1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5#include <linux/platform_device.h>
6#include <linux/init.h>
7#include <linux/cpumask.h>
8#include <linux/export.h>
9#include <linux/dma-mapping.h>
10#include <linux/module.h>
11#include <linux/types.h>
12#include <linux/qcom_scm.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_platform.h>
16#include <linux/clk.h>
17#include <linux/reset-controller.h>
18#include <linux/arm-smccc.h>
19
20#include "qcom_scm.h"
21
22static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23module_param(download_mode, bool, 0);
24
25#define SCM_HAS_CORE_CLK	BIT(0)
26#define SCM_HAS_IFACE_CLK	BIT(1)
27#define SCM_HAS_BUS_CLK		BIT(2)
28
29struct qcom_scm {
30	struct device *dev;
31	struct clk *core_clk;
32	struct clk *iface_clk;
33	struct clk *bus_clk;
34	struct reset_controller_dev reset;
35
36	u64 dload_mode_addr;
37};
38
39struct qcom_scm_current_perm_info {
40	__le32 vmid;
41	__le32 perm;
42	__le64 ctx;
43	__le32 ctx_size;
44	__le32 unused;
45};
46
47struct qcom_scm_mem_map_info {
48	__le64 mem_addr;
49	__le64 mem_size;
50};
51
52#define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
53#define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
54#define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
55#define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
56
57#define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
58#define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
59#define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
60#define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
61
62struct qcom_scm_wb_entry {
63	int flag;
64	void *entry;
65};
66
67static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72};
73
74static const char *qcom_scm_convention_names[] = {
75	[SMC_CONVENTION_UNKNOWN] = "unknown",
76	[SMC_CONVENTION_ARM_32] = "smc arm 32",
77	[SMC_CONVENTION_ARM_64] = "smc arm 64",
78	[SMC_CONVENTION_LEGACY] = "smc legacy",
79};
80
81static struct qcom_scm *__scm;
82
83static int qcom_scm_clk_enable(void)
84{
85	int ret;
86
87	ret = clk_prepare_enable(__scm->core_clk);
88	if (ret)
89		goto bail;
90
91	ret = clk_prepare_enable(__scm->iface_clk);
92	if (ret)
93		goto disable_core;
94
95	ret = clk_prepare_enable(__scm->bus_clk);
96	if (ret)
97		goto disable_iface;
98
99	return 0;
100
101disable_iface:
102	clk_disable_unprepare(__scm->iface_clk);
103disable_core:
104	clk_disable_unprepare(__scm->core_clk);
105bail:
106	return ret;
107}
108
109static void qcom_scm_clk_disable(void)
110{
111	clk_disable_unprepare(__scm->core_clk);
112	clk_disable_unprepare(__scm->iface_clk);
113	clk_disable_unprepare(__scm->bus_clk);
114}
115
116enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
117static DEFINE_SPINLOCK(scm_query_lock);
118
119static enum qcom_scm_convention __get_convention(void)
120{
121	unsigned long flags;
122	struct qcom_scm_desc desc = {
123		.svc = QCOM_SCM_SVC_INFO,
124		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
125		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
126					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
127			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
128		.arginfo = QCOM_SCM_ARGS(1),
129		.owner = ARM_SMCCC_OWNER_SIP,
130	};
131	struct qcom_scm_res res;
132	enum qcom_scm_convention probed_convention;
133	int ret;
134	bool forced = false;
135
136	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
137		return qcom_scm_convention;
138
139	/*
140	 * Per the "SMC calling convention specification", the 64-bit calling
141	 * convention can only be used when the client is 64-bit, otherwise
142	 * system will encounter the undefined behaviour.
143	 */
144#if IS_ENABLED(CONFIG_ARM64)
145	/*
146	 * Device isn't required as there is only one argument - no device
147	 * needed to dma_map_single to secure world
148	 */
149	probed_convention = SMC_CONVENTION_ARM_64;
150	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
151	if (!ret && res.result[0] == 1)
152		goto found;
153
154	/*
155	 * Some SC7180 firmwares didn't implement the
156	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
157	 * calling conventions on these firmwares. Luckily we don't make any
158	 * early calls into the firmware on these SoCs so the device pointer
159	 * will be valid here to check if the compatible matches.
