1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/types.h>
3#include <linux/string.h>
4#include <linux/init.h>
5#include <linux/module.h>
6#include <linux/ctype.h>
7#include <linux/dmi.h>
8#include <linux/efi.h>
9#include <linux/memblock.h>
10#include <linux/random.h>
11#include <asm/dmi.h>
12#include <asm/unaligned.h>
13
14#ifndef SMBIOS_ENTRY_POINT_SCAN_START
15#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16#endif
17
18struct kobject *dmi_kobj;
19EXPORT_SYMBOL_GPL(dmi_kobj);
20
21/*
22 * DMI stands for "Desktop Management Interface".  It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS.  See further: https://www.dmtf.org/standards
25 */
26static const char dmi_empty_string[] = "";
27
28static u32 dmi_ver __initdata;
29static u32 dmi_len;
30static u16 dmi_num;
31static u8 smbios_entry_point[32];
32static int smbios_entry_point_size;
33
34/* DMI system identification string used during boot */
35static char dmi_ids_string[128] __initdata;
36
37static struct dmi_memdev_info {
38	const char *device;
39	const char *bank;
40	u64 size;		/* bytes */
41	u16 handle;
42	u8 type;		/* DDR2, DDR3, DDR4 etc */
43} *dmi_memdev;
44static int dmi_memdev_nr;
45
46static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47{
48	const u8 *bp = ((u8 *) dm) + dm->length;
49	const u8 *nsp;
50
51	if (s) {
52		while (--s > 0 && *bp)
53			bp += strlen(bp) + 1;
54
55		/* Strings containing only spaces are considered empty */
56		nsp = bp;
57		while (*nsp == ' ')
58			nsp++;
59		if (*nsp != '\0')
60			return bp;
61	}
62
63	return dmi_empty_string;
64}
65
66static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67{
68	const char *bp = dmi_string_nosave(dm, s);
69	char *str;
70	size_t len;
71
72	if (bp == dmi_empty_string)
73		return dmi_empty_string;
74
75	len = strlen(bp) + 1;
76	str = dmi_alloc(len);
77	if (str != NULL)
78		strcpy(str, bp);
79
80	return str;
81}
82
83/*
84 *	We have to be cautious here. We have seen BIOSes with DMI pointers
85 *	pointing to completely the wrong place for example
86 */
87static void dmi_decode_table(u8 *buf,
88			     void (*decode)(const struct dmi_header *, void *),
89			     void *private_data)
90{
91	u8 *data = buf;
92	int i = 0;
93
94	/*
95	 * Stop when we have seen all the items the table claimed to have
96	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97	 * >= 3.0 only) OR we run off the end of the table (should never
98	 * happen but sometimes does on bogus implementations.)
99	 */
100	while ((!dmi_num || i < dmi_num) &&
101	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102		const struct dmi_header *dm = (const struct dmi_header *)data;
103
104		/*
105		 *  We want to know the total length (formatted area and
106		 *  strings) before decoding to make sure we won't run off the
107		 *  table in dmi_decode or dmi_string
108		 */
109		data += dm->length;
110		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111			data++;
112		if (data - buf < dmi_len - 1)
113			decode(dm, private_data);
114
115		data += 2;
116		i++;
117
118		/*
119		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120		 * For tables behind a 64-bit entry point, we have no item
121		 * count and no exact table length, so stop on end-of-table
122		 * marker. For tables behind a 32-bit entry point, we have
123		 * seen OEM structures behind the end-of-table marker on
124		 * some systems, so don't trust it.
