1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bitops.h>
9#include <linux/bug.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/firewire.h>
15#include <linux/firewire-constants.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/mutex.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/string.h>
30#include <linux/time.h>
31#include <linux/vmalloc.h>
32#include <linux/workqueue.h>
33
34#include <asm/byteorder.h>
35#include <asm/page.h>
36
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
41#include "core.h"
42#include "ohci.h"
43
44#define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
45#define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
46#define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
47
48#define DESCRIPTOR_OUTPUT_MORE		0
49#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
50#define DESCRIPTOR_INPUT_MORE		(2 << 12)
51#define DESCRIPTOR_INPUT_LAST		(3 << 12)
52#define DESCRIPTOR_STATUS		(1 << 11)
53#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
54#define DESCRIPTOR_PING			(1 << 7)
55#define DESCRIPTOR_YY			(1 << 6)
56#define DESCRIPTOR_NO_IRQ		(0 << 4)
57#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
58#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
59#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
60#define DESCRIPTOR_WAIT			(3 << 0)
61
62#define DESCRIPTOR_CMD			(0xf << 12)
63
64struct descriptor {
65	__le16 req_count;
66	__le16 control;
67	__le32 data_address;
68	__le32 branch_address;
69	__le16 res_count;
70	__le16 transfer_status;
71} __attribute__((aligned(16)));
72
73#define CONTROL_SET(regs)	(regs)
74#define CONTROL_CLEAR(regs)	((regs) + 4)
75#define COMMAND_PTR(regs)	((regs) + 12)
76#define CONTEXT_MATCH(regs)	((regs) + 16)
77
78#define AR_BUFFER_SIZE	(32*1024)
79#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80/* we need at least two pages for proper list management */
81#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83#define MAX_ASYNC_PAYLOAD	4096
84#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
85#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87struct ar_context {
88	struct fw_ohci *ohci;
89	struct page *pages[AR_BUFFERS];
90	void *buffer;
91	struct descriptor *descriptors;
92	dma_addr_t descriptors_bus;
93	void *pointer;
94	unsigned int last_buffer_index;
95	u32 regs;
96	struct tasklet_struct tasklet;
97};
98
99struct context;
100
101typedef int (*descriptor_callback_t)(struct context *ctx,
102				     struct descriptor *d,
103				     struct descriptor *last);
104
105/*
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
108 */
109struct descriptor_buffer {
110	struct list_head list;
111	dma_addr_t buffer_bus;
112	size_t buffer_size;
113	size_t used;
114	struct descriptor buffer[];
115};
116
117struct context {
118	struct fw_ohci *ohci;
119	u32 regs;
120	int total_allocation;
121	u32 current_bus;
122	bool running;
123	bool flushing;
124
125	/*
126	 * List of page-sized buffers for storing DMA descriptors.
127	 * Head of list contains buffers in use and tail of list contains
128	 * free buffers.
129	 */
130	struct list_head buffer_list;
131
132	/*
133	 * Pointer to a buffer inside buffer_list that contains the tail
134	 * end of the current DMA program.
135	 */
136	struct descriptor_buffer *buffer_tail;
137
138	/*
139	 * The descriptor containing the branch address of the first
140	 * descriptor that has not yet been filled by the device.
141	 */
142	struct descriptor *last;
143
144	/*
145	 * The last descriptor block in the DMA program. It contains the branch
146	 * address that must be updated upon appending a new descriptor.
147	 */
148	struct descriptor *prev;
149	int prev_z;
150
151	descriptor_callback_t callback;
152
153	struct tasklet_struct tasklet;
154};
155
156#define IT_HEADER_SY(v)          ((v) <<  0)
157#define IT_HEADER_TCODE(v)       ((v) <<  4)
158#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159#define IT_HEADER_TAG(v)         ((v) << 14)
160#define IT_HEADER_SPEED(v)       ((v) << 16)
161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163struct iso_context {
164	struct fw_iso_context base;
165	struct context context;
166	void *header;
167	size_t header_length;
168	unsigned long flushing_completions;
169	u32 mc_buffer_bus;
170	u16 mc_completed;
171	u16 last_timestamp;
172	u8 sync;
173	u8 tags;
174};
175
176#define CONFIG_ROM_SIZE 1024
177
178struct fw_ohci {
179	struct fw_card card;
180
181	__iomem char *registers;
182	int node_id;
183	int generation;
184	int request_generation;	/* for timestamping incoming requests */
185	unsigned quirks;
186	unsigned int pri_req_max;
187	u32 bus_time;
188	bool bus_time_running;
189	bool is_root;
190	bool csr_state_setclear_abdicate;
191	int n_ir;
192	int n_it;
193	/*
194	 * Spinlock for accessing fw_ohci data.  Never call out of
195	 * this driver with this lock held.
196	 */
197	spinlock_t lock;
198
199	struct mutex phy_reg_mutex;
200
201	void *misc_buffer;
202	dma_addr_t misc_buffer_bus;
203
204	struct ar_context ar_request_ctx;
205	struct ar_context ar_response_ctx;
206	struct context at_request_ctx;
207	struct context at_response_ctx;
208
209	u32 it_context_support;
210	u32 it_context_mask;     /* unoccupied IT contexts */
211	struct iso_context *it_context_list;
212	u64 ir_context_channels; /* unoccupied channels */
213	u32 ir_context_support;
214	u32 ir_context_mask;     /* unoccupied IR contexts */
215	struct iso_context *ir_context_list;
216	u64 mc_channels; /* channels in use by the multichannel IR context */
217	bool mc_allocated;
218
219	__be32    *config_rom;
220	dma_addr_t config_rom_bus;
221	__be32    *next_config_rom;
222	dma_addr_t next_config_rom_bus;
223	__be32     next_header;
224
225	__le32    *self_id;
226	dma_addr_t self_id_bus;
227	struct work_struct bus_reset_work;
228
229	u32 self_id_buffer[512];
230};
231
232static struct workqueue_struct *selfid_workqueue;
233
234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235{
236	return container_of(card, struct fw_ohci, card);
237}
238
239#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240#define IR_CONTEXT_BUFFER_FILL		0x80000000
241#define IR_CONTEXT_ISOCH_HEADER		0x40000000
242#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245
246#define CONTEXT_RUN	0x8000
247#define CONTEXT_WAKE	0x1000
248#define CONTEXT_DEAD	0x0800
249#define CONTEXT_ACTIVE	0x0400
250
251#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254
255#define OHCI1394_REGISTER_SIZE		0x800
256#define OHCI1394_PCI_HCI_Control	0x40
257#define SELF_ID_BUF_SIZE		0x800
258#define OHCI_TCODE_PHY_PACKET		0x0e
259#define OHCI_VERSION_1_1		0x010010
260
261static char ohci_driver_name[] = KBUILD_MODNAME;
262
263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
264#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265#define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268#define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269#define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270#define PCI_DEVICE_ID_VIA_VT630X	0x3044
271#define PCI_REV_ID_VIA_VT6306		0x46
272#define PCI_DEVICE_ID_VIA_VT6315	0x3403
273
274#define QUIRK_CYCLE_TIMER		0x1
275#define QUIRK_RESET_PACKET		0x2
276#define QUIRK_BE_HEADERS		0x4
277#define QUIRK_NO_1394A			0x8
278#define QUIRK_NO_MSI			0x10
279#define QUIRK_TI_SLLZ059		0x20
280#define QUIRK_IR_WAKE			0x40
281
282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286// while it is probable due to detection of any type of PCIe error.
287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
288
289#if IS_ENABLED(CONFIG_X86)
290
291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292{
293	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294}
295
296#define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
297
298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299{
300	const struct pci_dev *pcie_to_pci_bridge;
301
302	// Detect any type of AMD Ryzen machine.
303	if (!static_cpu_has(X86_FEATURE_ZEN))
304		return false;
305
306	// Detect VIA VT6306/6307/6308.
307	if (pdev->vendor != PCI_VENDOR_ID_VIA)
308		return false;
309	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310		return false;
311
312	// Detect Asmedia ASM1083/1085.
313	pcie_to_pci_bridge = pdev->bus->self;
314	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315		return false;
316	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317		return false;
318
319	return true;
320}
321
322#else
323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
325#endif
326
327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
328static const struct {
329	unsigned short vendor, device, revision, flags;
330} ohci_quirks[] = {
331	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332		QUIRK_CYCLE_TIMER},
333
334	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335		QUIRK_BE_HEADERS},
336
337	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338		QUIRK_NO_MSI},
339
340	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341		QUIRK_RESET_PACKET},
342
343	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344		QUIRK_NO_MSI},
345
346	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347		QUIRK_CYCLE_TIMER},
348
349	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350		QUIRK_NO_MSI},
351
352	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365		QUIRK_RESET_PACKET},
366
367	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374		QUIRK_NO_MSI},
375
376	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378};
379
380/* This overrides anything that was found in ohci_quirks[]. */
381static int param_quirks;
382module_param_named(quirks, param_quirks, int, 0644);
383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
385	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
386	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
387	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
388	", disable MSI = "		__stringify(QUIRK_NO_MSI)
389	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
390	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
391	")");
392
393#define OHCI_PARAM_DEBUG_AT_AR		1
394#define OHCI_PARAM_DEBUG_SELFIDS	2
395#define OHCI_PARAM_DEBUG_IRQS		4
396#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
397
398static int param_debug;
399module_param_named(debug, param_debug, int, 0644);
400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
402	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
403	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
404	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405	", or a combination, or all = -1)");
406
407static bool param_remote_dma;
408module_param_named(remote_dma, param_remote_dma, bool, 0444);
409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410
411static void log_irqs(struct fw_ohci *ohci, u32 evt)
412{
413	if (likely(!(param_debug &
414			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415		return;
416
417	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418	    !(evt & OHCI1394_busReset))
419		return;
420
421	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
423	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
424	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
425	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
426	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
427	    evt & OHCI1394_isochRx		? " IR"			: "",
428	    evt & OHCI1394_isochTx		? " IT"			: "",
429	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
430	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
431	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
432	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
433	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
434	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
435	    evt & OHCI1394_busReset		? " busReset"		: "",
436	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438		    OHCI1394_respTxComplete | OHCI1394_isochRx |
439		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
440		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441		    OHCI1394_cycleInconsistent |
442		    OHCI1394_regAccessFail | OHCI1394_busReset)
443						? " ?"			: "");
444}
445
446static const char *speed[] = {
447	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448};
449static const char *power[] = {
450	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452};
453static const char port[] = { '.', '-', 'p', 'c', };
454
455static char _p(u32 *s, int shift)
456{
457	return port[*s >> shift & 3];
458}
459
460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461{
462	u32 *s;
463
464	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465		return;
466
467	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468		    self_id_count, generation, ohci->node_id);
469
470	for (s = ohci->self_id_buffer; self_id_count--; ++s)
471		if ((*s & 1 << 23) == 0)
472			ohci_notice(ohci,
473			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475			    speed[*s >> 14 & 3], *s >> 16 & 63,
476			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478		else
479			ohci_notice(ohci,
480			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481			    *s, *s >> 24 & 63,
482			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484}
485
486static const char *evts[] = {
487	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
488	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
489	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
490	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
491	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
492	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
493	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
494	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
495	[0x10] = "-reserved-",		[0x11] = "ack_complete",
496	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
497	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
498	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
499	[0x18] = "-reserved-",		[0x19] = "-reserved-",
500	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
501	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
502	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
503	[0x20] = "pending/cancelled",
504};
505static const char *tcodes[] = {
506	[0x0] = "QW req",		[0x1] = "BW req",
507	[0x2] = "W resp",		[0x3] = "-reserved-",
508	[0x4] = "QR req",		[0x5] = "BR req",
509	[0x6] = "QR resp",		[0x7] = "BR resp",
510	[0x8] = "cycle start",		[0x9] = "Lk req",
511	[0xa] = "async stream packet",	[0xb] = "Lk resp",
512	[0xc] = "-reserved-",		[0xd] = "-reserved-",
513	[0xe] = "link internal",	[0xf] = "-reserved-",
514};
515
516static void log_ar_at_event(struct fw_ohci *ohci,
517			    char dir, int speed, u32 *header, int evt)
518{
519	int tcode = header[0] >> 4 & 0xf;
520	char specific[12];
521
522	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523		return;
524
525	if (unlikely(evt >= ARRAY_SIZE(evts)))
526			evt = 0x1f;
527
528	if (evt == OHCI1394_evt_bus_reset) {
529		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530			    dir, (header[2] >> 16) & 0xff);
531		return;
532	}
533
534	switch (tcode) {
535	case 0x0: case 0x6: case 0x8:
536		snprintf(specific, sizeof(specific), " = %08x",
537			 be32_to_cpu((__force __be32)header[3]));
538		break;
539	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540		snprintf(specific, sizeof(specific), " %x,%x",
541			 header[3] >> 16, header[3] & 0xffff);
542		break;
543	default:
544		specific[0] = '\0';
545	}
546
547	switch (tcode) {
548	case 0xa:
549		ohci_notice(ohci, "A%c %s, %s\n",
550			    dir, evts[evt], tcodes[tcode]);
551		break;
552	case 0xe:
553		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554			    dir, evts[evt], header[1], header[2]);
555		break;
556	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557		ohci_notice(ohci,
558			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559			    dir, speed, header[0] >> 10 & 0x3f,
560			    header[1] >> 16, header[0] >> 16, evts[evt],
561			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
562		break;
563	default:
564		ohci_notice(ohci,
565			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566			    dir, speed, header[0] >> 10 & 0x3f,
567			    header[1] >> 16, header[0] >> 16, evts[evt],
568			    tcodes[tcode], specific);
569	}
570}
571
572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573{
574	writel(data, ohci->registers + offset);
575}
576
577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578{
579	return readl(ohci->registers + offset);
580}
581
582static inline void flush_writes(const struct fw_ohci *ohci)
583{
584	/* Do a dummy read to flush writes. */
585	reg_read(ohci, OHCI1394_Version);
586}
587
588/*
589 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593 */
594static int read_phy_reg(struct fw_ohci *ohci, int addr)
595{
596	u32 val;
597	int i;
598
599	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600	for (i = 0; i < 3 + 100; i++) {
601		val = reg_read(ohci, OHCI1394_PhyControl);
602		if (!~val)
603			return -ENODEV; /* Card was ejected. */
604
605		if (val & OHCI1394_PhyControl_ReadDone)
606			return OHCI1394_PhyControl_ReadData(val);
607
608		/*
609		 * Try a few times without waiting.  Sleeping is necessary
610		 * only when the link/PHY interface is busy.