160	 */
161	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
162		forced = true;
163		goto found;
164	}
165#endif
166
167	probed_convention = SMC_CONVENTION_ARM_32;
168	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
169	if (!ret && res.result[0] == 1)
170		goto found;
171
172	probed_convention = SMC_CONVENTION_LEGACY;
173found:
174	spin_lock_irqsave(&scm_query_lock, flags);
175	if (probed_convention != qcom_scm_convention) {
176		qcom_scm_convention = probed_convention;
177		pr_info("qcom_scm: convention: %s%s\n",
178			qcom_scm_convention_names[qcom_scm_convention],
179			forced ? " (forced)" : "");
180	}
181	spin_unlock_irqrestore(&scm_query_lock, flags);
182
183	return qcom_scm_convention;
184}
185
186/**
187 * qcom_scm_call() - Invoke a syscall in the secure world
188 * @dev:	device
189 * @svc_id:	service identifier
190 * @cmd_id:	command identifier
191 * @desc:	Descriptor structure containing arguments and return values
192 *
193 * Sends a command to the SCM and waits for the command to finish processing.
194 * This should *only* be called in pre-emptible context.
195 */
196static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
197			 struct qcom_scm_res *res)
198{
199	might_sleep();
200	switch (__get_convention()) {
201	case SMC_CONVENTION_ARM_32:
202	case SMC_CONVENTION_ARM_64:
203		return scm_smc_call(dev, desc, res, false);
204	case SMC_CONVENTION_LEGACY:
205		return scm_legacy_call(dev, desc, res);
206	default:
207		pr_err("Unknown current SCM calling convention.\n");
208		return -EINVAL;
209	}
210}
211
212/**
213 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
214 * @dev:	device
215 * @svc_id:	service identifier
216 * @cmd_id:	command identifier
217 * @desc:	Descriptor structure containing arguments and return values
218 * @res:	Structure containing results from SMC/HVC call
219 *
220 * Sends a command to the SCM and waits for the command to finish processing.
221 * This can be called in atomic context.
222 */
223static int qcom_scm_call_atomic(struct device *dev,
224				const struct qcom_scm_desc *desc,
225				struct qcom_scm_res *res)
226{
227	switch (__get_convention()) {
228	case SMC_CONVENTION_ARM_32:
229	case SMC_CONVENTION_ARM_64:
230		return scm_smc_call(dev, desc, res, true);
231	case SMC_CONVENTION_LEGACY:
232		return scm_legacy_call_atomic(dev, desc, res);
233	default:
234		pr_err("Unknown current SCM calling convention.\n");
235		return -EINVAL;
236	}
237}
238
239static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
240					 u32 cmd_id)
241{
242	int ret;
243	struct qcom_scm_desc desc = {
244		.svc = QCOM_SCM_SVC_INFO,
245		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
246		.owner = ARM_SMCCC_OWNER_SIP,
247	};
248	struct qcom_scm_res res;
249
250	desc.arginfo = QCOM_SCM_ARGS(1);
251	switch (__get_convention()) {
252	case SMC_CONVENTION_ARM_32:
253	case SMC_CONVENTION_ARM_64:
254		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
255				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
256		break;
257	case SMC_CONVENTION_LEGACY:
258		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
259		break;
260	default:
261		pr_err("Unknown SMC convention being used\n");
262		return false;
263	}
264
265	ret = qcom_scm_call(dev, &desc, &res);
266
267	return ret ? false : !!res.result[0];
268}
269
270/**
271 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
272 * @entry: Entry point function for the cpus
273 * @cpus: The cpumask of cpus that will use the entry point
274 *
275 * Set the Linux entry point for the SCM to transfer control to when coming
276 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
277 */
278int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
279{
280	int ret;
281	int flags = 0;
282	int cpu;
283	struct qcom_scm_desc desc = {
284		.svc = QCOM_SCM_SVC_BOOT,
285		.cmd = QCOM_SCM_BOOT_SET_ADDR,
286		.arginfo = QCOM_SCM_ARGS(2),
287	};
288
289	/*
290	 * Reassign only if we are switching from hotplug entry point
291	 * to cpuidle entry point or vice versa.
292	 */
293	for_each_cpu(cpu, cpus) {
294		if (entry == qcom_scm_wb[cpu].entry)
295			continue;
296		flags |= qcom_scm_wb[cpu].flag;
297	}
298
299	/* No change in entry function */
300	if (!flags)
301		return 0;
302
303	desc.args[0] = flags;
304	desc.args[1] = virt_to_phys(entry);
305
306	ret = qcom_scm_call(__scm->dev, &desc, NULL);
307	if (!ret) {
308		for_each_cpu(cpu, cpus)
309			qcom_scm_wb[cpu].entry = entry;
310	}
311
312	return ret;
313}
314EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
315
316/**
317 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
318 * @entry: Entry point function for the cpus
319 * @cpus: The cpumask of cpus that will use the entry point
320 *
321 * Set the cold boot address of the cpus. Any cpu outside the supported
322 * range would be removed from the cpu present mask.
