1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
6 *
7 * Copyright 2011 Intel Corporation; author Matt Fleming
8 */
9
10#include <stdarg.h>
11
12#include <linux/ctype.h>
13#include <linux/efi.h>
14#include <linux/kernel.h>
15#include <linux/printk.h> /* For CONSOLE_LOGLEVEL_* */
16#include <asm/efi.h>
17#include <asm/setup.h>
18
19#include "efistub.h"
20
21bool efi_nochunk;
22bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
23bool efi_noinitrd;
24int efi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
25bool efi_novamap;
26
27static bool efi_nosoftreserve;
28static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
29
30bool __pure __efi_soft_reserve_enabled(void)
31{
32	return !efi_nosoftreserve;
33}
34
35/**
36 * efi_char16_puts() - Write a UCS-2 encoded string to the console
37 * @str:	UCS-2 encoded string
38 */
39void efi_char16_puts(efi_char16_t *str)
40{
41	efi_call_proto(efi_table_attr(efi_system_table, con_out),
42		       output_string, str);
43}
44
45static
46u32 utf8_to_utf32(const u8 **s8)
47{
48	u32 c32;
49	u8 c0, cx;
50	size_t clen, i;
51
52	c0 = cx = *(*s8)++;
53	/*
54	 * The position of the most-significant 0 bit gives us the length of
55	 * a multi-octet encoding.
56	 */
57	for (clen = 0; cx & 0x80; ++clen)
58		cx <<= 1;
59	/*
60	 * If the 0 bit is in position 8, this is a valid single-octet
61	 * encoding. If the 0 bit is in position 7 or positions 1-3, the
62	 * encoding is invalid.
63	 * In either case, we just return the first octet.
64	 */
65	if (clen < 2 || clen > 4)
66		return c0;
67	/* Get the bits from the first octet. */
68	c32 = cx >> clen--;
69	for (i = 0; i < clen; ++i) {
70		/* Trailing octets must have 10 in most significant bits. */
71		cx = (*s8)[i] ^ 0x80;
72		if (cx & 0xc0)
73			return c0;
74		c32 = (c32 << 6) | cx;
75	}
76	/*
77	 * Check for validity:
78	 * - The character must be in the Unicode range.
79	 * - It must not be a surrogate.
80	 * - It must be encoded using the correct number of octets.
81	 */
82	if (c32 > 0x10ffff ||
83	    (c32 & 0xf800) == 0xd800 ||
84	    clen != (c32 >= 0x80) + (c32 >= 0x800) + (c32 >= 0x10000))
85		return c0;
86	*s8 += clen;
87	return c32;
88}
89
90/**
91 * efi_puts() - Write a UTF-8 encoded string to the console
92 * @str:	UTF-8 encoded string
93 */
94void efi_puts(const char *str)
95{
96	efi_char16_t buf[128];
97	size_t pos = 0, lim = ARRAY_SIZE(buf);
98	const u8 *s8 = (const u8 *)str;
99	u32 c32;
100
101	while (*s8) {
102		if (*s8 == '\n')
103			buf[pos++] = L'\r';
104		c32 = utf8_to_utf32(&s8);
105		if (c32 < 0x10000) {
106			/* Characters in plane 0 use a single word. */
107			buf[pos++] = c32;
108		} else {
109			/*
110			 * Characters in other planes encode into a surrogate
111			 * pair.
112			 */
113			buf[pos++] = (0xd800 - (0x10000 >> 10)) + (c32 >> 10);
114			buf[pos++] = 0xdc00 + (c32 & 0x3ff);
115		}
116		if (*s8 == '\0' || pos >= lim - 2) {
117			buf[pos] = L'\0';
118			efi_char16_puts(buf);
119			pos = 0;
120		}
121	}
122}
123
124/**
125 * efi_printk() - Print a kernel message
126 * @fmt:	format string
127 *
128 * The first letter of the format string is used to determine the logging level
129 * of the message. If the level is less then the current EFI logging level, the
130 * message is suppressed. The message will be truncated to 255 bytes.
131 *
132 * Return:	number of printed characters
133 */
134int efi_printk(const char *fmt, ...)
135{
136	char printf_buf[256];
137	va_list args;
138	int printed;
139	int loglevel = printk_get_level(fmt);
140
141	switch (loglevel) {
142	case '0' ... '9':
143		loglevel -= '0';
144		break;
145	default:
146		/*
147		 * Use loglevel -1 for cases where we just want to print to
148		 * the screen.