611		 */
612		if (i >= 3)
613			msleep(1);
614	}
615	ohci_err(ohci, "failed to read phy reg %d\n", addr);
616	dump_stack();
617
618	return -EBUSY;
619}
620
621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622{
623	int i;
624
625	reg_write(ohci, OHCI1394_PhyControl,
626		  OHCI1394_PhyControl_Write(addr, val));
627	for (i = 0; i < 3 + 100; i++) {
628		val = reg_read(ohci, OHCI1394_PhyControl);
629		if (!~val)
630			return -ENODEV; /* Card was ejected. */
631
632		if (!(val & OHCI1394_PhyControl_WritePending))
633			return 0;
634
635		if (i >= 3)
636			msleep(1);
637	}
638	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639	dump_stack();
640
641	return -EBUSY;
642}
643
644static int update_phy_reg(struct fw_ohci *ohci, int addr,
645			  int clear_bits, int set_bits)
646{
647	int ret = read_phy_reg(ohci, addr);
648	if (ret < 0)
649		return ret;
650
651	/*
652	 * The interrupt status bits are cleared by writing a one bit.
653	 * Avoid clearing them unless explicitly requested in set_bits.
654	 */
655	if (addr == 5)
656		clear_bits |= PHY_INT_STATUS_BITS;
657
658	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659}
660
661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662{
663	int ret;
664
665	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666	if (ret < 0)
667		return ret;
668
669	return read_phy_reg(ohci, addr);
670}
671
672static int ohci_read_phy_reg(struct fw_card *card, int addr)
673{
674	struct fw_ohci *ohci = fw_ohci(card);
675	int ret;
676
677	mutex_lock(&ohci->phy_reg_mutex);
678	ret = read_phy_reg(ohci, addr);
679	mutex_unlock(&ohci->phy_reg_mutex);
680
681	return ret;
682}
683
684static int ohci_update_phy_reg(struct fw_card *card, int addr,
685			       int clear_bits, int set_bits)
686{
687	struct fw_ohci *ohci = fw_ohci(card);
688	int ret;
689
690	mutex_lock(&ohci->phy_reg_mutex);
691	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692	mutex_unlock(&ohci->phy_reg_mutex);
693
694	return ret;
695}
696
697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698{
699	return page_private(ctx->pages[i]);
700}
701
702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703{
704	struct descriptor *d;
705
706	d = &ctx->descriptors[index];
707	d->branch_address  &= cpu_to_le32(~0xf);
708	d->res_count       =  cpu_to_le16(PAGE_SIZE);
709	d->transfer_status =  0;
710
711	wmb(); /* finish init of new descriptors before branch_address update */
712	d = &ctx->descriptors[ctx->last_buffer_index];
713	d->branch_address  |= cpu_to_le32(1);
714
715	ctx->last_buffer_index = index;
716
717	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718}
719
720static void ar_context_release(struct ar_context *ctx)
721{
722	struct device *dev = ctx->ohci->card.device;
723	unsigned int i;
724
725	vunmap(ctx->buffer);
726
727	for (i = 0; i < AR_BUFFERS; i++) {
728		if (ctx->pages[i])
729			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
730				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
731	}
732}
733
734static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
735{
736	struct fw_ohci *ohci = ctx->ohci;
737
738	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
739		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
740		flush_writes(ohci);
741
742		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
743	}
744	/* FIXME: restart? */
745}
746
747static inline unsigned int ar_next_buffer_index(unsigned int index)
748{
749	return (index + 1) % AR_BUFFERS;
750}
751
752static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
753{
754	return ar_next_buffer_index(ctx->last_buffer_index);
755}
756
757/*
758 * We search for the buffer that contains the last AR packet DMA data written
759 * by the controller.
760 */
761static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
762						 unsigned int *buffer_offset)
763{
764	unsigned int i, next_i, last = ctx->last_buffer_index;
765	__le16 res_count, next_res_count;
766
767	i = ar_first_buffer_index(ctx);
768	res_count = READ_ONCE(ctx->descriptors[i].res_count);
769
770	/* A buffer that is not yet completely filled must be the last one. */
771	while (i != last && res_count == 0) {
772
773		/* Peek at the next descriptor. */
774		next_i = ar_next_buffer_index(i);
775		rmb(); /* read descriptors in order */
776		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
777		/*
778		 * If the next descriptor is still empty, we must stop at this
779		 * descriptor.
780		 */
781		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
782			/*
783			 * The exception is when the DMA data for one packet is
784			 * split over three buffers; in this case, the middle
785			 * buffer's descriptor might be never updated by the
786			 * controller and look still empty, and we have to peek
787			 * at the third one.
788			 */
789			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
790				next_i = ar_next_buffer_index(next_i);
791				rmb();
792				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
793				if (next_res_count != cpu_to_le16(PAGE_SIZE))
794					goto next_buffer_is_active;
795			}
796
797			break;
798		}
799
800next_buffer_is_active:
801		i = next_i;
802		res_count = next_res_count;
803	}
804
805	rmb(); /* read res_count before the DMA data */
806
807	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
808	if (*buffer_offset > PAGE_SIZE) {
809		*buffer_offset = 0;
810		ar_context_abort(ctx, "corrupted descriptor");
811	}
812
813	return i;
814}
815
816static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
817				    unsigned int end_buffer_index,
818				    unsigned int end_buffer_offset)
819{
820	unsigned int i;
821
822	i = ar_first_buffer_index(ctx);
823	while (i != end_buffer_index) {
824		dma_sync_single_for_cpu(ctx->ohci->card.device,
825					ar_buffer_bus(ctx, i),
826					PAGE_SIZE, DMA_FROM_DEVICE);
827		i = ar_next_buffer_index(i);
828	}
829	if (end_buffer_offset > 0)
830		dma_sync_single_for_cpu(ctx->ohci->card.device,
831					ar_buffer_bus(ctx, i),
832					end_buffer_offset, DMA_FROM_DEVICE);
833}
834
835#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
836#define cond_le32_to_cpu(v) \
837	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
838#else
839#define cond_le32_to_cpu(v) le32_to_cpu(v)
840#endif
841
842static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
843{
844	struct fw_ohci *ohci = ctx->ohci;
845	struct fw_packet p;
846	u32 status, length, tcode;
847	int evt;
848
849	p.header[0] = cond_le32_to_cpu(buffer[0]);
850	p.header[1] = cond_le32_to_cpu(buffer[1]);
851	p.header[2] = cond_le32_to_cpu(buffer[2]);
852
853	tcode = (p.header[0] >> 4) & 0x0f;
854	switch (tcode) {
855	case TCODE_WRITE_QUADLET_REQUEST:
856	case TCODE_READ_QUADLET_RESPONSE:
857		p.header[3] = (__force __u32) buffer[3];
858		p.header_length = 16;
859		p.payload_length = 0;
860		break;
861
862	case TCODE_READ_BLOCK_REQUEST :
863		p.header[3] = cond_le32_to_cpu(buffer[3]);
864		p.header_length = 16;
865		p.payload_length = 0;
866		break;
867
868	case TCODE_WRITE_BLOCK_REQUEST:
869	case TCODE_READ_BLOCK_RESPONSE:
870	case TCODE_LOCK_REQUEST:
871	case TCODE_LOCK_RESPONSE:
872		p.header[3] = cond_le32_to_cpu(buffer[3]);
873		p.header_length = 16;
874		p.payload_length = p.header[3] >> 16;
875		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
876			ar_context_abort(ctx, "invalid packet length");
877			return NULL;
878		}
879		break;
880
881	case TCODE_WRITE_RESPONSE:
882	case TCODE_READ_QUADLET_REQUEST:
883	case OHCI_TCODE_PHY_PACKET:
884		p.header_length = 12;
885		p.payload_length = 0;
886		break;
887
888	default:
889		ar_context_abort(ctx, "invalid tcode");
890		return NULL;
891	}
892
893	p.payload = (void *) buffer + p.header_length;
894
895	/* FIXME: What to do about evt_* errors? */
896	length = (p.header_length + p.payload_length + 3) / 4;
897	status = cond_le32_to_cpu(buffer[length]);
898	evt    = (status >> 16) & 0x1f;
899
900	p.ack        = evt - 16;
901	p.speed      = (status >> 21) & 0x7;
902	p.timestamp  = status & 0xffff;
903	p.generation = ohci->request_generation;
904
905	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
906
907	/*
908	 * Several controllers, notably from NEC and VIA, forget to
909	 * write ack_complete status at PHY packet reception.
910	 */
911	if (evt == OHCI1394_evt_no_status &&
912	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
913		p.ack = ACK_COMPLETE;
914
915	/*
916	 * The OHCI bus reset handler synthesizes a PHY packet with
917	 * the new generation number when a bus reset happens (see
918	 * section 8.4.2.3).  This helps us determine when a request
919	 * was received and make sure we send the response in the same
920	 * generation.  We only need this for requests; for responses
921	 * we use the unique tlabel for finding the matching
922	 * request.
923	 *
924	 * Alas some chips sometimes emit bus reset packets with a
925	 * wrong generation.  We set the correct generation for these
926	 * at a slightly incorrect time (in bus_reset_work).
927	 */
928	if (evt == OHCI1394_evt_bus_reset) {
929		if (!(ohci->quirks & QUIRK_RESET_PACKET))
930			ohci->request_generation = (p.header[2] >> 16) & 0xff;
931	} else if (ctx == &ohci->ar_request_ctx) {
932		fw_core_handle_request(&ohci->card, &p);
933	} else {
934		fw_core_handle_response(&ohci->card, &p);
935	}
936
937	return buffer + length + 1;
938}
939
940static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
941{
942	void *next;
943
944	while (p < end) {
945		next = handle_ar_packet(ctx, p);
946		if (!next)
947			return p;
948		p = next;
949	}
950
951	return p;
952}
953
954static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
955{
956	unsigned int i;
957
958	i = ar_first_buffer_index(ctx);
959	while (i != end_buffer) {
960		dma_sync_single_for_device(ctx->ohci->card.device,
961					   ar_buffer_bus(ctx, i),
962					   PAGE_SIZE, DMA_FROM_DEVICE);
963		ar_context_link_page(ctx, i);
964		i = ar_next_buffer_index(i);
965	}
966}
967
968static void ar_context_tasklet(unsigned long data)
969{
970	struct ar_context *ctx = (struct ar_context *)data;
971	unsigned int end_buffer_index, end_buffer_offset;
972	void *p, *end;
973
974	p = ctx->pointer;
975	if (!p)
976		return;
977
978	end_buffer_index = ar_search_last_active_buffer(ctx,
979							&end_buffer_offset);
980	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
981	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
982
983	if (end_buffer_index < ar_first_buffer_index(ctx)) {
984		/*
985		 * The filled part of the overall buffer wraps around; handle
986		 * all packets up to the buffer end here.  If the last packet
987		 * wraps around, its tail will be visible after the buffer end
988		 * because the buffer start pages are mapped there again.
989		 */
990		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
991		p = handle_ar_packets(ctx, p, buffer_end);
992		if (p < buffer_end)
993			goto error;
994		/* adjust p to point back into the actual buffer */
995		p -= AR_BUFFERS * PAGE_SIZE;
996	}
997
998	p = handle_ar_packets(ctx, p, end);
999	if (p != end) {
1000		if (p > end)
1001			ar_context_abort(ctx, "inconsistent descriptor");
1002		goto error;
1003	}
1004
1005	ctx->pointer = p;
1006	ar_recycle_buffers(ctx, end_buffer_index);
1007
1008	return;
1009
1010error:
1011	ctx->pointer = NULL;
1012}
1013
1014static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1015			   unsigned int descriptors_offset, u32 regs)
1016{
1017	struct device *dev = ohci->card.device;
1018	unsigned int i;
1019	dma_addr_t dma_addr;
1020	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1021	struct descriptor *d;
1022
1023	ctx->regs        = regs;
1024	ctx->ohci        = ohci;
1025	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1026
1027	for (i = 0; i < AR_BUFFERS; i++) {
1028		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1029						DMA_FROM_DEVICE, GFP_KERNEL);
1030		if (!ctx->pages[i])
1031			goto out_of_memory;
1032		set_page_private(ctx->pages[i], dma_addr);
1033		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1034					   DMA_FROM_DEVICE);
1035	}
1036
1037	for (i = 0; i < AR_BUFFERS; i++)
1038		pages[i]              = ctx->pages[i];
1039	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1040		pages[AR_BUFFERS + i] = ctx->pages[i];
1041	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1042	if (!ctx->buffer)
1043		goto out_of_memory;
1044
1045	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1046	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1047
1048	for (i = 0; i < AR_BUFFERS; i++) {
1049		d = &ctx->descriptors[i];
1050		d->req_count      = cpu_to_le16(PAGE_SIZE);
1051		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1052						DESCRIPTOR_STATUS |
1053						DESCRIPTOR_BRANCH_ALWAYS);
1054		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1055		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1056			ar_next_buffer_index(i) * sizeof(struct descriptor));
1057	}
1058
1059	return 0;
1060
1061out_of_memory:
1062	ar_context_release(ctx);
1063
1064	return -ENOMEM;
1065}
1066
1067static void ar_context_run(struct ar_context *ctx)
1068{
1069	unsigned int i;
1070
1071	for (i = 0; i < AR_BUFFERS; i++)
1072		ar_context_link_page(ctx, i);
1073
1074	ctx->pointer = ctx->buffer;
1075
1076	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1077	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1078}
1079
1080static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1081{
1082	__le16 branch;
1083
1084	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1085
1086	/* figure out which descriptor the branch address goes in */
1087	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1088		return d;
1089	else
1090		return d + z - 1;
1091}
1092
1093static void context_tasklet(unsigned long data)
1094{
1095	struct context *ctx = (struct context *) data;
1096	struct descriptor *d, *last;
1097	u32 address;
1098	int z;
1099	struct descriptor_buffer *desc;
1100
1101	desc = list_entry(ctx->buffer_list.next,
1102			struct descriptor_buffer, list);
1103	last = ctx->last;
1104	while (last->branch_address != 0) {
1105		struct descriptor_buffer *old_desc = desc;
1106		address = le32_to_cpu(last->branch_address);
1107		z = address & 0xf;
1108		address &= ~0xf;
1109		ctx->current_bus = address;
1110
1111		/* If the branch address points to a buffer outside of the
1112		 * current buffer, advance to the next buffer. */
1113		if (address < desc->buffer_bus ||
1114				address >= desc->buffer_bus + desc->used)
1115			desc = list_entry(desc->list.next,
1116					struct descriptor_buffer, list);
1117		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1118		last = find_branch_descriptor(d, z);
1119
1120		if (!ctx->callback(ctx, d, last))
1121			break;
1122
1123		if (old_desc != desc) {
1124			/* If we've advanced to the next buffer, move the
1125			 * previous buffer to the free list. */
1126			unsigned long flags;
1127			old_desc->used = 0;
1128			spin_lock_irqsave(&ctx->ohci->lock, flags);
1129			list_move_tail(&old_desc->list, &ctx->buffer_list);
1130			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1131		}
1132		ctx->last = last;
1133	}
1134}
1135
1136/*
1137 * Allocate a new buffer and add it to the list of free buffers for this
1138 * context.  Must be called with ohci->lock held.