323 */
324int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
325{
326	int flags = 0;
327	int cpu;
328	int scm_cb_flags[] = {
329		QCOM_SCM_FLAG_COLDBOOT_CPU0,
330		QCOM_SCM_FLAG_COLDBOOT_CPU1,
331		QCOM_SCM_FLAG_COLDBOOT_CPU2,
332		QCOM_SCM_FLAG_COLDBOOT_CPU3,
333	};
334	struct qcom_scm_desc desc = {
335		.svc = QCOM_SCM_SVC_BOOT,
336		.cmd = QCOM_SCM_BOOT_SET_ADDR,
337		.arginfo = QCOM_SCM_ARGS(2),
338		.owner = ARM_SMCCC_OWNER_SIP,
339	};
340
341	if (!cpus || (cpus && cpumask_empty(cpus)))
342		return -EINVAL;
343
344	for_each_cpu(cpu, cpus) {
345		if (cpu < ARRAY_SIZE(scm_cb_flags))
346			flags |= scm_cb_flags[cpu];
347		else
348			set_cpu_present(cpu, false);
349	}
350
351	desc.args[0] = flags;
352	desc.args[1] = virt_to_phys(entry);
353
354	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
355}
356EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
357
358/**
359 * qcom_scm_cpu_power_down() - Power down the cpu
360 * @flags - Flags to flush cache
361 *
362 * This is an end point to power down cpu. If there was a pending interrupt,
363 * the control would return from this function, otherwise, the cpu jumps to the
364 * warm boot entry point set for this cpu upon reset.
365 */
366void qcom_scm_cpu_power_down(u32 flags)
367{
368	struct qcom_scm_desc desc = {
369		.svc = QCOM_SCM_SVC_BOOT,
370		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
371		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
372		.arginfo = QCOM_SCM_ARGS(1),
373		.owner = ARM_SMCCC_OWNER_SIP,
374	};
375
376	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
377}
378EXPORT_SYMBOL(qcom_scm_cpu_power_down);
379
380int qcom_scm_set_remote_state(u32 state, u32 id)
381{
382	struct qcom_scm_desc desc = {
383		.svc = QCOM_SCM_SVC_BOOT,
384		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
385		.arginfo = QCOM_SCM_ARGS(2),
386		.args[0] = state,
387		.args[1] = id,
388		.owner = ARM_SMCCC_OWNER_SIP,
389	};
390	struct qcom_scm_res res;
391	int ret;
392
393	ret = qcom_scm_call(__scm->dev, &desc, &res);
394
395	return ret ? : res.result[0];
396}
397EXPORT_SYMBOL(qcom_scm_set_remote_state);
398
399static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
400{
401	struct qcom_scm_desc desc = {
402		.svc = QCOM_SCM_SVC_BOOT,
403		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
404		.arginfo = QCOM_SCM_ARGS(2),
405		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
406		.owner = ARM_SMCCC_OWNER_SIP,
407	};
408
409	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
410
411	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
412}
413
414static void qcom_scm_set_download_mode(bool enable)
415{
416	bool avail;
417	int ret = 0;
418
419	avail = __qcom_scm_is_call_available(__scm->dev,
420					     QCOM_SCM_SVC_BOOT,
421					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
422	if (avail) {
423		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
424	} else if (__scm->dload_mode_addr) {
425		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
426				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
427	} else {
428		dev_err(__scm->dev,
429			"No available mechanism for setting download mode\n");
430	}
431
432	if (ret)
433		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
434}
435
436/**
437 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
438 *			       state machine for a given peripheral, using the
439 *			       metadata
440 * @peripheral: peripheral id
441 * @metadata:	pointer to memory containing ELF header, program header table
442 *		and optional blob of data used for authenticating the metadata
443 *		and the rest of the firmware
444 * @size:	size of the metadata
445 *
446 * Returns 0 on success.
447 */
448int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
449{
450	dma_addr_t mdata_phys;
451	void *mdata_buf;
452	int ret;
453	struct qcom_scm_desc desc = {
454		.svc = QCOM_SCM_SVC_PIL,
455		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
456		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
457		.args[0] = peripheral,
458		.owner = ARM_SMCCC_OWNER_SIP,
459	};
460	struct qcom_scm_res res;
461
462	/*
463	 * During the scm call memory protection will be enabled for the meta
464	 * data blob, so make sure it's physically contiguous, 4K aligned and
465	 * non-cachable to avoid XPU violations.
