xref: /kernel/linux/linux-5.10/drivers/edac/edac_mc.c (revision 8c2ecf20)
1/*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 *	http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
28#include <linux/ctype.h>
29#include <linux/edac.h>
30#include <linux/bitops.h>
31#include <linux/uaccess.h>
32#include <asm/page.h>
33#include "edac_mc.h"
34#include "edac_module.h"
35#include <ras/ras_event.h>
36
37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
38#include <asm/edac.h>
39#else
40#define edac_atomic_scrub(va, size) do { } while (0)
41#endif
42
43int edac_op_state = EDAC_OPSTATE_INVAL;
44EXPORT_SYMBOL_GPL(edac_op_state);
45
46/* lock to memory controller's control array */
47static DEFINE_MUTEX(mem_ctls_mutex);
48static LIST_HEAD(mc_devices);
49
50/*
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 *	apei/ghes and i7core_edac to be used at the same time.
53 */
54static const char *edac_mc_owner;
55
56static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57{
58	return container_of(e, struct mem_ctl_info, error_desc);
59}
60
61unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62				     unsigned int len)
63{
64	struct mem_ctl_info *mci = dimm->mci;
65	int i, n, count = 0;
66	char *p = buf;
67
68	for (i = 0; i < mci->n_layers; i++) {
69		n = snprintf(p, len, "%s %d ",
70			      edac_layer_name[mci->layers[i].type],
71			      dimm->location[i]);
72		p += n;
73		len -= n;
74		count += n;
75		if (!len)
76			break;
77	}
78
79	return count;
80}
81
82#ifdef CONFIG_EDAC_DEBUG
83
84static void edac_mc_dump_channel(struct rank_info *chan)
85{
86	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
87	edac_dbg(4, "    channel = %p\n", chan);
88	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
89	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
90}
91
92static void edac_mc_dump_dimm(struct dimm_info *dimm)
93{
94	char location[80];
95
96	if (!dimm->nr_pages)
97		return;
98
99	edac_dimm_info_location(dimm, location, sizeof(location));
100
101	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
102		 dimm->mci->csbased ? "rank" : "dimm",
103		 dimm->idx, location, dimm->csrow, dimm->cschannel);
104	edac_dbg(4, "  dimm = %p\n", dimm);
105	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
106	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
108	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
109}
110
111static void edac_mc_dump_csrow(struct csrow_info *csrow)
112{
113	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
114	edac_dbg(4, "  csrow = %p\n", csrow);
115	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
116	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
117	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
118	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
119	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
120	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
121}
122
123static void edac_mc_dump_mci(struct mem_ctl_info *mci)
124{
125	edac_dbg(3, "\tmci = %p\n", mci);
126	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
127	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
128	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
129	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
130	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
131		 mci->nr_csrows, mci->csrows);
132	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
133		 mci->tot_dimms, mci->dimms);
134	edac_dbg(3, "\tdev = %p\n", mci->pdev);
135	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
136		 mci->mod_name, mci->ctl_name);
137	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
138}
139
140#endif				/* CONFIG_EDAC_DEBUG */
141
142const char * const edac_mem_types[] = {
143	[MEM_EMPTY]	= "Empty",
144	[MEM_RESERVED]	= "Reserved",
145	[MEM_UNKNOWN]	= "Unknown",
146	[MEM_FPM]	= "FPM",
147	[MEM_EDO]	= "EDO",
148	[MEM_BEDO]	= "BEDO",
149	[MEM_SDR]	= "Unbuffered-SDR",
150	[MEM_RDR]	= "Registered-SDR",
151	[MEM_DDR]	= "Unbuffered-DDR",
152	[MEM_RDDR]	= "Registered-DDR",
153	[MEM_RMBS]	= "RMBS",
154	[MEM_DDR2]	= "Unbuffered-DDR2",
155	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
156	[MEM_RDDR2]	= "Registered-DDR2",
157	[MEM_XDR]	= "XDR",
158	[MEM_DDR3]	= "Unbuffered-DDR3",
159	[MEM_RDDR3]	= "Registered-DDR3",
160	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
161	[MEM_DDR4]	= "Unbuffered-DDR4",
162	[MEM_RDDR4]	= "Registered-DDR4",
163	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
164	[MEM_NVDIMM]	= "Non-volatile-RAM",
165};
166EXPORT_SYMBOL_GPL(edac_mem_types);
167
168/**
169 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
170 * @p:		pointer to a pointer with the memory offset to be used. At
171 *		return, this will be incremented to point to the next offset
172 * @size:	Size of the data structure to be reserved
173 * @n_elems:	Number of elements that should be reserved
174 *
175 * If 'size' is a constant, the compiler will optimize this whole function
176 * down to either a no-op or the addition of a constant to the value of '*p'.