125		 */
126		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127			break;
128	}
129
130	/* Trim DMI table length if needed */
131	if (dmi_len > data - buf)
132		dmi_len = data - buf;
133}
134
135static phys_addr_t dmi_base;
136
137static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138		void *))
139{
140	u8 *buf;
141	u32 orig_dmi_len = dmi_len;
142
143	buf = dmi_early_remap(dmi_base, orig_dmi_len);
144	if (buf == NULL)
145		return -ENOMEM;
146
147	dmi_decode_table(buf, decode, NULL);
148
149	add_device_randomness(buf, dmi_len);
150
151	dmi_early_unmap(buf, orig_dmi_len);
152	return 0;
153}
154
155static int __init dmi_checksum(const u8 *buf, u8 len)
156{
157	u8 sum = 0;
158	int a;
159
160	for (a = 0; a < len; a++)
161		sum += buf[a];
162
163	return sum == 0;
164}
165
166static const char *dmi_ident[DMI_STRING_MAX];
167static LIST_HEAD(dmi_devices);
168int dmi_available;
169
170/*
171 *	Save a DMI string
172 */
173static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174		int string)
175{
176	const char *d = (const char *) dm;
177	const char *p;
178
179	if (dmi_ident[slot] || dm->length <= string)
180		return;
181
182	p = dmi_string(dm, d[string]);
183	if (p == NULL)
184		return;
185
186	dmi_ident[slot] = p;
187}
188
189static void __init dmi_save_release(const struct dmi_header *dm, int slot,
190		int index)
191{
192	const u8 *minor, *major;
193	char *s;
194
195	/* If the table doesn't have the field, let's return */
196	if (dmi_ident[slot] || dm->length < index)
197		return;
198
199	minor = (u8 *) dm + index;
200	major = (u8 *) dm + index - 1;
201
202	/* As per the spec, if the system doesn't support this field,
203	 * the value is FF
204	 */
205	if (*major == 0xFF && *minor == 0xFF)
206		return;
207
208	s = dmi_alloc(8);
209	if (!s)
210		return;
211
212	sprintf(s, "%u.%u", *major, *minor);
213
214	dmi_ident[slot] = s;
215}
216
217static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
218		int index)
219{
220	const u8 *d;
221	char *s;
222	int is_ff = 1, is_00 = 1, i;
223
224	if (dmi_ident[slot] || dm->length < index + 16)
225		return;
226
227	d = (u8 *) dm + index;
228	for (i = 0; i < 16 && (is_ff || is_00); i++) {
229		if (d[i] != 0x00)
230			is_00 = 0;
231		if (d[i] != 0xFF)
232			is_ff = 0;
233	}
234
235	if (is_ff || is_00)
236		return;
237
238	s = dmi_alloc(16*2+4+1);
239	if (!s)
240		return;
241
242	/*
243	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
244	 * the UUID are supposed to be little-endian encoded.  The specification
245	 * says that this is the defacto standard.
246	 */
247	if (dmi_ver >= 0x020600)
248		sprintf(s, "%pUl", d);
249	else
250		sprintf(s, "%pUb", d);
251
252	dmi_ident[slot] = s;
253}
254
255static void __init dmi_save_type(const struct dmi_header *dm, int slot,
256		int index)
257{
258	const u8 *d;
259	char *s;
260
261	if (dmi_ident[slot] || dm->length <= index)
262		return;
263
264	s = dmi_alloc(4);
265	if (!s)
266		return;
267
268	d = (u8 *) dm + index;
269	sprintf(s, "%u", *d & 0x7F);
270	dmi_ident[slot] = s;
271}
272
273static void __init dmi_save_one_device(int type, const char *name)
274{
275	struct dmi_device *dev;
276
277	/* No duplicate device */
278	if (dmi_find_device(type, name, NULL))
279		return;
280
281	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
282	if (!dev)
283		return;
284
285	dev->type = type;
286	strcpy((char *)(dev + 1), name);
287	dev->name = (char *)(dev + 1);
288	dev->device_data = NULL;
289	list_add(&dev->list, &dmi_devices);
290}
291
292static void __init dmi_save_devices(const struct dmi_header *dm)
293{
294	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
295
296	for (i = 0; i < count; i++) {
297		const char *d = (char *)(dm + 1) + (i * 2);
298
299		/* Skip disabled device */
300		if ((*d & 0x80) == 0)
301			continue;
302
303		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
304	}
305}
306
307static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
308{
309	int i, count;