466	 */
467	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
468				       GFP_KERNEL);
469	if (!mdata_buf) {
470		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
471		return -ENOMEM;
472	}
473	memcpy(mdata_buf, metadata, size);
474
475	ret = qcom_scm_clk_enable();
476	if (ret)
477		goto free_metadata;
478
479	desc.args[1] = mdata_phys;
480
481	ret = qcom_scm_call(__scm->dev, &desc, &res);
482
483	qcom_scm_clk_disable();
484
485free_metadata:
486	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
487
488	return ret ? : res.result[0];
489}
490EXPORT_SYMBOL(qcom_scm_pas_init_image);
491
492/**
493 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
494 *			      for firmware loading
495 * @peripheral:	peripheral id
496 * @addr:	start address of memory area to prepare
497 * @size:	size of the memory area to prepare
498 *
499 * Returns 0 on success.
500 */
501int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
502{
503	int ret;
504	struct qcom_scm_desc desc = {
505		.svc = QCOM_SCM_SVC_PIL,
506		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
507		.arginfo = QCOM_SCM_ARGS(3),
508		.args[0] = peripheral,
509		.args[1] = addr,
510		.args[2] = size,
511		.owner = ARM_SMCCC_OWNER_SIP,
512	};
513	struct qcom_scm_res res;
514
515	ret = qcom_scm_clk_enable();
516	if (ret)
517		return ret;
518
519	ret = qcom_scm_call(__scm->dev, &desc, &res);
520	qcom_scm_clk_disable();
521
522	return ret ? : res.result[0];
523}
524EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
525
526/**
527 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
528 *				   and reset the remote processor
529 * @peripheral:	peripheral id
530 *
531 * Return 0 on success.
532 */
533int qcom_scm_pas_auth_and_reset(u32 peripheral)
534{
535	int ret;
536	struct qcom_scm_desc desc = {
537		.svc = QCOM_SCM_SVC_PIL,
538		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
539		.arginfo = QCOM_SCM_ARGS(1),
540		.args[0] = peripheral,
541		.owner = ARM_SMCCC_OWNER_SIP,
542	};
543	struct qcom_scm_res res;
544
545	ret = qcom_scm_clk_enable();
546	if (ret)
547		return ret;
548
549	ret = qcom_scm_call(__scm->dev, &desc, &res);
550	qcom_scm_clk_disable();
551
552	return ret ? : res.result[0];
553}
554EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
555
556/**
557 * qcom_scm_pas_shutdown() - Shut down the remote processor
558 * @peripheral: peripheral id
559 *
560 * Returns 0 on success.
561 */
562int qcom_scm_pas_shutdown(u32 peripheral)
563{
564	int ret;
565	struct qcom_scm_desc desc = {
566		.svc = QCOM_SCM_SVC_PIL,
567		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
568		.arginfo = QCOM_SCM_ARGS(1),
569		.args[0] = peripheral,
570		.owner = ARM_SMCCC_OWNER_SIP,
571	};
572	struct qcom_scm_res res;
573
574	ret = qcom_scm_clk_enable();
575	if (ret)
576		return ret;
577
578	ret = qcom_scm_call(__scm->dev, &desc, &res);
579
580	qcom_scm_clk_disable();
581
582	return ret ? : res.result[0];
583}
584EXPORT_SYMBOL(qcom_scm_pas_shutdown);
585
586/**
587 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
588 *			      available for the given peripherial
589 * @peripheral:	peripheral id
590 *
591 * Returns true if PAS is supported for this peripheral, otherwise false.
592 */
593bool qcom_scm_pas_supported(u32 peripheral)
594{
595	int ret;
596	struct qcom_scm_desc desc = {
597		.svc = QCOM_SCM_SVC_PIL,
598		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
599		.arginfo = QCOM_SCM_ARGS(1),
600		.args[0] = peripheral,
601		.owner = ARM_SMCCC_OWNER_SIP,
602	};
603	struct qcom_scm_res res;
604
605	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
606					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
607		return false;
608
609	ret = qcom_scm_call(__scm->dev, &desc, &res);
610
611	return ret ? false : !!res.result[0];
612}
613EXPORT_SYMBOL(qcom_scm_pas_supported);
614
615static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
616{
617	struct qcom_scm_desc desc = {
618		.svc = QCOM_SCM_SVC_PIL,
619		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
620		.arginfo = QCOM_SCM_ARGS(2),
621		.args[0] = reset,
622		.args[1] = 0,
623		.owner = ARM_SMCCC_OWNER_SIP,
624	};
625	struct qcom_scm_res res;
626	int ret;
627
628	ret = qcom_scm_call(__scm->dev, &desc, &res);
629
630	return ret ? : res.result[0];
631}
632
633static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
634				     unsigned long idx)
635{
636	if (idx != 0)
637		return -EINVAL;
638
639	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
640}
641
642static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
643				       unsigned long idx)
644{
645	if (idx != 0)
646		return -EINVAL;
647
648	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
649}
650
651static const struct reset_control_ops qcom_scm_pas_reset_ops = {
652	.assert = qcom_scm_pas_reset_assert,
653	.deassert = qcom_scm_pas_reset_deassert,
654};
655
656int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
657{
658	struct qcom_scm_desc desc = {
659		.svc = QCOM_SCM_SVC_IO,
660		.cmd = QCOM_SCM_IO_READ,
661		.arginfo = QCOM_SCM_ARGS(1),
662		.args[0] = addr,
663		.owner = ARM_SMCCC_OWNER_SIP,
664	};
665	struct qcom_scm_res res;
666	int ret;
667
668
669	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
670	if (ret >= 0)
671		*val = res.result[0];
672
673	return ret < 0 ? ret : 0;
674}
675EXPORT_SYMBOL(qcom_scm_io_readl);
676
677int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
678{
679	struct qcom_scm_desc desc = {
680		.svc = QCOM_SCM_SVC_IO,
681		.cmd = QCOM_SCM_IO_WRITE,
682		.arginfo = QCOM_SCM_ARGS(2),
683		.args[0] = addr,
684		.args[1] = val,
685		.owner = ARM_SMCCC_OWNER_SIP,
686	};
687
688	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
689}
690EXPORT_SYMBOL(qcom_scm_io_writel);
691
692/**
693 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
694 * supports restore security config interface.