1139 */
1140static int context_add_buffer(struct context *ctx)
1141{
1142	struct descriptor_buffer *desc;
1143	dma_addr_t bus_addr;
1144	int offset;
1145
1146	/*
1147	 * 16MB of descriptors should be far more than enough for any DMA
1148	 * program.  This will catch run-away userspace or DoS attacks.
1149	 */
1150	if (ctx->total_allocation >= 16*1024*1024)
1151		return -ENOMEM;
1152
1153	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1154			&bus_addr, GFP_ATOMIC);
1155	if (!desc)
1156		return -ENOMEM;
1157
1158	offset = (void *)&desc->buffer - (void *)desc;
1159	/*
1160	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1161	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1162	 * an IOMMU is in use and the oversized read crosses a page boundary.
1163	 * Work around this by always leaving at least 0x10 bytes of padding.
1164	 */
1165	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1166	desc->buffer_bus = bus_addr + offset;
1167	desc->used = 0;
1168
1169	list_add_tail(&desc->list, &ctx->buffer_list);
1170	ctx->total_allocation += PAGE_SIZE;
1171
1172	return 0;
1173}
1174
1175static int context_init(struct context *ctx, struct fw_ohci *ohci,
1176			u32 regs, descriptor_callback_t callback)
1177{
1178	ctx->ohci = ohci;
1179	ctx->regs = regs;
1180	ctx->total_allocation = 0;
1181
1182	INIT_LIST_HEAD(&ctx->buffer_list);
1183	if (context_add_buffer(ctx) < 0)
1184		return -ENOMEM;
1185
1186	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1187			struct descriptor_buffer, list);
1188
1189	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1190	ctx->callback = callback;
1191
1192	/*
1193	 * We put a dummy descriptor in the buffer that has a NULL
1194	 * branch address and looks like it's been sent.  That way we
1195	 * have a descriptor to append DMA programs to.
1196	 */
1197	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1198	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1199	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1200	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1201	ctx->last = ctx->buffer_tail->buffer;
1202	ctx->prev = ctx->buffer_tail->buffer;
1203	ctx->prev_z = 1;
1204
1205	return 0;
1206}
1207
1208static void context_release(struct context *ctx)
1209{
1210	struct fw_card *card = &ctx->ohci->card;
1211	struct descriptor_buffer *desc, *tmp;
1212
1213	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1214		dma_free_coherent(card->device, PAGE_SIZE, desc,
1215			desc->buffer_bus -
1216			((void *)&desc->buffer - (void *)desc));
1217}
1218
1219/* Must be called with ohci->lock held */
1220static struct descriptor *context_get_descriptors(struct context *ctx,
1221						  int z, dma_addr_t *d_bus)
1222{
1223	struct descriptor *d = NULL;
1224	struct descriptor_buffer *desc = ctx->buffer_tail;
1225
1226	if (z * sizeof(*d) > desc->buffer_size)
1227		return NULL;
1228
1229	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1230		/* No room for the descriptor in this buffer, so advance to the
1231		 * next one. */
1232
1233		if (desc->list.next == &ctx->buffer_list) {
1234			/* If there is no free buffer next in the list,
1235			 * allocate one. */
1236			if (context_add_buffer(ctx) < 0)
1237				return NULL;
1238		}
1239		desc = list_entry(desc->list.next,
1240				struct descriptor_buffer, list);
1241		ctx->buffer_tail = desc;
1242	}
1243
1244	d = desc->buffer + desc->used / sizeof(*d);
1245	memset(d, 0, z * sizeof(*d));
1246	*d_bus = desc->buffer_bus + desc->used;
1247
1248	return d;
1249}
1250
1251static void context_run(struct context *ctx, u32 extra)
1252{
1253	struct fw_ohci *ohci = ctx->ohci;
1254
1255	reg_write(ohci, COMMAND_PTR(ctx->regs),
1256		  le32_to_cpu(ctx->last->branch_address));
1257	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1258	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1259	ctx->running = true;
1260	flush_writes(ohci);
1261}
1262
1263static void context_append(struct context *ctx,
1264			   struct descriptor *d, int z, int extra)
1265{
1266	dma_addr_t d_bus;
1267	struct descriptor_buffer *desc = ctx->buffer_tail;
1268	struct descriptor *d_branch;
1269
1270	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1271
1272	desc->used += (z + extra) * sizeof(*d);
1273
1274	wmb(); /* finish init of new descriptors before branch_address update */
1275
1276	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1277	d_branch->branch_address = cpu_to_le32(d_bus | z);
1278
1279	/*
1280	 * VT6306 incorrectly checks only the single descriptor at the
1281	 * CommandPtr when the wake bit is written, so if it's a
1282	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1283	 * the branch address in the first descriptor.
1284	 *
1285	 * Not doing this for transmit contexts since not sure how it interacts
1286	 * with skip addresses.
1287	 */
1288	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1289	    d_branch != ctx->prev &&
1290	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1291	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1292		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1293	}
1294
1295	ctx->prev = d;
1296	ctx->prev_z = z;
1297}
1298
1299static void context_stop(struct context *ctx)
1300{
1301	struct fw_ohci *ohci = ctx->ohci;
1302	u32 reg;
1303	int i;
1304
1305	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1306	ctx->running = false;
1307
1308	for (i = 0; i < 1000; i++) {
1309		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1310		if ((reg & CONTEXT_ACTIVE) == 0)
1311			return;
1312
1313		if (i)
1314			udelay(10);
1315	}
1316	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1317}
1318
1319struct driver_data {
1320	u8 inline_data[8];
1321	struct fw_packet *packet;
1322};
1323
1324/*
1325 * This function apppends a packet to the DMA queue for transmission.
1326 * Must always be called with the ochi->lock held to ensure proper
1327 * generation handling and locking around packet queue manipulation.
1328 */
1329static int at_context_queue_packet(struct context *ctx,
1330				   struct fw_packet *packet)
1331{
1332	struct fw_ohci *ohci = ctx->ohci;
1333	dma_addr_t d_bus, payload_bus;
1334	struct driver_data *driver_data;
1335	struct descriptor *d, *last;
1336	__le32 *header;
1337	int z, tcode;
1338
1339	d = context_get_descriptors(ctx, 4, &d_bus);
1340	if (d == NULL) {
1341		packet->ack = RCODE_SEND_ERROR;
1342		return -1;
1343	}
1344
1345	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1346	d[0].res_count = cpu_to_le16(packet->timestamp);
1347
1348	/*
1349	 * The DMA format for asynchronous link packets is different
1350	 * from the IEEE1394 layout, so shift the fields around
1351	 * accordingly.
1352	 */
1353
1354	tcode = (packet->header[0] >> 4) & 0x0f;
1355	header = (__le32 *) &d[1];
1356	switch (tcode) {
1357	case TCODE_WRITE_QUADLET_REQUEST:
1358	case TCODE_WRITE_BLOCK_REQUEST:
1359	case TCODE_WRITE_RESPONSE:
1360	case TCODE_READ_QUADLET_REQUEST:
1361	case TCODE_READ_BLOCK_REQUEST:
1362	case TCODE_READ_QUADLET_RESPONSE:
1363	case TCODE_READ_BLOCK_RESPONSE:
1364	case TCODE_LOCK_REQUEST:
1365	case TCODE_LOCK_RESPONSE:
1366		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1367					(packet->speed << 16));
1368		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1369					(packet->header[0] & 0xffff0000));
1370		header[2] = cpu_to_le32(packet->header[2]);
1371
1372		if (TCODE_IS_BLOCK_PACKET(tcode))
1373			header[3] = cpu_to_le32(packet->header[3]);
1374		else
1375			header[3] = (__force __le32) packet->header[3];
1376
1377		d[0].req_count = cpu_to_le16(packet->header_length);
1378		break;
1379
1380	case TCODE_LINK_INTERNAL:
1381		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1382					(packet->speed << 16));
1383		header[1] = cpu_to_le32(packet->header[1]);
1384		header[2] = cpu_to_le32(packet->header[2]);
1385		d[0].req_count = cpu_to_le16(12);
1386
1387		if (is_ping_packet(&packet->header[1]))
1388			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1389		break;
1390
1391	case TCODE_STREAM_DATA:
1392		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1393					(packet->speed << 16));
1394		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1395		d[0].req_count = cpu_to_le16(8);
1396		break;
1397
1398	default:
1399		/* BUG(); */
1400		packet->ack = RCODE_SEND_ERROR;
1401		return -1;
1402	}
1403
1404	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1405	driver_data = (struct driver_data *) &d[3];
1406	driver_data->packet = packet;
1407	packet->driver_data = driver_data;
1408
1409	if (packet->payload_length > 0) {
1410		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1411			payload_bus = dma_map_single(ohci->card.device,
1412						     packet->payload,
1413						     packet->payload_length,
1414						     DMA_TO_DEVICE);
1415			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1416				packet->ack = RCODE_SEND_ERROR;
1417				return -1;
1418			}
1419			packet->payload_bus	= payload_bus;
1420			packet->payload_mapped	= true;
1421		} else {
1422			memcpy(driver_data->inline_data, packet->payload,
1423			       packet->payload_length);
1424			payload_bus = d_bus + 3 * sizeof(*d);
1425		}
1426
1427		d[2].req_count    = cpu_to_le16(packet->payload_length);
1428		d[2].data_address = cpu_to_le32(payload_bus);
1429		last = &d[2];
1430		z = 3;
1431	} else {
1432		last = &d[0];
1433		z = 2;
1434	}
1435
1436	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1437				     DESCRIPTOR_IRQ_ALWAYS |
1438				     DESCRIPTOR_BRANCH_ALWAYS);
1439
1440	/* FIXME: Document how the locking works. */
1441	if (ohci->generation != packet->generation) {
1442		if (packet->payload_mapped)
1443			dma_unmap_single(ohci->card.device, payload_bus,
1444					 packet->payload_length, DMA_TO_DEVICE);
1445		packet->ack = RCODE_GENERATION;
1446		return -1;
1447	}
1448
1449	context_append(ctx, d, z, 4 - z);
1450
1451	if (ctx->running)
1452		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1453	else
1454		context_run(ctx, 0);
1455
1456	return 0;
1457}
1458
1459static void at_context_flush(struct context *ctx)
1460{
1461	tasklet_disable(&ctx->tasklet);
1462
1463	ctx->flushing = true;
1464	context_tasklet((unsigned long)ctx);
1465	ctx->flushing = false;
1466
1467	tasklet_enable(&ctx->tasklet);
1468}
1469
1470static int handle_at_packet(struct context *context,
1471			    struct descriptor *d,
1472			    struct descriptor *last)
1473{
1474	struct driver_data *driver_data;
1475	struct fw_packet *packet;
1476	struct fw_ohci *ohci = context->ohci;
1477	int evt;
1478
1479	if (last->transfer_status == 0 && !context->flushing)
1480		/* This descriptor isn't done yet, stop iteration. */
1481		return 0;
1482
1483	driver_data = (struct driver_data *) &d[3];
1484	packet = driver_data->packet;
1485	if (packet == NULL)
1486		/* This packet was cancelled, just continue. */
1487		return 1;
1488
1489	if (packet->payload_mapped)
1490		dma_unmap_single(ohci->card.device, packet->payload_bus,
1491				 packet->payload_length, DMA_TO_DEVICE);
1492
1493	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1494	packet->timestamp = le16_to_cpu(last->res_count);
1495
1496	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1497
1498	switch (evt) {
1499	case OHCI1394_evt_timeout:
1500		/* Async response transmit timed out. */
1501		packet->ack = RCODE_CANCELLED;
1502		break;
1503
1504	case OHCI1394_evt_flushed:
1505		/*
1506		 * The packet was flushed should give same error as
1507		 * when we try to use a stale generation count.
1508		 */
1509		packet->ack = RCODE_GENERATION;
1510		break;
1511
1512	case OHCI1394_evt_missing_ack:
1513		if (context->flushing)
1514			packet->ack = RCODE_GENERATION;
1515		else {
1516			/*
1517			 * Using a valid (current) generation count, but the
1518			 * node is not on the bus or not sending acks.
