1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35{
36	ci->p = p + 1;
37	ci->end = ci->p + (p[0] >> 16);
38}
39EXPORT_SYMBOL(fw_csr_iterator_init);
40
41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42{
43	*key = *ci->p >> 24;
44	*value = *ci->p & 0xffffff;
45
46	return ci->p++ < ci->end;
47}
48EXPORT_SYMBOL(fw_csr_iterator_next);
49
50static const u32 *search_leaf(const u32 *directory, int search_key)
51{
52	struct fw_csr_iterator ci;
53	int last_key = 0, key, value;
54
55	fw_csr_iterator_init(&ci, directory);
56	while (fw_csr_iterator_next(&ci, &key, &value)) {
57		if (last_key == search_key &&
58		    key == (CSR_DESCRIPTOR | CSR_LEAF))
59			return ci.p - 1 + value;
60
61		last_key = key;
62	}
63
64	return NULL;
65}
66
67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68{
69	unsigned int quadlets, i;
70	char c;
71
72	if (!size || !buf)
73		return -EINVAL;
74
75	quadlets = min(block[0] >> 16, 256U);
76	if (quadlets < 2)
77		return -ENODATA;
78
79	if (block[1] != 0 || block[2] != 0)
80		/* unknown language/character set */
81		return -ENODATA;
82
83	block += 3;
84	quadlets -= 2;
85	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86		c = block[i / 4] >> (24 - 8 * (i % 4));
87		if (c == '\0')
88			break;
89		buf[i] = c;
90	}
91	buf[i] = '\0';
92
93	return i;
94}
95
96/**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory:	e.g. root directory or unit directory
99 * @key:	the key of the preceding directory entry
100 * @buf:	where to put the string
101 * @size:	size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
104 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
105 * and the zero byte fit into @size.
106 *
107 * Returns strlen(buf) or a negative error code.
108 */
109int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
110{
111	const u32 *leaf = search_leaf(directory, key);
112	if (!leaf)
113		return -ENOENT;
114
115	return textual_leaf_to_string(leaf, buf, size);
116}
117EXPORT_SYMBOL(fw_csr_string);
118
119static void get_ids(const u32 *directory, int *id)
120{
121	struct fw_csr_iterator ci;
122	int key, value;
123
124	fw_csr_iterator_init(&ci, directory);
125	while (fw_csr_iterator_next(&ci, &key, &value)) {
126		switch (key) {
127		case CSR_VENDOR:	id[0] = value; break;
128		case CSR_MODEL:		id[1] = value; break;
129		case CSR_SPECIFIER_ID:	id[2] = value; break;
130		case CSR_VERSION:	id[3] = value; break;
131		}
132	}
133}
134
135static void get_modalias_ids(struct fw_unit *unit, int *id)
136{
137	get_ids(&fw_parent_device(unit)->config_rom[5], id);
138	get_ids(unit->directory, id);
139}
140
141static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
142{
143	int match = 0;
144
145	if (id[0] == id_table->vendor_id)
146		match |= IEEE1394_MATCH_VENDOR_ID;
147	if (id[1] == id_table->model_id)
148		match |= IEEE1394_MATCH_MODEL_ID;
149	if (id[2] == id_table->specifier_id)
150		match |= IEEE1394_MATCH_SPECIFIER_ID;
151	if (id[3] == id_table->version)
152		match |= IEEE1394_MATCH_VERSION;
153
154	return (match & id_table->match_flags) == id_table->match_flags;
155}
156
157static const struct ieee1394_device_id *unit_match(struct device *dev,
158						   struct device_driver *drv)
159{
160	const struct ieee1394_device_id *id_table =
161			container_of(drv, struct fw_driver, driver)->id_table;
162	int id[] = {0, 0, 0, 0};
163
164	get_modalias_ids(fw_unit(dev), id);
165
166	for (; id_table->match_flags != 0; id_table++)
167		if (match_ids(id_table, id))
168			return id_table;
169
170	return NULL;
171}
172
173static bool is_fw_unit(struct device *dev);
174
175static int fw_unit_match(struct device *dev, struct device_driver *drv)
176{
177	/* We only allow binding to fw_units. */
178	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
179}
180
181static int fw_unit_probe(struct device *dev)
182{
183	struct fw_driver *driver =
184			container_of(dev->driver, struct fw_driver, driver);
185
186	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
187}
188
189static int fw_unit_remove(struct device *dev)
190{
191	struct fw_driver *driver =
192			container_of(dev->driver, struct fw_driver, driver);
193
194	return driver->remove(fw_unit(dev)), 0;
195}
196
197static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
198{
199	int id[] = {0, 0, 0, 0};
200
201	get_modalias_ids(unit, id);
202
203	return snprintf(buffer, buffer_size,
204			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
205			id[0], id[1], id[2], id[3]);
206}
207
208static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
209{