310	struct dmi_device *dev;
311
312	if (dm->length < 0x05)
313		return;
314
315	count = *(u8 *)(dm + 1);
316	for (i = 1; i <= count; i++) {
317		const char *devname = dmi_string(dm, i);
318
319		if (devname == dmi_empty_string)
320			continue;
321
322		dev = dmi_alloc(sizeof(*dev));
323		if (!dev)
324			break;
325
326		dev->type = DMI_DEV_TYPE_OEM_STRING;
327		dev->name = devname;
328		dev->device_data = NULL;
329
330		list_add(&dev->list, &dmi_devices);
331	}
332}
333
334static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
335{
336	struct dmi_device *dev;
337	void *data;
338
339	data = dmi_alloc(dm->length);
340	if (data == NULL)
341		return;
342
343	memcpy(data, dm, dm->length);
344
345	dev = dmi_alloc(sizeof(*dev));
346	if (!dev)
347		return;
348
349	dev->type = DMI_DEV_TYPE_IPMI;
350	dev->name = "IPMI controller";
351	dev->device_data = data;
352
353	list_add_tail(&dev->list, &dmi_devices);
354}
355
356static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
357					int devfn, const char *name, int type)
358{
359	struct dmi_dev_onboard *dev;
360
361	/* Ignore invalid values */
362	if (type == DMI_DEV_TYPE_DEV_SLOT &&
363	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
364		return;
365
366	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
367	if (!dev)
368		return;
369
370	dev->instance = instance;
371	dev->segment = segment;
372	dev->bus = bus;
373	dev->devfn = devfn;
374
375	strcpy((char *)&dev[1], name);
376	dev->dev.type = type;
377	dev->dev.name = (char *)&dev[1];
378	dev->dev.device_data = dev;
379
380	list_add(&dev->dev.list, &dmi_devices);
381}
382
383static void __init dmi_save_extended_devices(const struct dmi_header *dm)
384{
385	const char *name;
386	const u8 *d = (u8 *)dm;
387
388	if (dm->length < 0x0B)
389		return;
390
391	/* Skip disabled device */
392	if ((d[0x5] & 0x80) == 0)
393		return;
394
395	name = dmi_string_nosave(dm, d[0x4]);
396	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
397			     DMI_DEV_TYPE_DEV_ONBOARD);
398	dmi_save_one_device(d[0x5] & 0x7f, name);
399}
400
401static void __init dmi_save_system_slot(const struct dmi_header *dm)
402{
403	const u8 *d = (u8 *)dm;
404
405	/* Need SMBIOS 2.6+ structure */
406	if (dm->length < 0x11)
407		return;
408	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
409			     d[0x10], dmi_string_nosave(dm, d[0x4]),
410			     DMI_DEV_TYPE_DEV_SLOT);
411}
412
413static void __init count_mem_devices(const struct dmi_header *dm, void *v)
414{
415	if (dm->type != DMI_ENTRY_MEM_DEVICE)
416		return;
417	dmi_memdev_nr++;
418}
419
420static void __init save_mem_devices(const struct dmi_header *dm, void *v)
421{
422	const char *d = (const char *)dm;
423	static int nr;
424	u64 bytes;
425	u16 size;
426
427	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
428		return;
429	if (nr >= dmi_memdev_nr) {
430		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
431		return;
432	}
433	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
434	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
435	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
436	dmi_memdev[nr].type = d[0x12];
437
438	size = get_unaligned((u16 *)&d[0xC]);
439	if (size == 0)
440		bytes = 0;
441	else if (size == 0xffff)
442		bytes = ~0ull;
443	else if (size & 0x8000)
444		bytes = (u64)(size & 0x7fff) << 10;
445	else if (size != 0x7fff || dm->length < 0x20)
446		bytes = (u64)size << 20;
447	else
448		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
449
450	dmi_memdev[nr].size = bytes;
451	nr++;
452}
453
454static void __init dmi_memdev_walk(void)
455{
456	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
457		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
458		if (dmi_memdev)
459			dmi_walk_early(save_mem_devices);
460	}
461}
462
463/*
464 *	Process a DMI table entry. Right now all we care about are the BIOS
465 *	and machine entries. For 2.5 we should pull the smbus controller info
466 *	out of here.