1519			 */
1520			packet->ack = RCODE_NO_ACK;
1521		}
1522		break;
1523
1524	case ACK_COMPLETE + 0x10:
1525	case ACK_PENDING + 0x10:
1526	case ACK_BUSY_X + 0x10:
1527	case ACK_BUSY_A + 0x10:
1528	case ACK_BUSY_B + 0x10:
1529	case ACK_DATA_ERROR + 0x10:
1530	case ACK_TYPE_ERROR + 0x10:
1531		packet->ack = evt - 0x10;
1532		break;
1533
1534	case OHCI1394_evt_no_status:
1535		if (context->flushing) {
1536			packet->ack = RCODE_GENERATION;
1537			break;
1538		}
1539		fallthrough;
1540
1541	default:
1542		packet->ack = RCODE_SEND_ERROR;
1543		break;
1544	}
1545
1546	packet->callback(packet, &ohci->card, packet->ack);
1547
1548	return 1;
1549}
1550
1551#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1552#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1553#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1554#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1555#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1556
1557static void handle_local_rom(struct fw_ohci *ohci,
1558			     struct fw_packet *packet, u32 csr)
1559{
1560	struct fw_packet response;
1561	int tcode, length, i;
1562
1563	tcode = HEADER_GET_TCODE(packet->header[0]);
1564	if (TCODE_IS_BLOCK_PACKET(tcode))
1565		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1566	else
1567		length = 4;
1568
1569	i = csr - CSR_CONFIG_ROM;
1570	if (i + length > CONFIG_ROM_SIZE) {
1571		fw_fill_response(&response, packet->header,
1572				 RCODE_ADDRESS_ERROR, NULL, 0);
1573	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1574		fw_fill_response(&response, packet->header,
1575				 RCODE_TYPE_ERROR, NULL, 0);
1576	} else {
1577		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1578				 (void *) ohci->config_rom + i, length);
1579	}
1580
1581	fw_core_handle_response(&ohci->card, &response);
1582}
1583
1584static void handle_local_lock(struct fw_ohci *ohci,
1585			      struct fw_packet *packet, u32 csr)
1586{
1587	struct fw_packet response;
1588	int tcode, length, ext_tcode, sel, try;
1589	__be32 *payload, lock_old;
1590	u32 lock_arg, lock_data;
1591
1592	tcode = HEADER_GET_TCODE(packet->header[0]);
1593	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1594	payload = packet->payload;
1595	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1596
1597	if (tcode == TCODE_LOCK_REQUEST &&
1598	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1599		lock_arg = be32_to_cpu(payload[0]);
1600		lock_data = be32_to_cpu(payload[1]);
1601	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1602		lock_arg = 0;
1603		lock_data = 0;
1604	} else {
1605		fw_fill_response(&response, packet->header,
1606				 RCODE_TYPE_ERROR, NULL, 0);
1607		goto out;
1608	}
1609
1610	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1611	reg_write(ohci, OHCI1394_CSRData, lock_data);
1612	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1613	reg_write(ohci, OHCI1394_CSRControl, sel);
1614
1615	for (try = 0; try < 20; try++)
1616		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1617			lock_old = cpu_to_be32(reg_read(ohci,
1618							OHCI1394_CSRData));
1619			fw_fill_response(&response, packet->header,
1620					 RCODE_COMPLETE,
1621					 &lock_old, sizeof(lock_old));
1622			goto out;
1623		}
1624
1625	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1626	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1627
1628 out:
1629	fw_core_handle_response(&ohci->card, &response);
1630}
1631
1632static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1633{
1634	u64 offset, csr;
1635
1636	if (ctx == &ctx->ohci->at_request_ctx) {
1637		packet->ack = ACK_PENDING;
1638		packet->callback(packet, &ctx->ohci->card, packet->ack);
1639	}
1640
1641	offset =
1642		((unsigned long long)
1643		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1644		packet->header[2];
1645	csr = offset - CSR_REGISTER_BASE;
1646
1647	/* Handle config rom reads. */
1648	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1649		handle_local_rom(ctx->ohci, packet, csr);
1650	else switch (csr) {
1651	case CSR_BUS_MANAGER_ID:
1652	case CSR_BANDWIDTH_AVAILABLE:
1653	case CSR_CHANNELS_AVAILABLE_HI:
1654	case CSR_CHANNELS_AVAILABLE_LO:
1655		handle_local_lock(ctx->ohci, packet, csr);
1656		break;
1657	default:
1658		if (ctx == &ctx->ohci->at_request_ctx)
1659			fw_core_handle_request(&ctx->ohci->card, packet);
1660		else
1661			fw_core_handle_response(&ctx->ohci->card, packet);
1662		break;
1663	}
1664
1665	if (ctx == &ctx->ohci->at_response_ctx) {
1666		packet->ack = ACK_COMPLETE;
1667		packet->callback(packet, &ctx->ohci->card, packet->ack);
1668	}
1669}
1670
1671static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1672{
1673	unsigned long flags;
1674	int ret;
1675
1676	spin_lock_irqsave(&ctx->ohci->lock, flags);
1677
1678	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1679	    ctx->ohci->generation == packet->generation) {
1680		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1681		handle_local_request(ctx, packet);
1682		return;
1683	}
1684
1685	ret = at_context_queue_packet(ctx, packet);
1686	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1687
1688	if (ret < 0)
1689		packet->callback(packet, &ctx->ohci->card, packet->ack);
1690
1691}
1692
1693static void detect_dead_context(struct fw_ohci *ohci,
1694				const char *name, unsigned int regs)
1695{
1696	u32 ctl;
1697
1698	ctl = reg_read(ohci, CONTROL_SET(regs));
1699	if (ctl & CONTEXT_DEAD)
1700		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1701			name, evts[ctl & 0x1f]);
1702}
1703
1704static void handle_dead_contexts(struct fw_ohci *ohci)
1705{
1706	unsigned int i;
1707	char name[8];
1708
1709	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1710	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1711	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1712	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1713	for (i = 0; i < 32; ++i) {
1714		if (!(ohci->it_context_support & (1 << i)))
1715			continue;
1716		sprintf(name, "IT%u", i);
1717		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1718	}
1719	for (i = 0; i < 32; ++i) {
1720		if (!(ohci->ir_context_support & (1 << i)))
1721			continue;
1722		sprintf(name, "IR%u", i);
1723		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1724	}
1725	/* TODO: maybe try to flush and restart the dead contexts */
1726}
1727
1728static u32 cycle_timer_ticks(u32 cycle_timer)
1729{
1730	u32 ticks;
1731
1732	ticks = cycle_timer & 0xfff;
1733	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1734	ticks += (3072 * 8000) * (cycle_timer >> 25);
1735
1736	return ticks;
1737}
1738
1739/*
1740 * Some controllers exhibit one or more of the following bugs when updating the
1741 * iso cycle timer register:
1742 *  - When the lowest six bits are wrapping around to zero, a read that happens
1743 *    at the same time will return garbage in the lowest ten bits.
1744 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1745 *    not incremented for about 60 ns.
1746 *  - Occasionally, the entire register reads zero.
1747 *
1748 * To catch these, we read the register three times and ensure that the
1749 * difference between each two consecutive reads is approximately the same, i.e.
1750 * less than twice the other.  Furthermore, any negative difference indicates an
1751 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1752 * execute, so we have enough precision to compute the ratio of the differences.)
1753 */
1754static u32 get_cycle_time(struct fw_ohci *ohci)
1755{
1756	u32 c0, c1, c2;
1757	u32 t0, t1, t2;
1758	s32 diff01, diff12;
1759	int i;
1760
1761	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1762		return 0;
1763
1764	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1765
1766	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1767		i = 0;
1768		c1 = c2;
1769		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1770		do {
1771			c0 = c1;
1772			c1 = c2;
1773			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1774			t0 = cycle_timer_ticks(c0);
1775			t1 = cycle_timer_ticks(c1);
1776			t2 = cycle_timer_ticks(c2);
1777			diff01 = t1 - t0;
1778			diff12 = t2 - t1;
1779		} while ((diff01 <= 0 || diff12 <= 0 ||
1780			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1781			 && i++ < 20);
1782	}
1783
1784	return c2;
1785}
1786
1787/*
1788 * This function has to be called at least every 64 seconds.  The bus_time
1789 * field stores not only the upper 25 bits of the BUS_TIME register but also
1790 * the most significant bit of the cycle timer in bit 6 so that we can detect
1791 * changes in this bit.
1792 */
1793static u32 update_bus_time(struct fw_ohci *ohci)
1794{
1795	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1796
1797	if (unlikely(!ohci->bus_time_running)) {
1798		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1799		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1800		                 (cycle_time_seconds & 0x40);
1801		ohci->bus_time_running = true;
1802	}
1803
1804	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1805		ohci->bus_time += 0x40;
1806
1807	return ohci->bus_time | cycle_time_seconds;
1808}
1809
1810static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1811{
1812	int reg;
1813
1814	mutex_lock(&ohci->phy_reg_mutex);
1815	reg = write_phy_reg(ohci, 7, port_index);
1816	if (reg >= 0)
1817		reg = read_phy_reg(ohci, 8);
1818	mutex_unlock(&ohci->phy_reg_mutex);
1819	if (reg < 0)
1820		return reg;
1821
1822	switch (reg & 0x0f) {
1823	case 0x06:
1824		return 2;	/* is child node (connected to parent node) */
1825	case 0x0e:
1826		return 3;	/* is parent node (connected to child node) */
1827	}
1828	return 1;		/* not connected */
1829}
1830
1831static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1832	int self_id_count)
1833{
1834	int i;
1835	u32 entry;
1836
1837	for (i = 0; i < self_id_count; i++) {
1838		entry = ohci->self_id_buffer[i];
1839		if ((self_id & 0xff000000) == (entry & 0xff000000))
1840			return -1;
1841		if ((self_id & 0xff000000) < (entry & 0xff000000))
1842			return i;
1843	}
1844	return i;
1845}
1846
1847static int initiated_reset(struct fw_ohci *ohci)
1848{
1849	int reg;
1850	int ret = 0;
1851
1852	mutex_lock(&ohci->phy_reg_mutex);
1853	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1854	if (reg >= 0) {
1855		reg = read_phy_reg(ohci, 8);
1856		reg |= 0x40;
1857		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1858		if (reg >= 0) {
1859			reg = read_phy_reg(ohci, 12); /* read register 12 */
1860			if (reg >= 0) {
1861				if ((reg & 0x08) == 0x08) {
1862					/* bit 3 indicates "initiated reset" */
1863					ret = 0x2;
1864				}
1865			}
1866		}
1867	}
1868	mutex_unlock(&ohci->phy_reg_mutex);
1869	return ret;
1870}
1871
1872/*
1873 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1874 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1875 * Construct the selfID from phy register contents.
1876 */
1877static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1878{
1879	int reg, i, pos, status;
1880	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1881	u32 self_id = 0x8040c800;
1882
1883	reg = reg_read(ohci, OHCI1394_NodeID);
1884	if (!(reg & OHCI1394_NodeID_idValid)) {
1885		ohci_notice(ohci,
1886			    "node ID not valid, new bus reset in progress\n");
1887		return -EBUSY;
1888	}
1889	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1890
1891	reg = ohci_read_phy_reg(&ohci->card, 4);
1892	if (reg < 0)
1893		return reg;
1894	self_id |= ((reg & 0x07) << 8); /* power class */
1895
1896	reg = ohci_read_phy_reg(&ohci->card, 1);
1897	if (reg < 0)
1898		return reg;
1899	self_id |= ((reg & 0x3f) << 16); /* gap count */
1900
1901	for (i = 0; i < 3; i++) {
1902		status = get_status_for_port(ohci, i);
1903		if (status < 0)
1904			return status;
1905		self_id |= ((status & 0x3) << (6 - (i * 2)));
1906	}
1907
1908	self_id |= initiated_reset(ohci);
1909
1910	pos = get_self_id_pos(ohci, self_id, self_id_count);
1911	if (pos >= 0) {
1912		memmove(&(ohci->self_id_buffer[pos+1]),
1913			&(ohci->self_id_buffer[pos]),
1914			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1915		ohci->self_id_buffer[pos] = self_id;
1916		self_id_count++;
1917	}
1918	return self_id_count;
1919}
1920
1921static void bus_reset_work(struct work_struct *work)
1922{
1923	struct fw_ohci *ohci =
1924		container_of(work, struct fw_ohci, bus_reset_work);
1925	int self_id_count, generation, new_generation, i, j;
1926	u32 reg;
1927	void *free_rom = NULL;
1928	dma_addr_t free_rom_bus = 0;
1929	bool is_new_root;
1930
1931	reg = reg_read(ohci, OHCI1394_NodeID);
1932	if (!(reg & OHCI1394_NodeID_idValid)) {
1933		ohci_notice(ohci,
1934			    "node ID not valid, new bus reset in progress\n");
1935		return;
1936	}
1937	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1938		ohci_notice(ohci, "malconfigured bus\n");
1939		return;
1940	}
1941	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1942			       OHCI1394_NodeID_nodeNumber);
1943
1944	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1945	if (!(ohci->is_root && is_new_root))
1946		reg_write(ohci, OHCI1394_LinkControlSet,
1947			  OHCI1394_LinkControl_cycleMaster);
1948	ohci->is_root = is_new_root;
1949
1950	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1951	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1952		ohci_notice(ohci, "self ID receive error\n");
1953		return;
1954	}
1955	/*
1956	 * The count in the SelfIDCount register is the number of
1957	 * bytes in the self ID receive buffer.  Since we also receive
1958	 * the inverted quadlets and a header quadlet, we shift one
1959	 * bit extra to get the actual number of self IDs.
1960	 */
1961	self_id_count = (reg >> 3) & 0xff;
1962
1963	if (self_id_count > 252) {
1964		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1965		return;
1966	}
1967
1968	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1969	rmb();
1970
1971	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1972		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1973		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1974
1975		if (id != ~id2) {
1976			/*
1977			 * If the invalid data looks like a cycle start packet,
1978			 * it's likely to be the result of the cycle master
1979			 * having a wrong gap count.  In this case, the self IDs
1980			 * so far are valid and should be processed so that the
1981			 * bus manager can then correct the gap count.
1982			 */
1983			if (id == 0xffff008f) {
1984				ohci_notice(ohci, "ignoring spurious self IDs\n");
1985				self_id_count = j;
1986				break;
1987			}
1988
1989			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1990				    j, self_id_count, id, id2);
1991			return;
1992		}
1993		ohci->self_id_buffer[j] = id;
1994	}
1995
1996	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1997		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1998		if (self_id_count < 0) {
1999			ohci_notice(ohci,
2000				    "could not construct local self ID\n");
2001			return;
2002		}
2003	}
2004
2005	if (self_id_count == 0) {
2006		ohci_notice(ohci, "no self IDs\n");
2007		return;
2008	}
2009	rmb();
2010
2011	/*
2012	 * Check the consistency of the self IDs we just read.  The
2013	 * problem we face is that a new bus reset can start while we
2014	 * read out the self IDs from the DMA buffer. If this happens,
2015	 * the DMA buffer will be overwritten with new self IDs and we
2016	 * will read out inconsistent data.  The OHCI specification
2017	 * (section 11.2) recommends a technique similar to
2018	 * linux/seqlock.h, where we remember the generation of the
2019	 * self IDs in the buffer before reading them out and compare
2020	 * it to the current generation after reading them out.  If
2021	 * the two generations match we know we have a consistent set
2022	 * of self IDs.
2023	 */
2024
2025	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2026	if (new_generation != generation) {
2027		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2028		return;
2029	}
2030
2031	/* FIXME: Document how the locking works. */
2032	spin_lock_irq(&ohci->lock);
2033
2034	ohci->generation = -1; /* prevent AT packet queueing */
2035	context_stop(&ohci->at_request_ctx);
2036	context_stop(&ohci->at_response_ctx);
2037
2038	spin_unlock_irq(&ohci->lock);
2039
2040	/*
2041	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2042	 * packets in the AT queues and software needs to drain them.
2043	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2044	 */
2045	at_context_flush(&ohci->at_request_ctx);
2046	at_context_flush(&ohci->at_response_ctx);
2047
2048	spin_lock_irq(&ohci->lock);
2049
2050	ohci->generation = generation;
2051	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2052
2053	if (ohci->quirks & QUIRK_RESET_PACKET)
2054		ohci->request_generation = generation;
2055
2056	/*
2057	 * This next bit is unrelated to the AT context stuff but we
2058	 * have to do it under the spinlock also.  If a new config rom
2059	 * was set up before this reset, the old one is now no longer
2060	 * in use and we can free it. Update the config rom pointers
2061	 * to point to the current config rom and clear the
2062	 * next_config_rom pointer so a new update can take place.
