1/*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 *	The entire API were re-written, and ported to use struct device
12 *
13 */
14
15#include <linux/ctype.h>
16#include <linux/slab.h>
17#include <linux/edac.h>
18#include <linux/bug.h>
19#include <linux/pm_runtime.h>
20#include <linux/uaccess.h>
21
22#include "edac_mc.h"
23#include "edac_module.h"
24
25/* MC EDAC Controls, setable by module parameter, and sysfs */
26static int edac_mc_log_ue = 1;
27static int edac_mc_log_ce = 1;
28static int edac_mc_panic_on_ue;
29static unsigned int edac_mc_poll_msec = 1000;
30
31/* Getter functions for above */
32int edac_mc_get_log_ue(void)
33{
34	return edac_mc_log_ue;
35}
36
37int edac_mc_get_log_ce(void)
38{
39	return edac_mc_log_ce;
40}
41
42int edac_mc_get_panic_on_ue(void)
43{
44	return edac_mc_panic_on_ue;
45}
46
47/* this is temporary */
48unsigned int edac_mc_get_poll_msec(void)
49{
50	return edac_mc_poll_msec;
51}
52
53static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54{
55	unsigned int i;
56	int ret;
57
58	if (!val)
59		return -EINVAL;
60
61	ret = kstrtouint(val, 0, &i);
62	if (ret)
63		return ret;
64
65	if (i < 1000)
66		return -EINVAL;
67
68	*((unsigned int *)kp->arg) = i;
69
70	/* notify edac_mc engine to reset the poll period */
71	edac_mc_reset_delay_period(i);
72
73	return 0;
74}
75
76/* Parameter declarations for above */
77module_param(edac_mc_panic_on_ue, int, 0644);
78MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79module_param(edac_mc_log_ue, int, 0644);
80MODULE_PARM_DESC(edac_mc_log_ue,
81		 "Log uncorrectable error to console: 0=off 1=on");
82module_param(edac_mc_log_ce, int, 0644);
83MODULE_PARM_DESC(edac_mc_log_ce,
84		 "Log correctable error to console: 0=off 1=on");
85module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86		  &edac_mc_poll_msec, 0644);
87MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89static struct device *mci_pdev;
90
91/*
92 * various constants for Memory Controllers
93 */
94static const char * const dev_types[] = {
95	[DEV_UNKNOWN] = "Unknown",
96	[DEV_X1] = "x1",
97	[DEV_X2] = "x2",
98	[DEV_X4] = "x4",
99	[DEV_X8] = "x8",
100	[DEV_X16] = "x16",
101	[DEV_X32] = "x32",
102	[DEV_X64] = "x64"
103};
104
105static const char * const edac_caps[] = {
106	[EDAC_UNKNOWN] = "Unknown",
107	[EDAC_NONE] = "None",
108	[EDAC_RESERVED] = "Reserved",
109	[EDAC_PARITY] = "PARITY",
110	[EDAC_EC] = "EC",
111	[EDAC_SECDED] = "SECDED",
112	[EDAC_S2ECD2ED] = "S2ECD2ED",
113	[EDAC_S4ECD4ED] = "S4ECD4ED",
114	[EDAC_S8ECD8ED] = "S8ECD8ED",
115	[EDAC_S16ECD16ED] = "S16ECD16ED"
116};
117
118#ifdef CONFIG_EDAC_LEGACY_SYSFS
119/*
120 * EDAC sysfs CSROW data structures and methods
121 */
122
123#define to_csrow(k) container_of(k, struct csrow_info, dev)
124
125/*
126 * We need it to avoid namespace conflicts between the legacy API
127 * and the per-dimm/per-rank one
128 */
129#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131
132struct dev_ch_attribute {
133	struct device_attribute attr;
134	unsigned int channel;
135};
136
137#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139		{ __ATTR(_name, _mode, _show, _store), (_var) }
140
141#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142
143/* Set of more default csrow<id> attribute show/store functions */
144static ssize_t csrow_ue_count_show(struct device *dev,
145				   struct device_attribute *mattr, char *data)
146{
147	struct csrow_info *csrow = to_csrow(dev);
148
149	return sprintf(data, "%u\n", csrow->ue_count);
150}
151
152static ssize_t csrow_ce_count_show(struct device *dev,
153				   struct device_attribute *mattr, char *data)
154{
155	struct csrow_info *csrow = to_csrow(dev);
156
157	return sprintf(data, "%u\n", csrow->ce_count);
158}
