1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/errno.h>
12#include <linux/firewire.h>
13#include <linux/firewire-constants.h>
14#include <linux/fs.h>
15#include <linux/init.h>
16#include <linux/idr.h>
17#include <linux/jiffies.h>
18#include <linux/kernel.h>
19#include <linux/list.h>
20#include <linux/module.h>
21#include <linux/rculist.h>
22#include <linux/slab.h>
23#include <linux/spinlock.h>
24#include <linux/string.h>
25#include <linux/timer.h>
26#include <linux/types.h>
27#include <linux/workqueue.h>
28
29#include <asm/byteorder.h>
30
31#include "core.h"
32
33#define HEADER_PRI(pri)			((pri) << 0)
34#define HEADER_TCODE(tcode)		((tcode) << 4)
35#define HEADER_RETRY(retry)		((retry) << 8)
36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
37#define HEADER_DESTINATION(destination)	((destination) << 16)
38#define HEADER_SOURCE(source)		((source) << 16)
39#define HEADER_RCODE(rcode)		((rcode) << 12)
40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
41#define HEADER_DATA_LENGTH(length)	((length) << 16)
42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
43
44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
52
53#define HEADER_DESTINATION_IS_BROADCAST(q) \
54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56#define PHY_PACKET_CONFIG	0x0
57#define PHY_PACKET_LINK_ON	0x1
58#define PHY_PACKET_SELF_ID	0x2
59
60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
62#define PHY_IDENTIFIER(id)		((id) << 30)
63
64/* returns 0 if the split timeout handler is already running */
65static int try_cancel_split_timeout(struct fw_transaction *t)
66{
67	if (t->is_split_transaction)
68		return del_timer(&t->split_timeout_timer);
69	else
70		return 1;
71}
72
73static int close_transaction(struct fw_transaction *transaction,
74			     struct fw_card *card, int rcode)
75{
76	struct fw_transaction *t = NULL, *iter;
77	unsigned long flags;
78
79	spin_lock_irqsave(&card->lock, flags);
80	list_for_each_entry(iter, &card->transaction_list, link) {
81		if (iter == transaction) {
82			if (!try_cancel_split_timeout(iter)) {
83				spin_unlock_irqrestore(&card->lock, flags);
84				goto timed_out;
85			}
86			list_del_init(&iter->link);
87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
88			t = iter;
89			break;
90		}
91	}
92	spin_unlock_irqrestore(&card->lock, flags);
93
94	if (t) {
95		t->callback(card, rcode, NULL, 0, t->callback_data);
96		return 0;
97	}
98
99 timed_out:
100	return -ENOENT;
101}
102
103/*
104 * Only valid for transactions that are potentially pending (ie have
105 * been sent).
106 */
107int fw_cancel_transaction(struct fw_card *card,
108			  struct fw_transaction *transaction)
109{
110	/*
111	 * Cancel the packet transmission if it's still queued.  That
112	 * will call the packet transmission callback which cancels
113	 * the transaction.
114	 */
115
116	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
117		return 0;
118
119	/*
120	 * If the request packet has already been sent, we need to see
121	 * if the transaction is still pending and remove it in that case.
122	 */
123
124	return close_transaction(transaction, card, RCODE_CANCELLED);
125}
126EXPORT_SYMBOL(fw_cancel_transaction);
127
128static void split_transaction_timeout_callback(struct timer_list *timer)
129{
130	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
131	struct fw_card *card = t->card;
132	unsigned long flags;
133
134	spin_lock_irqsave(&card->lock, flags);
135	if (list_empty(&t->link)) {
136		spin_unlock_irqrestore(&card->lock, flags);
137		return;
138	}
139	list_del(&t->link);
140	card->tlabel_mask &= ~(1ULL << t->tlabel);
141	spin_unlock_irqrestore(&card->lock, flags);
142
143	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
144}
145
146static void start_split_transaction_timeout(struct fw_transaction *t,
147					    struct fw_card *card)
148{
149	unsigned long flags;
150
151	spin_lock_irqsave(&card->lock, flags);
152
153	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
154		spin_unlock_irqrestore(&card->lock, flags);
155		return;
156	}
157
158	t->is_split_transaction = true;
159	mod_timer(&t->split_timeout_timer,
160		  jiffies + card->split_timeout_jiffies);
161
162	spin_unlock_irqrestore(&card->lock, flags);
163}
164
165static void transmit_complete_callback(struct fw_packet *packet,
166				       struct fw_card *card, int status)
167{
168	struct fw_transaction *t =
169	    container_of(packet, struct fw_transaction, packet);
170
171	switch (status) {
172	case ACK_COMPLETE:
173		close_transaction(t, card, RCODE_COMPLETE);
174		break;
175	case ACK_PENDING:
176		start_split_transaction_timeout(t, card);
177		break;
178	case ACK_BUSY_X:
179	case ACK_BUSY_A:
180	case ACK_BUSY_B:
181		close_transaction(t, card, RCODE_BUSY);
182		break;
183	case ACK_DATA_ERROR:
184		close_transaction(t, card, RCODE_DATA_ERROR);
185		break;
186	case ACK_TYPE_ERROR:
187		close_transaction(t, card, RCODE_TYPE_ERROR);
188		break;
189	default:
190		/*
191		 * In this case the ack is really a juju specific
192		 * rcode, so just forward that to the callback.