695 *
696 * Return true if restore-cfg interface is supported, false if not.
697 */
698bool qcom_scm_restore_sec_cfg_available(void)
699{
700	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
701					    QCOM_SCM_MP_RESTORE_SEC_CFG);
702}
703EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
704
705int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
706{
707	struct qcom_scm_desc desc = {
708		.svc = QCOM_SCM_SVC_MP,
709		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
710		.arginfo = QCOM_SCM_ARGS(2),
711		.args[0] = device_id,
712		.args[1] = spare,
713		.owner = ARM_SMCCC_OWNER_SIP,
714	};
715	struct qcom_scm_res res;
716	int ret;
717
718	ret = qcom_scm_call(__scm->dev, &desc, &res);
719
720	return ret ? : res.result[0];
721}
722EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
723
724int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
725{
726	struct qcom_scm_desc desc = {
727		.svc = QCOM_SCM_SVC_MP,
728		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
729		.arginfo = QCOM_SCM_ARGS(1),
730		.args[0] = spare,
731		.owner = ARM_SMCCC_OWNER_SIP,
732	};
733	struct qcom_scm_res res;
734	int ret;
735
736	ret = qcom_scm_call(__scm->dev, &desc, &res);
737
738	if (size)
739		*size = res.result[0];
740
741	return ret ? : res.result[1];
742}
743EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
744
745int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
746{
747	struct qcom_scm_desc desc = {
748		.svc = QCOM_SCM_SVC_MP,
749		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
750		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
751					 QCOM_SCM_VAL),
752		.args[0] = addr,
753		.args[1] = size,
754		.args[2] = spare,
755		.owner = ARM_SMCCC_OWNER_SIP,
756	};
757	int ret;
758
759	ret = qcom_scm_call(__scm->dev, &desc, NULL);
760
761	/* the pg table has been initialized already, ignore the error */
762	if (ret == -EPERM)
763		ret = 0;
764
765	return ret;
766}
767EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
768
769int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
770				   u32 cp_nonpixel_start,
771				   u32 cp_nonpixel_size)
772{
773	int ret;
774	struct qcom_scm_desc desc = {
775		.svc = QCOM_SCM_SVC_MP,
776		.cmd = QCOM_SCM_MP_VIDEO_VAR,
777		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
778					 QCOM_SCM_VAL, QCOM_SCM_VAL),
779		.args[0] = cp_start,
780		.args[1] = cp_size,
781		.args[2] = cp_nonpixel_start,
782		.args[3] = cp_nonpixel_size,
783		.owner = ARM_SMCCC_OWNER_SIP,
784	};
785	struct qcom_scm_res res;
786
787	ret = qcom_scm_call(__scm->dev, &desc, &res);
788
789	return ret ? : res.result[0];
790}
791EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
792
793static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
794				 size_t mem_sz, phys_addr_t src, size_t src_sz,
795				 phys_addr_t dest, size_t dest_sz)
796{
797	int ret;
798	struct qcom_scm_desc desc = {
799		.svc = QCOM_SCM_SVC_MP,
800		.cmd = QCOM_SCM_MP_ASSIGN,
801		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
802					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
803					 QCOM_SCM_VAL, QCOM_SCM_VAL),
804		.args[0] = mem_region,
805		.args[1] = mem_sz,
806		.args[2] = src,
807		.args[3] = src_sz,
808		.args[4] = dest,
809		.args[5] = dest_sz,
810		.args[6] = 0,
811		.owner = ARM_SMCCC_OWNER_SIP,
812	};
813	struct qcom_scm_res res;
814
815	ret = qcom_scm_call(dev, &desc, &res);
816
817	return ret ? : res.result[0];
818}
819
820/**
821 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
822 * @mem_addr: mem region whose ownership need to be reassigned
823 * @mem_sz:   size of the region.