210	struct fw_unit *unit = fw_unit(dev);
211	char modalias[64];
212
213	get_modalias(unit, modalias, sizeof(modalias));
214
215	if (add_uevent_var(env, "MODALIAS=%s", modalias))
216		return -ENOMEM;
217
218	return 0;
219}
220
221struct bus_type fw_bus_type = {
222	.name = "firewire",
223	.match = fw_unit_match,
224	.probe = fw_unit_probe,
225	.remove = fw_unit_remove,
226};
227EXPORT_SYMBOL(fw_bus_type);
228
229int fw_device_enable_phys_dma(struct fw_device *device)
230{
231	int generation = device->generation;
232
233	/* device->node_id, accessed below, must not be older than generation */
234	smp_rmb();
235
236	return device->card->driver->enable_phys_dma(device->card,
237						     device->node_id,
238						     generation);
239}
240EXPORT_SYMBOL(fw_device_enable_phys_dma);
241
242struct config_rom_attribute {
243	struct device_attribute attr;
244	u32 key;
245};
246
247static ssize_t show_immediate(struct device *dev,
248			      struct device_attribute *dattr, char *buf)
249{
250	struct config_rom_attribute *attr =
251		container_of(dattr, struct config_rom_attribute, attr);
252	struct fw_csr_iterator ci;
253	const u32 *dir;
254	int key, value, ret = -ENOENT;
255
256	down_read(&fw_device_rwsem);
257
258	if (is_fw_unit(dev))
259		dir = fw_unit(dev)->directory;
260	else
261		dir = fw_device(dev)->config_rom + 5;
262
263	fw_csr_iterator_init(&ci, dir);
264	while (fw_csr_iterator_next(&ci, &key, &value))
265		if (attr->key == key) {
266			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
267				       "0x%06x\n", value);
268			break;
269		}
270
271	up_read(&fw_device_rwsem);
272
273	return ret;
274}
275
276#define IMMEDIATE_ATTR(name, key)				\
277	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
278
279static ssize_t show_text_leaf(struct device *dev,
280			      struct device_attribute *dattr, char *buf)
281{
282	struct config_rom_attribute *attr =
283		container_of(dattr, struct config_rom_attribute, attr);
284	const u32 *dir;
285	size_t bufsize;
286	char dummy_buf[2];
287	int ret;
288
289	down_read(&fw_device_rwsem);
290
291	if (is_fw_unit(dev))
292		dir = fw_unit(dev)->directory;
293	else
294		dir = fw_device(dev)->config_rom + 5;
295
296	if (buf) {
297		bufsize = PAGE_SIZE - 1;
298	} else {
299		buf = dummy_buf;
300		bufsize = 1;
301	}
302
303	ret = fw_csr_string(dir, attr->key, buf, bufsize);
304
305	if (ret >= 0) {
306		/* Strip trailing whitespace and add newline. */
307		while (ret > 0 && isspace(buf[ret - 1]))
308			ret--;
309		strcpy(buf + ret, "\n");
310		ret++;
311	}
312
313	up_read(&fw_device_rwsem);
314
315	return ret;
316}
317
318#define TEXT_LEAF_ATTR(name, key)				\
319	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
320
321static struct config_rom_attribute config_rom_attributes[] = {
322	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
323	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
324	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
325	IMMEDIATE_ATTR(version, CSR_VERSION),
326	IMMEDIATE_ATTR(model, CSR_MODEL),
327	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
328	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
329	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
330};
331
332static void init_fw_attribute_group(struct device *dev,
333				    struct device_attribute *attrs,
334				    struct fw_attribute_group *group)
335{
336	struct device_attribute *attr;
337	int i, j;
338
339	for (j = 0; attrs[j].attr.name != NULL; j++)
340		group->attrs[j] = &attrs[j].attr;
341
342	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
343		attr = &config_rom_attributes[i].attr;
344		if (attr->show(dev, attr, NULL) < 0)
345			continue;
346		group->attrs[j++] = &attr->attr;
347	}
348
349	group->attrs[j] = NULL;
350	group->groups[0] = &group->group;
351	group->groups[1] = NULL;
352	group->group.attrs = group->attrs;
353	dev->groups = (const struct attribute_group **) group->groups;
354}
355
356static ssize_t modalias_show(struct device *dev,
357			     struct device_attribute *attr, char *buf)
358{
359	struct fw_unit *unit = fw_unit(dev);
360	int length;
361
362	length = get_modalias(unit, buf, PAGE_SIZE);
363	strcpy(buf + length, "\n");
364
365	return length + 1;
366}
367
368static ssize_t rom_index_show(struct device *dev,
369			      struct device_attribute *attr, char *buf)
370{
371	struct fw_device *device = fw_device(dev->parent);
372	struct fw_unit *unit = fw_unit(dev);
373
374	return snprintf(buf, PAGE_SIZE, "%d\n",
375			(int)(unit->directory - device->config_rom));
376}
377