467 */
468static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
469{
470	switch (dm->type) {
471	case 0:		/* BIOS Information */
472		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
473		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
474		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
475		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
476		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
477		break;
478	case 1:		/* System Information */
479		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
480		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
481		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
482		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
483		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
484		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
485		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
486		break;
487	case 2:		/* Base Board Information */
488		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
489		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
490		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
491		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
492		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
493		break;
494	case 3:		/* Chassis Information */
495		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
496		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
497		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
498		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
499		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
500		break;
501	case 9:		/* System Slots */
502		dmi_save_system_slot(dm);
503		break;
504	case 10:	/* Onboard Devices Information */
505		dmi_save_devices(dm);
506		break;
507	case 11:	/* OEM Strings */
508		dmi_save_oem_strings_devices(dm);
509		break;
510	case 38:	/* IPMI Device Information */
511		dmi_save_ipmi_device(dm);
512		break;
513	case 41:	/* Onboard Devices Extended Information */
514		dmi_save_extended_devices(dm);
515	}
516}
517
518static int __init print_filtered(char *buf, size_t len, const char *info)
519{
520	int c = 0;
521	const char *p;
522
523	if (!info)
524		return c;
525
526	for (p = info; *p; p++)
527		if (isprint(*p))
528			c += scnprintf(buf + c, len - c, "%c", *p);
529		else
530			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
531	return c;
532}
533
534static void __init dmi_format_ids(char *buf, size_t len)
535{
536	int c = 0;
537	const char *board;	/* Board Name is optional */
538
539	c += print_filtered(buf + c, len - c,
540			    dmi_get_system_info(DMI_SYS_VENDOR));
541	c += scnprintf(buf + c, len - c, " ");
542	c += print_filtered(buf + c, len - c,
543			    dmi_get_system_info(DMI_PRODUCT_NAME));
544
545	board = dmi_get_system_info(DMI_BOARD_NAME);
546	if (board) {
547		c += scnprintf(buf + c, len - c, "/");
548		c += print_filtered(buf + c, len - c, board);
549	}
550	c += scnprintf(buf + c, len - c, ", BIOS ");
551	c += print_filtered(buf + c, len - c,
552			    dmi_get_system_info(DMI_BIOS_VERSION));
553	c += scnprintf(buf + c, len - c, " ");
554	c += print_filtered(buf + c, len - c,
555			    dmi_get_system_info(DMI_BIOS_DATE));
556}
557
558/*
559 * Check for DMI/SMBIOS headers in the system firmware image.  Any
560 * SMBIOS header must start 16 bytes before the DMI header, so take a
561 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
562 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
563 * takes precedence) and return 0.  Otherwise return 1.
564 */
565static int __init dmi_present(const u8 *buf)
566{
567	u32 smbios_ver;
568
569	if (memcmp(buf, "_SM_", 4) == 0 &&
570	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
571		smbios_ver = get_unaligned_be16(buf + 6);
572		smbios_entry_point_size = buf[5];
573		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
574
575		/* Some BIOS report weird SMBIOS version, fix that up */
576		switch (smbios_ver) {
577		case 0x021F:
578		case 0x0221:
579			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
580				 smbios_ver & 0xFF, 3);
581			smbios_ver = 0x0203;
582			break;
583		case 0x0233:
584			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
585			smbios_ver = 0x0206;
586			break;
587		}
588	} else {
589		smbios_ver = 0;
590	}
591
592	buf += 16;
593
594	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
595		if (smbios_ver)
596			dmi_ver = smbios_ver;
597		else
598			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
599		dmi_ver <<= 8;
600		dmi_num = get_unaligned_le16(buf + 12);
601		dmi_len = get_unaligned_le16(buf + 6);
602		dmi_base = get_unaligned_le32(buf + 8);
603
604		if (dmi_walk_early(dmi_decode) == 0) {
605			if (smbios_ver) {
606				pr_info("SMBIOS %d.%d present.\n",
607					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
608			} else {