2063	 */
2064
2065	if (ohci->next_config_rom != NULL) {
2066		if (ohci->next_config_rom != ohci->config_rom) {
2067			free_rom      = ohci->config_rom;
2068			free_rom_bus  = ohci->config_rom_bus;
2069		}
2070		ohci->config_rom      = ohci->next_config_rom;
2071		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2072		ohci->next_config_rom = NULL;
2073
2074		/*
2075		 * Restore config_rom image and manually update
2076		 * config_rom registers.  Writing the header quadlet
2077		 * will indicate that the config rom is ready, so we
2078		 * do that last.
2079		 */
2080		reg_write(ohci, OHCI1394_BusOptions,
2081			  be32_to_cpu(ohci->config_rom[2]));
2082		ohci->config_rom[0] = ohci->next_header;
2083		reg_write(ohci, OHCI1394_ConfigROMhdr,
2084			  be32_to_cpu(ohci->next_header));
2085	}
2086
2087	if (param_remote_dma) {
2088		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2089		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2090	}
2091
2092	spin_unlock_irq(&ohci->lock);
2093
2094	if (free_rom)
2095		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2096				  free_rom, free_rom_bus);
2097
2098	log_selfids(ohci, generation, self_id_count);
2099
2100	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2101				 self_id_count, ohci->self_id_buffer,
2102				 ohci->csr_state_setclear_abdicate);
2103	ohci->csr_state_setclear_abdicate = false;
2104}
2105
2106static irqreturn_t irq_handler(int irq, void *data)
2107{
2108	struct fw_ohci *ohci = data;
2109	u32 event, iso_event;
2110	int i;
2111
2112	event = reg_read(ohci, OHCI1394_IntEventClear);
2113
2114	if (!event || !~event)
2115		return IRQ_NONE;
2116
2117	/*
2118	 * busReset and postedWriteErr must not be cleared yet
2119	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2120	 */
2121	reg_write(ohci, OHCI1394_IntEventClear,
2122		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2123	log_irqs(ohci, event);
2124
2125	if (event & OHCI1394_selfIDComplete)
2126		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2127
2128	if (event & OHCI1394_RQPkt)
2129		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2130
2131	if (event & OHCI1394_RSPkt)
2132		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2133
2134	if (event & OHCI1394_reqTxComplete)
2135		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2136
2137	if (event & OHCI1394_respTxComplete)
2138		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2139
2140	if (event & OHCI1394_isochRx) {
2141		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2142		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2143
2144		while (iso_event) {
2145			i = ffs(iso_event) - 1;
2146			tasklet_schedule(
2147				&ohci->ir_context_list[i].context.tasklet);
2148			iso_event &= ~(1 << i);
2149		}
2150	}
2151
2152	if (event & OHCI1394_isochTx) {
2153		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2154		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2155
2156		while (iso_event) {
2157			i = ffs(iso_event) - 1;
2158			tasklet_schedule(
2159				&ohci->it_context_list[i].context.tasklet);
2160			iso_event &= ~(1 << i);
2161		}
2162	}
2163
2164	if (unlikely(event & OHCI1394_regAccessFail))
2165		ohci_err(ohci, "register access failure\n");
2166
2167	if (unlikely(event & OHCI1394_postedWriteErr)) {
2168		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2169		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2170		reg_write(ohci, OHCI1394_IntEventClear,
2171			  OHCI1394_postedWriteErr);
2172		if (printk_ratelimit())
2173			ohci_err(ohci, "PCI posted write error\n");
2174	}
2175
2176	if (unlikely(event & OHCI1394_cycleTooLong)) {
2177		if (printk_ratelimit())
2178			ohci_notice(ohci, "isochronous cycle too long\n");
2179		reg_write(ohci, OHCI1394_LinkControlSet,
2180			  OHCI1394_LinkControl_cycleMaster);
2181	}
2182
2183	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2184		/*
2185		 * We need to clear this event bit in order to make
2186		 * cycleMatch isochronous I/O work.  In theory we should
2187		 * stop active cycleMatch iso contexts now and restart
2188		 * them at least two cycles later.  (FIXME?)
2189		 */
2190		if (printk_ratelimit())
2191			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2192	}
2193
2194	if (unlikely(event & OHCI1394_unrecoverableError))
2195		handle_dead_contexts(ohci);
2196
2197	if (event & OHCI1394_cycle64Seconds) {
2198		spin_lock(&ohci->lock);
2199		update_bus_time(ohci);
2200		spin_unlock(&ohci->lock);
2201	} else
2202		flush_writes(ohci);
2203
2204	return IRQ_HANDLED;
2205}
2206
2207static int software_reset(struct fw_ohci *ohci)
2208{
2209	u32 val;
2210	int i;
2211
2212	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2213	for (i = 0; i < 500; i++) {
2214		val = reg_read(ohci, OHCI1394_HCControlSet);
2215		if (!~val)
2216			return -ENODEV; /* Card was ejected. */
2217
2218		if (!(val & OHCI1394_HCControl_softReset))
2219			return 0;
2220
2221		msleep(1);
2222	}
2223
2224	return -EBUSY;
2225}
2226
2227static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2228{
2229	size_t size = length * 4;
2230
2231	memcpy(dest, src, size);
2232	if (size < CONFIG_ROM_SIZE)
2233		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2234}
2235
2236static int configure_1394a_enhancements(struct fw_ohci *ohci)
2237{
2238	bool enable_1394a;
2239	int ret, clear, set, offset;
2240
2241	/* Check if the driver should configure link and PHY. */
2242	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2243	      OHCI1394_HCControl_programPhyEnable))
2244		return 0;
2245
2246	/* Paranoia: check whether the PHY supports 1394a, too. */
2247	enable_1394a = false;
2248	ret = read_phy_reg(ohci, 2);
2249	if (ret < 0)
2250		return ret;
2251	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2252		ret = read_paged_phy_reg(ohci, 1, 8);
2253		if (ret < 0)
2254			return ret;
2255		if (ret >= 1)
2256			enable_1394a = true;
2257	}
2258
2259	if (ohci->quirks & QUIRK_NO_1394A)
2260		enable_1394a = false;
2261
2262	/* Configure PHY and link consistently. */
2263	if (enable_1394a) {
2264		clear = 0;
2265		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2266	} else {
2267		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2268		set = 0;
2269	}
2270	ret = update_phy_reg(ohci, 5, clear, set);
2271	if (ret < 0)
2272		return ret;
2273
2274	if (enable_1394a)
2275		offset = OHCI1394_HCControlSet;
2276	else
2277		offset = OHCI1394_HCControlClear;
2278	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2279
2280	/* Clean up: configuration has been taken care of. */
2281	reg_write(ohci, OHCI1394_HCControlClear,
2282		  OHCI1394_HCControl_programPhyEnable);
2283
2284	return 0;
2285}
2286
2287static int probe_tsb41ba3d(struct fw_ohci *ohci)
2288{
2289	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2290	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2291	int reg, i;
2292
2293	reg = read_phy_reg(ohci, 2);
2294	if (reg < 0)
2295		return reg;
2296	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2297		return 0;
2298
2299	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2300		reg = read_paged_phy_reg(ohci, 1, i + 10);
2301		if (reg < 0)
2302			return reg;
2303		if (reg != id[i])
2304			return 0;
2305	}
2306	return 1;
2307}
2308
2309static int ohci_enable(struct fw_card *card,
2310		       const __be32 *config_rom, size_t length)
2311{
2312	struct fw_ohci *ohci = fw_ohci(card);
2313	u32 lps, version, irqs;
2314	int i, ret;
2315
2316	ret = software_reset(ohci);
2317	if (ret < 0) {
2318		ohci_err(ohci, "failed to reset ohci card\n");
2319		return ret;
2320	}
2321
2322	/*
2323	 * Now enable LPS, which we need in order to start accessing
2324	 * most of the registers.  In fact, on some cards (ALI M5251),
2325	 * accessing registers in the SClk domain without LPS enabled
2326	 * will lock up the machine.  Wait 50msec to make sure we have
2327	 * full link enabled.  However, with some cards (well, at least
2328	 * a JMicron PCIe card), we have to try again sometimes.
2329	 *
2330	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2331	 * cannot actually use the phy at that time.  These need tens of
2332	 * millisecods pause between LPS write and first phy access too.
2333	 */
2334
2335	reg_write(ohci, OHCI1394_HCControlSet,
2336		  OHCI1394_HCControl_LPS |
2337		  OHCI1394_HCControl_postedWriteEnable);
2338	flush_writes(ohci);
2339
2340	for (lps = 0, i = 0; !lps && i < 3; i++) {
2341		msleep(50);
2342		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2343		      OHCI1394_HCControl_LPS;
2344	}
2345
2346	if (!lps) {
2347		ohci_err(ohci, "failed to set Link Power Status\n");
2348		return -EIO;
2349	}
2350
2351	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2352		ret = probe_tsb41ba3d(ohci);
2353		if (ret < 0)
2354			return ret;
2355		if (ret)
2356			ohci_notice(ohci, "local TSB41BA3D phy\n");
2357		else
2358			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2359	}
2360
2361	reg_write(ohci, OHCI1394_HCControlClear,
2362		  OHCI1394_HCControl_noByteSwapData);
2363
2364	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2365	reg_write(ohci, OHCI1394_LinkControlSet,
2366		  OHCI1394_LinkControl_cycleTimerEnable |
2367		  OHCI1394_LinkControl_cycleMaster);
2368
2369	reg_write(ohci, OHCI1394_ATRetries,
2370		  OHCI1394_MAX_AT_REQ_RETRIES |
2371		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2372		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2373		  (200 << 16));
2374
2375	ohci->bus_time_running = false;
2376
2377	for (i = 0; i < 32; i++)
2378		if (ohci->ir_context_support & (1 << i))
2379			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2380				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2381
2382	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2383	if (version >= OHCI_VERSION_1_1) {
2384		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2385			  0xfffffffe);
2386		card->broadcast_channel_auto_allocated = true;
2387	}
2388
2389	/* Get implemented bits of the priority arbitration request counter. */
2390	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2391	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2392	reg_write(ohci, OHCI1394_FairnessControl, 0);
2393	card->priority_budget_implemented = ohci->pri_req_max != 0;
2394
2395	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2396	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2397	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2398
2399	ret = configure_1394a_enhancements(ohci);
2400	if (ret < 0)
2401		return ret;
2402
2403	/* Activate link_on bit and contender bit in our self ID packets.*/
2404	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2405	if (ret < 0)
2406		return ret;
2407
2408	/*
2409	 * When the link is not yet enabled, the atomic config rom
2410	 * update mechanism described below in ohci_set_config_rom()
2411	 * is not active.  We have to update ConfigRomHeader and
2412	 * BusOptions manually, and the write to ConfigROMmap takes
2413	 * effect immediately.  We tie this to the enabling of the
2414	 * link, so we have a valid config rom before enabling - the
2415	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2416	 * values before enabling.
2417	 *
2418	 * However, when the ConfigROMmap is written, some controllers
2419	 * always read back quadlets 0 and 2 from the config rom to
2420	 * the ConfigRomHeader and BusOptions registers on bus reset.
2421	 * They shouldn't do that in this initial case where the link
2422	 * isn't enabled.  This means we have to use the same
2423	 * workaround here, setting the bus header to 0 and then write
2424	 * the right values in the bus reset tasklet.
2425	 */
2426
2427	if (config_rom) {
2428		ohci->next_config_rom =
2429			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2430					   &ohci->next_config_rom_bus,
2431					   GFP_KERNEL);
2432		if (ohci->next_config_rom == NULL)
2433			return -ENOMEM;
2434
2435		copy_config_rom(ohci->next_config_rom, config_rom, length);
2436	} else {
2437		/*
2438		 * In the suspend case, config_rom is NULL, which
2439		 * means that we just reuse the old config rom.
2440		 */
2441		ohci->next_config_rom = ohci->config_rom;
2442		ohci->next_config_rom_bus = ohci->config_rom_bus;
2443	}
2444
2445	ohci->next_header = ohci->next_config_rom[0];
2446	ohci->next_config_rom[0] = 0;
2447	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2448	reg_write(ohci, OHCI1394_BusOptions,
2449		  be32_to_cpu(ohci->next_config_rom[2]));
2450	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2451
2452	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2453
2454	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2455		OHCI1394_RQPkt | OHCI1394_RSPkt |
2456		OHCI1394_isochTx | OHCI1394_isochRx |
2457		OHCI1394_postedWriteErr |
2458		OHCI1394_selfIDComplete |
2459		OHCI1394_regAccessFail |
2460		OHCI1394_cycleInconsistent |
2461		OHCI1394_unrecoverableError |
2462		OHCI1394_cycleTooLong |
2463		OHCI1394_masterIntEnable;
2464	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2465		irqs |= OHCI1394_busReset;
2466	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2467
2468	reg_write(ohci, OHCI1394_HCControlSet,
2469		  OHCI1394_HCControl_linkEnable |
2470		  OHCI1394_HCControl_BIBimageValid);
2471
2472	reg_write(ohci, OHCI1394_LinkControlSet,
2473		  OHCI1394_LinkControl_rcvSelfID |
2474		  OHCI1394_LinkControl_rcvPhyPkt);
2475
2476	ar_context_run(&ohci->ar_request_ctx);
2477	ar_context_run(&ohci->ar_response_ctx);
2478
2479	flush_writes(ohci);
2480
2481	/* We are ready to go, reset bus to finish initialization. */
2482	fw_schedule_bus_reset(&ohci->card, false, true);
2483
2484	return 0;
2485}
2486
2487static int ohci_set_config_rom(struct fw_card *card,
2488			       const __be32 *config_rom, size_t length)
2489{
2490	struct fw_ohci *ohci;
2491	__be32 *next_config_rom;
2492	dma_addr_t next_config_rom_bus;
2493
2494	ohci = fw_ohci(card);
2495
2496	/*
2497	 * When the OHCI controller is enabled, the config rom update
2498	 * mechanism is a bit tricky, but easy enough to use.  See
2499	 * section 5.5.6 in the OHCI specification.
2500	 *
2501	 * The OHCI controller caches the new config rom address in a
2502	 * shadow register (ConfigROMmapNext) and needs a bus reset
2503	 * for the changes to take place.  When the bus reset is
2504	 * detected, the controller loads the new values for the
2505	 * ConfigRomHeader and BusOptions registers from the specified
2506	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2507	 * shadow register. All automatically and atomically.