177 *
178 * The 'p' pointer is absolutely needed to keep the proper advancing
179 * further in memory to the proper offsets when allocating the struct along
180 * with its embedded structs, as edac_device_alloc_ctl_info() does it
181 * above, for example.
182 *
183 * At return, the pointer 'p' will be incremented to be used on a next call
184 * to this function.
185 */
186void *edac_align_ptr(void **p, unsigned int size, int n_elems)
187{
188	unsigned int align, r;
189	void *ptr = *p;
190
191	*p += size * n_elems;
192
193	/*
194	 * 'p' can possibly be an unaligned item X such that sizeof(X) is
195	 * 'size'.  Adjust 'p' so that its alignment is at least as
196	 * stringent as what the compiler would provide for X and return
197	 * the aligned result.
198	 * Here we assume that the alignment of a "long long" is the most
199	 * stringent alignment that the compiler will ever provide by default.
200	 * As far as I know, this is a reasonable assumption.
201	 */
202	if (size > sizeof(long))
203		align = sizeof(long long);
204	else if (size > sizeof(int))
205		align = sizeof(long);
206	else if (size > sizeof(short))
207		align = sizeof(int);
208	else if (size > sizeof(char))
209		align = sizeof(short);
210	else
211		return (char *)ptr;
212
213	r = (unsigned long)ptr % align;
214
215	if (r == 0)
216		return (char *)ptr;
217
218	*p += align - r;
219
220	return (void *)(((unsigned long)ptr) + align - r);
221}
222
223static void _edac_mc_free(struct mem_ctl_info *mci)
224{
225	put_device(&mci->dev);
226}
227
228static void mci_release(struct device *dev)
229{
230	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
231	struct csrow_info *csr;
232	int i, chn, row;
233
234	if (mci->dimms) {
235		for (i = 0; i < mci->tot_dimms; i++)
236			kfree(mci->dimms[i]);
237		kfree(mci->dimms);
238	}
239
240	if (mci->csrows) {
241		for (row = 0; row < mci->nr_csrows; row++) {
242			csr = mci->csrows[row];
243			if (!csr)
244				continue;
245
246			if (csr->channels) {
247				for (chn = 0; chn < mci->num_cschannel; chn++)
248					kfree(csr->channels[chn]);
249				kfree(csr->channels);
250			}
251			kfree(csr);
252		}
253		kfree(mci->csrows);
254	}
255	kfree(mci);
256}
257
258static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
259{
260	unsigned int tot_channels = mci->num_cschannel;
261	unsigned int tot_csrows = mci->nr_csrows;
262	unsigned int row, chn;
263
264	/*
265	 * Alocate and fill the csrow/channels structs
266	 */
267	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
268	if (!mci->csrows)
269		return -ENOMEM;
270
271	for (row = 0; row < tot_csrows; row++) {
272		struct csrow_info *csr;
273
274		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
275		if (!csr)
276			return -ENOMEM;
277
278		mci->csrows[row] = csr;
279		csr->csrow_idx = row;
280		csr->mci = mci;
281		csr->nr_channels = tot_channels;
282		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
283					GFP_KERNEL);
284		if (!csr->channels)
285			return -ENOMEM;
286
287		for (chn = 0; chn < tot_channels; chn++) {
288			struct rank_info *chan;
289
290			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
291			if (!chan)
292				return -ENOMEM;
293
294			csr->channels[chn] = chan;
295			chan->chan_idx = chn;
296			chan->csrow = csr;
297		}
298	}
299
300	return 0;
301}
302
303static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
304{
305	unsigned int pos[EDAC_MAX_LAYERS];
306	unsigned int row, chn, idx;
307	int layer;
308	void *p;
309
310	/*
311	 * Allocate and fill the dimm structs
312	 */
313	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
314	if (!mci->dimms)
315		return -ENOMEM;
316
317	memset(&pos, 0, sizeof(pos));
318	row = 0;
319	chn = 0;
320	for (idx = 0; idx < mci->tot_dimms; idx++) {
321		struct dimm_info *dimm;
322		struct rank_info *chan;
323		int n, len;
324
325		chan = mci->csrows[row]->channels[chn];
326
327		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
328		if (!dimm)
329			return -ENOMEM;
330		mci->dimms[idx] = dimm;
331		dimm->mci = mci;
332		dimm->idx = idx;
333
334		/*
335		 * Copy DIMM location and initialize it.