193		 */
194		close_transaction(t, card, status);
195		break;
196	}
197}
198
199static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
200		int destination_id, int source_id, int generation, int speed,
201		unsigned long long offset, void *payload, size_t length)
202{
203	int ext_tcode;
204
205	if (tcode == TCODE_STREAM_DATA) {
206		packet->header[0] =
207			HEADER_DATA_LENGTH(length) |
208			destination_id |
209			HEADER_TCODE(TCODE_STREAM_DATA);
210		packet->header_length = 4;
211		packet->payload = payload;
212		packet->payload_length = length;
213
214		goto common;
215	}
216
217	if (tcode > 0x10) {
218		ext_tcode = tcode & ~0x10;
219		tcode = TCODE_LOCK_REQUEST;
220	} else
221		ext_tcode = 0;
222
223	packet->header[0] =
224		HEADER_RETRY(RETRY_X) |
225		HEADER_TLABEL(tlabel) |
226		HEADER_TCODE(tcode) |
227		HEADER_DESTINATION(destination_id);
228	packet->header[1] =
229		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
230	packet->header[2] =
231		offset;
232
233	switch (tcode) {
234	case TCODE_WRITE_QUADLET_REQUEST:
235		packet->header[3] = *(u32 *)payload;
236		packet->header_length = 16;
237		packet->payload_length = 0;
238		break;
239
240	case TCODE_LOCK_REQUEST:
241	case TCODE_WRITE_BLOCK_REQUEST:
242		packet->header[3] =
243			HEADER_DATA_LENGTH(length) |
244			HEADER_EXTENDED_TCODE(ext_tcode);
245		packet->header_length = 16;
246		packet->payload = payload;
247		packet->payload_length = length;
248		break;
249
250	case TCODE_READ_QUADLET_REQUEST:
251		packet->header_length = 12;
252		packet->payload_length = 0;
253		break;
254
255	case TCODE_READ_BLOCK_REQUEST:
256		packet->header[3] =
257			HEADER_DATA_LENGTH(length) |
258			HEADER_EXTENDED_TCODE(ext_tcode);
259		packet->header_length = 16;
260		packet->payload_length = 0;
261		break;
262
263	default:
264		WARN(1, "wrong tcode %d\n", tcode);
265	}
266 common:
267	packet->speed = speed;
268	packet->generation = generation;
269	packet->ack = 0;
270	packet->payload_mapped = false;
271}
272
273static int allocate_tlabel(struct fw_card *card)
274{
275	int tlabel;
276
277	tlabel = card->current_tlabel;
278	while (card->tlabel_mask & (1ULL << tlabel)) {
279		tlabel = (tlabel + 1) & 0x3f;
280		if (tlabel == card->current_tlabel)
281			return -EBUSY;
282	}
283
284	card->current_tlabel = (tlabel + 1) & 0x3f;
285	card->tlabel_mask |= 1ULL << tlabel;
286
287	return tlabel;
288}
289
290/**
291 * fw_send_request() - submit a request packet for transmission
292 * @card:		interface to send the request at
293 * @t:			transaction instance to which the request belongs
294 * @tcode:		transaction code
295 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
296 * @generation:		bus generation in which request and response are valid
297 * @speed:		transmission speed
298 * @offset:		48bit wide offset into destination's address space
299 * @payload:		data payload for the request subaction
300 * @length:		length of the payload, in bytes
301 * @callback:		function to be called when the transaction is completed
302 * @callback_data:	data to be passed to the transaction completion callback
303 *
304 * Submit a request packet into the asynchronous request transmission queue.
305 * Can be called from atomic context.  If you prefer a blocking API, use
306 * fw_run_transaction() in a context that can sleep.
307 *
308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
310 *
311 * Make sure that the value in @destination_id is not older than the one in
312 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
313 *
314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
316 * It will contain tag, channel, and sy data instead of a node ID then.
317 *
318 * The payload buffer at @data is going to be DMA-mapped except in case of
319 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
320 * buffer complies with the restrictions of the streaming DMA mapping API.
321 * @payload must not be freed before the @callback is called.
322 *
323 * In case of request types without payload, @data is NULL and @length is 0.
324 *
325 * After the transaction is completed successfully or unsuccessfully, the
326 * @callback will be called.  Among its parameters is the response code which
327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
328 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
331 * generation, or missing ACK respectively.
332 *
333 * Note some timing corner cases:  fw_send_request() may complete much earlier
334 * than when the request packet actually hits the wire.  On the other hand,
335 * transaction completion and hence execution of @callback may happen even
336 * before fw_send_request() returns.