824 * @srcvm:    vmid for current set of owners, each set bit in
825 *            flag indicate a unique owner
826 * @newvm:    array having new owners and corresponding permission
827 *            flags
828 * @dest_cnt: number of owners in next set.
829 *
830 * Return negative errno on failure or 0 on success with @srcvm updated.
831 */
832int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
833			unsigned int *srcvm,
834			const struct qcom_scm_vmperm *newvm,
835			unsigned int dest_cnt)
836{
837	struct qcom_scm_current_perm_info *destvm;
838	struct qcom_scm_mem_map_info *mem_to_map;
839	phys_addr_t mem_to_map_phys;
840	phys_addr_t dest_phys;
841	dma_addr_t ptr_phys;
842	size_t mem_to_map_sz;
843	size_t dest_sz;
844	size_t src_sz;
845	size_t ptr_sz;
846	int next_vm;
847	__le32 *src;
848	void *ptr;
849	int ret, i, b;
850	unsigned long srcvm_bits = *srcvm;
851
852	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
853	mem_to_map_sz = sizeof(*mem_to_map);
854	dest_sz = dest_cnt * sizeof(*destvm);
855	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
856			ALIGN(dest_sz, SZ_64);
857
858	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
859	if (!ptr)
860		return -ENOMEM;
861
862	/* Fill source vmid detail */
863	src = ptr;
864	i = 0;
865	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
866		src[i++] = cpu_to_le32(b);
867
868	/* Fill details of mem buff to map */
869	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
870	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
871	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
872	mem_to_map->mem_size = cpu_to_le64(mem_sz);
873
874	next_vm = 0;
875	/* Fill details of next vmid detail */
876	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
877	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
878	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
879		destvm->vmid = cpu_to_le32(newvm->vmid);
880		destvm->perm = cpu_to_le32(newvm->perm);
881		destvm->ctx = 0;
882		destvm->ctx_size = 0;
883		next_vm |= BIT(newvm->vmid);
884	}
885
886	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
887				    ptr_phys, src_sz, dest_phys, dest_sz);
888	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
889	if (ret) {
890		dev_err(__scm->dev,
891			"Assign memory protection call failed %d\n", ret);
892		return -EINVAL;
893	}
894
895	*srcvm = next_vm;
896	return 0;
897}
898EXPORT_SYMBOL(qcom_scm_assign_mem);
899
900/**
901 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
902 */
903bool qcom_scm_ocmem_lock_available(void)
904{
905	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
906					    QCOM_SCM_OCMEM_LOCK_CMD);
907}
908EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
909
910/**
911 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
912 * region to the specified initiator
913 *
914 * @id:     tz initiator id
915 * @offset: OCMEM offset
916 * @size:   OCMEM size
917 * @mode:   access mode (WIDE/NARROW)
918 */
919int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
920			u32 mode)
921{
922	struct qcom_scm_desc desc = {
923		.svc = QCOM_SCM_SVC_OCMEM,
924		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
925		.args[0] = id,
926		.args[1] = offset,
927		.args[2] = size,
928		.args[3] = mode,
929		.arginfo = QCOM_SCM_ARGS(4),
930	};
931
932	return qcom_scm_call(__scm->dev, &desc, NULL);
933}
934EXPORT_SYMBOL(qcom_scm_ocmem_lock);
935
936/**
937 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
938 * region from the specified initiator
939 *
940 * @id:     tz initiator id
941 * @offset: OCMEM offset
942 * @size:   OCMEM size
943 */
944int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
945{
946	struct qcom_scm_desc desc = {
947		.svc = QCOM_SCM_SVC_OCMEM,
948		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
949		.args[0] = id,
950		.args[1] = offset,
951		.args[2] = size,
952		.arginfo = QCOM_SCM_ARGS(3),
953	};
954
955	return qcom_scm_call(__scm->dev, &desc, NULL);
956}
957EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
958
959/**
960 * qcom_scm_ice_available() - Is the ICE key programming interface available?
961 *
962 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
963 *	   qcom_scm_ice_set_key() are available.
964 */
965bool qcom_scm_ice_available(void)
966{
967	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
968					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
969		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
970					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
971}
972EXPORT_SYMBOL(qcom_scm_ice_available);
973
974/**
975 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
976 * @index: the keyslot to invalidate
977 *
978 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
979 * these SoCs; only this SCM call does.
980 *
981 * Return: 0 on success; -errno on failure.