336		 */
337		len = sizeof(dimm->label);
338		p = dimm->label;
339		n = snprintf(p, len, "mc#%u", mci->mc_idx);
340		p += n;
341		len -= n;
342		for (layer = 0; layer < mci->n_layers; layer++) {
343			n = snprintf(p, len, "%s#%u",
344				     edac_layer_name[mci->layers[layer].type],
345				     pos[layer]);
346			p += n;
347			len -= n;
348			dimm->location[layer] = pos[layer];
349
350			if (len <= 0)
351				break;
352		}
353
354		/* Link it to the csrows old API data */
355		chan->dimm = dimm;
356		dimm->csrow = row;
357		dimm->cschannel = chn;
358
359		/* Increment csrow location */
360		if (mci->layers[0].is_virt_csrow) {
361			chn++;
362			if (chn == mci->num_cschannel) {
363				chn = 0;
364				row++;
365			}
366		} else {
367			row++;
368			if (row == mci->nr_csrows) {
369				row = 0;
370				chn++;
371			}
372		}
373
374		/* Increment dimm location */
375		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
376			pos[layer]++;
377			if (pos[layer] < mci->layers[layer].size)
378				break;
379			pos[layer] = 0;
380		}
381	}
382
383	return 0;
384}
385
386struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
387				   unsigned int n_layers,
388				   struct edac_mc_layer *layers,
389				   unsigned int sz_pvt)
390{
391	struct mem_ctl_info *mci;
392	struct edac_mc_layer *layer;
393	unsigned int idx, size, tot_dimms = 1;
394	unsigned int tot_csrows = 1, tot_channels = 1;
395	void *pvt, *ptr = NULL;
396	bool per_rank = false;
397
398	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
399		return NULL;
400
401	/*
402	 * Calculate the total amount of dimms and csrows/cschannels while
403	 * in the old API emulation mode
404	 */
405	for (idx = 0; idx < n_layers; idx++) {
406		tot_dimms *= layers[idx].size;
407
408		if (layers[idx].is_virt_csrow)
409			tot_csrows *= layers[idx].size;
410		else
411			tot_channels *= layers[idx].size;
412
413		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
414			per_rank = true;
415	}
416
417	/* Figure out the offsets of the various items from the start of an mc
418	 * structure.  We want the alignment of each item to be at least as
419	 * stringent as what the compiler would provide if we could simply
420	 * hardcode everything into a single struct.
421	 */
422	mci	= edac_align_ptr(&ptr, sizeof(*mci), 1);
423	layer	= edac_align_ptr(&ptr, sizeof(*layer), n_layers);
424	pvt	= edac_align_ptr(&ptr, sz_pvt, 1);
425	size	= ((unsigned long)pvt) + sz_pvt;
426
427	edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
428		 size,
429		 tot_dimms,
430		 per_rank ? "ranks" : "dimms",
431		 tot_csrows * tot_channels);
432
433	mci = kzalloc(size, GFP_KERNEL);
434	if (mci == NULL)
435		return NULL;
436
437	mci->dev.release = mci_release;
438	device_initialize(&mci->dev);
439
440	/* Adjust pointers so they point within the memory we just allocated
441	 * rather than an imaginary chunk of memory located at address 0.