337 */
338void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
339		     int destination_id, int generation, int speed,
340		     unsigned long long offset, void *payload, size_t length,
341		     fw_transaction_callback_t callback, void *callback_data)
342{
343	unsigned long flags;
344	int tlabel;
345
346	/*
347	 * Allocate tlabel from the bitmap and put the transaction on
348	 * the list while holding the card spinlock.
349	 */
350
351	spin_lock_irqsave(&card->lock, flags);
352
353	tlabel = allocate_tlabel(card);
354	if (tlabel < 0) {
355		spin_unlock_irqrestore(&card->lock, flags);
356		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
357		return;
358	}
359
360	t->node_id = destination_id;
361	t->tlabel = tlabel;
362	t->card = card;
363	t->is_split_transaction = false;
364	timer_setup(&t->split_timeout_timer,
365		    split_transaction_timeout_callback, 0);
366	t->callback = callback;
367	t->callback_data = callback_data;
368
369	fw_fill_request(&t->packet, tcode, t->tlabel,
370			destination_id, card->node_id, generation,
371			speed, offset, payload, length);
372	t->packet.callback = transmit_complete_callback;
373
374	list_add_tail(&t->link, &card->transaction_list);
375
376	spin_unlock_irqrestore(&card->lock, flags);
377
378	card->driver->send_request(card, &t->packet);
379}
380EXPORT_SYMBOL(fw_send_request);
381
382struct transaction_callback_data {
383	struct completion done;
384	void *payload;
385	int rcode;
386};
387
388static void transaction_callback(struct fw_card *card, int rcode,
389				 void *payload, size_t length, void *data)
390{
391	struct transaction_callback_data *d = data;
392
393	if (rcode == RCODE_COMPLETE)
394		memcpy(d->payload, payload, length);
395	d->rcode = rcode;
396	complete(&d->done);
397}
398
399/**
400 * fw_run_transaction() - send request and sleep until transaction is completed
401 * @card:		card interface for this request
402 * @tcode:		transaction code
403 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
404 * @generation:		bus generation in which request and response are valid
405 * @speed:		transmission speed
406 * @offset:		48bit wide offset into destination's address space
407 * @payload:		data payload for the request subaction
408 * @length:		length of the payload, in bytes
409 *
410 * Returns the RCODE.  See fw_send_request() for parameter documentation.
411 * Unlike fw_send_request(), @data points to the payload of the request or/and
412 * to the payload of the response.  DMA mapping restrictions apply to outbound
413 * request payloads of >= 8 bytes but not to inbound response payloads.
414 */
415int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
416		       int generation, int speed, unsigned long long offset,
417		       void *payload, size_t length)
418{
419	struct transaction_callback_data d;
420	struct fw_transaction t;
421
422	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
423	init_completion(&d.done);
424	d.payload = payload;
425	fw_send_request(card, &t, tcode, destination_id, generation, speed,
426			offset, payload, length, transaction_callback, &d);
427	wait_for_completion(&d.done);
428	destroy_timer_on_stack(&t.split_timeout_timer);
429
430	return d.rcode;
431}
432EXPORT_SYMBOL(fw_run_transaction);
433
434static DEFINE_MUTEX(phy_config_mutex);
435static DECLARE_COMPLETION(phy_config_done);
436
437static void transmit_phy_packet_callback(struct fw_packet *packet,
438					 struct fw_card *card, int status)
439{
440	complete(&phy_config_done);
441}
442
443static struct fw_packet phy_config_packet = {
444	.header_length	= 12,
445	.header[0]	= TCODE_LINK_INTERNAL << 4,
446	.payload_length	= 0,
447	.speed		= SCODE_100,
448	.callback	= transmit_phy_packet_callback,
449};
450
451void fw_send_phy_config(struct fw_card *card,
452			int node_id, int generation, int gap_count)
453{
454	long timeout = DIV_ROUND_UP(HZ, 10);
455	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
456
457	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
458		data |= PHY_CONFIG_ROOT_ID(node_id);
459
460	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
461		gap_count = card->driver->read_phy_reg(card, 1);
462		if (gap_count < 0)
463			return;
464
465		gap_count &= 63;
466		if (gap_count == 63)
467			return;
468	}
469	data |= PHY_CONFIG_GAP_COUNT(gap_count);
470
471	mutex_lock(&phy_config_mutex);
472
473	phy_config_packet.header[1] = data;