149		 */
150		loglevel = -1;
151		break;
152	}
153
154	if (loglevel >= efi_loglevel)
155		return 0;
156
157	if (loglevel >= 0)
158		efi_puts("EFI stub: ");
159
160	fmt = printk_skip_level(fmt);
161
162	va_start(args, fmt);
163	printed = vsnprintf(printf_buf, sizeof(printf_buf), fmt, args);
164	va_end(args);
165
166	efi_puts(printf_buf);
167	if (printed >= sizeof(printf_buf)) {
168		efi_puts("[Message truncated]\n");
169		return -1;
170	}
171
172	return printed;
173}
174
175/**
176 * efi_parse_options() - Parse EFI command line options
177 * @cmdline:	kernel command line
178 *
179 * Parse the ASCII string @cmdline for EFI options, denoted by the efi=
180 * option, e.g. efi=nochunk.
181 *
182 * It should be noted that efi= is parsed in two very different
183 * environments, first in the early boot environment of the EFI boot
184 * stub, and subsequently during the kernel boot.
185 *
186 * Return:	status code
187 */
188efi_status_t efi_parse_options(char const *cmdline)
189{
190	size_t len;
191	efi_status_t status;
192	char *str, *buf;
193
194	if (!cmdline)
195		return EFI_SUCCESS;
196
197	len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
198	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
199	if (status != EFI_SUCCESS)
200		return status;
201
202	memcpy(buf, cmdline, len - 1);
203	buf[len - 1] = '\0';
204	str = skip_spaces(buf);
205
206	while (*str) {
207		char *param, *val;
208
209		str = next_arg(str, &param, &val);
210		if (!val && !strcmp(param, "--"))
211			break;
212
213		if (!strcmp(param, "nokaslr")) {
214			efi_nokaslr = true;
215		} else if (!strcmp(param, "quiet")) {
216			efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
217		} else if (!strcmp(param, "noinitrd")) {
218			efi_noinitrd = true;
219		} else if (!strcmp(param, "efi") && val) {
220			efi_nochunk = parse_option_str(val, "nochunk");
221			efi_novamap = parse_option_str(val, "novamap");
222
223			efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
224					    parse_option_str(val, "nosoftreserve");
225
226			if (parse_option_str(val, "disable_early_pci_dma"))
227				efi_disable_pci_dma = true;
228			if (parse_option_str(val, "no_disable_early_pci_dma"))
229				efi_disable_pci_dma = false;
230			if (parse_option_str(val, "debug"))
231				efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
232		} else if (!strcmp(param, "video") &&
233			   val && strstarts(val, "efifb:")) {
234			efi_parse_option_graphics(val + strlen("efifb:"));
235		}
236	}
237	efi_bs_call(free_pool, buf);
238	return EFI_SUCCESS;
239}
240
241/*
242 * The EFI_LOAD_OPTION descriptor has the following layout:
243 *	u32 Attributes;
244 *	u16 FilePathListLength;
245 *	u16 Description[];
246 *	efi_device_path_protocol_t FilePathList[];
247 *	u8 OptionalData[];
248 *
249 * This function validates and unpacks the variable-size data fields.
250 */
251static
252bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
253			    const efi_load_option_t *src, size_t size)
254{
255	const void *pos;
256	u16 c;
257	efi_device_path_protocol_t header;
258	const efi_char16_t *description;
259	const efi_device_path_protocol_t *file_path_list;
260
261	if (size < offsetof(efi_load_option_t, variable_data))
262		return false;
263	pos = src->variable_data;
264	size -= offsetof(efi_load_option_t, variable_data);
265
266	if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
267		return false;
268
269	/* Scan description. */
270	description = pos;
271	do {
272		if (size < sizeof(c))
273			return false;
274		c = *(const u16 *)pos;
275		pos += sizeof(c);
276		size -= sizeof(c);
277	} while (c != L'\0');
278
279	/* Scan file_path_list. */
280	file_path_list = pos;
281	do {
282		if (size < sizeof(header))
283			return false;
284		header = *(const efi_device_path_protocol_t *)pos;
285		if (header.length < sizeof(header))
286			return false;
287		if (size < header.length)
288			return false;
289		pos += header.length;
290		size -= header.length;
291	} while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
292		 (header.sub_type != EFI_DEV_END_ENTIRE));
293	if (pos != (const void *)file_path_list + src->file_path_list_length)
294		return false;
295
296	dest->attributes = src->attributes;
297	dest->file_path_list_length = src->file_path_list_length;
298	dest->description = description;
299	dest->file_path_list = file_path_list;
300	dest->optional_data_size = size;
301	dest->optional_data = size ? pos : NULL;
302
303	return true;
304}
305
306/*
307 * At least some versions of Dell firmware pass the entire contents of the
308 * Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
309 * OptionalData field.