2508	 *
2509	 * Now, there's a twist to this story.  The automatic load of
2510	 * ConfigRomHeader and BusOptions doesn't honor the
2511	 * noByteSwapData bit, so with a be32 config rom, the
2512	 * controller will load be32 values in to these registers
2513	 * during the atomic update, even on litte endian
2514	 * architectures.  The workaround we use is to put a 0 in the
2515	 * header quadlet; 0 is endian agnostic and means that the
2516	 * config rom isn't ready yet.  In the bus reset tasklet we
2517	 * then set up the real values for the two registers.
2518	 *
2519	 * We use ohci->lock to avoid racing with the code that sets
2520	 * ohci->next_config_rom to NULL (see bus_reset_work).
2521	 */
2522
2523	next_config_rom =
2524		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2525				   &next_config_rom_bus, GFP_KERNEL);
2526	if (next_config_rom == NULL)
2527		return -ENOMEM;
2528
2529	spin_lock_irq(&ohci->lock);
2530
2531	/*
2532	 * If there is not an already pending config_rom update,
2533	 * push our new allocation into the ohci->next_config_rom
2534	 * and then mark the local variable as null so that we
2535	 * won't deallocate the new buffer.
2536	 *
2537	 * OTOH, if there is a pending config_rom update, just
2538	 * use that buffer with the new config_rom data, and
2539	 * let this routine free the unused DMA allocation.
2540	 */
2541
2542	if (ohci->next_config_rom == NULL) {
2543		ohci->next_config_rom = next_config_rom;
2544		ohci->next_config_rom_bus = next_config_rom_bus;
2545		next_config_rom = NULL;
2546	}
2547
2548	copy_config_rom(ohci->next_config_rom, config_rom, length);
2549
2550	ohci->next_header = config_rom[0];
2551	ohci->next_config_rom[0] = 0;
2552
2553	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2554
2555	spin_unlock_irq(&ohci->lock);
2556
2557	/* If we didn't use the DMA allocation, delete it. */
2558	if (next_config_rom != NULL)
2559		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2560				  next_config_rom, next_config_rom_bus);
2561
2562	/*
2563	 * Now initiate a bus reset to have the changes take
2564	 * effect. We clean up the old config rom memory and DMA
2565	 * mappings in the bus reset tasklet, since the OHCI
2566	 * controller could need to access it before the bus reset
2567	 * takes effect.
2568	 */
2569
2570	fw_schedule_bus_reset(&ohci->card, true, true);
2571
2572	return 0;
2573}
2574
2575static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2576{
2577	struct fw_ohci *ohci = fw_ohci(card);
2578
2579	at_context_transmit(&ohci->at_request_ctx, packet);
2580}
2581
2582static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2583{
2584	struct fw_ohci *ohci = fw_ohci(card);
2585
2586	at_context_transmit(&ohci->at_response_ctx, packet);
2587}
2588
2589static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2590{
2591	struct fw_ohci *ohci = fw_ohci(card);
2592	struct context *ctx = &ohci->at_request_ctx;
2593	struct driver_data *driver_data = packet->driver_data;
2594	int ret = -ENOENT;
2595
2596	tasklet_disable(&ctx->tasklet);
2597
2598	if (packet->ack != 0)
2599		goto out;
2600
2601	if (packet->payload_mapped)
2602		dma_unmap_single(ohci->card.device, packet->payload_bus,
2603				 packet->payload_length, DMA_TO_DEVICE);
2604
2605	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2606	driver_data->packet = NULL;
2607	packet->ack = RCODE_CANCELLED;
2608	packet->callback(packet, &ohci->card, packet->ack);
2609	ret = 0;
2610 out:
2611	tasklet_enable(&ctx->tasklet);
2612
2613	return ret;
2614}
2615
2616static int ohci_enable_phys_dma(struct fw_card *card,
2617				int node_id, int generation)
2618{
2619	struct fw_ohci *ohci = fw_ohci(card);
2620	unsigned long flags;
2621	int n, ret = 0;
2622
2623	if (param_remote_dma)
2624		return 0;
2625
2626	/*
2627	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2628	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2629	 */
2630
2631	spin_lock_irqsave(&ohci->lock, flags);
2632
2633	if (ohci->generation != generation) {
2634		ret = -ESTALE;
2635		goto out;
2636	}
2637
2638	/*
2639	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2640	 * enabled for _all_ nodes on remote buses.
2641	 */
2642
2643	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2644	if (n < 32)
2645		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2646	else
2647		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2648
2649	flush_writes(ohci);
2650 out:
2651	spin_unlock_irqrestore(&ohci->lock, flags);
2652
2653	return ret;
2654}
2655
2656static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2657{
2658	struct fw_ohci *ohci = fw_ohci(card);
2659	unsigned long flags;
2660	u32 value;
2661
2662	switch (csr_offset) {
2663	case CSR_STATE_CLEAR:
2664	case CSR_STATE_SET:
2665		if (ohci->is_root &&
2666		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2667		     OHCI1394_LinkControl_cycleMaster))
2668			value = CSR_STATE_BIT_CMSTR;
2669		else
2670			value = 0;
2671		if (ohci->csr_state_setclear_abdicate)
2672			value |= CSR_STATE_BIT_ABDICATE;
2673
2674		return value;
2675
2676	case CSR_NODE_IDS:
2677		return reg_read(ohci, OHCI1394_NodeID) << 16;
2678
2679	case CSR_CYCLE_TIME:
2680		return get_cycle_time(ohci);
2681
2682	case CSR_BUS_TIME:
2683		/*
2684		 * We might be called just after the cycle timer has wrapped
2685		 * around but just before the cycle64Seconds handler, so we
2686		 * better check here, too, if the bus time needs to be updated.
2687		 */
2688		spin_lock_irqsave(&ohci->lock, flags);
2689		value = update_bus_time(ohci);
2690		spin_unlock_irqrestore(&ohci->lock, flags);
2691		return value;
2692
2693	case CSR_BUSY_TIMEOUT:
2694		value = reg_read(ohci, OHCI1394_ATRetries);
2695		return (value >> 4) & 0x0ffff00f;
2696
2697	case CSR_PRIORITY_BUDGET:
2698		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2699			(ohci->pri_req_max << 8);
2700
2701	default:
2702		WARN_ON(1);
2703		return 0;
2704	}
2705}
2706
2707static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2708{
2709	struct fw_ohci *ohci = fw_ohci(card);
2710	unsigned long flags;
2711
2712	switch (csr_offset) {
2713	case CSR_STATE_CLEAR:
2714		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2715			reg_write(ohci, OHCI1394_LinkControlClear,
2716				  OHCI1394_LinkControl_cycleMaster);
2717			flush_writes(ohci);
2718		}
2719		if (value & CSR_STATE_BIT_ABDICATE)
2720			ohci->csr_state_setclear_abdicate = false;
2721		break;
2722
2723	case CSR_STATE_SET:
2724		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2725			reg_write(ohci, OHCI1394_LinkControlSet,
2726				  OHCI1394_LinkControl_cycleMaster);
2727			flush_writes(ohci);
2728		}
2729		if (value & CSR_STATE_BIT_ABDICATE)
2730			ohci->csr_state_setclear_abdicate = true;
2731		break;
2732
2733	case CSR_NODE_IDS:
2734		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2735		flush_writes(ohci);
2736		break;
2737
2738	case CSR_CYCLE_TIME:
2739		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2740		reg_write(ohci, OHCI1394_IntEventSet,
2741			  OHCI1394_cycleInconsistent);
2742		flush_writes(ohci);
2743		break;
2744
2745	case CSR_BUS_TIME:
2746		spin_lock_irqsave(&ohci->lock, flags);
2747		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2748		                 (value & ~0x7f);
2749		spin_unlock_irqrestore(&ohci->lock, flags);
2750		break;
2751
2752	case CSR_BUSY_TIMEOUT:
2753		value = (value & 0xf) | ((value & 0xf) << 4) |
2754			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2755		reg_write(ohci, OHCI1394_ATRetries, value);
2756		flush_writes(ohci);
2757		break;
2758
2759	case CSR_PRIORITY_BUDGET:
2760		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2761		flush_writes(ohci);
2762		break;
2763
2764	default:
2765		WARN_ON(1);
2766		break;
2767	}
2768}
2769
2770static void flush_iso_completions(struct iso_context *ctx)
2771{
2772	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2773			      ctx->header_length, ctx->header,
2774			      ctx->base.callback_data);
2775	ctx->header_length = 0;
2776}
2777
2778static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2779{
2780	u32 *ctx_hdr;
2781
2782	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2783		if (ctx->base.drop_overflow_headers)
2784			return;
2785		flush_iso_completions(ctx);
2786	}
2787
2788	ctx_hdr = ctx->header + ctx->header_length;
2789	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2790
2791	/*
2792	 * The two iso header quadlets are byteswapped to little
2793	 * endian by the controller, but we want to present them
2794	 * as big endian for consistency with the bus endianness.
2795	 */
2796	if (ctx->base.header_size > 0)
2797		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2798	if (ctx->base.header_size > 4)
2799		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2800	if (ctx->base.header_size > 8)
2801		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2802	ctx->header_length += ctx->base.header_size;
2803}
2804
2805static int handle_ir_packet_per_buffer(struct context *context,
2806				       struct descriptor *d,
2807				       struct descriptor *last)
2808{
2809	struct iso_context *ctx =
2810		container_of(context, struct iso_context, context);
2811	struct descriptor *pd;
2812	u32 buffer_dma;
2813
2814	for (pd = d; pd <= last; pd++)
2815		if (pd->transfer_status)
2816			break;
2817	if (pd > last)
2818		/* Descriptor(s) not done yet, stop iteration */
2819		return 0;
2820
2821	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2822		d++;
2823		buffer_dma = le32_to_cpu(d->data_address);
2824		dma_sync_single_range_for_cpu(context->ohci->card.device,
2825					      buffer_dma & PAGE_MASK,
2826					      buffer_dma & ~PAGE_MASK,
2827					      le16_to_cpu(d->req_count),
2828					      DMA_FROM_DEVICE);
2829	}
2830
2831	copy_iso_headers(ctx, (u32 *) (last + 1));
2832
2833	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2834		flush_iso_completions(ctx);
2835
2836	return 1;
2837}
2838
2839/* d == last because each descriptor block is only a single descriptor. */
2840static int handle_ir_buffer_fill(struct context *context,
2841				 struct descriptor *d,
2842				 struct descriptor *last)
2843{
2844	struct iso_context *ctx =
2845		container_of(context, struct iso_context, context);
2846	unsigned int req_count, res_count, completed;
2847	u32 buffer_dma;
2848
2849	req_count = le16_to_cpu(last->req_count);
2850	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2851	completed = req_count - res_count;
2852	buffer_dma = le32_to_cpu(last->data_address);
2853
2854	if (completed > 0) {
2855		ctx->mc_buffer_bus = buffer_dma;
2856		ctx->mc_completed = completed;
2857	}
2858
2859	if (res_count != 0)
2860		/* Descriptor(s) not done yet, stop iteration */
2861		return 0;
2862
2863	dma_sync_single_range_for_cpu(context->ohci->card.device,
2864				      buffer_dma & PAGE_MASK,
2865				      buffer_dma & ~PAGE_MASK,
2866				      completed, DMA_FROM_DEVICE);
2867
2868	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2869		ctx->base.callback.mc(&ctx->base,
2870				      buffer_dma + completed,
2871				      ctx->base.callback_data);
2872		ctx->mc_completed = 0;
2873	}
2874
2875	return 1;
2876}
2877
2878static void flush_ir_buffer_fill(struct iso_context *ctx)
2879{
2880	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2881				      ctx->mc_buffer_bus & PAGE_MASK,
2882				      ctx->mc_buffer_bus & ~PAGE_MASK,
2883				      ctx->mc_completed, DMA_FROM_DEVICE);
2884
2885	ctx->base.callback.mc(&ctx->base,
2886			      ctx->mc_buffer_bus + ctx->mc_completed,
2887			      ctx->base.callback_data);
2888	ctx->mc_completed = 0;
2889}
2890
2891static inline void sync_it_packet_for_cpu(struct context *context,
2892					  struct descriptor *pd)
2893{
2894	__le16 control;
2895	u32 buffer_dma;
2896
2897	/* only packets beginning with OUTPUT_MORE* have data buffers */
2898	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2899		return;
2900
2901	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2902	pd += 2;
2903
2904	/*
2905	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2906	 * data buffer is in the context program's coherent page and must not
2907	 * be synced.