474	phy_config_packet.header[2] = ~data;
475	phy_config_packet.generation = generation;
476	reinit_completion(&phy_config_done);
477
478	card->driver->send_request(card, &phy_config_packet);
479	wait_for_completion_timeout(&phy_config_done, timeout);
480
481	mutex_unlock(&phy_config_mutex);
482}
483
484static struct fw_address_handler *lookup_overlapping_address_handler(
485	struct list_head *list, unsigned long long offset, size_t length)
486{
487	struct fw_address_handler *handler;
488
489	list_for_each_entry_rcu(handler, list, link) {
490		if (handler->offset < offset + length &&
491		    offset < handler->offset + handler->length)
492			return handler;
493	}
494
495	return NULL;
496}
497
498static bool is_enclosing_handler(struct fw_address_handler *handler,
499				 unsigned long long offset, size_t length)
500{
501	return handler->offset <= offset &&
502		offset + length <= handler->offset + handler->length;
503}
504
505static struct fw_address_handler *lookup_enclosing_address_handler(
506	struct list_head *list, unsigned long long offset, size_t length)
507{
508	struct fw_address_handler *handler;
509
510	list_for_each_entry_rcu(handler, list, link) {
511		if (is_enclosing_handler(handler, offset, length))
512			return handler;
513	}
514
515	return NULL;
516}
517
518static DEFINE_SPINLOCK(address_handler_list_lock);
519static LIST_HEAD(address_handler_list);
520
521const struct fw_address_region fw_high_memory_region =
522	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
523EXPORT_SYMBOL(fw_high_memory_region);
524
525static const struct fw_address_region low_memory_region =
526	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
527
528#if 0
529const struct fw_address_region fw_private_region =
530	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
531const struct fw_address_region fw_csr_region =
532	{ .start = CSR_REGISTER_BASE,
533	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
534const struct fw_address_region fw_unit_space_region =
535	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536#endif  /*  0  */
537
538static bool is_in_fcp_region(u64 offset, size_t length)
539{
540	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542}
543
544/**
545 * fw_core_add_address_handler() - register for incoming requests
546 * @handler:	callback
547 * @region:	region in the IEEE 1212 node space address range
548 *
549 * region->start, ->end, and handler->length have to be quadlet-aligned.
550 *
551 * When a request is received that falls within the specified address range,
552 * the specified callback is invoked.  The parameters passed to the callback
553 * give the details of the particular request.
554 *
555 * To be called in process context.
556 * Return value:  0 on success, non-zero otherwise.
557 *
558 * The start offset of the handler's address region is determined by
559 * fw_core_add_address_handler() and is returned in handler->offset.
560 *
561 * Address allocations are exclusive, except for the FCP registers.
562 */
563int fw_core_add_address_handler(struct fw_address_handler *handler,
564				const struct fw_address_region *region)
565{
566	struct fw_address_handler *other;
567	int ret = -EBUSY;
568
569	if (region->start & 0xffff000000000003ULL ||
570	    region->start >= region->end ||
571	    region->end   > 0x0001000000000000ULL ||
572	    handler->length & 3 ||
573	    handler->length == 0)
574		return -EINVAL;
575
576	spin_lock(&address_handler_list_lock);
577
578	handler->offset = region->start;
579	while (handler->offset + handler->length <= region->end) {
580		if (is_in_fcp_region(handler->offset, handler->length))
581			other = NULL;
582		else
583			other = lookup_overlapping_address_handler
584					(&address_handler_list,
585					 handler->offset, handler->length);
586		if (other != NULL) {
587			handler->offset += other->length;
588		} else {
589			list_add_tail_rcu(&handler->link, &address_handler_list);
590			ret = 0;
591			break;
592		}
593	}
594
595	spin_unlock(&address_handler_list_lock);
596
597	return ret;
598}
599EXPORT_SYMBOL(fw_core_add_address_handler);
600
601/**
602 * fw_core_remove_address_handler() - unregister an address handler
603 * @handler: callback
604 *
605 * To be called in process context.
606 *
607 * When fw_core_remove_address_handler() returns, @handler->callback() is
608 * guaranteed to not run on any CPU anymore.