159
160static ssize_t csrow_size_show(struct device *dev,
161			       struct device_attribute *mattr, char *data)
162{
163	struct csrow_info *csrow = to_csrow(dev);
164	int i;
165	u32 nr_pages = 0;
166
167	for (i = 0; i < csrow->nr_channels; i++)
168		nr_pages += csrow->channels[i]->dimm->nr_pages;
169	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170}
171
172static ssize_t csrow_mem_type_show(struct device *dev,
173				   struct device_attribute *mattr, char *data)
174{
175	struct csrow_info *csrow = to_csrow(dev);
176
177	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178}
179
180static ssize_t csrow_dev_type_show(struct device *dev,
181				   struct device_attribute *mattr, char *data)
182{
183	struct csrow_info *csrow = to_csrow(dev);
184
185	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186}
187
188static ssize_t csrow_edac_mode_show(struct device *dev,
189				    struct device_attribute *mattr,
190				    char *data)
191{
192	struct csrow_info *csrow = to_csrow(dev);
193
194	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195}
196
197/* show/store functions for DIMM Label attributes */
198static ssize_t channel_dimm_label_show(struct device *dev,
199				       struct device_attribute *mattr,
200				       char *data)
201{
202	struct csrow_info *csrow = to_csrow(dev);
203	unsigned int chan = to_channel(mattr);
204	struct rank_info *rank = csrow->channels[chan];
205
206	/* if field has not been initialized, there is nothing to send */
207	if (!rank->dimm->label[0])
208		return 0;
209
210	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211			rank->dimm->label);
212}
213
214static ssize_t channel_dimm_label_store(struct device *dev,
215					struct device_attribute *mattr,
216					const char *data, size_t count)
217{
218	struct csrow_info *csrow = to_csrow(dev);
219	unsigned int chan = to_channel(mattr);
220	struct rank_info *rank = csrow->channels[chan];
221	size_t copy_count = count;
222
223	if (count == 0)
224		return -EINVAL;
225
226	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227		copy_count -= 1;
228
229	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230		return -EINVAL;
231
232	strncpy(rank->dimm->label, data, copy_count);
233	rank->dimm->label[copy_count] = '\0';
234
235	return count;
236}
237
238/* show function for dynamic chX_ce_count attribute */
239static ssize_t channel_ce_count_show(struct device *dev,
240				     struct device_attribute *mattr, char *data)
241{
242	struct csrow_info *csrow = to_csrow(dev);
243	unsigned int chan = to_channel(mattr);
244	struct rank_info *rank = csrow->channels[chan];
245
246	return sprintf(data, "%u\n", rank->ce_count);
247}
248
249/* cwrow<id>/attribute files */
250DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256
257/* default attributes of the CSROW<id> object */
258static struct attribute *csrow_attrs[] = {
259	&dev_attr_legacy_dev_type.attr,
260	&dev_attr_legacy_mem_type.attr,
261	&dev_attr_legacy_edac_mode.attr,
262	&dev_attr_legacy_size_mb.attr,
263	&dev_attr_legacy_ue_count.attr,
264	&dev_attr_legacy_ce_count.attr,
265	NULL,
266};
267
268static const struct attribute_group csrow_attr_grp = {
269	.attrs	= csrow_attrs,
270};
271
272static const struct attribute_group *csrow_attr_groups[] = {
273	&csrow_attr_grp,
274	NULL
275};
276
277static const struct device_type csrow_attr_type = {
278	.groups		= csrow_attr_groups,
279};
280
281/*
282 * possible dynamic channel DIMM Label attribute files
283 *
284 */
285DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
286	channel_dimm_label_show, channel_dimm_label_store, 0);
287DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
288	channel_dimm_label_show, channel_dimm_label_store, 1);
289DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
290	channel_dimm_label_show, channel_dimm_label_store, 2);
291DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
292	channel_dimm_label_show, channel_dimm_label_store, 3);
293DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
294	channel_dimm_label_show, channel_dimm_label_store, 4);
295DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
296	channel_dimm_label_show, channel_dimm_label_store, 5);
297DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
298	channel_dimm_label_show, channel_dimm_label_store, 6);
299DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
300	channel_dimm_label_show, channel_dimm_label_store, 7);
301
302/* Total possible dynamic DIMM Label attribute file table */
303static struct attribute *dynamic_csrow_dimm_attr[] = {
304	&dev_attr_legacy_ch0_dimm_label.attr.attr,
305	&dev_attr_legacy_ch1_dimm_label.attr.attr,
306	&dev_attr_legacy_ch2_dimm_label.attr.attr,
307	&dev_attr_legacy_ch3_dimm_label.attr.attr,
308	&dev_attr_legacy_ch4_dimm_label.attr.attr,
309	&dev_attr_legacy_ch5_dimm_label.attr.attr,
310	&dev_attr_legacy_ch6_dimm_label.attr.attr,
311	&dev_attr_legacy_ch7_dimm_label.attr.attr,
312	NULL
313};
314
315/* possible dynamic channel ce_count attribute files */
316DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
317		   channel_ce_count_show, NULL, 0);
318DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
319		   channel_ce_count_show, NULL, 1);
320DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
321		   channel_ce_count_show, NULL, 2);
322DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
323		   channel_ce_count_show, NULL, 3);
324DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
325		   channel_ce_count_show, NULL, 4);
326DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
327		   channel_ce_count_show, NULL, 5);
328DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
329		   channel_ce_count_show, NULL, 6);
330DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
331		   channel_ce_count_show, NULL, 7);
332
333/* Total possible dynamic ce_count attribute file table */
334static struct attribute *dynamic_csrow_ce_count_attr[] = {
335	&dev_attr_legacy_ch0_ce_count.attr.attr,
336	&dev_attr_legacy_ch1_ce_count.attr.attr,
337	&dev_attr_legacy_ch2_ce_count.attr.attr,
338	&dev_attr_legacy_ch3_ce_count.attr.attr,
339	&dev_attr_legacy_ch4_ce_count.attr.attr,
340	&dev_attr_legacy_ch5_ce_count.attr.attr,
341	&dev_attr_legacy_ch6_ce_count.attr.attr,
342	&dev_attr_legacy_ch7_ce_count.attr.attr,
343	NULL
344};
345
346static umode_t csrow_dev_is_visible(struct kobject *kobj,
347				    struct attribute *attr, int idx)
348{
349	struct device *dev = kobj_to_dev(kobj);
350	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
351
352	if (idx >= csrow->nr_channels)
353		return 0;
354
355	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
356		WARN_ONCE(1, "idx: %d\n", idx);
357		return 0;
358	}
359
360	/* Only expose populated DIMMs */
361	if (!csrow->channels[idx]->dimm->nr_pages)
362		return 0;
363
364	return attr->mode;
365}
366
367
368static const struct attribute_group csrow_dev_dimm_group = {
369	.attrs = dynamic_csrow_dimm_attr,
370	.is_visible = csrow_dev_is_visible,
371};
372
373static const struct attribute_group csrow_dev_ce_count_group = {
374	.attrs = dynamic_csrow_ce_count_attr,
375	.is_visible = csrow_dev_is_visible,
376};
377
378static const struct attribute_group *csrow_dev_groups[] = {
379	&csrow_dev_dimm_group,
380	&csrow_dev_ce_count_group,
381	NULL
382};
383
384static void csrow_release(struct device *dev)
385{
386	/*
387	 * Nothing to do, just unregister sysfs here. The mci
388	 * device owns the data and will also release it.