442	 */
443	layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
444	pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
445
446	/* setup index and various internal pointers */
447	mci->mc_idx = mc_num;
448	mci->tot_dimms = tot_dimms;
449	mci->pvt_info = pvt;
450	mci->n_layers = n_layers;
451	mci->layers = layer;
452	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
453	mci->nr_csrows = tot_csrows;
454	mci->num_cschannel = tot_channels;
455	mci->csbased = per_rank;
456
457	if (edac_mc_alloc_csrows(mci))
458		goto error;
459
460	if (edac_mc_alloc_dimms(mci))
461		goto error;
462
463	mci->op_state = OP_ALLOC;
464
465	return mci;
466
467error:
468	_edac_mc_free(mci);
469
470	return NULL;
471}
472EXPORT_SYMBOL_GPL(edac_mc_alloc);
473
474void edac_mc_free(struct mem_ctl_info *mci)
475{
476	edac_dbg(1, "\n");
477
478	_edac_mc_free(mci);
479}
480EXPORT_SYMBOL_GPL(edac_mc_free);
481
482bool edac_has_mcs(void)
483{
484	bool ret;
485
486	mutex_lock(&mem_ctls_mutex);
487
488	ret = list_empty(&mc_devices);
489
490	mutex_unlock(&mem_ctls_mutex);
491
492	return !ret;
493}
494EXPORT_SYMBOL_GPL(edac_has_mcs);
495
496/* Caller must hold mem_ctls_mutex */
497static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
498{
499	struct mem_ctl_info *mci;
500	struct list_head *item;
501
502	edac_dbg(3, "\n");
503
504	list_for_each(item, &mc_devices) {
505		mci = list_entry(item, struct mem_ctl_info, link);
506
507		if (mci->pdev == dev)
508			return mci;
509	}
510
511	return NULL;
512}
513
514/**
515 * find_mci_by_dev
516 *
517 *	scan list of controllers looking for the one that manages
518 *	the 'dev' device
519 * @dev: pointer to a struct device related with the MCI
520 */
521struct mem_ctl_info *find_mci_by_dev(struct device *dev)
522{
523	struct mem_ctl_info *ret;
524
525	mutex_lock(&mem_ctls_mutex);
526	ret = __find_mci_by_dev(dev);
527	mutex_unlock(&mem_ctls_mutex);
528
529	return ret;
530}
531EXPORT_SYMBOL_GPL(find_mci_by_dev);
532
533/*
534 * edac_mc_workq_function
535 *	performs the operation scheduled by a workq request
536 */
537static void edac_mc_workq_function(struct work_struct *work_req)
538{
539	struct delayed_work *d_work = to_delayed_work(work_req);
540	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
541
542	mutex_lock(&mem_ctls_mutex);
543
544	if (mci->op_state != OP_RUNNING_POLL) {
545		mutex_unlock(&mem_ctls_mutex);
546		return;
547	}
548
549	if (edac_op_state == EDAC_OPSTATE_POLL)
550		mci->edac_check(mci);
551
552	mutex_unlock(&mem_ctls_mutex);
553
554	/* Queue ourselves again. */
555	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
556}
557
558/*
559 * edac_mc_reset_delay_period(unsigned long value)
560 *
561 *	user space has updated our poll period value, need to
562 *	reset our workq delays
563 */
564void edac_mc_reset_delay_period(unsigned long value)
565{
566	struct mem_ctl_info *mci;
567	struct list_head *item;
568
569	mutex_lock(&mem_ctls_mutex);
570
571	list_for_each(item, &mc_devices) {
572		mci = list_entry(item, struct mem_ctl_info, link);
573
574		if (mci->op_state == OP_RUNNING_POLL)
575			edac_mod_work(&mci->work, value);
576	}
577	mutex_unlock(&mem_ctls_mutex);
578}
579
580
581
582/* Return 0 on success, 1 on failure.
583 * Before calling this function, caller must
584 * assign a unique value to mci->mc_idx.