2908	 */
2909	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2910	    (context->current_bus          & PAGE_MASK)) {
2911		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2912			return;
2913		pd++;
2914	}
2915
2916	do {
2917		buffer_dma = le32_to_cpu(pd->data_address);
2918		dma_sync_single_range_for_cpu(context->ohci->card.device,
2919					      buffer_dma & PAGE_MASK,
2920					      buffer_dma & ~PAGE_MASK,
2921					      le16_to_cpu(pd->req_count),
2922					      DMA_TO_DEVICE);
2923		control = pd->control;
2924		pd++;
2925	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2926}
2927
2928static int handle_it_packet(struct context *context,
2929			    struct descriptor *d,
2930			    struct descriptor *last)
2931{
2932	struct iso_context *ctx =
2933		container_of(context, struct iso_context, context);
2934	struct descriptor *pd;
2935	__be32 *ctx_hdr;
2936
2937	for (pd = d; pd <= last; pd++)
2938		if (pd->transfer_status)
2939			break;
2940	if (pd > last)
2941		/* Descriptor(s) not done yet, stop iteration */
2942		return 0;
2943
2944	sync_it_packet_for_cpu(context, d);
2945
2946	if (ctx->header_length + 4 > PAGE_SIZE) {
2947		if (ctx->base.drop_overflow_headers)
2948			return 1;
2949		flush_iso_completions(ctx);
2950	}
2951
2952	ctx_hdr = ctx->header + ctx->header_length;
2953	ctx->last_timestamp = le16_to_cpu(last->res_count);
2954	/* Present this value as big-endian to match the receive code */
2955	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2956			       le16_to_cpu(pd->res_count));
2957	ctx->header_length += 4;
2958
2959	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2960		flush_iso_completions(ctx);
2961
2962	return 1;
2963}
2964
2965static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2966{
2967	u32 hi = channels >> 32, lo = channels;
2968
2969	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2970	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2971	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2972	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2973	ohci->mc_channels = channels;
2974}
2975
2976static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2977				int type, int channel, size_t header_size)
2978{
2979	struct fw_ohci *ohci = fw_ohci(card);
2980	struct iso_context *ctx;
2981	descriptor_callback_t callback;
2982	u64 *channels;
2983	u32 *mask, regs;
2984	int index, ret = -EBUSY;
2985
2986	spin_lock_irq(&ohci->lock);
2987
2988	switch (type) {
2989	case FW_ISO_CONTEXT_TRANSMIT:
2990		mask     = &ohci->it_context_mask;
2991		callback = handle_it_packet;
2992		index    = ffs(*mask) - 1;
2993		if (index >= 0) {
2994			*mask &= ~(1 << index);
2995			regs = OHCI1394_IsoXmitContextBase(index);
2996			ctx  = &ohci->it_context_list[index];
2997		}
2998		break;
2999
3000	case FW_ISO_CONTEXT_RECEIVE:
3001		channels = &ohci->ir_context_channels;
3002		mask     = &ohci->ir_context_mask;
3003		callback = handle_ir_packet_per_buffer;
3004		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3005		if (index >= 0) {
3006			*channels &= ~(1ULL << channel);
3007			*mask     &= ~(1 << index);
3008			regs = OHCI1394_IsoRcvContextBase(index);
3009			ctx  = &ohci->ir_context_list[index];
3010		}
3011		break;
3012
3013	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3014		mask     = &ohci->ir_context_mask;
3015		callback = handle_ir_buffer_fill;
3016		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3017		if (index >= 0) {
3018			ohci->mc_allocated = true;
3019			*mask &= ~(1 << index);
3020			regs = OHCI1394_IsoRcvContextBase(index);
3021			ctx  = &ohci->ir_context_list[index];
3022		}
3023		break;
3024
3025	default:
3026		index = -1;
3027		ret = -ENOSYS;
3028	}
3029
3030	spin_unlock_irq(&ohci->lock);
3031
3032	if (index < 0)
3033		return ERR_PTR(ret);
3034
3035	memset(ctx, 0, sizeof(*ctx));
3036	ctx->header_length = 0;
3037	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3038	if (ctx->header == NULL) {
3039		ret = -ENOMEM;
3040		goto out;
3041	}
3042	ret = context_init(&ctx->context, ohci, regs, callback);
3043	if (ret < 0)
3044		goto out_with_header;
3045
3046	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3047		set_multichannel_mask(ohci, 0);
3048		ctx->mc_completed = 0;
3049	}
3050
3051	return &ctx->base;
3052
3053 out_with_header:
3054	free_page((unsigned long)ctx->header);
3055 out:
3056	spin_lock_irq(&ohci->lock);
3057
3058	switch (type) {
3059	case FW_ISO_CONTEXT_RECEIVE:
3060		*channels |= 1ULL << channel;
3061		break;
3062
3063	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3064		ohci->mc_allocated = false;
3065		break;
3066	}
3067	*mask |= 1 << index;
3068
3069	spin_unlock_irq(&ohci->lock);
3070
3071	return ERR_PTR(ret);
3072}
3073
3074static int ohci_start_iso(struct fw_iso_context *base,
3075			  s32 cycle, u32 sync, u32 tags)
3076{
3077	struct iso_context *ctx = container_of(base, struct iso_context, base);
3078	struct fw_ohci *ohci = ctx->context.ohci;
3079	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3080	int index;
3081
3082	/* the controller cannot start without any queued packets */
3083	if (ctx->context.last->branch_address == 0)
3084		return -ENODATA;
3085
3086	switch (ctx->base.type) {
3087	case FW_ISO_CONTEXT_TRANSMIT:
3088		index = ctx - ohci->it_context_list;
3089		match = 0;
3090		if (cycle >= 0)
3091			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3092				(cycle & 0x7fff) << 16;
3093
3094		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3095		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3096		context_run(&ctx->context, match);
3097		break;
3098
3099	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3100		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3101		fallthrough;
3102	case FW_ISO_CONTEXT_RECEIVE:
3103		index = ctx - ohci->ir_context_list;
3104		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3105		if (cycle >= 0) {
3106			match |= (cycle & 0x07fff) << 12;
3107			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3108		}
3109
3110		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3111		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3112		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3113		context_run(&ctx->context, control);
3114
3115		ctx->sync = sync;
3116		ctx->tags = tags;
3117
3118		break;
3119	}
3120
3121	return 0;
3122}
3123
3124static int ohci_stop_iso(struct fw_iso_context *base)
3125{
3126	struct fw_ohci *ohci = fw_ohci(base->card);
3127	struct iso_context *ctx = container_of(base, struct iso_context, base);
3128	int index;
3129
3130	switch (ctx->base.type) {
3131	case FW_ISO_CONTEXT_TRANSMIT:
3132		index = ctx - ohci->it_context_list;
3133		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3134		break;
3135
3136	case FW_ISO_CONTEXT_RECEIVE:
3137	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3138		index = ctx - ohci->ir_context_list;
3139		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3140		break;
3141	}
3142	flush_writes(ohci);
3143	context_stop(&ctx->context);
3144	tasklet_kill(&ctx->context.tasklet);
3145
3146	return 0;
3147}
3148
3149static void ohci_free_iso_context(struct fw_iso_context *base)
3150{
3151	struct fw_ohci *ohci = fw_ohci(base->card);
3152	struct iso_context *ctx = container_of(base, struct iso_context, base);
3153	unsigned long flags;
3154	int index;
3155
3156	ohci_stop_iso(base);
3157	context_release(&ctx->context);
3158	free_page((unsigned long)ctx->header);
3159
3160	spin_lock_irqsave(&ohci->lock, flags);
3161
3162	switch (base->type) {
3163	case FW_ISO_CONTEXT_TRANSMIT:
3164		index = ctx - ohci->it_context_list;
3165		ohci->it_context_mask |= 1 << index;
3166		break;
3167
3168	case FW_ISO_CONTEXT_RECEIVE:
3169		index = ctx - ohci->ir_context_list;
3170		ohci->ir_context_mask |= 1 << index;
3171		ohci->ir_context_channels |= 1ULL << base->channel;
3172		break;
3173
3174	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3175		index = ctx - ohci->ir_context_list;
3176		ohci->ir_context_mask |= 1 << index;
3177		ohci->ir_context_channels |= ohci->mc_channels;
3178		ohci->mc_channels = 0;
3179		ohci->mc_allocated = false;
3180		break;
3181	}
3182
3183	spin_unlock_irqrestore(&ohci->lock, flags);
3184}
3185
3186static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3187{
3188	struct fw_ohci *ohci = fw_ohci(base->card);
3189	unsigned long flags;
3190	int ret;
3191
3192	switch (base->type) {
3193	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3194
3195		spin_lock_irqsave(&ohci->lock, flags);
3196
3197		/* Don't allow multichannel to grab other contexts' channels. */
3198		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3199			*channels = ohci->ir_context_channels;
3200			ret = -EBUSY;
3201		} else {
3202			set_multichannel_mask(ohci, *channels);
3203			ret = 0;
3204		}
3205
3206		spin_unlock_irqrestore(&ohci->lock, flags);
3207
3208		break;
3209	default:
3210		ret = -EINVAL;
3211	}
3212
3213	return ret;
3214}
3215
3216#ifdef CONFIG_PM
3217static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3218{
3219	int i;
3220	struct iso_context *ctx;
3221
3222	for (i = 0 ; i < ohci->n_ir ; i++) {
3223		ctx = &ohci->ir_context_list[i];
3224		if (ctx->context.running)
3225			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3226	}
3227
3228	for (i = 0 ; i < ohci->n_it ; i++) {
3229		ctx = &ohci->it_context_list[i];
3230		if (ctx->context.running)
3231			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3232	}
3233}
3234#endif
3235
3236static int queue_iso_transmit(struct iso_context *ctx,
3237			      struct fw_iso_packet *packet,
3238			      struct fw_iso_buffer *buffer,
3239			      unsigned long payload)
3240{
3241	struct descriptor *d, *last, *pd;
3242	struct fw_iso_packet *p;
3243	__le32 *header;
3244	dma_addr_t d_bus, page_bus;
3245	u32 z, header_z, payload_z, irq;
3246	u32 payload_index, payload_end_index, next_page_index;
3247	int page, end_page, i, length, offset;
3248
3249	p = packet;
3250	payload_index = payload;
3251
3252	if (p->skip)
3253		z = 1;
3254	else
3255		z = 2;
3256	if (p->header_length > 0)
3257		z++;
3258
3259	/* Determine the first page the payload isn't contained in. */
3260	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3261	if (p->payload_length > 0)
3262		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3263	else
3264		payload_z = 0;
3265
3266	z += payload_z;
3267
3268	/* Get header size in number of descriptors. */
3269	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3270
3271	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3272	if (d == NULL)
3273		return -ENOMEM;
3274
3275	if (!p->skip) {
3276		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3277		d[0].req_count = cpu_to_le16(8);
3278		/*
3279		 * Link the skip address to this descriptor itself.  This causes
3280		 * a context to skip a cycle whenever lost cycles or FIFO
3281		 * overruns occur, without dropping the data.  The application
3282		 * should then decide whether this is an error condition or not.
3283		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3284		 */
3285		d[0].branch_address = cpu_to_le32(d_bus | z);
3286
3287		header = (__le32 *) &d[1];
3288		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3289					IT_HEADER_TAG(p->tag) |
3290					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3291					IT_HEADER_CHANNEL(ctx->base.channel) |
3292					IT_HEADER_SPEED(ctx->base.speed));
3293		header[1] =
3294			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3295							  p->payload_length));
3296	}
3297
3298	if (p->header_length > 0) {
3299		d[2].req_count    = cpu_to_le16(p->header_length);
3300		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3301		memcpy(&d[z], p->header, p->header_length);
3302	}
3303
3304	pd = d + z - payload_z;
3305	payload_end_index = payload_index + p->payload_length;
3306	for (i = 0; i < payload_z; i++) {
3307		page               = payload_index >> PAGE_SHIFT;
3308		offset             = payload_index & ~PAGE_MASK;
3309		next_page_index    = (page + 1) << PAGE_SHIFT;
3310		length             =
3311			min(next_page_index, payload_end_index) - payload_index;
3312		pd[i].req_count    = cpu_to_le16(length);
3313
3314		page_bus = page_private(buffer->pages[page]);
3315		pd[i].data_address = cpu_to_le32(page_bus + offset);
3316
3317		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3318						 page_bus, offset, length,
3319						 DMA_TO_DEVICE);
3320
3321		payload_index += length;
3322	}
3323
3324	if (p->interrupt)
3325		irq = DESCRIPTOR_IRQ_ALWAYS;
3326	else
3327		irq = DESCRIPTOR_NO_IRQ;
3328
3329	last = z == 2 ? d : d + z - 1;
3330	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3331				     DESCRIPTOR_STATUS |
3332				     DESCRIPTOR_BRANCH_ALWAYS |
3333				     irq);
3334
3335	context_append(&ctx->context, d, z, header_z);
3336
3337	return 0;
3338}
3339
3340static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3341				       struct fw_iso_packet *packet,
3342				       struct fw_iso_buffer *buffer,
3343				       unsigned long payload)
3344{
3345	struct device *device = ctx->context.ohci->card.device;
3346	struct descriptor *d, *pd;
3347	dma_addr_t d_bus, page_bus;
3348	u32 z, header_z, rest;
3349	int i, j, length;
3350	int page, offset, packet_count, header_size, payload_per_buffer;
3351
3352	/*
3353	 * The OHCI controller puts the isochronous header and trailer in the
3354	 * buffer, so we need at least 8 bytes.