609				smbios_entry_point_size = 15;
610				memcpy(smbios_entry_point, buf,
611				       smbios_entry_point_size);
612				pr_info("Legacy DMI %d.%d present.\n",
613					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
614			}
615			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
616			pr_info("DMI: %s\n", dmi_ids_string);
617			return 0;
618		}
619	}
620
621	return 1;
622}
623
624/*
625 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
626 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
627 */
628static int __init dmi_smbios3_present(const u8 *buf)
629{
630	if (memcmp(buf, "_SM3_", 5) == 0 &&
631	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
632		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
633		dmi_num = 0;			/* No longer specified */
634		dmi_len = get_unaligned_le32(buf + 12);
635		dmi_base = get_unaligned_le64(buf + 16);
636		smbios_entry_point_size = buf[6];
637		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
638
639		if (dmi_walk_early(dmi_decode) == 0) {
640			pr_info("SMBIOS %d.%d.%d present.\n",
641				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
642				dmi_ver & 0xFF);
643			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
644			pr_info("DMI: %s\n", dmi_ids_string);
645			return 0;
646		}
647	}
648	return 1;
649}
650
651static void __init dmi_scan_machine(void)
652{
653	char __iomem *p, *q;
654	char buf[32];
655
656	if (efi_enabled(EFI_CONFIG_TABLES)) {
657		/*
658		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
659		 * allowed to define both the 64-bit entry point (smbios3) and
660		 * the 32-bit entry point (smbios), in which case they should
661		 * either both point to the same SMBIOS structure table, or the
662		 * table pointed to by the 64-bit entry point should contain a
663		 * superset of the table contents pointed to by the 32-bit entry
664		 * point (section 5.2)
665		 * This implies that the 64-bit entry point should have
666		 * precedence if it is defined and supported by the OS. If we
667		 * have the 64-bit entry point, but fail to decode it, fall
668		 * back to the legacy one (if available)
669		 */
670		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
671			p = dmi_early_remap(efi.smbios3, 32);
672			if (p == NULL)
673				goto error;
674			memcpy_fromio(buf, p, 32);
675			dmi_early_unmap(p, 32);
676
677			if (!dmi_smbios3_present(buf)) {
678				dmi_available = 1;
679				return;
680			}
681		}
682		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
683			goto error;
684
685		/* This is called as a core_initcall() because it isn't
686		 * needed during early boot.  This also means we can
687		 * iounmap the space when we're done with it.
688		 */
689		p = dmi_early_remap(efi.smbios, 32);
690		if (p == NULL)
691			goto error;
692		memcpy_fromio(buf, p, 32);
693		dmi_early_unmap(p, 32);
694
695		if (!dmi_present(buf)) {
696			dmi_available = 1;
697			return;
698		}
699	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
700		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
701		if (p == NULL)
702			goto error;
703
704		/*
705		 * Same logic as above, look for a 64-bit entry point
706		 * first, and if not found, fall back to 32-bit entry point.
707		 */
708		memcpy_fromio(buf, p, 16);
709		for (q = p + 16; q < p + 0x10000; q += 16) {
710			memcpy_fromio(buf + 16, q, 16);
711			if (!dmi_smbios3_present(buf)) {
712				dmi_available = 1;
713				dmi_early_unmap(p, 0x10000);
714				return;
715			}
716			memcpy(buf, buf + 16, 16);
717		}
718
719		/*
720		 * Iterate over all possible DMI header addresses q.
721		 * Maintain the 32 bytes around q in buf.  On the
722		 * first iteration, substitute zero for the
723		 * out-of-range bytes so there is no chance of falsely
724		 * detecting an SMBIOS header.
725		 */
726		memset(buf, 0, 16);
727		for (q = p; q < p + 0x10000; q += 16) {
728			memcpy_fromio(buf + 16, q, 16);
729			if (!dmi_present(buf)) {
730				dmi_available = 1;
731				dmi_early_unmap(p, 0x10000);
732				return;
733			}
734			memcpy(buf, buf + 16, 16);
735		}
736		dmi_early_unmap(p, 0x10000);
737	}
738 error:
739	pr_info("DMI not present or invalid.\n");
740}
741
742static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
743			      struct bin_attribute *attr, char *buf,
744			      loff_t pos, size_t count)
745{
746	memcpy(buf, attr->private + pos, count);
747	return count;
748}
749
750static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
751static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
752
753static int __init dmi_init(void)
754{
755	struct kobject *tables_kobj;
756	u8 *dmi_table;
757	int ret = -ENOMEM;
758
759	if (!dmi_available)
760		return 0;
761
762	/*
763	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
764	 * even after farther error, as it can be used by other modules like
765	 * dmi-sysfs.