389	 */
390}
391
392static inline int nr_pages_per_csrow(struct csrow_info *csrow)
393{
394	int chan, nr_pages = 0;
395
396	for (chan = 0; chan < csrow->nr_channels; chan++)
397		nr_pages += csrow->channels[chan]->dimm->nr_pages;
398
399	return nr_pages;
400}
401
402/* Create a CSROW object under specifed edac_mc_device */
403static int edac_create_csrow_object(struct mem_ctl_info *mci,
404				    struct csrow_info *csrow, int index)
405{
406	int err;
407
408	csrow->dev.type = &csrow_attr_type;
409	csrow->dev.groups = csrow_dev_groups;
410	csrow->dev.release = csrow_release;
411	device_initialize(&csrow->dev);
412	csrow->dev.parent = &mci->dev;
413	csrow->mci = mci;
414	dev_set_name(&csrow->dev, "csrow%d", index);
415	dev_set_drvdata(&csrow->dev, csrow);
416
417	err = device_add(&csrow->dev);
418	if (err) {
419		edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
420		put_device(&csrow->dev);
421		return err;
422	}
423
424	edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
425
426	return 0;
427}
428
429/* Create a CSROW object under specifed edac_mc_device */
430static int edac_create_csrow_objects(struct mem_ctl_info *mci)
431{
432	int err, i;
433	struct csrow_info *csrow;
434
435	for (i = 0; i < mci->nr_csrows; i++) {
436		csrow = mci->csrows[i];
437		if (!nr_pages_per_csrow(csrow))
438			continue;
439		err = edac_create_csrow_object(mci, mci->csrows[i], i);
440		if (err < 0)
441			goto error;
442	}
443	return 0;
444
445error:
446	for (--i; i >= 0; i--) {
447		if (device_is_registered(&mci->csrows[i]->dev))
448			device_unregister(&mci->csrows[i]->dev);
449	}
450
451	return err;
452}
453
454static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
455{
456	int i;
457
458	for (i = 0; i < mci->nr_csrows; i++) {
459		if (device_is_registered(&mci->csrows[i]->dev))
460			device_unregister(&mci->csrows[i]->dev);
461	}
462}
463
464#endif
465
466/*
467 * Per-dimm (or per-rank) devices
468 */
469
470#define to_dimm(k) container_of(k, struct dimm_info, dev)
471
472/* show/store functions for DIMM Label attributes */
473static ssize_t dimmdev_location_show(struct device *dev,
474				     struct device_attribute *mattr, char *data)
475{
476	struct dimm_info *dimm = to_dimm(dev);
477	ssize_t count;
478
479	count = edac_dimm_info_location(dimm, data, PAGE_SIZE);
480	count += scnprintf(data + count, PAGE_SIZE - count, "\n");
481
482	return count;
483}
484
485static ssize_t dimmdev_label_show(struct device *dev,
486				  struct device_attribute *mattr, char *data)
487{
488	struct dimm_info *dimm = to_dimm(dev);
489
490	/* if field has not been initialized, there is nothing to send */
491	if (!dimm->label[0])
492		return 0;
493
494	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
495}
496
497static ssize_t dimmdev_label_store(struct device *dev,
498				   struct device_attribute *mattr,
499				   const char *data,
500				   size_t count)
501{
502	struct dimm_info *dimm = to_dimm(dev);
503	size_t copy_count = count;
504
505	if (count == 0)
506		return -EINVAL;
507
508	if (data[count - 1] == '\0' || data[count - 1] == '\n')
509		copy_count -= 1;
510
511	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
512		return -EINVAL;
513
514	strncpy(dimm->label, data, copy_count);
515	dimm->label[copy_count] = '\0';
516
517	return count;
518}
519
520static ssize_t dimmdev_size_show(struct device *dev,
521				 struct device_attribute *mattr, char *data)
522{
523	struct dimm_info *dimm = to_dimm(dev);
524
525	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
526}
527
528static ssize_t dimmdev_mem_type_show(struct device *dev,
529				     struct device_attribute *mattr, char *data)
530{
531	struct dimm_info *dimm = to_dimm(dev);
532
533	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
534}
535
536static ssize_t dimmdev_dev_type_show(struct device *dev,
537				     struct device_attribute *mattr, char *data)
538{
539	struct dimm_info *dimm = to_dimm(dev);
540
541	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
542}
543
544static ssize_t dimmdev_edac_mode_show(struct device *dev,
545				      struct device_attribute *mattr,
546				      char *data)
547{
548	struct dimm_info *dimm = to_dimm(dev);
549
550	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
551}
552
553static ssize_t dimmdev_ce_count_show(struct device *dev,
554				      struct device_attribute *mattr,
555				      char *data)
556{
557	struct dimm_info *dimm = to_dimm(dev);
558
559	return sprintf(data, "%u\n", dimm->ce_count);
560}
561
562static ssize_t dimmdev_ue_count_show(struct device *dev,
563				      struct device_attribute *mattr,
564				      char *data)
565{
566	struct dimm_info *dimm = to_dimm(dev);
567
568	return sprintf(data, "%u\n", dimm->ue_count);
569}
570
571/* dimm/rank attribute files */
572static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
573		   dimmdev_label_show, dimmdev_label_store);
574static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
575static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
576static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
577static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
578static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
579static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
580static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
581
582/* attributes of the dimm<id>/rank<id> object */
583static struct attribute *dimm_attrs[] = {
584	&dev_attr_dimm_label.attr,
585	&dev_attr_dimm_location.attr,
586	&dev_attr_size.attr,
587	&dev_attr_dimm_mem_type.attr,
588	&dev_attr_dimm_dev_type.attr,
589	&dev_attr_dimm_edac_mode.attr,
590	&dev_attr_dimm_ce_count.attr,
591	&dev_attr_dimm_ue_count.attr,
592	NULL,
593};
594
595static const struct attribute_group dimm_attr_grp = {
596	.attrs	= dimm_attrs,
597};
598
599static const struct attribute_group *dimm_attr_groups[] = {
600	&dimm_attr_grp,
601	NULL
602};
603
604static const struct device_type dimm_attr_type = {
605	.groups		= dimm_attr_groups,
606};
607
608static void dimm_release(struct device *dev)
609{
610	/*
611	 * Nothing to do, just unregister sysfs here. The mci
612	 * device owns the data and will also release it.