378static struct device_attribute fw_unit_attributes[] = {
379	__ATTR_RO(modalias),
380	__ATTR_RO(rom_index),
381	__ATTR_NULL,
382};
383
384static ssize_t config_rom_show(struct device *dev,
385			       struct device_attribute *attr, char *buf)
386{
387	struct fw_device *device = fw_device(dev);
388	size_t length;
389
390	down_read(&fw_device_rwsem);
391	length = device->config_rom_length * 4;
392	memcpy(buf, device->config_rom, length);
393	up_read(&fw_device_rwsem);
394
395	return length;
396}
397
398static ssize_t guid_show(struct device *dev,
399			 struct device_attribute *attr, char *buf)
400{
401	struct fw_device *device = fw_device(dev);
402	int ret;
403
404	down_read(&fw_device_rwsem);
405	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
406		       device->config_rom[3], device->config_rom[4]);
407	up_read(&fw_device_rwsem);
408
409	return ret;
410}
411
412static ssize_t is_local_show(struct device *dev,
413			     struct device_attribute *attr, char *buf)
414{
415	struct fw_device *device = fw_device(dev);
416
417	return sprintf(buf, "%u\n", device->is_local);
418}
419
420static int units_sprintf(char *buf, const u32 *directory)
421{
422	struct fw_csr_iterator ci;
423	int key, value;
424	int specifier_id = 0;
425	int version = 0;
426
427	fw_csr_iterator_init(&ci, directory);
428	while (fw_csr_iterator_next(&ci, &key, &value)) {
429		switch (key) {
430		case CSR_SPECIFIER_ID:
431			specifier_id = value;
432			break;
433		case CSR_VERSION:
434			version = value;
435			break;
436		}
437	}
438
439	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
440}
441
442static ssize_t units_show(struct device *dev,
443			  struct device_attribute *attr, char *buf)
444{
445	struct fw_device *device = fw_device(dev);
446	struct fw_csr_iterator ci;
447	int key, value, i = 0;
448
449	down_read(&fw_device_rwsem);
450	fw_csr_iterator_init(&ci, &device->config_rom[5]);
451	while (fw_csr_iterator_next(&ci, &key, &value)) {
452		if (key != (CSR_UNIT | CSR_DIRECTORY))
453			continue;
454		i += units_sprintf(&buf[i], ci.p + value - 1);
455		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
456			break;
457	}
458	up_read(&fw_device_rwsem);
459
460	if (i)
461		buf[i - 1] = '\n';
462
463	return i;
464}
465
466static struct device_attribute fw_device_attributes[] = {
467	__ATTR_RO(config_rom),
468	__ATTR_RO(guid),
469	__ATTR_RO(is_local),
470	__ATTR_RO(units),
471	__ATTR_NULL,
472};
473
474static int read_rom(struct fw_device *device,
475		    int generation, int index, u32 *data)
476{
477	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
478	int i, rcode;
479
480	/* device->node_id, accessed below, must not be older than generation */
481	smp_rmb();
482
483	for (i = 10; i < 100; i += 10) {
484		rcode = fw_run_transaction(device->card,
485				TCODE_READ_QUADLET_REQUEST, device->node_id,
486				generation, device->max_speed, offset, data, 4);
487		if (rcode != RCODE_BUSY)
488			break;
489		msleep(i);
490	}
491	be32_to_cpus(data);
492
493	return rcode;
494}
495
496#define MAX_CONFIG_ROM_SIZE 256
497
498/*
499 * Read the bus info block, perform a speed probe, and read all of the rest of
500 * the config ROM.  We do all this with a cached bus generation.  If the bus
501 * generation changes under us, read_config_rom will fail and get retried.
502 * It's better to start all over in this case because the node from which we
503 * are reading the ROM may have changed the ROM during the reset.
504 * Returns either a result code or a negative error code.
505 */
506static int read_config_rom(struct fw_device *device, int generation)
507{
508	struct fw_card *card = device->card;
509	const u32 *old_rom, *new_rom;
510	u32 *rom, *stack;
511	u32 sp, key;
512	int i, end, length, ret;
513
514	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
515		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
516	if (rom == NULL)
517		return -ENOMEM;
518
519	stack = &rom[MAX_CONFIG_ROM_SIZE];
520	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
521
522	device->max_speed = SCODE_100;
523
524	/* First read the bus info block. */
525	for (i = 0; i < 5; i++) {
526		ret = read_rom(device, generation, i, &rom[i]);
527		if (ret != RCODE_COMPLETE)
528			goto out;
529		/*
530		 * As per IEEE1212 7.2, during initialization, devices can
531		 * reply with a 0 for the first quadlet of the config
532		 * rom to indicate that they are booting (for example,
533		 * if the firmware is on the disk of a external
534		 * harddisk).  In that case we just fail, and the
535		 * retry mechanism will try again later.