766	 */
767	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
768	if (!dmi_kobj)
769		goto err;
770
771	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
772	if (!tables_kobj)
773		goto err;
774
775	dmi_table = dmi_remap(dmi_base, dmi_len);
776	if (!dmi_table)
777		goto err_tables;
778
779	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
780	bin_attr_smbios_entry_point.private = smbios_entry_point;
781	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
782	if (ret)
783		goto err_unmap;
784
785	bin_attr_DMI.size = dmi_len;
786	bin_attr_DMI.private = dmi_table;
787	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
788	if (!ret)
789		return 0;
790
791	sysfs_remove_bin_file(tables_kobj,
792			      &bin_attr_smbios_entry_point);
793 err_unmap:
794	dmi_unmap(dmi_table);
795 err_tables:
796	kobject_del(tables_kobj);
797	kobject_put(tables_kobj);
798 err:
799	pr_err("dmi: Firmware registration failed.\n");
800
801	return ret;
802}
803subsys_initcall(dmi_init);
804
805/**
806 *	dmi_setup - scan and setup DMI system information
807 *
808 *	Scan the DMI system information. This setups DMI identifiers
809 *	(dmi_system_id) for printing it out on task dumps and prepares
810 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
811 *	for using this when reporting memory errors.
812 */
813void __init dmi_setup(void)
814{
815	dmi_scan_machine();
816	if (!dmi_available)
817		return;
818
819	dmi_memdev_walk();
820	dump_stack_set_arch_desc("%s", dmi_ids_string);
821}
822
823/**
824 *	dmi_matches - check if dmi_system_id structure matches system DMI data
825 *	@dmi: pointer to the dmi_system_id structure to check
826 */
827static bool dmi_matches(const struct dmi_system_id *dmi)
828{
829	int i;
830
831	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
832		int s = dmi->matches[i].slot;
833		if (s == DMI_NONE)
834			break;
835		if (s == DMI_OEM_STRING) {
836			/* DMI_OEM_STRING must be exact match */
837			const struct dmi_device *valid;
838
839			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
840						dmi->matches[i].substr, NULL);
841			if (valid)
842				continue;
843		} else if (dmi_ident[s]) {
844			if (dmi->matches[i].exact_match) {
845				if (!strcmp(dmi_ident[s],
846					    dmi->matches[i].substr))
847					continue;
848			} else {
849				if (strstr(dmi_ident[s],
850					   dmi->matches[i].substr))
851					continue;
852			}
853		}
854
855		/* No match */
856		return false;
857	}
858	return true;
859}
860
861/**
862 *	dmi_is_end_of_table - check for end-of-table marker
863 *	@dmi: pointer to the dmi_system_id structure to check
864 */
865static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
866{
867	return dmi->matches[0].slot == DMI_NONE;
868}
869
870/**
871 *	dmi_check_system - check system DMI data
872 *	@list: array of dmi_system_id structures to match against
873 *		All non-null elements of the list must match
874 *		their slot's (field index's) data (i.e., each
875 *		list string must be a substring of the specified
876 *		DMI slot's string data) to be considered a
877 *		successful match.
878 *
879 *	Walk the blacklist table running matching functions until someone
880 *	returns non zero or we hit the end. Callback function is called for
881 *	each successful match. Returns the number of matches.
882 *
883 *	dmi_setup must be called before this function is called.
884 */
885int dmi_check_system(const struct dmi_system_id *list)
886{
887	int count = 0;
888	const struct dmi_system_id *d;
889
890	for (d = list; !dmi_is_end_of_table(d); d++)
891		if (dmi_matches(d)) {
892			count++;
893			if (d->callback && d->callback(d))
894				break;
895		}
896
897	return count;
898}
899EXPORT_SYMBOL(dmi_check_system);
900
901/**
902 *	dmi_first_match - find dmi_system_id structure matching system DMI data
903 *	@list: array of dmi_system_id structures to match against
904 *		All non-null elements of the list must match
905 *		their slot's (field index's) data (i.e., each
906 *		list string must be a substring of the specified
907 *		DMI slot's string data) to be considered a
908 *		successful match.
909 *
910 *	Walk the blacklist table until the first match is found.  Return the
911 *	pointer to the matching entry or NULL if there's no match.
912 *
913 *	dmi_setup must be called before this function is called.
914 */
915const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
916{
917	const struct dmi_system_id *d;
918
919	for (d = list; !dmi_is_end_of_table(d); d++)
920		if (dmi_matches(d))
921			return d;
922
923	return NULL;
924}
925EXPORT_SYMBOL(dmi_first_match);
926
927/**
928 *	dmi_get_system_info - return DMI data value
929 *	@field: data index (see enum dmi_field)
930 *
931 *	Returns one DMI data value, can be used to perform
932 *	complex DMI data checks.