310 *
311 * Detect this case and extract OptionalData.
312 */
313void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size)
314{
315	const efi_load_option_t *load_option = *load_options;
316	efi_load_option_unpacked_t load_option_unpacked;
317
318	if (!IS_ENABLED(CONFIG_X86))
319		return;
320	if (!load_option)
321		return;
322	if (*load_options_size < sizeof(*load_option))
323		return;
324	if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
325		return;
326
327	if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
328		return;
329
330	efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
331	efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
332
333	*load_options = load_option_unpacked.optional_data;
334	*load_options_size = load_option_unpacked.optional_data_size;
335}
336
337/*
338 * Convert the unicode UEFI command line to ASCII to pass to kernel.
339 * Size of memory allocated return in *cmd_line_len.
340 * Returns NULL on error.
341 */
342char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
343{
344	const u16 *s2;
345	unsigned long cmdline_addr = 0;
346	int options_chars = efi_table_attr(image, load_options_size);
347	const u16 *options = efi_table_attr(image, load_options);
348	int options_bytes = 0, safe_options_bytes = 0;  /* UTF-8 bytes */
349	bool in_quote = false;
350	efi_status_t status;
351
352	efi_apply_loadoptions_quirk((const void **)&options, &options_chars);
353	options_chars /= sizeof(*options);
354
355	if (options) {
356		s2 = options;
357		while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
358			u16 c = *s2++;
359
360			if (c < 0x80) {
361				if (c == L'\0' || c == L'\n')
362					break;
363				if (c == L'"')
364					in_quote = !in_quote;
365				else if (!in_quote && isspace((char)c))
366					safe_options_bytes = options_bytes;
367
368				options_bytes++;
369				continue;
370			}
371
372			/*
373			 * Get the number of UTF-8 bytes corresponding to a
374			 * UTF-16 character.
375			 * The first part handles everything in the BMP.
376			 */
377			options_bytes += 2 + (c >= 0x800);
378			/*
379			 * Add one more byte for valid surrogate pairs. Invalid
380			 * surrogates will be replaced with 0xfffd and take up
381			 * only 3 bytes.
382			 */
383			if ((c & 0xfc00) == 0xd800) {
384				/*
385				 * If the very last word is a high surrogate,
386				 * we must ignore it since we can't access the
387				 * low surrogate.
388				 */
389				if (!options_chars) {
390					options_bytes -= 3;
391				} else if ((*s2 & 0xfc00) == 0xdc00) {
392					options_bytes++;
393					options_chars--;
394					s2++;
395				}
396			}
397		}
398		if (options_bytes >= COMMAND_LINE_SIZE) {
399			options_bytes = safe_options_bytes;
400			efi_err("Command line is too long: truncated to %d bytes\n",
401				options_bytes);
402		}
403	}
404
405	options_bytes++;	/* NUL termination */
406
407	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
408			     (void **)&cmdline_addr);
409	if (status != EFI_SUCCESS)
410		return NULL;
411
412	snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
413		 options_bytes - 1, options);
414
415	*cmd_line_len = options_bytes;
416	return (char *)cmdline_addr;
417}
418
419/**
420 * efi_exit_boot_services() - Exit boot services
421 * @handle:	handle of the exiting image
422 * @priv:	argument to be passed to @priv_func
423 * @priv_func:	function to process the memory map before exiting boot services
424 *
425 * Handle calling ExitBootServices according to the requirements set out by the
426 * spec.  Obtains the current memory map, and returns that info after calling
427 * ExitBootServices.  The client must specify a function to perform any
428 * processing of the memory map data prior to ExitBootServices.  A client
429 * specific structure may be passed to the function via priv.  The client
430 * function may be called multiple times.