536		 */
537		if (i == 0 && rom[i] == 0) {
538			ret = RCODE_BUSY;
539			goto out;
540		}
541	}
542
543	device->max_speed = device->node->max_speed;
544
545	/*
546	 * Determine the speed of
547	 *   - devices with link speed less than PHY speed,
548	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
549	 *   - all devices if there are 1394b repeaters.
550	 * Note, we cannot use the bus info block's link_spd as starting point
551	 * because some buggy firmwares set it lower than necessary and because
552	 * 1394-1995 nodes do not have the field.
553	 */
554	if ((rom[2] & 0x7) < device->max_speed ||
555	    device->max_speed == SCODE_BETA ||
556	    card->beta_repeaters_present) {
557		u32 dummy;
558
559		/* for S1600 and S3200 */
560		if (device->max_speed == SCODE_BETA)
561			device->max_speed = card->link_speed;
562
563		while (device->max_speed > SCODE_100) {
564			if (read_rom(device, generation, 0, &dummy) ==
565			    RCODE_COMPLETE)
566				break;
567			device->max_speed--;
568		}
569	}
570
571	/*
572	 * Now parse the config rom.  The config rom is a recursive
573	 * directory structure so we parse it using a stack of
574	 * references to the blocks that make up the structure.  We
575	 * push a reference to the root directory on the stack to
576	 * start things off.
577	 */
578	length = i;
579	sp = 0;
580	stack[sp++] = 0xc0000005;
581	while (sp > 0) {
582		/*
583		 * Pop the next block reference of the stack.  The
584		 * lower 24 bits is the offset into the config rom,
585		 * the upper 8 bits are the type of the reference the
586		 * block.
587		 */
588		key = stack[--sp];
589		i = key & 0xffffff;
590		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
591			ret = -ENXIO;
592			goto out;
593		}
594
595		/* Read header quadlet for the block to get the length. */
596		ret = read_rom(device, generation, i, &rom[i]);
597		if (ret != RCODE_COMPLETE)
598			goto out;
599		end = i + (rom[i] >> 16) + 1;
600		if (end > MAX_CONFIG_ROM_SIZE) {
601			/*
602			 * This block extends outside the config ROM which is
603			 * a firmware bug.  Ignore this whole block, i.e.
604			 * simply set a fake block length of 0.
605			 */
606			fw_err(card, "skipped invalid ROM block %x at %llx\n",
607			       rom[i],
608			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
609			rom[i] = 0;
610			end = i;
611		}
612		i++;
613
614		/*
615		 * Now read in the block.  If this is a directory
616		 * block, check the entries as we read them to see if
617		 * it references another block, and push it in that case.
618		 */
619		for (; i < end; i++) {
620			ret = read_rom(device, generation, i, &rom[i]);
621			if (ret != RCODE_COMPLETE)
622				goto out;
623
624			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
625				continue;
626			/*
627			 * Offset points outside the ROM.  May be a firmware
628			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
629			 * 7.7.18).  Simply overwrite this pointer here by a
630			 * fake immediate entry so that later iterators over
631			 * the ROM don't have to check offsets all the time.
632			 */
633			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
634				fw_err(card,
635				       "skipped unsupported ROM entry %x at %llx\n",
636				       rom[i],
637				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
638				rom[i] = 0;
639				continue;
640			}
641			stack[sp++] = i + rom[i];
642		}
643		if (length < i)
644			length = i;
645	}
646
647	old_rom = device->config_rom;
648	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
649	if (new_rom == NULL) {
650		ret = -ENOMEM;
651		goto out;
652	}
653
654	down_write(&fw_device_rwsem);
655	device->config_rom = new_rom;
656	device->config_rom_length = length;
657	up_write(&fw_device_rwsem);
658
659	kfree(old_rom);
660	ret = RCODE_COMPLETE;
661	device->max_rec	= rom[2] >> 12 & 0xf;
662	device->cmc	= rom[2] >> 30 & 1;
663	device->irmc	= rom[2] >> 31 & 1;
664 out:
665	kfree(rom);
666
667	return ret;
668}
669
670static void fw_unit_release(struct device *dev)
671{
672	struct fw_unit *unit = fw_unit(dev);
673
674	fw_device_put(fw_parent_device(unit));
675	kfree(unit);
676}
677
678static struct device_type fw_unit_type = {
679	.uevent		= fw_unit_uevent,
680	.release	= fw_unit_release,
681};
682
683static bool is_fw_unit(struct device *dev)
684{
685	return dev->type == &fw_unit_type;
686}
687
688static void create_units(struct fw_device *device)
689{
690	struct fw_csr_iterator ci;
691	struct fw_unit *unit;
692	int key, value, i;
693
694	i = 0;
695	fw_csr_iterator_init(&ci, &device->config_rom[5]);
696	while (fw_csr_iterator_next(&ci, &key, &value)) {
697		if (key != (CSR_UNIT | CSR_DIRECTORY))
698			continue;
699
700		/*
701		 * Get the address of the unit directory and try to
702		 * match the drivers id_tables against it.