933 */
934const char *dmi_get_system_info(int field)
935{
936	return dmi_ident[field];
937}
938EXPORT_SYMBOL(dmi_get_system_info);
939
940/**
941 * dmi_name_in_serial - Check if string is in the DMI product serial information
942 * @str: string to check for
943 */
944int dmi_name_in_serial(const char *str)
945{
946	int f = DMI_PRODUCT_SERIAL;
947	if (dmi_ident[f] && strstr(dmi_ident[f], str))
948		return 1;
949	return 0;
950}
951
952/**
953 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
954 *	@str: Case sensitive Name
955 */
956int dmi_name_in_vendors(const char *str)
957{
958	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
959	int i;
960	for (i = 0; fields[i] != DMI_NONE; i++) {
961		int f = fields[i];
962		if (dmi_ident[f] && strstr(dmi_ident[f], str))
963			return 1;
964	}
965	return 0;
966}
967EXPORT_SYMBOL(dmi_name_in_vendors);
968
969/**
970 *	dmi_find_device - find onboard device by type/name
971 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
972 *	@name: device name string or %NULL to match all
973 *	@from: previous device found in search, or %NULL for new search.
974 *
975 *	Iterates through the list of known onboard devices. If a device is
976 *	found with a matching @type and @name, a pointer to its device
977 *	structure is returned.  Otherwise, %NULL is returned.
978 *	A new search is initiated by passing %NULL as the @from argument.
979 *	If @from is not %NULL, searches continue from next device.
980 */
981const struct dmi_device *dmi_find_device(int type, const char *name,
982				    const struct dmi_device *from)
983{
984	const struct list_head *head = from ? &from->list : &dmi_devices;
985	struct list_head *d;
986
987	for (d = head->next; d != &dmi_devices; d = d->next) {
988		const struct dmi_device *dev =
989			list_entry(d, struct dmi_device, list);
990
991		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
992		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
993			return dev;
994	}
995
996	return NULL;
997}
998EXPORT_SYMBOL(dmi_find_device);
999
1000/**
1001 *	dmi_get_date - parse a DMI date
1002 *	@field:	data index (see enum dmi_field)
1003 *	@yearp: optional out parameter for the year
1004 *	@monthp: optional out parameter for the month
1005 *	@dayp: optional out parameter for the day
1006 *
1007 *	The date field is assumed to be in the form resembling
1008 *	[mm[/dd]]/yy[yy] and the result is stored in the out
1009 *	parameters any or all of which can be omitted.
1010 *
1011 *	If the field doesn't exist, all out parameters are set to zero
1012 *	and false is returned.  Otherwise, true is returned with any
1013 *	invalid part of date set to zero.
1014 *
1015 *	On return, year, month and day are guaranteed to be in the
1016 *	range of [0,9999], [0,12] and [0,31] respectively.
1017 */
1018bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1019{
1020	int year = 0, month = 0, day = 0;
1021	bool exists;
1022	const char *s, *y;
1023	char *e;
1024
1025	s = dmi_get_system_info(field);
1026	exists = s;
1027	if (!exists)
1028		goto out;
1029
1030	/*
1031	 * Determine year first.  We assume the date string resembles
1032	 * mm/dd/yy[yy] but the original code extracted only the year
1033	 * from the end.  Keep the behavior in the spirit of no
1034	 * surprises.
1035	 */
1036	y = strrchr(s, '/');
1037	if (!y)
1038		goto out;
1039
1040	y++;
1041	year = simple_strtoul(y, &e, 10);
1042	if (y != e && year < 100) {	/* 2-digit year */
1043		year += 1900;
1044		if (year < 1996)	/* no dates < spec 1.0 */
1045			year += 100;
1046	}
1047	if (year > 9999)		/* year should fit in %04d */
1048		year = 0;
1049
1050	/* parse the mm and dd */
1051	month = simple_strtoul(s, &e, 10);
1052	if (s == e || *e != '/' || !month || month > 12) {
1053		month = 0;
1054		goto out;
1055	}
1056
1057	s = e + 1;
1058	day = simple_strtoul(s, &e, 10);
1059	if (s == y || s == e || *e != '/' || day > 31)
1060		day = 0;
1061out:
1062	if (yearp)
1063		*yearp = year;
1064	if (monthp)
1065		*monthp = month;
1066	if (dayp)
1067		*dayp = day;
1068	return exists;
1069}
1070EXPORT_SYMBOL(dmi_get_date);
1071
1072/**
1073 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1074 *
1075 *	Returns year on success, -ENXIO if DMI is not selected,
1076 *	or a different negative error code if DMI field is not present
1077 *	or not parseable.