613	 */
614}
615
616/* Create a DIMM object under specifed memory controller device */
617static int edac_create_dimm_object(struct mem_ctl_info *mci,
618				   struct dimm_info *dimm)
619{
620	int err;
621	dimm->mci = mci;
622
623	dimm->dev.type = &dimm_attr_type;
624	dimm->dev.release = dimm_release;
625	device_initialize(&dimm->dev);
626
627	dimm->dev.parent = &mci->dev;
628	if (mci->csbased)
629		dev_set_name(&dimm->dev, "rank%d", dimm->idx);
630	else
631		dev_set_name(&dimm->dev, "dimm%d", dimm->idx);
632	dev_set_drvdata(&dimm->dev, dimm);
633	pm_runtime_forbid(&mci->dev);
634
635	err = device_add(&dimm->dev);
636	if (err) {
637		edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
638		put_device(&dimm->dev);
639		return err;
640	}
641
642	if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
643		char location[80];
644
645		edac_dimm_info_location(dimm, location, sizeof(location));
646		edac_dbg(0, "device %s created at location %s\n",
647			dev_name(&dimm->dev), location);
648	}
649
650	return 0;
651}
652
653/*
654 * Memory controller device
655 */
656
657#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
658
659static ssize_t mci_reset_counters_store(struct device *dev,
660					struct device_attribute *mattr,
661					const char *data, size_t count)
662{
663	struct mem_ctl_info *mci = to_mci(dev);
664	struct dimm_info *dimm;
665	int row, chan;
666
667	mci->ue_mc = 0;
668	mci->ce_mc = 0;
669	mci->ue_noinfo_count = 0;
670	mci->ce_noinfo_count = 0;
671
672	for (row = 0; row < mci->nr_csrows; row++) {
673		struct csrow_info *ri = mci->csrows[row];
674
675		ri->ue_count = 0;
676		ri->ce_count = 0;
677
678		for (chan = 0; chan < ri->nr_channels; chan++)
679			ri->channels[chan]->ce_count = 0;
680	}
681
682	mci_for_each_dimm(mci, dimm) {
683		dimm->ue_count = 0;
684		dimm->ce_count = 0;
685	}
686
687	mci->start_time = jiffies;
688	return count;
689}
690
691/* Memory scrubbing interface:
692 *
693 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
694 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
695 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
696 *
697 * Negative value still means that an error has occurred while setting
698 * the scrub rate.
699 */
700static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
701					  struct device_attribute *mattr,
702					  const char *data, size_t count)
703{
704	struct mem_ctl_info *mci = to_mci(dev);
705	unsigned long bandwidth = 0;
706	int new_bw = 0;
707
708	if (kstrtoul(data, 10, &bandwidth) < 0)
709		return -EINVAL;
710
711	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
712	if (new_bw < 0) {
713		edac_printk(KERN_WARNING, EDAC_MC,
714			    "Error setting scrub rate to: %lu\n", bandwidth);
715		return -EINVAL;
716	}
717
718	return count;
719}
720
721/*
722 * ->get_sdram_scrub_rate() return value semantics same as above.