982 */
983int qcom_scm_ice_invalidate_key(u32 index)
984{
985	struct qcom_scm_desc desc = {
986		.svc = QCOM_SCM_SVC_ES,
987		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
988		.arginfo = QCOM_SCM_ARGS(1),
989		.args[0] = index,
990		.owner = ARM_SMCCC_OWNER_SIP,
991	};
992
993	return qcom_scm_call(__scm->dev, &desc, NULL);
994}
995EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
996
997/**
998 * qcom_scm_ice_set_key() - Set an inline encryption key
999 * @index: the keyslot into which to set the key
1000 * @key: the key to program
1001 * @key_size: the size of the key in bytes
1002 * @cipher: the encryption algorithm the key is for
1003 * @data_unit_size: the encryption data unit size, i.e. the size of each
1004 *		    individual plaintext and ciphertext.  Given in 512-byte
1005 *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1006 *
1007 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1008 * can then be used to encrypt/decrypt UFS I/O requests inline.
1009 *
1010 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
1011 * these SoCs; only this SCM call does.
1012 *
1013 * Return: 0 on success; -errno on failure.
1014 */
1015int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1016			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1017{
1018	struct qcom_scm_desc desc = {
1019		.svc = QCOM_SCM_SVC_ES,
1020		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1021		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1022					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1023					 QCOM_SCM_VAL),
1024		.args[0] = index,
1025		.args[2] = key_size,
1026		.args[3] = cipher,
1027		.args[4] = data_unit_size,
1028		.owner = ARM_SMCCC_OWNER_SIP,
1029	};
1030	void *keybuf;
1031	dma_addr_t key_phys;
1032	int ret;
1033
1034	/*
1035	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1036	 * physical address that's been properly flushed.  The sanctioned way to
1037	 * do this is by using the DMA API.  But as is best practice for crypto
1038	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1039	 * dma_map_single() not clearly correct, since the DMA API can use
1040	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1041	 * keys is normally rare and thus not performance-critical.
1042	 */
1043
1044	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1045				    GFP_KERNEL);
1046	if (!keybuf)
1047		return -ENOMEM;
1048	memcpy(keybuf, key, key_size);
1049	desc.args[1] = key_phys;
1050
1051	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1052
1053	memzero_explicit(keybuf, key_size);
1054
1055	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1056	return ret;
1057}
1058EXPORT_SYMBOL(qcom_scm_ice_set_key);
1059
1060/**
1061 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1062 *
1063 * Return true if HDCP is supported, false if not.
1064 */
1065bool qcom_scm_hdcp_available(void)
1066{
1067	bool avail;
1068	int ret = qcom_scm_clk_enable();
1069
1070	if (ret)
1071		return ret;
1072
1073	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1074						QCOM_SCM_HDCP_INVOKE);
1075
1076	qcom_scm_clk_disable();
1077
1078	return avail;
1079}
1080EXPORT_SYMBOL(qcom_scm_hdcp_available);
1081
1082/**
1083 * qcom_scm_hdcp_req() - Send HDCP request.
1084 * @req: HDCP request array
1085 * @req_cnt: HDCP request array count
1086 * @resp: response buffer passed to SCM
1087 *
1088 * Write HDCP register(s) through SCM.
1089 */
1090int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1091{
1092	int ret;
1093	struct qcom_scm_desc desc = {
1094		.svc = QCOM_SCM_SVC_HDCP,
1095		.cmd = QCOM_SCM_HDCP_INVOKE,
1096		.arginfo = QCOM_SCM_ARGS(10),
1097		.args = {
1098			req[0].addr,
1099			req[0].val,
1100			req[1].addr,
1101			req[1].val,
1102			req[2].addr,
1103			req[2].val,
1104			req[3].addr,
1105			req[3].val,
1106			req[4].addr,
1107			req[4].val
1108		},
1109		.owner = ARM_SMCCC_OWNER_SIP,
1110	};
1111	struct qcom_scm_res res;
1112
1113	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1114		return -ERANGE;
1115
1116	ret = qcom_scm_clk_enable();
1117	if (ret)
1118		return ret;
1119
1120	ret = qcom_scm_call(__scm->dev, &desc, &res);
1121	*resp = res.result[0];
1122
1123	qcom_scm_clk_disable();
1124
1125	return ret;
1126}
1127EXPORT_SYMBOL(qcom_scm_hdcp_req);
1128
1129int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1130{
1131	struct qcom_scm_desc desc = {
1132		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1133		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1134		.arginfo = QCOM_SCM_ARGS(2),
1135		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1136		.args[1] = en,
1137		.owner = ARM_SMCCC_OWNER_SIP,
1138	};