431 *
432 * Return:	status code
433 */
434efi_status_t efi_exit_boot_services(void *handle, void *priv,
435				    efi_exit_boot_map_processing priv_func)
436{
437	struct efi_boot_memmap *map;
438	efi_status_t status;
439
440	status = efi_get_memory_map(&map, true);
441	if (status != EFI_SUCCESS)
442		return status;
443
444	status = priv_func(map, priv);
445	if (status != EFI_SUCCESS) {
446		efi_bs_call(free_pool, map);
447		return status;
448	}
449
450	if (efi_disable_pci_dma)
451		efi_pci_disable_bridge_busmaster();
452
453	status = efi_bs_call(exit_boot_services, handle, map->map_key);
454
455	if (status == EFI_INVALID_PARAMETER) {
456		/*
457		 * The memory map changed between efi_get_memory_map() and
458		 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
459		 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
460		 * updated map, and try again.  The spec implies one retry
461		 * should be sufficent, which is confirmed against the EDK2
462		 * implementation.  Per the spec, we can only invoke
463		 * get_memory_map() and exit_boot_services() - we cannot alloc
464		 * so efi_get_memory_map() cannot be used, and we must reuse
465		 * the buffer.  For all practical purposes, the headroom in the
466		 * buffer should account for any changes in the map so the call
467		 * to get_memory_map() is expected to succeed here.
468		 */
469		map->map_size = map->buff_size;
470		status = efi_bs_call(get_memory_map,
471				     &map->map_size,
472				     &map->map,
473				     &map->map_key,
474				     &map->desc_size,
475				     &map->desc_ver);
476
477		/* exit_boot_services() was called, thus cannot free */
478		if (status != EFI_SUCCESS)
479			return status;
480
481		status = priv_func(map, priv);
482		/* exit_boot_services() was called, thus cannot free */
483		if (status != EFI_SUCCESS)
484			return status;
485
486		status = efi_bs_call(exit_boot_services, handle, map->map_key);
487	}
488
489	return status;
490}
491
492/**
493 * get_efi_config_table() - retrieve UEFI configuration table
494 * @guid:	GUID of the configuration table to be retrieved
495 * Return:	pointer to the configuration table or NULL
496 */
497void *get_efi_config_table(efi_guid_t guid)
498{
499	unsigned long tables = efi_table_attr(efi_system_table, tables);
500	int nr_tables = efi_table_attr(efi_system_table, nr_tables);
501	int i;
502
503	for (i = 0; i < nr_tables; i++) {
504		efi_config_table_t *t = (void *)tables;
505
506		if (efi_guidcmp(t->guid, guid) == 0)
507			return efi_table_attr(t, table);
508
509		tables += efi_is_native() ? sizeof(efi_config_table_t)
510					  : sizeof(efi_config_table_32_t);
511	}
512	return NULL;
513}
514
515/*
516 * The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
517 * for the firmware or bootloader to expose the initrd data directly to the stub
518 * via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
519 * very easy to implement. It is a simple Linux initrd specific conduit between
520 * kernel and firmware, allowing us to put the EFI stub (being part of the
521 * kernel) in charge of where and when to load the initrd, while leaving it up
522 * to the firmware to decide whether it needs to expose its filesystem hierarchy
523 * via EFI protocols.
524 */
525static const struct {
526	struct efi_vendor_dev_path	vendor;
527	struct efi_generic_dev_path	end;
528} __packed initrd_dev_path = {
529	{
530		{
531			EFI_DEV_MEDIA,
532			EFI_DEV_MEDIA_VENDOR,
533			sizeof(struct efi_vendor_dev_path),
534		},
535		LINUX_EFI_INITRD_MEDIA_GUID
536	}, {
537		EFI_DEV_END_PATH,
538		EFI_DEV_END_ENTIRE,
539		sizeof(struct efi_generic_dev_path)
540	}
541};
542
543/**
544 * efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
545 * @load_addr:	pointer to store the address where the initrd was loaded
546 * @load_size:	pointer to store the size of the loaded initrd
547 * @max:	upper limit for the initrd memory allocation
548 *
549 * Return:
550 * * %EFI_SUCCESS if the initrd was loaded successfully, in which
551 *   case @load_addr and @load_size are assigned accordingly
552 * * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
553 * * %EFI_OUT_OF_RESOURCES if memory allocation failed
554 * * %EFI_LOAD_ERROR in all other cases
555 */
556static
557efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
558				      unsigned long max)
559{
560	efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
561	efi_device_path_protocol_t *dp;
562	efi_load_file2_protocol_t *lf2;