609 */
610void fw_core_remove_address_handler(struct fw_address_handler *handler)
611{
612	spin_lock(&address_handler_list_lock);
613	list_del_rcu(&handler->link);
614	spin_unlock(&address_handler_list_lock);
615	synchronize_rcu();
616}
617EXPORT_SYMBOL(fw_core_remove_address_handler);
618
619struct fw_request {
620	struct fw_packet response;
621	u32 request_header[4];
622	int ack;
623	u32 length;
624	u32 data[];
625};
626
627static void free_response_callback(struct fw_packet *packet,
628				   struct fw_card *card, int status)
629{
630	struct fw_request *request;
631
632	request = container_of(packet, struct fw_request, response);
633	kfree(request);
634}
635
636int fw_get_response_length(struct fw_request *r)
637{
638	int tcode, ext_tcode, data_length;
639
640	tcode = HEADER_GET_TCODE(r->request_header[0]);
641
642	switch (tcode) {
643	case TCODE_WRITE_QUADLET_REQUEST:
644	case TCODE_WRITE_BLOCK_REQUEST:
645		return 0;
646
647	case TCODE_READ_QUADLET_REQUEST:
648		return 4;
649
650	case TCODE_READ_BLOCK_REQUEST:
651		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
652		return data_length;
653
654	case TCODE_LOCK_REQUEST:
655		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
656		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
657		switch (ext_tcode) {
658		case EXTCODE_FETCH_ADD:
659		case EXTCODE_LITTLE_ADD:
660			return data_length;
661		default:
662			return data_length / 2;
663		}
664
665	default:
666		WARN(1, "wrong tcode %d\n", tcode);
667		return 0;
668	}
669}
670
671void fw_fill_response(struct fw_packet *response, u32 *request_header,
672		      int rcode, void *payload, size_t length)
673{
674	int tcode, tlabel, extended_tcode, source, destination;
675
676	tcode          = HEADER_GET_TCODE(request_header[0]);
677	tlabel         = HEADER_GET_TLABEL(request_header[0]);
678	source         = HEADER_GET_DESTINATION(request_header[0]);
679	destination    = HEADER_GET_SOURCE(request_header[1]);
680	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
681
682	response->header[0] =
683		HEADER_RETRY(RETRY_1) |
684		HEADER_TLABEL(tlabel) |
685		HEADER_DESTINATION(destination);
686	response->header[1] =
687		HEADER_SOURCE(source) |
688		HEADER_RCODE(rcode);
689	response->header[2] = 0;
690
691	switch (tcode) {
692	case TCODE_WRITE_QUADLET_REQUEST:
693	case TCODE_WRITE_BLOCK_REQUEST:
694		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
695		response->header_length = 12;
696		response->payload_length = 0;
697		break;
698
699	case TCODE_READ_QUADLET_REQUEST:
700		response->header[0] |=
701			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
702		if (payload != NULL)
703			response->header[3] = *(u32 *)payload;
704		else
705			response->header[3] = 0;
706		response->header_length = 16;
707		response->payload_length = 0;
708		break;
709
710	case TCODE_READ_BLOCK_REQUEST:
711	case TCODE_LOCK_REQUEST:
712		response->header[0] |= HEADER_TCODE(tcode + 2);
713		response->header[3] =
714			HEADER_DATA_LENGTH(length) |
715			HEADER_EXTENDED_TCODE(extended_tcode);
716		response->header_length = 16;
717		response->payload = payload;
718		response->payload_length = length;
719		break;
720
721	default:
722		WARN(1, "wrong tcode %d\n", tcode);
723	}
724
725	response->payload_mapped = false;
726}
727EXPORT_SYMBOL(fw_fill_response);
728
729static u32 compute_split_timeout_timestamp(struct fw_card *card,
730					   u32 request_timestamp)
731{
732	unsigned int cycles;
733	u32 timestamp;
734
735	cycles = card->split_timeout_cycles;
736	cycles += request_timestamp & 0x1fff;
737
738	timestamp = request_timestamp & ~0x1fff;
739	timestamp += (cycles / 8000) << 13;
740	timestamp |= cycles % 8000;
741
742	return timestamp;
743}
744
745static struct fw_request *allocate_request(struct fw_card *card,
746					   struct fw_packet *p)
747{
748	struct fw_request *request;
749	u32 *data, length;
750	int request_tcode;
751
752	request_tcode = HEADER_GET_TCODE(p->header[0]);
753	switch (request_tcode) {
754	case TCODE_WRITE_QUADLET_REQUEST:
755		data = &p->header[3];
756		length = 4;
757		break;
758
759	case TCODE_WRITE_BLOCK_REQUEST:
760	case TCODE_LOCK_REQUEST:
761		data = p->payload;
762		length = HEADER_GET_DATA_LENGTH(p->header[3]);
763		break;
764
765	case TCODE_READ_QUADLET_REQUEST:
766		data = NULL;
767		length = 4;
768		break;
769
770	case TCODE_READ_BLOCK_REQUEST:
771		data = NULL;
772		length = HEADER_GET_DATA_LENGTH(p->header[3]);
773		break;
774
775	default:
776		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
777			 p->header[0], p->header[1], p->header[2]);
778		return NULL;
779	}
780
781	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
782	if (request == NULL)
783		return NULL;
784
785	request->response.speed = p->speed;
786	request->response.timestamp =
787			compute_split_timeout_timestamp(card, p->timestamp);
788	request->response.generation = p->generation;
789	request->response.ack = 0;
790	request->response.callback = free_response_callback;
791	request->ack = p->ack;
792	request->length = length;
793	if (data)
794		memcpy(request->data, data, length);
795
796	memcpy(request->request_header, p->header, sizeof(p->header));
797
798	return request;
799}
800
801void fw_send_response(struct fw_card *card,
802		      struct fw_request *request, int rcode)
803{
804	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
805		return;
806
807	/* unified transaction or broadcast transaction: don't respond */
808	if (request->ack != ACK_PENDING ||
809	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
810		kfree(request);