703		 */
704		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
705		if (unit == NULL)
706			continue;
707
708		unit->directory = ci.p + value - 1;
709		unit->device.bus = &fw_bus_type;
710		unit->device.type = &fw_unit_type;
711		unit->device.parent = &device->device;
712		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
713
714		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
715				ARRAY_SIZE(fw_unit_attributes) +
716				ARRAY_SIZE(config_rom_attributes));
717		init_fw_attribute_group(&unit->device,
718					fw_unit_attributes,
719					&unit->attribute_group);
720
721		fw_device_get(device);
722		if (device_register(&unit->device) < 0) {
723			put_device(&unit->device);
724			continue;
725		}
726	}
727}
728
729static int shutdown_unit(struct device *device, void *data)
730{
731	device_unregister(device);
732
733	return 0;
734}
735
736/*
737 * fw_device_rwsem acts as dual purpose mutex:
738 *   - serializes accesses to fw_device_idr,
739 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
740 *     fw_unit.directory, unless those accesses happen at safe occasions
741 */
742DECLARE_RWSEM(fw_device_rwsem);
743
744DEFINE_IDR(fw_device_idr);
745int fw_cdev_major;
746
747struct fw_device *fw_device_get_by_devt(dev_t devt)
748{
749	struct fw_device *device;
750
751	down_read(&fw_device_rwsem);
752	device = idr_find(&fw_device_idr, MINOR(devt));
753	if (device)
754		fw_device_get(device);
755	up_read(&fw_device_rwsem);
756
757	return device;
758}
759
760struct workqueue_struct *fw_workqueue;
761EXPORT_SYMBOL(fw_workqueue);
762
763static void fw_schedule_device_work(struct fw_device *device,
764				    unsigned long delay)
765{
766	queue_delayed_work(fw_workqueue, &device->work, delay);
767}
768
769/*
770 * These defines control the retry behavior for reading the config
771 * rom.  It shouldn't be necessary to tweak these; if the device
772 * doesn't respond to a config rom read within 10 seconds, it's not
773 * going to respond at all.  As for the initial delay, a lot of
774 * devices will be able to respond within half a second after bus
775 * reset.  On the other hand, it's not really worth being more
776 * aggressive than that, since it scales pretty well; if 10 devices
777 * are plugged in, they're all getting read within one second.
778 */
779
780#define MAX_RETRIES	10
781#define RETRY_DELAY	(3 * HZ)
782#define INITIAL_DELAY	(HZ / 2)
783#define SHUTDOWN_DELAY	(2 * HZ)
784
785static void fw_device_shutdown(struct work_struct *work)
786{
787	struct fw_device *device =
788		container_of(work, struct fw_device, work.work);
789	int minor = MINOR(device->device.devt);
790
791	if (time_before64(get_jiffies_64(),
792			  device->card->reset_jiffies + SHUTDOWN_DELAY)
793	    && !list_empty(&device->card->link)) {
794		fw_schedule_device_work(device, SHUTDOWN_DELAY);
795		return;
796	}
797
798	if (atomic_cmpxchg(&device->state,
799			   FW_DEVICE_GONE,
800			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
801		return;
802
803	fw_device_cdev_remove(device);
804	device_for_each_child(&device->device, NULL, shutdown_unit);
805	device_unregister(&device->device);
806
807	down_write(&fw_device_rwsem);
808	idr_remove(&fw_device_idr, minor);
809	up_write(&fw_device_rwsem);
810
811	fw_device_put(device);
812}
813
814static void fw_device_release(struct device *dev)
815{
816	struct fw_device *device = fw_device(dev);
817	struct fw_card *card = device->card;
818	unsigned long flags;
819
820	/*
821	 * Take the card lock so we don't set this to NULL while a
822	 * FW_NODE_UPDATED callback is being handled or while the
823	 * bus manager work looks at this node.
824	 */
825	spin_lock_irqsave(&card->lock, flags);
826	device->node->data = NULL;
827	spin_unlock_irqrestore(&card->lock, flags);
828
829	fw_node_put(device->node);
830	kfree(device->config_rom);
831	kfree(device);
832	fw_card_put(card);
833}
834
835static struct device_type fw_device_type = {
836	.release = fw_device_release,
837};
838
839static bool is_fw_device(struct device *dev)
840{
841	return dev->type == &fw_device_type;
842}
843
844static int update_unit(struct device *dev, void *data)
845{
846	struct fw_unit *unit = fw_unit(dev);
847	struct fw_driver *driver = (struct fw_driver *)dev->driver;
848
849	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
850		device_lock(dev);
851		driver->update(unit);
852		device_unlock(dev);
853	}
854
855	return 0;
856}
857
858static void fw_device_update(struct work_struct *work)
859{
860	struct fw_device *device =
861		container_of(work, struct fw_device, work.work);
862
863	fw_device_cdev_update(device);
864	device_for_each_child(&device->device, NULL, update_unit);
865}
866
867/*
868 * If a device was pending for deletion because its node went away but its
869 * bus info block and root directory header matches that of a newly discovered
870 * device, revive the existing fw_device.