1139
1140
1141	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1142}
1143EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1144
1145static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1146{
1147	struct device_node *tcsr;
1148	struct device_node *np = dev->of_node;
1149	struct resource res;
1150	u32 offset;
1151	int ret;
1152
1153	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1154	if (!tcsr)
1155		return 0;
1156
1157	ret = of_address_to_resource(tcsr, 0, &res);
1158	of_node_put(tcsr);
1159	if (ret)
1160		return ret;
1161
1162	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1163	if (ret < 0)
1164		return ret;
1165
1166	*addr = res.start + offset;
1167
1168	return 0;
1169}
1170
1171/**
1172 * qcom_scm_is_available() - Checks if SCM is available
1173 */
1174bool qcom_scm_is_available(void)
1175{
1176	return !!__scm;
1177}
1178EXPORT_SYMBOL(qcom_scm_is_available);
1179
1180static int qcom_scm_probe(struct platform_device *pdev)
1181{
1182	struct qcom_scm *scm;
1183	unsigned long clks;
1184	int ret;
1185
1186	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1187	if (!scm)
1188		return -ENOMEM;
1189
1190	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1191	if (ret < 0)
1192		return ret;
1193
1194	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1195
1196	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1197	if (IS_ERR(scm->core_clk)) {
1198		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1199			return PTR_ERR(scm->core_clk);
1200
1201		if (clks & SCM_HAS_CORE_CLK) {
1202			dev_err(&pdev->dev, "failed to acquire core clk\n");
1203			return PTR_ERR(scm->core_clk);
1204		}
1205
1206		scm->core_clk = NULL;
1207	}
1208
1209	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1210	if (IS_ERR(scm->iface_clk)) {
1211		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1212			return PTR_ERR(scm->iface_clk);
1213
1214		if (clks & SCM_HAS_IFACE_CLK) {
1215			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1216			return PTR_ERR(scm->iface_clk);
1217		}
1218
1219		scm->iface_clk = NULL;
1220	}
1221
1222	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1223	if (IS_ERR(scm->bus_clk)) {
1224		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1225			return PTR_ERR(scm->bus_clk);
1226
1227		if (clks & SCM_HAS_BUS_CLK) {
1228			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1229			return PTR_ERR(scm->bus_clk);
1230		}
1231
1232		scm->bus_clk = NULL;
1233	}
1234
1235	scm->reset.ops = &qcom_scm_pas_reset_ops;
1236	scm->reset.nr_resets = 1;
1237	scm->reset.of_node = pdev->dev.of_node;
1238	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1239	if (ret)
1240		return ret;
1241
1242	/* vote for max clk rate for highest performance */
1243	ret = clk_set_rate(scm->core_clk, INT_MAX);
1244	if (ret)
1245		return ret;
1246
1247	__scm = scm;
1248	__scm->dev = &pdev->dev;
1249
1250	__get_convention();
1251
1252	/*
1253	 * If requested enable "download mode", from this point on warmboot
1254	 * will cause the the boot stages to enter download mode, unless
1255	 * disabled below by a clean shutdown/reboot.
1256	 */
1257	if (download_mode)
1258		qcom_scm_set_download_mode(true);
1259
1260	return 0;
1261}
1262
1263static void qcom_scm_shutdown(struct platform_device *pdev)
1264{
1265	/* Clean shutdown, disable download mode to allow normal restart */
1266	qcom_scm_set_download_mode(false);
1267}
1268
1269static const struct of_device_id qcom_scm_dt_match[] = {
1270	{ .compatible = "qcom,scm-apq8064",
1271	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1272	},
1273	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1274							     SCM_HAS_IFACE_CLK |
1275							     SCM_HAS_BUS_CLK)
1276	},
1277	{ .compatible = "qcom,scm-ipq4019" },
1278	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1279	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1280	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1281							     SCM_HAS_IFACE_CLK |
1282							     SCM_HAS_BUS_CLK)
1283	},
1284	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1285							     SCM_HAS_IFACE_CLK |
1286							     SCM_HAS_BUS_CLK)
1287	},
1288	{ .compatible = "qcom,scm-msm8994" },
1289	{ .compatible = "qcom,scm-msm8996" },
1290	{ .compatible = "qcom,scm" },
1291	{}
1292};
1293
1294static struct platform_driver qcom_scm_driver = {
1295	.driver = {
1296		.name	= "qcom_scm",
1297		.of_match_table = qcom_scm_dt_match,
1298	},
1299	.probe = qcom_scm_probe,
1300	.shutdown = qcom_scm_shutdown,
1301};
1302
1303static int __init qcom_scm_init(void)
1304{
1305	return platform_driver_register(&qcom_scm_driver);
1306}
1307subsys_initcall(qcom_scm_init);
1308