723 */
724static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
725					 struct device_attribute *mattr,
726					 char *data)
727{
728	struct mem_ctl_info *mci = to_mci(dev);
729	int bandwidth = 0;
730
731	bandwidth = mci->get_sdram_scrub_rate(mci);
732	if (bandwidth < 0) {
733		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
734		return bandwidth;
735	}
736
737	return sprintf(data, "%d\n", bandwidth);
738}
739
740/* default attribute files for the MCI object */
741static ssize_t mci_ue_count_show(struct device *dev,
742				 struct device_attribute *mattr,
743				 char *data)
744{
745	struct mem_ctl_info *mci = to_mci(dev);
746
747	return sprintf(data, "%d\n", mci->ue_mc);
748}
749
750static ssize_t mci_ce_count_show(struct device *dev,
751				 struct device_attribute *mattr,
752				 char *data)
753{
754	struct mem_ctl_info *mci = to_mci(dev);
755
756	return sprintf(data, "%d\n", mci->ce_mc);
757}
758
759static ssize_t mci_ce_noinfo_show(struct device *dev,
760				  struct device_attribute *mattr,
761				  char *data)
762{
763	struct mem_ctl_info *mci = to_mci(dev);
764
765	return sprintf(data, "%d\n", mci->ce_noinfo_count);
766}
767
768static ssize_t mci_ue_noinfo_show(struct device *dev,
769				  struct device_attribute *mattr,
770				  char *data)
771{
772	struct mem_ctl_info *mci = to_mci(dev);
773
774	return sprintf(data, "%d\n", mci->ue_noinfo_count);
775}
776
777static ssize_t mci_seconds_show(struct device *dev,
778				struct device_attribute *mattr,
779				char *data)
780{
781	struct mem_ctl_info *mci = to_mci(dev);
782
783	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
784}
785
786static ssize_t mci_ctl_name_show(struct device *dev,
787				 struct device_attribute *mattr,
788				 char *data)
789{
790	struct mem_ctl_info *mci = to_mci(dev);
791
792	return sprintf(data, "%s\n", mci->ctl_name);
793}
794
795static ssize_t mci_size_mb_show(struct device *dev,
796				struct device_attribute *mattr,
797				char *data)
798{
799	struct mem_ctl_info *mci = to_mci(dev);
800	int total_pages = 0, csrow_idx, j;
801
802	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
803		struct csrow_info *csrow = mci->csrows[csrow_idx];
804
805		for (j = 0; j < csrow->nr_channels; j++) {
806			struct dimm_info *dimm = csrow->channels[j]->dimm;
807
808			total_pages += dimm->nr_pages;
809		}
810	}
811
812	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
813}
814
815static ssize_t mci_max_location_show(struct device *dev,
816				     struct device_attribute *mattr,
817				     char *data)
818{
819	struct mem_ctl_info *mci = to_mci(dev);
820	int len = PAGE_SIZE;
821	char *p = data;
822	int i, n;
823
824	for (i = 0; i < mci->n_layers; i++) {
825		n = scnprintf(p, len, "%s %d ",
826			      edac_layer_name[mci->layers[i].type],
827			      mci->layers[i].size - 1);
828		len -= n;
829		if (len <= 0)
830			goto out;
831
832		p += n;
833	}
834
835	p += scnprintf(p, len, "\n");
836out:
837	return p - data;
838}
839
840/* default Control file */
841static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
842
843/* default Attribute files */
844static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
845static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
846static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
847static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
848static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
849static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
850static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
851static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
852
853/* memory scrubber attribute file */
854static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
855	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
856
857static struct attribute *mci_attrs[] = {
858	&dev_attr_reset_counters.attr,
859	&dev_attr_mc_name.attr,
860	&dev_attr_size_mb.attr,
861	&dev_attr_seconds_since_reset.attr,
862	&dev_attr_ue_noinfo_count.attr,
863	&dev_attr_ce_noinfo_count.attr,