871 * The newly allocated fw_device becomes obsolete instead.
872 */
873static int lookup_existing_device(struct device *dev, void *data)
874{
875	struct fw_device *old = fw_device(dev);
876	struct fw_device *new = data;
877	struct fw_card *card = new->card;
878	int match = 0;
879
880	if (!is_fw_device(dev))
881		return 0;
882
883	down_read(&fw_device_rwsem); /* serialize config_rom access */
884	spin_lock_irq(&card->lock);  /* serialize node access */
885
886	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
887	    atomic_cmpxchg(&old->state,
888			   FW_DEVICE_GONE,
889			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
890		struct fw_node *current_node = new->node;
891		struct fw_node *obsolete_node = old->node;
892
893		new->node = obsolete_node;
894		new->node->data = new;
895		old->node = current_node;
896		old->node->data = old;
897
898		old->max_speed = new->max_speed;
899		old->node_id = current_node->node_id;
900		smp_wmb();  /* update node_id before generation */
901		old->generation = card->generation;
902		old->config_rom_retries = 0;
903		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
904
905		old->workfn = fw_device_update;
906		fw_schedule_device_work(old, 0);
907
908		if (current_node == card->root_node)
909			fw_schedule_bm_work(card, 0);
910
911		match = 1;
912	}
913
914	spin_unlock_irq(&card->lock);
915	up_read(&fw_device_rwsem);
916
917	return match;
918}
919
920enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
921
922static void set_broadcast_channel(struct fw_device *device, int generation)
923{
924	struct fw_card *card = device->card;
925	__be32 data;
926	int rcode;
927
928	if (!card->broadcast_channel_allocated)
929		return;
930
931	/*
932	 * The Broadcast_Channel Valid bit is required by nodes which want to
933	 * transmit on this channel.  Such transmissions are practically
934	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
935	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
936	 * to narrow down to which nodes we send Broadcast_Channel updates.
937	 */
938	if (!device->irmc || device->max_rec < 8)
939		return;
940
941	/*
942	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
943	 * Perform a read test first.
944	 */
945	if (device->bc_implemented == BC_UNKNOWN) {
946		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
947				device->node_id, generation, device->max_speed,
948				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
949				&data, 4);
950		switch (rcode) {
951		case RCODE_COMPLETE:
952			if (data & cpu_to_be32(1 << 31)) {
953				device->bc_implemented = BC_IMPLEMENTED;
954				break;
955			}
956			fallthrough;	/* to case address error */
957		case RCODE_ADDRESS_ERROR:
958			device->bc_implemented = BC_UNIMPLEMENTED;
959		}
960	}
961
962	if (device->bc_implemented == BC_IMPLEMENTED) {
963		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
964				   BROADCAST_CHANNEL_VALID);
965		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
966				device->node_id, generation, device->max_speed,
967				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
968				&data, 4);
969	}
970}
971
972int fw_device_set_broadcast_channel(struct device *dev, void *gen)
973{
974	if (is_fw_device(dev))
975		set_broadcast_channel(fw_device(dev), (long)gen);
976
977	return 0;
978}
979
980static void fw_device_init(struct work_struct *work)
981{
982	struct fw_device *device =
983		container_of(work, struct fw_device, work.work);
984	struct fw_card *card = device->card;
985	struct device *revived_dev;
986	int minor, ret;
987
988	/*
989	 * All failure paths here set node->data to NULL, so that we
990	 * don't try to do device_for_each_child() on a kfree()'d
991	 * device.