3355	 */
3356	packet_count = packet->header_length / ctx->base.header_size;
3357	header_size  = max(ctx->base.header_size, (size_t)8);
3358
3359	/* Get header size in number of descriptors. */
3360	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3361	page     = payload >> PAGE_SHIFT;
3362	offset   = payload & ~PAGE_MASK;
3363	payload_per_buffer = packet->payload_length / packet_count;
3364
3365	for (i = 0; i < packet_count; i++) {
3366		/* d points to the header descriptor */
3367		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3368		d = context_get_descriptors(&ctx->context,
3369				z + header_z, &d_bus);
3370		if (d == NULL)
3371			return -ENOMEM;
3372
3373		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3374					      DESCRIPTOR_INPUT_MORE);
3375		if (packet->skip && i == 0)
3376			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3377		d->req_count    = cpu_to_le16(header_size);
3378		d->res_count    = d->req_count;
3379		d->transfer_status = 0;
3380		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3381
3382		rest = payload_per_buffer;
3383		pd = d;
3384		for (j = 1; j < z; j++) {
3385			pd++;
3386			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3387						  DESCRIPTOR_INPUT_MORE);
3388
3389			if (offset + rest < PAGE_SIZE)
3390				length = rest;
3391			else
3392				length = PAGE_SIZE - offset;
3393			pd->req_count = cpu_to_le16(length);
3394			pd->res_count = pd->req_count;
3395			pd->transfer_status = 0;
3396
3397			page_bus = page_private(buffer->pages[page]);
3398			pd->data_address = cpu_to_le32(page_bus + offset);
3399
3400			dma_sync_single_range_for_device(device, page_bus,
3401							 offset, length,
3402							 DMA_FROM_DEVICE);
3403
3404			offset = (offset + length) & ~PAGE_MASK;
3405			rest -= length;
3406			if (offset == 0)
3407				page++;
3408		}
3409		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3410					  DESCRIPTOR_INPUT_LAST |
3411					  DESCRIPTOR_BRANCH_ALWAYS);
3412		if (packet->interrupt && i == packet_count - 1)
3413			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3414
3415		context_append(&ctx->context, d, z, header_z);
3416	}
3417
3418	return 0;
3419}
3420
3421static int queue_iso_buffer_fill(struct iso_context *ctx,
3422				 struct fw_iso_packet *packet,
3423				 struct fw_iso_buffer *buffer,
3424				 unsigned long payload)
3425{
3426	struct descriptor *d;
3427	dma_addr_t d_bus, page_bus;
3428	int page, offset, rest, z, i, length;
3429
3430	page   = payload >> PAGE_SHIFT;
3431	offset = payload & ~PAGE_MASK;
3432	rest   = packet->payload_length;
3433
3434	/* We need one descriptor for each page in the buffer. */
3435	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3436
3437	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3438		return -EFAULT;
3439
3440	for (i = 0; i < z; i++) {
3441		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3442		if (d == NULL)
3443			return -ENOMEM;
3444
3445		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3446					 DESCRIPTOR_BRANCH_ALWAYS);
3447		if (packet->skip && i == 0)
3448			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3449		if (packet->interrupt && i == z - 1)
3450			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3451
3452		if (offset + rest < PAGE_SIZE)
3453			length = rest;
3454		else
3455			length = PAGE_SIZE - offset;
3456		d->req_count = cpu_to_le16(length);
3457		d->res_count = d->req_count;
3458		d->transfer_status = 0;
3459
3460		page_bus = page_private(buffer->pages[page]);
3461		d->data_address = cpu_to_le32(page_bus + offset);
3462
3463		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3464						 page_bus, offset, length,
3465						 DMA_FROM_DEVICE);
3466
3467		rest -= length;
3468		offset = 0;
3469		page++;
3470
3471		context_append(&ctx->context, d, 1, 0);
3472	}
3473
3474	return 0;
3475}
3476
3477static int ohci_queue_iso(struct fw_iso_context *base,
3478			  struct fw_iso_packet *packet,
3479			  struct fw_iso_buffer *buffer,
3480			  unsigned long payload)
3481{
3482	struct iso_context *ctx = container_of(base, struct iso_context, base);
3483	unsigned long flags;
3484	int ret = -ENOSYS;
3485
3486	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3487	switch (base->type) {
3488	case FW_ISO_CONTEXT_TRANSMIT:
3489		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3490		break;
3491	case FW_ISO_CONTEXT_RECEIVE:
3492		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3493		break;
3494	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3495		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3496		break;
3497	}
3498	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3499
3500	return ret;
3501}
3502
3503static void ohci_flush_queue_iso(struct fw_iso_context *base)
3504{
3505	struct context *ctx =
3506			&container_of(base, struct iso_context, base)->context;
3507
3508	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3509}
3510
3511static int ohci_flush_iso_completions(struct fw_iso_context *base)
3512{
3513	struct iso_context *ctx = container_of(base, struct iso_context, base);
3514	int ret = 0;
3515
3516	tasklet_disable(&ctx->context.tasklet);
3517
3518	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3519		context_tasklet((unsigned long)&ctx->context);
3520
3521		switch (base->type) {
3522		case FW_ISO_CONTEXT_TRANSMIT:
3523		case FW_ISO_CONTEXT_RECEIVE:
3524			if (ctx->header_length != 0)
3525				flush_iso_completions(ctx);
3526			break;
3527		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3528			if (ctx->mc_completed != 0)
3529				flush_ir_buffer_fill(ctx);
3530			break;
3531		default:
3532			ret = -ENOSYS;
3533		}
3534
3535		clear_bit_unlock(0, &ctx->flushing_completions);
3536		smp_mb__after_atomic();
3537	}
3538
3539	tasklet_enable(&ctx->context.tasklet);
3540
3541	return ret;
3542}
3543
3544static const struct fw_card_driver ohci_driver = {
3545	.enable			= ohci_enable,
3546	.read_phy_reg		= ohci_read_phy_reg,
3547	.update_phy_reg		= ohci_update_phy_reg,
3548	.set_config_rom		= ohci_set_config_rom,
3549	.send_request		= ohci_send_request,
3550	.send_response		= ohci_send_response,
3551	.cancel_packet		= ohci_cancel_packet,
3552	.enable_phys_dma	= ohci_enable_phys_dma,
3553	.read_csr		= ohci_read_csr,
3554	.write_csr		= ohci_write_csr,
3555
3556	.allocate_iso_context	= ohci_allocate_iso_context,
3557	.free_iso_context	= ohci_free_iso_context,
3558	.set_iso_channels	= ohci_set_iso_channels,
3559	.queue_iso		= ohci_queue_iso,
3560	.flush_queue_iso	= ohci_flush_queue_iso,
3561	.flush_iso_completions	= ohci_flush_iso_completions,
3562	.start_iso		= ohci_start_iso,
3563	.stop_iso		= ohci_stop_iso,
3564};
3565
3566#ifdef CONFIG_PPC_PMAC
3567static void pmac_ohci_on(struct pci_dev *dev)
3568{
3569	if (machine_is(powermac)) {
3570		struct device_node *ofn = pci_device_to_OF_node(dev);
3571
3572		if (ofn) {
3573			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3574			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3575		}
3576	}
3577}
3578
3579static void pmac_ohci_off(struct pci_dev *dev)
3580{
3581	if (machine_is(powermac)) {
3582		struct device_node *ofn = pci_device_to_OF_node(dev);
3583
3584		if (ofn) {
3585			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3586			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3587		}
3588	}
3589}
3590#else
3591static inline void pmac_ohci_on(struct pci_dev *dev) {}
3592static inline void pmac_ohci_off(struct pci_dev *dev) {}
3593#endif /* CONFIG_PPC_PMAC */
3594
3595static int pci_probe(struct pci_dev *dev,
3596			       const struct pci_device_id *ent)
3597{
3598	struct fw_ohci *ohci;
3599	u32 bus_options, max_receive, link_speed, version;
3600	u64 guid;
3601	int i, err;
3602	size_t size;
3603
3604	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3605		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3606		return -ENOSYS;
3607	}
3608
3609	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3610	if (ohci == NULL) {
3611		err = -ENOMEM;
3612		goto fail;
3613	}
3614
3615	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3616
3617	pmac_ohci_on(dev);
3618
3619	err = pci_enable_device(dev);
3620	if (err) {
3621		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3622		goto fail_free;
3623	}
3624
3625	pci_set_master(dev);
3626	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3627	pci_set_drvdata(dev, ohci);
3628
3629	spin_lock_init(&ohci->lock);
3630	mutex_init(&ohci->phy_reg_mutex);
3631
3632	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3633
3634	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3635	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3636		ohci_err(ohci, "invalid MMIO resource\n");
3637		err = -ENXIO;
3638		goto fail_disable;
3639	}
3640
3641	err = pci_request_region(dev, 0, ohci_driver_name);
3642	if (err) {
3643		ohci_err(ohci, "MMIO resource unavailable\n");
3644		goto fail_disable;
3645	}
3646
3647	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3648	if (ohci->registers == NULL) {
3649		ohci_err(ohci, "failed to remap registers\n");
3650		err = -ENXIO;
3651		goto fail_iomem;
3652	}
3653
3654	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3655		if ((ohci_quirks[i].vendor == dev->vendor) &&
3656		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3657		     ohci_quirks[i].device == dev->device) &&
3658		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3659		     ohci_quirks[i].revision >= dev->revision)) {
3660			ohci->quirks = ohci_quirks[i].flags;
3661			break;
3662		}
3663	if (param_quirks)
3664		ohci->quirks = param_quirks;
3665
3666	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3667		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3668
3669	/*
3670	 * Because dma_alloc_coherent() allocates at least one page,
3671	 * we save space by using a common buffer for the AR request/
3672	 * response descriptors and the self IDs buffer.
3673	 */
3674	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3675	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3676	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3677					       PAGE_SIZE,
3678					       &ohci->misc_buffer_bus,
3679					       GFP_KERNEL);
3680	if (!ohci->misc_buffer) {
3681		err = -ENOMEM;
3682		goto fail_iounmap;
3683	}
3684
3685	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3686			      OHCI1394_AsReqRcvContextControlSet);
3687	if (err < 0)
3688		goto fail_misc_buf;
3689
3690	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3691			      OHCI1394_AsRspRcvContextControlSet);
3692	if (err < 0)
3693		goto fail_arreq_ctx;
3694
3695	err = context_init(&ohci->at_request_ctx, ohci,
3696			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3697	if (err < 0)
3698		goto fail_arrsp_ctx;
3699
3700	err = context_init(&ohci->at_response_ctx, ohci,
3701			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3702	if (err < 0)
3703		goto fail_atreq_ctx;
3704
3705	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3706	ohci->ir_context_channels = ~0ULL;
3707	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3708	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3709	ohci->ir_context_mask = ohci->ir_context_support;
3710	ohci->n_ir = hweight32(ohci->ir_context_mask);
3711	size = sizeof(struct iso_context) * ohci->n_ir;
3712	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3713
3714	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3715	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3716	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3717	if (!ohci->it_context_support) {
3718		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3719		ohci->it_context_support = 0xf;
3720	}
3721	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3722	ohci->it_context_mask = ohci->it_context_support;
3723	ohci->n_it = hweight32(ohci->it_context_mask);
3724	size = sizeof(struct iso_context) * ohci->n_it;
3725	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3726
3727	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3728		err = -ENOMEM;
3729		goto fail_contexts;
3730	}
3731
3732	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3733	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3734
3735	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3736	max_receive = (bus_options >> 12) & 0xf;
3737	link_speed = bus_options & 0x7;
3738	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3739		reg_read(ohci, OHCI1394_GUIDLo);
3740
3741	if (!(ohci->quirks & QUIRK_NO_MSI))
3742		pci_enable_msi(dev);
3743	if (request_irq(dev->irq, irq_handler,
3744			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3745			ohci_driver_name, ohci)) {
3746		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3747		err = -EIO;
3748		goto fail_msi;
3749	}
3750
3751	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3752	if (err)
3753		goto fail_irq;
3754
3755	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3756	ohci_notice(ohci,
3757		    "added OHCI v%x.%x device as card %d, "
3758		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3759		    version >> 16, version & 0xff, ohci->card.index,
3760		    ohci->n_ir, ohci->n_it, ohci->quirks,
3761		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3762			", physUB" : "");
3763
3764	return 0;
3765
3766 fail_irq:
3767	free_irq(dev->irq, ohci);
3768 fail_msi:
3769	pci_disable_msi(dev);
3770 fail_contexts:
3771	kfree(ohci->ir_context_list);
3772	kfree(ohci->it_context_list);
3773	context_release(&ohci->at_response_ctx);
3774 fail_atreq_ctx:
3775	context_release(&ohci->at_request_ctx);
3776 fail_arrsp_ctx:
3777	ar_context_release(&ohci->ar_response_ctx);
3778 fail_arreq_ctx:
3779	ar_context_release(&ohci->ar_request_ctx);
3780 fail_misc_buf:
3781	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3782			  ohci->misc_buffer, ohci->misc_buffer_bus);
3783 fail_iounmap:
3784	pci_iounmap(dev, ohci->registers);
3785 fail_iomem:
3786	pci_release_region(dev, 0);
3787 fail_disable:
3788	pci_disable_device(dev);
3789 fail_free:
3790	kfree(ohci);
3791	pmac_ohci_off(dev);
3792 fail:
3793	return err;
3794}
3795
3796static void pci_remove(struct pci_dev *dev)
3797{
3798	struct fw_ohci *ohci = pci_get_drvdata(dev);
3799
3800	/*
3801	 * If the removal is happening from the suspend state, LPS won't be
3802	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3803	 */
3804	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3805		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3806		flush_writes(ohci);
3807	}
3808	cancel_work_sync(&ohci->bus_reset_work);
3809	fw_core_remove_card(&ohci->card);
3810
3811	/*
3812	 * FIXME: Fail all pending packets here, now that the upper
3813	 * layers can't queue any more.
3814	 */
3815
3816	software_reset(ohci);
3817	free_irq(dev->irq, ohci);
3818
3819	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3820		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3821				  ohci->next_config_rom, ohci->next_config_rom_bus);
3822	if (ohci->config_rom)
3823		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3824				  ohci->config_rom, ohci->config_rom_bus);
3825	ar_context_release(&ohci->ar_request_ctx);
3826	ar_context_release(&ohci->ar_response_ctx);
3827	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3828			  ohci->misc_buffer, ohci->misc_buffer_bus);
3829	context_release(&ohci->at_request_ctx);
3830	context_release(&ohci->at_response_ctx);
3831	kfree(ohci->it_context_list);
3832	kfree(ohci->ir_context_list);
3833	pci_disable_msi(dev);
3834	pci_iounmap(dev, ohci->registers);
3835	pci_release_region(dev, 0);
3836	pci_disable_device(dev);
3837	kfree(ohci);
3838	pmac_ohci_off(dev);
3839
3840	dev_notice(&dev->dev, "removed fw-ohci device\n");
3841}
3842
3843#ifdef CONFIG_PM
3844static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3845{
3846	struct fw_ohci *ohci = pci_get_drvdata(dev);
3847	int err;
3848
3849	software_reset(ohci);
3850	err = pci_save_state(dev);
3851	if (err) {
3852		ohci_err(ohci, "pci_save_state failed\n");
3853		return err;
3854	}
3855	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3856	if (err)
3857		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3858	pmac_ohci_off(dev);
3859
3860	return 0;
3861}
3862
3863static int pci_resume(struct pci_dev *dev)
3864{
3865	struct fw_ohci *ohci = pci_get_drvdata(dev);
3866	int err;
3867
3868	pmac_ohci_on(dev);
3869	pci_set_power_state(dev, PCI_D0);
3870	pci_restore_state(dev);
3871	err = pci_enable_device(dev);
3872	if (err) {
3873		ohci_err(ohci, "pci_enable_device failed\n");
3874		return err;
3875	}
3876
3877	/* Some systems don't setup GUID register on resume from ram  */
3878	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3879					!reg_read(ohci, OHCI1394_GUIDHi)) {
3880		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3881		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3882	}
3883
3884	err = ohci_enable(&ohci->card, NULL, 0);
3885	if (err)
3886		return err;
3887
3888	ohci_resume_iso_dma(ohci);
3889
3890	return 0;
3891}
3892#endif
3893
3894static const struct pci_device_id pci_table[] = {
3895	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3896	{ }
3897};
3898
3899MODULE_DEVICE_TABLE(pci, pci_table);
3900
3901static struct pci_driver fw_ohci_pci_driver = {
3902	.name		= ohci_driver_name,
3903	.id_table	= pci_table,
3904	.probe		= pci_probe,
3905	.remove		= pci_remove,
3906#ifdef CONFIG_PM
3907	.resume		= pci_resume,
3908	.suspend	= pci_suspend,
3909#endif
3910};
3911
3912static int __init fw_ohci_init(void)
3913{
3914	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3915	if (!selfid_workqueue)
3916		return -ENOMEM;
3917
3918	return pci_register_driver(&fw_ohci_pci_driver);
3919}
3920
3921static void __exit fw_ohci_cleanup(void)
3922{
3923	pci_unregister_driver(&fw_ohci_pci_driver);
3924	destroy_workqueue(selfid_workqueue);
3925}
3926
3927module_init(fw_ohci_init);
3928module_exit(fw_ohci_cleanup);
3929
3930MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3931MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3932MODULE_LICENSE("GPL");
3933
3934/* Provide a module alias so root-on-sbp2 initrds don't break. */
3935MODULE_ALIAS("ohci1394");
3936