563	efi_handle_t handle;
564	efi_status_t status;
565
566	dp = (efi_device_path_protocol_t *)&initrd_dev_path;
567	status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
568	if (status != EFI_SUCCESS)
569		return status;
570
571	status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
572			     (void **)&lf2);
573	if (status != EFI_SUCCESS)
574		return status;
575
576	initrd->size = 0;
577	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
578	if (status != EFI_BUFFER_TOO_SMALL)
579		return EFI_LOAD_ERROR;
580
581	status = efi_allocate_pages(initrd->size, &initrd->base, max);
582	if (status != EFI_SUCCESS)
583		return status;
584
585	status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
586				(void *)initrd->base);
587	if (status != EFI_SUCCESS) {
588		efi_free(initrd->size, initrd->base);
589		return EFI_LOAD_ERROR;
590	}
591	return EFI_SUCCESS;
592}
593
594static
595efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
596				     struct linux_efi_initrd *initrd,
597				     unsigned long soft_limit,
598				     unsigned long hard_limit)
599{
600	if (!IS_ENABLED(CONFIG_EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER) ||
601	    (IS_ENABLED(CONFIG_X86) && (!efi_is_native() || image == NULL)))
602		return EFI_UNSUPPORTED;
603
604	return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
605				    soft_limit, hard_limit,
606				    &initrd->base, &initrd->size);
607}
608
609/**
610 * efi_load_initrd() - Load initial RAM disk
611 * @image:	EFI loaded image protocol
612 * @soft_limit:	preferred size of allocated memory for loading the initrd
613 * @hard_limit:	minimum size of allocated memory
614 *
615 * Return:	status code
616 */
617efi_status_t efi_load_initrd(efi_loaded_image_t *image,
618			     unsigned long soft_limit,
619			     unsigned long hard_limit,
620			     const struct linux_efi_initrd **out)
621{
622	efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
623	efi_status_t status = EFI_SUCCESS;
624	struct linux_efi_initrd initrd, *tbl;
625
626	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
627		return EFI_SUCCESS;
628
629	status = efi_load_initrd_dev_path(&initrd, hard_limit);
630	if (status == EFI_SUCCESS) {
631		efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
632	} else if (status == EFI_NOT_FOUND) {
633		status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
634						 hard_limit);
635		/* command line loader disabled or no initrd= passed? */
636		if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
637			return EFI_SUCCESS;
638		if (status == EFI_SUCCESS)
639			efi_info("Loaded initrd from command line option\n");
640	}
641	if (status != EFI_SUCCESS)
642		goto failed;
643
644	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
645			     (void **)&tbl);
646	if (status != EFI_SUCCESS)
647		goto free_initrd;
648
649	*tbl = initrd;
650	status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
651	if (status != EFI_SUCCESS)
652		goto free_tbl;
653
654	if (out)
655		*out = tbl;
656	return EFI_SUCCESS;
657
658free_tbl:
659	efi_bs_call(free_pool, tbl);
660free_initrd:
661	efi_free(initrd.size, initrd.base);
662failed:
663	efi_err("Failed to load initrd: 0x%lx\n", status);
664	return status;
665}
666
667/**
668 * efi_wait_for_key() - Wait for key stroke
669 * @usec:	number of microseconds to wait for key stroke
670 * @key:	key entered
671 *
672 * Wait for up to @usec microseconds for a key stroke.
673 *
674 * Return:	status code, EFI_SUCCESS if key received
675 */
676efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
677{
678	efi_event_t events[2], timer;
679	unsigned long index;
680	efi_simple_text_input_protocol_t *con_in;
681	efi_status_t status;
682
683	con_in = efi_table_attr(efi_system_table, con_in);
684	if (!con_in)
685		return EFI_UNSUPPORTED;
686	efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
687
688	status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
689	if (status != EFI_SUCCESS)
690		return status;
691
692	status = efi_bs_call(set_timer, timer, EfiTimerRelative,
693			     EFI_100NSEC_PER_USEC * usec);
694	if (status != EFI_SUCCESS)
695		return status;
696	efi_set_event_at(events, 1, timer);
697
698	status = efi_bs_call(wait_for_event, 2, events, &index);
699	if (status == EFI_SUCCESS) {
700		if (index == 0)
701			status = efi_call_proto(con_in, read_keystroke, key);
702		else
703			status = EFI_TIMEOUT;
704	}
705
706	efi_bs_call(close_event, timer);
707
708	return status;
709}
710