992	 */
993
994	ret = read_config_rom(device, device->generation);
995	if (ret != RCODE_COMPLETE) {
996		if (device->config_rom_retries < MAX_RETRIES &&
997		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
998			device->config_rom_retries++;
999			fw_schedule_device_work(device, RETRY_DELAY);
1000		} else {
1001			if (device->node->link_on)
1002				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1003					  device->node_id,
1004					  fw_rcode_string(ret));
1005			if (device->node == card->root_node)
1006				fw_schedule_bm_work(card, 0);
1007			fw_device_release(&device->device);
1008		}
1009		return;
1010	}
1011
1012	revived_dev = device_find_child(card->device,
1013					device, lookup_existing_device);
1014	if (revived_dev) {
1015		put_device(revived_dev);
1016		fw_device_release(&device->device);
1017
1018		return;
1019	}
1020
1021	device_initialize(&device->device);
1022
1023	fw_device_get(device);
1024	down_write(&fw_device_rwsem);
1025	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1026			GFP_KERNEL);
1027	up_write(&fw_device_rwsem);
1028
1029	if (minor < 0)
1030		goto error;
1031
1032	device->device.bus = &fw_bus_type;
1033	device->device.type = &fw_device_type;
1034	device->device.parent = card->device;
1035	device->device.devt = MKDEV(fw_cdev_major, minor);
1036	dev_set_name(&device->device, "fw%d", minor);
1037
1038	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1039			ARRAY_SIZE(fw_device_attributes) +
1040			ARRAY_SIZE(config_rom_attributes));
1041	init_fw_attribute_group(&device->device,
1042				fw_device_attributes,
1043				&device->attribute_group);
1044
1045	if (device_add(&device->device)) {
1046		fw_err(card, "failed to add device\n");
1047		goto error_with_cdev;
1048	}
1049
1050	create_units(device);
1051
1052	/*
1053	 * Transition the device to running state.  If it got pulled
1054	 * out from under us while we did the initialization work, we
1055	 * have to shut down the device again here.  Normally, though,
1056	 * fw_node_event will be responsible for shutting it down when
1057	 * necessary.  We have to use the atomic cmpxchg here to avoid
1058	 * racing with the FW_NODE_DESTROYED case in
1059	 * fw_node_event().
1060	 */
1061	if (atomic_cmpxchg(&device->state,
1062			   FW_DEVICE_INITIALIZING,
1063			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1064		device->workfn = fw_device_shutdown;
1065		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1066	} else {
1067		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1068			  dev_name(&device->device),
1069			  device->config_rom[3], device->config_rom[4],
1070			  1 << device->max_speed);
1071		device->config_rom_retries = 0;
1072
1073		set_broadcast_channel(device, device->generation);
1074
1075		add_device_randomness(&device->config_rom[3], 8);
1076	}
1077
1078	/*
1079	 * Reschedule the IRM work if we just finished reading the
1080	 * root node config rom.  If this races with a bus reset we
1081	 * just end up running the IRM work a couple of extra times -
1082	 * pretty harmless.
1083	 */
1084	if (device->node == card->root_node)
1085		fw_schedule_bm_work(card, 0);
1086
1087	return;
1088
1089 error_with_cdev:
1090	down_write(&fw_device_rwsem);
1091	idr_remove(&fw_device_idr, minor);
1092	up_write(&fw_device_rwsem);
1093 error:
1094	fw_device_put(device);		/* fw_device_idr's reference */
1095
1096	put_device(&device->device);	/* our reference */
1097}
1098
1099/* Reread and compare bus info block and header of root directory */
1100static int reread_config_rom(struct fw_device *device, int generation,
1101			     bool *changed)
1102{
1103	u32 q;
1104	int i, rcode;
1105
1106	for (i = 0; i < 6; i++) {
1107		rcode = read_rom(device, generation, i, &q);
1108		if (rcode != RCODE_COMPLETE)
1109			return rcode;
1110
1111		if (i == 0 && q == 0)
1112			/* inaccessible (see read_config_rom); retry later */
1113			return RCODE_BUSY;
1114
1115		if (q != device->config_rom[i]) {
1116			*changed = true;
1117			return RCODE_COMPLETE;
1118		}
1119	}
1120
1121	*changed = false;
1122	return RCODE_COMPLETE;
1123}
1124
1125static void fw_device_refresh(struct work_struct *work)
1126{
1127	struct fw_device *device =
1128		container_of(work, struct fw_device, work.work);
1129	struct fw_card *card = device->card;
1130	int ret, node_id = device->node_id;
1131	bool changed;
1132
1133	ret = reread_config_rom(device, device->generation, &changed);
1134	if (ret != RCODE_COMPLETE)
1135		goto failed_config_rom;
1136
1137	if (!changed) {
1138		if (atomic_cmpxchg(&device->state,
1139				   FW_DEVICE_INITIALIZING,
1140				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1141			goto gone;
1142
1143		fw_device_update(work);
1144		device->config_rom_retries = 0;
1145		goto out;
1146	}
1147
1148	/*
1149	 * Something changed.  We keep things simple and don't investigate
1150	 * further.  We just destroy all previous units and create new ones.