811		return;
812	}
813
814	if (rcode == RCODE_COMPLETE)
815		fw_fill_response(&request->response, request->request_header,
816				 rcode, request->data,
817				 fw_get_response_length(request));
818	else
819		fw_fill_response(&request->response, request->request_header,
820				 rcode, NULL, 0);
821
822	card->driver->send_response(card, &request->response);
823}
824EXPORT_SYMBOL(fw_send_response);
825
826/**
827 * fw_get_request_speed() - returns speed at which the @request was received
828 * @request: firewire request data
829 */
830int fw_get_request_speed(struct fw_request *request)
831{
832	return request->response.speed;
833}
834EXPORT_SYMBOL(fw_get_request_speed);
835
836static void handle_exclusive_region_request(struct fw_card *card,
837					    struct fw_packet *p,
838					    struct fw_request *request,
839					    unsigned long long offset)
840{
841	struct fw_address_handler *handler;
842	int tcode, destination, source;
843
844	destination = HEADER_GET_DESTINATION(p->header[0]);
845	source      = HEADER_GET_SOURCE(p->header[1]);
846	tcode       = HEADER_GET_TCODE(p->header[0]);
847	if (tcode == TCODE_LOCK_REQUEST)
848		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
849
850	rcu_read_lock();
851	handler = lookup_enclosing_address_handler(&address_handler_list,
852						   offset, request->length);
853	if (handler)
854		handler->address_callback(card, request,
855					  tcode, destination, source,
856					  p->generation, offset,
857					  request->data, request->length,
858					  handler->callback_data);
859	rcu_read_unlock();
860
861	if (!handler)
862		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
863}
864
865static void handle_fcp_region_request(struct fw_card *card,
866				      struct fw_packet *p,
867				      struct fw_request *request,
868				      unsigned long long offset)
869{
870	struct fw_address_handler *handler;
871	int tcode, destination, source;
872
873	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
874	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
875	    request->length > 0x200) {
876		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
877
878		return;
879	}
880
881	tcode       = HEADER_GET_TCODE(p->header[0]);
882	destination = HEADER_GET_DESTINATION(p->header[0]);
883	source      = HEADER_GET_SOURCE(p->header[1]);
884
885	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
886	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
887		fw_send_response(card, request, RCODE_TYPE_ERROR);
888
889		return;
890	}
891
892	rcu_read_lock();
893	list_for_each_entry_rcu(handler, &address_handler_list, link) {
894		if (is_enclosing_handler(handler, offset, request->length))
895			handler->address_callback(card, NULL, tcode,
896						  destination, source,
897						  p->generation, offset,
898						  request->data,
899						  request->length,
900						  handler->callback_data);
901	}
902	rcu_read_unlock();
903
904	fw_send_response(card, request, RCODE_COMPLETE);
905}
906
907void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
908{
909	struct fw_request *request;
910	unsigned long long offset;
911
912	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
913		return;
914
915	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
916		fw_cdev_handle_phy_packet(card, p);
917		return;
918	}
919
920	request = allocate_request(card, p);
921	if (request == NULL) {
922		/* FIXME: send statically allocated busy packet. */
923		return;
924	}
925
926	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
927		p->header[2];
928
929	if (!is_in_fcp_region(offset, request->length))
930		handle_exclusive_region_request(card, p, request, offset);
931	else
932		handle_fcp_region_request(card, p, request, offset);
933
934}
935EXPORT_SYMBOL(fw_core_handle_request);
936
937void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
938{
939	struct fw_transaction *t = NULL, *iter;
940	unsigned long flags;
941	u32 *data;
942	size_t data_length;
943	int tcode, tlabel, source, rcode;
944
945	tcode	= HEADER_GET_TCODE(p->header[0]);
946	tlabel	= HEADER_GET_TLABEL(p->header[0]);
947	source	= HEADER_GET_SOURCE(p->header[1]);
948	rcode	= HEADER_GET_RCODE(p->header[1]);
949
950	spin_lock_irqsave(&card->lock, flags);
951	list_for_each_entry(iter, &card->transaction_list, link) {
952		if (iter->node_id == source && iter->tlabel == tlabel) {
953			if (!try_cancel_split_timeout(iter)) {
954				spin_unlock_irqrestore(&card->lock, flags);
955				goto timed_out;
956			}
957			list_del_init(&iter->link);
958			card->tlabel_mask &= ~(1ULL << iter->tlabel);
959			t = iter;
960			break;
961		}
962	}
963	spin_unlock_irqrestore(&card->lock, flags);
964
965	if (!t) {
966 timed_out:
967		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
968			  source, tlabel);
969		return;
970	}
971
972	/*
973	 * FIXME: sanity check packet, is length correct, does tcodes
974	 * and addresses match.
975	 */
976
977	switch (tcode) {
978	case TCODE_READ_QUADLET_RESPONSE:
979		data = (u32 *) &p->header[3];
980		data_length = 4;
981		break;
982
983	case TCODE_WRITE_RESPONSE:
984		data = NULL;
985		data_length = 0;
986		break;
987
988	case TCODE_READ_BLOCK_RESPONSE:
989	case TCODE_LOCK_RESPONSE:
990		data = p->payload;
991		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
992		break;
993
994	default:
995		/* Should never happen, this is just to shut up gcc. */
996		data = NULL;
997		data_length = 0;
998		break;
999	}
1000
1001	/*
1002	 * The response handler may be executed while the request handler
1003	 * is still pending.  Cancel the request handler.