864	&dev_attr_ue_count.attr,
865	&dev_attr_ce_count.attr,
866	&dev_attr_max_location.attr,
867	&dev_attr_sdram_scrub_rate.attr,
868	NULL
869};
870
871static umode_t mci_attr_is_visible(struct kobject *kobj,
872				   struct attribute *attr, int idx)
873{
874	struct device *dev = kobj_to_dev(kobj);
875	struct mem_ctl_info *mci = to_mci(dev);
876	umode_t mode = 0;
877
878	if (attr != &dev_attr_sdram_scrub_rate.attr)
879		return attr->mode;
880	if (mci->get_sdram_scrub_rate)
881		mode |= S_IRUGO;
882	if (mci->set_sdram_scrub_rate)
883		mode |= S_IWUSR;
884	return mode;
885}
886
887static const struct attribute_group mci_attr_grp = {
888	.attrs	= mci_attrs,
889	.is_visible = mci_attr_is_visible,
890};
891
892static const struct attribute_group *mci_attr_groups[] = {
893	&mci_attr_grp,
894	NULL
895};
896
897static const struct device_type mci_attr_type = {
898	.groups		= mci_attr_groups,
899};
900
901/*
902 * Create a new Memory Controller kobject instance,
903 *	mc<id> under the 'mc' directory
904 *
905 * Return:
906 *	0	Success
907 *	!0	Failure
908 */
909int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
910				 const struct attribute_group **groups)
911{
912	struct dimm_info *dimm;
913	int err;
914
915	/* get the /sys/devices/system/edac subsys reference */
916	mci->dev.type = &mci_attr_type;
917	mci->dev.parent = mci_pdev;
918	mci->dev.groups = groups;
919	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
920	dev_set_drvdata(&mci->dev, mci);
921	pm_runtime_forbid(&mci->dev);
922
923	err = device_add(&mci->dev);
924	if (err < 0) {
925		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
926		/* no put_device() here, free mci with _edac_mc_free() */
927		return err;
928	}
929
930	edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
931
932	/*
933	 * Create the dimm/rank devices
934	 */
935	mci_for_each_dimm(mci, dimm) {
936		/* Only expose populated DIMMs */
937		if (!dimm->nr_pages)
938			continue;
939
940		err = edac_create_dimm_object(mci, dimm);
941		if (err)
942			goto fail;
943	}
944
945#ifdef CONFIG_EDAC_LEGACY_SYSFS
946	err = edac_create_csrow_objects(mci);
947	if (err < 0)
948		goto fail;
949#endif
950
951	edac_create_debugfs_nodes(mci);
952	return 0;
953
954fail:
955	edac_remove_sysfs_mci_device(mci);
956
957	return err;
958}
959
960/*
961 * remove a Memory Controller instance
962 */
963void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
964{
965	struct dimm_info *dimm;
966
967	if (!device_is_registered(&mci->dev))
968		return;
969
970	edac_dbg(0, "\n");
971
972#ifdef CONFIG_EDAC_DEBUG
973	edac_debugfs_remove_recursive(mci->debugfs);
974#endif
975#ifdef CONFIG_EDAC_LEGACY_SYSFS
976	edac_delete_csrow_objects(mci);
977#endif
978
979	mci_for_each_dimm(mci, dimm) {
980		if (!device_is_registered(&dimm->dev))
981			continue;
982		edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
983		device_unregister(&dimm->dev);
984	}
985
986	/* only remove the device, but keep mci */
987	device_del(&mci->dev);
988}
989
990static void mc_attr_release(struct device *dev)
991{
992	/*
993	 * There's no container structure here, as this is just the mci
994	 * parent device, used to create the /sys/devices/mc sysfs node.
995	 * So, there are no attributes on it.
996	 */
997	edac_dbg(1, "device %s released\n", dev_name(dev));
998	kfree(dev);
999}
1000
1001/*
1002 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1003 */
1004int __init edac_mc_sysfs_init(void)
1005{
1006	int err;
1007
1008	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1009	if (!mci_pdev)
1010		return -ENOMEM;
1011
1012	mci_pdev->bus = edac_get_sysfs_subsys();
1013	mci_pdev->release = mc_attr_release;
1014	mci_pdev->init_name = "mc";
1015
1016	err = device_register(mci_pdev);
1017	if (err < 0) {
1018		edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1019		put_device(mci_pdev);
1020		return err;
1021	}
1022
1023	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1024
1025	return 0;
1026}
1027
1028void edac_mc_sysfs_exit(void)
1029{
1030	device_unregister(mci_pdev);
1031}
1032