (vm)
3329		*task_info = vm->task_info;
3330
3331	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3332}
3333
3334/**
3335 * amdgpu_vm_set_task_info - Sets VMs task info.
3336 *
3337 * @vm: vm for which to set the info
3338 */
3339void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3340{
3341	if (vm->task_info.pid)
3342		return;
3343
3344	vm->task_info.pid = current->pid;
3345	get_task_comm(vm->task_info.task_name, current);
3346
3347	if (current->group_leader->mm != current->mm)
3348		return;
3349
3350	vm->task_info.tgid = current->group_leader->pid;
3351	get_task_comm(vm->task_info.process_name, current->group_leader);
3352}
3353
3354/**
3355 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3356 * @adev: amdgpu device pointer
3357 * @pasid: PASID of the VM
3358 * @addr: Address of the fault
3359 *
3360 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3361 * shouldn't be reported any more.
3362 */
3363bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3364			    uint64_t addr)
3365{
3366	struct amdgpu_bo *root;
3367	uint64_t value, flags;
3368	struct amdgpu_vm *vm;
3369	long r;
3370
3371	spin_lock(&adev->vm_manager.pasid_lock);
3372	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3373	if (vm)
3374		root = amdgpu_bo_ref(vm->root.base.bo);
3375	else
3376		root = NULL;
3377	spin_unlock(&adev->vm_manager.pasid_lock);
3378
3379	if (!root)
3380		return false;
3381
3382	r = amdgpu_bo_reserve(root, true);
3383	if (r)
3384		goto error_unref;
3385
3386	/* Double check that the VM still exists */
3387	spin_lock(&adev->vm_manager.pasid_lock);
3388	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3389	if (vm && vm->root.base.bo != root)
3390		vm = NULL;
3391	spin_unlock(&adev->vm_manager.pasid_lock);
3392	if (!vm)
3393		goto error_unlock;
3394
3395	addr /= AMDGPU_GPU_PAGE_SIZE;
3396	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3397		AMDGPU_PTE_SYSTEM;
3398
3399	if (vm->is_compute_context) {
3400		/* Intentionally setting invalid PTE flag
3401		 * combination to force a no-retry-fault
3402		 */
3403		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3404			AMDGPU_PTE_TF;
3405		value = 0;
3406
3407	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3408		/* Redirect the access to the dummy page */
3409		value = adev->dummy_page_addr;
3410		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3411			AMDGPU_PTE_WRITEABLE;
3412
3413	} else {
3414		/* Let the hw retry silently on the PTE */
3415		value = 0;
3416	}
3417
3418	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3419					addr + 1, flags, value, NULL, NULL);
3420	if (r)
3421		goto error_unlock;
3422
3423	r = amdgpu_vm_update_pdes(adev, vm, true);
3424
3425error_unlock:
3426	amdgpu_bo_unreserve(root);
3427	if (r < 0)
3428		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3429
3430error_unref:
3431	amdgpu_bo_unref(&root);
3432
3433	return false;
3434}
3435