1078 */
1079int dmi_get_bios_year(void)
1080{
1081	bool exists;
1082	int year;
1083
1084	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1085	if (!exists)
1086		return -ENODATA;
1087
1088	return year ? year : -ERANGE;
1089}
1090EXPORT_SYMBOL(dmi_get_bios_year);
1091
1092/**
1093 *	dmi_walk - Walk the DMI table and get called back for every record
1094 *	@decode: Callback function
1095 *	@private_data: Private data to be passed to the callback function
1096 *
1097 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1098 *	or a different negative error code if DMI walking fails.
1099 */
1100int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1101	     void *private_data)
1102{
1103	u8 *buf;
1104
1105	if (!dmi_available)
1106		return -ENXIO;
1107
1108	buf = dmi_remap(dmi_base, dmi_len);
1109	if (buf == NULL)
1110		return -ENOMEM;
1111
1112	dmi_decode_table(buf, decode, private_data);
1113
1114	dmi_unmap(buf);
1115	return 0;
1116}
1117EXPORT_SYMBOL_GPL(dmi_walk);
1118
1119/**
1120 * dmi_match - compare a string to the dmi field (if exists)
1121 * @f: DMI field identifier
1122 * @str: string to compare the DMI field to
1123 *
1124 * Returns true if the requested field equals to the str (including NULL).
1125 */
1126bool dmi_match(enum dmi_field f, const char *str)
1127{
1128	const char *info = dmi_get_system_info(f);
1129
1130	if (info == NULL || str == NULL)
1131		return info == str;
1132
1133	return !strcmp(info, str);
1134}
1135EXPORT_SYMBOL_GPL(dmi_match);
1136
1137void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1138{
1139	int n;
1140
1141	if (dmi_memdev == NULL)
1142		return;
1143
1144	for (n = 0; n < dmi_memdev_nr; n++) {
1145		if (handle == dmi_memdev[n].handle) {
1146			*bank = dmi_memdev[n].bank;
1147			*device = dmi_memdev[n].device;
1148			break;
1149		}
1150	}
1151}
1152EXPORT_SYMBOL_GPL(dmi_memdev_name);
1153
1154u64 dmi_memdev_size(u16 handle)
1155{
1156	int n;
1157
1158	if (dmi_memdev) {
1159		for (n = 0; n < dmi_memdev_nr; n++) {
1160			if (handle == dmi_memdev[n].handle)
1161				return dmi_memdev[n].size;
1162		}
1163	}
1164	return ~0ull;
1165}
1166EXPORT_SYMBOL_GPL(dmi_memdev_size);
1167
1168/**
1169 * dmi_memdev_type - get the memory type
1170 * @handle: DMI structure handle
1171 *
1172 * Return the DMI memory type of the module in the slot associated with the
1173 * given DMI handle, or 0x0 if no such DMI handle exists.
1174 */
1175u8 dmi_memdev_type(u16 handle)
1176{
1177	int n;
1178
1179	if (dmi_memdev) {
1180		for (n = 0; n < dmi_memdev_nr; n++) {
1181			if (handle == dmi_memdev[n].handle)
1182				return dmi_memdev[n].type;
1183		}
1184	}
1185	return 0x0;	/* Not a valid value */
1186}
1187EXPORT_SYMBOL_GPL(dmi_memdev_type);
1188
1189/**
1190 *	dmi_memdev_handle - get the DMI handle of a memory slot
1191 *	@slot: slot number
1192 *
1193 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1194 *      if there is no such slot.
1195 */
1196u16 dmi_memdev_handle(int slot)
1197{
1198	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1199		return dmi_memdev[slot].handle;
1200
1201	return 0xffff;	/* Not a valid value */
1202}
1203EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1204