1151	 */
1152	device_for_each_child(&device->device, NULL, shutdown_unit);
1153
1154	ret = read_config_rom(device, device->generation);
1155	if (ret != RCODE_COMPLETE)
1156		goto failed_config_rom;
1157
1158	fw_device_cdev_update(device);
1159	create_units(device);
1160
1161	/* Userspace may want to re-read attributes. */
1162	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1163
1164	if (atomic_cmpxchg(&device->state,
1165			   FW_DEVICE_INITIALIZING,
1166			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1167		goto gone;
1168
1169	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1170	device->config_rom_retries = 0;
1171	goto out;
1172
1173 failed_config_rom:
1174	if (device->config_rom_retries < MAX_RETRIES &&
1175	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1176		device->config_rom_retries++;
1177		fw_schedule_device_work(device, RETRY_DELAY);
1178		return;
1179	}
1180
1181	fw_notice(card, "giving up on refresh of device %s: %s\n",
1182		  dev_name(&device->device), fw_rcode_string(ret));
1183 gone:
1184	atomic_set(&device->state, FW_DEVICE_GONE);
1185	device->workfn = fw_device_shutdown;
1186	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1187 out:
1188	if (node_id == card->root_node->node_id)
1189		fw_schedule_bm_work(card, 0);
1190}
1191
1192static void fw_device_workfn(struct work_struct *work)
1193{
1194	struct fw_device *device = container_of(to_delayed_work(work),
1195						struct fw_device, work);
1196	device->workfn(work);
1197}
1198
1199void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1200{
1201	struct fw_device *device;
1202
1203	switch (event) {
1204	case FW_NODE_CREATED:
1205		/*
1206		 * Attempt to scan the node, regardless whether its self ID has
1207		 * the L (link active) flag set or not.  Some broken devices
1208		 * send L=0 but have an up-and-running link; others send L=1
1209		 * without actually having a link.
1210		 */
1211 create:
1212		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1213		if (device == NULL)
1214			break;
1215
1216		/*
1217		 * Do minimal initialization of the device here, the
1218		 * rest will happen in fw_device_init().
1219		 *
1220		 * Attention:  A lot of things, even fw_device_get(),
1221		 * cannot be done before fw_device_init() finished!
1222		 * You can basically just check device->state and
1223		 * schedule work until then, but only while holding
1224		 * card->lock.
1225		 */
1226		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1227		device->card = fw_card_get(card);
1228		device->node = fw_node_get(node);
1229		device->node_id = node->node_id;
1230		device->generation = card->generation;
1231		device->is_local = node == card->local_node;
1232		mutex_init(&device->client_list_mutex);
1233		INIT_LIST_HEAD(&device->client_list);
1234
1235		/*
1236		 * Set the node data to point back to this device so
1237		 * FW_NODE_UPDATED callbacks can update the node_id
1238		 * and generation for the device.
1239		 */
1240		node->data = device;
1241
1242		/*
1243		 * Many devices are slow to respond after bus resets,
1244		 * especially if they are bus powered and go through
1245		 * power-up after getting plugged in.  We schedule the
1246		 * first config rom scan half a second after bus reset.
1247		 */
1248		device->workfn = fw_device_init;
1249		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1250		fw_schedule_device_work(device, INITIAL_DELAY);
1251		break;
1252
1253	case FW_NODE_INITIATED_RESET:
1254	case FW_NODE_LINK_ON:
1255		device = node->data;
1256		if (device == NULL)
1257			goto create;
1258
1259		device->node_id = node->node_id;
1260		smp_wmb();  /* update node_id before generation */
1261		device->generation = card->generation;
1262		if (atomic_cmpxchg(&device->state,
1263			    FW_DEVICE_RUNNING,
1264			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1265			device->workfn = fw_device_refresh;
1266			fw_schedule_device_work(device,
1267				device->is_local ? 0 : INITIAL_DELAY);
1268		}
1269		break;
1270
1271	case FW_NODE_UPDATED:
1272		device = node->data;
1273		if (device == NULL)
1274			break;
1275
1276		device->node_id = node->node_id;
1277		smp_wmb();  /* update node_id before generation */
1278		device->generation = card->generation;
1279		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1280			device->workfn = fw_device_update;
1281			fw_schedule_device_work(device, 0);
1282		}
1283		break;
1284
1285	case FW_NODE_DESTROYED:
1286	case FW_NODE_LINK_OFF:
1287		if (!node->data)
1288			break;
1289
1290		/*
1291		 * Destroy the device associated with the node.  There
1292		 * are two cases here: either the device is fully
1293		 * initialized (FW_DEVICE_RUNNING) or we're in the
1294		 * process of reading its config rom
1295		 * (FW_DEVICE_INITIALIZING).  If it is fully
1296		 * initialized we can reuse device->work to schedule a
1297		 * full fw_device_shutdown().  If not, there's work
1298		 * scheduled to read it's config rom, and we just put
1299		 * the device in shutdown state to have that code fail
1300		 * to create the device.
1301		 */
1302		device = node->data;
1303		if (atomic_xchg(&device->state,
1304				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1305			device->workfn = fw_device_shutdown;
1306			fw_schedule_device_work(device,
1307				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1308		}
1309		break;
1310	}
1311}
1312