1004	 */
1005	card->driver->cancel_packet(card, &t->packet);
1006
1007	t->callback(card, rcode, data, data_length, t->callback_data);
1008}
1009EXPORT_SYMBOL(fw_core_handle_response);
1010
1011/**
1012 * fw_rcode_string - convert a firewire result code to an error description
1013 * @rcode: the result code
1014 */
1015const char *fw_rcode_string(int rcode)
1016{
1017	static const char *const names[] = {
1018		[RCODE_COMPLETE]       = "no error",
1019		[RCODE_CONFLICT_ERROR] = "conflict error",
1020		[RCODE_DATA_ERROR]     = "data error",
1021		[RCODE_TYPE_ERROR]     = "type error",
1022		[RCODE_ADDRESS_ERROR]  = "address error",
1023		[RCODE_SEND_ERROR]     = "send error",
1024		[RCODE_CANCELLED]      = "timeout",
1025		[RCODE_BUSY]           = "busy",
1026		[RCODE_GENERATION]     = "bus reset",
1027		[RCODE_NO_ACK]         = "no ack",
1028	};
1029
1030	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1031		return names[rcode];
1032	else
1033		return "unknown";
1034}
1035EXPORT_SYMBOL(fw_rcode_string);
1036
1037static const struct fw_address_region topology_map_region =
1038	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1039	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1040
1041static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1042		int tcode, int destination, int source, int generation,
1043		unsigned long long offset, void *payload, size_t length,
1044		void *callback_data)
1045{
1046	int start;
1047
1048	if (!TCODE_IS_READ_REQUEST(tcode)) {
1049		fw_send_response(card, request, RCODE_TYPE_ERROR);
1050		return;
1051	}
1052
1053	if ((offset & 3) > 0 || (length & 3) > 0) {
1054		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1055		return;
1056	}
1057
1058	start = (offset - topology_map_region.start) / 4;
1059	memcpy(payload, &card->topology_map[start], length);
1060
1061	fw_send_response(card, request, RCODE_COMPLETE);
1062}
1063
1064static struct fw_address_handler topology_map = {
1065	.length			= 0x400,
1066	.address_callback	= handle_topology_map,
1067};
1068
1069static const struct fw_address_region registers_region =
1070	{ .start = CSR_REGISTER_BASE,
1071	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1072
1073static void update_split_timeout(struct fw_card *card)
1074{
1075	unsigned int cycles;
1076
1077	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1078
1079	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1080	cycles = clamp(cycles, 800u, 3u * 8000u);
1081
1082	card->split_timeout_cycles = cycles;
1083	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1084}
1085
1086static void handle_registers(struct fw_card *card, struct fw_request *request,
1087		int tcode, int destination, int source, int generation,
1088		unsigned long long offset, void *payload, size_t length,
1089		void *callback_data)
1090{
1091	int reg = offset & ~CSR_REGISTER_BASE;
1092	__be32 *data = payload;
1093	int rcode = RCODE_COMPLETE;
1094	unsigned long flags;
1095
1096	switch (reg) {
1097	case CSR_PRIORITY_BUDGET:
1098		if (!card->priority_budget_implemented) {
1099			rcode = RCODE_ADDRESS_ERROR;
1100			break;
1101		}
1102		fallthrough;
1103
1104	case CSR_NODE_IDS:
1105		/*
1106		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1107		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1108		 */
1109		fallthrough;
1110
1111	case CSR_STATE_CLEAR:
1112	case CSR_STATE_SET:
1113	case CSR_CYCLE_TIME:
1114	case CSR_BUS_TIME:
1115	case CSR_BUSY_TIMEOUT:
1116		if (tcode == TCODE_READ_QUADLET_REQUEST)
1117			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1118		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1119			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1120		else
1121			rcode = RCODE_TYPE_ERROR;
1122		break;
1123
1124	case CSR_RESET_START:
1125		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1126			card->driver->write_csr(card, CSR_STATE_CLEAR,
1127						CSR_STATE_BIT_ABDICATE);
1128		else
1129			rcode = RCODE_TYPE_ERROR;
1130		break;
1131
1132	case CSR_SPLIT_TIMEOUT_HI:
1133		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1134			*data = cpu_to_be32(card->split_timeout_hi);
1135		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1136			spin_lock_irqsave(&card->lock, flags);
1137			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1138			update_split_timeout(card);
1139			spin_unlock_irqrestore(&card->lock, flags);
1140		} else {
1141			rcode = RCODE_TYPE_ERROR;
1142		}
1143		break;
1144
1145	case CSR_SPLIT_TIMEOUT_LO:
1146		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1147			*data = cpu_to_be32(card->split_timeout_lo);
1148		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1149			spin_lock_irqsave(&card->lock, flags);
1150			card->split_timeout_lo =
1151					be32_to_cpu(*data) & 0xfff80000;
1152			update_split_timeout(card);
1153			spin_unlock_irqrestore(&card->lock, flags);
1154		} else {
1155			rcode = RCODE_TYPE_ERROR;
1156		}
1157		break;
1158
1159	case CSR_MAINT_UTILITY:
1160		if (tcode == TCODE_READ_QUADLET_REQUEST)
1161			*data = card->maint_utility_register;
1162		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1163			card->maint_utility_register = *data;
1164		else
1165			rcode = RCODE_TYPE_ERROR;
1166		break;
1167
1168	case CSR_BROADCAST_CHANNEL:
1169		if (tcode == TCODE_READ_QUADLET_REQUEST)
1170			*data = cpu_to_be32(card->broadcast_channel);
1171		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1172			card->broadcast_channel =
1173			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1174			    BROADCAST_CHANNEL_INITIAL;
1175		else
1176			rcode = RCODE_TYPE_ERROR;
1177		break;
1178
1179	case CSR_BUS_MANAGER_ID:
1180	case CSR_BANDWIDTH_AVAILABLE:
1181	case CSR_CHANNELS_AVAILABLE_HI:
1182	case CSR_CHANNELS_AVAILABLE_LO:
1183		/*
1184		 * FIXME: these are handled by the OHCI hardware and
1185		 * the stack never sees these request. If we add
1186		 * support for a new type of controller that doesn't
1187		 * handle this in hardware we need to deal with these
1188		 * transactions.
1189		 */
1190		BUG();
1191		break;
1192
1193	default:
1194		rcode = RCODE_ADDRESS_ERROR;
1195		break;
1196	}
1197
1198	fw_send_response(card, request, rcode);
1199}
1200
1201static struct fw_address_handler registers = {
1202	.length			= 0x400,
1203	.address_callback	= handle_registers,
1204};
1205
1206static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1207		int tcode, int destination, int source, int generation,
1208		unsigned long long offset, void *payload, size_t length,
1209		void *callback_data)
1210{
1211	/*
1212	 * This catches requests not handled by the physical DMA unit,
1213	 * i.e., wrong transaction types or unauthorized source nodes.
1214	 */
1215	fw_send_response(card, request, RCODE_TYPE_ERROR);
1216}
1217
1218static struct fw_address_handler low_memory = {
1219	.length			= FW_MAX_PHYSICAL_RANGE,
1220	.address_callback	= handle_low_memory,
1221};
1222
1223MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1224MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1225MODULE_LICENSE("GPL");
1226
1227static const u32 vendor_textual_descriptor[] = {
1228	/* textual descriptor leaf () */
1229	0x00060000,
1230	0x00000000,
1231	0x00000000,
1232	0x4c696e75,		/* L i n u */
1233	0x78204669,		/* x   F i */
1234	0x72657769,		/* r e w i */
1235	0x72650000,		/* r e     */
1236};
1237
1238static const u32 model_textual_descriptor[] = {
1239	/* model descriptor leaf () */
1240	0x00030000,
1241	0x00000000,
1242	0x00000000,
1243	0x4a756a75,		/* J u j u */
1244};
1245
1246static struct fw_descriptor vendor_id_descriptor = {
1247	.length = ARRAY_SIZE(vendor_textual_descriptor),
1248	.immediate = 0x03001f11,
1249	.key = 0x81000000,
1250	.data = vendor_textual_descriptor,
1251};
1252
1253static struct fw_descriptor model_id_descriptor = {
1254	.length = ARRAY_SIZE(model_textual_descriptor),
1255	.immediate = 0x17023901,
1256	.key = 0x81000000,
1257	.data = model_textual_descriptor,
1258};
1259
1260static int __init fw_core_init(void)
1261{
1262	int ret;
1263
1264	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1265	if (!fw_workqueue)
1266		return -ENOMEM;
1267
1268	ret = bus_register(&fw_bus_type);
1269	if (ret < 0) {
1270		destroy_workqueue(fw_workqueue);
1271		return ret;
1272	}
1273
1274	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1275	if (fw_cdev_major < 0) {
1276		bus_unregister(&fw_bus_type);
1277		destroy_workqueue(fw_workqueue);
1278		return fw_cdev_major;
1279	}
1280
1281	fw_core_add_address_handler(&topology_map, &topology_map_region);
1282	fw_core_add_address_handler(&registers, &registers_region);
1283	fw_core_add_address_handler(&low_memory, &low_memory_region);
1284	fw_core_add_descriptor(&vendor_id_descriptor);
1285	fw_core_add_descriptor(&model_id_descriptor);
1286
1287	return 0;
1288}
1289
1290static void __exit fw_core_cleanup(void)
1291{
1292	unregister_chrdev(fw_cdev_major, "firewire");
1293	bus_unregister(&fw_bus_type);
1294	destroy_workqueue(fw_workqueue);
1295	idr_destroy(&fw_device_idr);
1296}
1297
1298module_init(fw_core_init);
1299module_exit(fw_core_cleanup);
1300