585 *
586 *	locking model:
587 *
588 *		called with the mem_ctls_mutex lock held
589 */
590static int add_mc_to_global_list(struct mem_ctl_info *mci)
591{
592	struct list_head *item, *insert_before;
593	struct mem_ctl_info *p;
594
595	insert_before = &mc_devices;
596
597	p = __find_mci_by_dev(mci->pdev);
598	if (unlikely(p != NULL))
599		goto fail0;
600
601	list_for_each(item, &mc_devices) {
602		p = list_entry(item, struct mem_ctl_info, link);
603
604		if (p->mc_idx >= mci->mc_idx) {
605			if (unlikely(p->mc_idx == mci->mc_idx))
606				goto fail1;
607
608			insert_before = item;
609			break;
610		}
611	}
612
613	list_add_tail_rcu(&mci->link, insert_before);
614	return 0;
615
616fail0:
617	edac_printk(KERN_WARNING, EDAC_MC,
618		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
619		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
620	return 1;
621
622fail1:
623	edac_printk(KERN_WARNING, EDAC_MC,
624		"bug in low-level driver: attempt to assign\n"
625		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
626	return 1;
627}
628
629static int del_mc_from_global_list(struct mem_ctl_info *mci)
630{
631	list_del_rcu(&mci->link);
632
633	/* these are for safe removal of devices from global list while
634	 * NMI handlers may be traversing list
635	 */
636	synchronize_rcu();
637	INIT_LIST_HEAD(&mci->link);
638
639	return list_empty(&mc_devices);
640}
641
642struct mem_ctl_info *edac_mc_find(int idx)
643{
644	struct mem_ctl_info *mci;
645	struct list_head *item;
646
647	mutex_lock(&mem_ctls_mutex);
648
649	list_for_each(item, &mc_devices) {
650		mci = list_entry(item, struct mem_ctl_info, link);
651		if (mci->mc_idx == idx)
652			goto unlock;
653	}
654
655	mci = NULL;
656unlock:
657	mutex_unlock(&mem_ctls_mutex);
658	return mci;
659}
660EXPORT_SYMBOL(edac_mc_find);
661
662const char *edac_get_owner(void)
663{
664	return edac_mc_owner;
665}
666EXPORT_SYMBOL_GPL(edac_get_owner);
667
668/* FIXME - should a warning be printed if no error detection? correction? */
669int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
670			       const struct attribute_group **groups)
671{
672	int ret = -EINVAL;
673	edac_dbg(0, "\n");
674
675#ifdef CONFIG_EDAC_DEBUG
676	if (edac_debug_level >= 3)
677		edac_mc_dump_mci(mci);
678
679	if (edac_debug_level >= 4) {
680		struct dimm_info *dimm;
681		int i;
682
683		for (i = 0; i < mci->nr_csrows; i++) {
684			struct csrow_info *csrow = mci->csrows[i];
685			u32 nr_pages = 0;
686			int j;
687
688			for (j = 0; j < csrow->nr_channels; j++)
689				nr_pages += csrow->channels[j]->dimm->nr_pages;
690			if (!nr_pages)
691				continue;
692			edac_mc_dump_csrow(csrow);
693			for (j = 0; j < csrow->nr_channels; j++)
694				if (csrow->channels[j]->dimm->nr_pages)
695					edac_mc_dump_channel(csrow->channels[j]);
696		}
697
698		mci_for_each_dimm(mci, dimm)
699			edac_mc_dump_dimm(dimm);
700	}
701#endif
702	mutex_lock(&mem_ctls_mutex);
703
704	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
705		ret = -EPERM;
706		goto fail0;
707	}
708
709	if (add_mc_to_global_list(mci))
710		goto fail0;
711
712	/* set load time so that error rate can be tracked */
713	mci->start_time = jiffies;
714
715	mci->bus = edac_get_sysfs_subsys();
716
717	if (edac_create_sysfs_mci_device(mci, groups)) {
718		edac_mc_printk(mci, KERN_WARNING,
719			"failed to create sysfs device\n");
720		goto fail1;
721	}
722
723	if (mci->edac_check) {
724		mci->op_state = OP_RUNNING_POLL;
725
726		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
727		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
728
729	} else {
730		mci->op_state = OP_RUNNING_INTERRUPT;
731	}
732
733	/* Report action taken */
734	edac_mc_printk(mci, KERN_INFO,
735		"Giving out device to module %s controller %s: DEV %s (%s)\n",
736		mci->mod_name, mci->ctl_name, mci->dev_name,
737		edac_op_state_to_string(mci->op_state));
738
739	edac_mc_owner = mci->mod_name;
740
741	mutex_unlock(&mem_ctls_mutex);
742	return 0;
743
744fail1:
745	del_mc_from_global_list(mci);
746
747fail0:
748	mutex_unlock(&mem_ctls_mutex);
749	return ret;
750}
751EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
752
753struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
754{
755	struct mem_ctl_info *mci;
756
757	edac_dbg(0, "\n");
758
759	mutex_lock(&mem_ctls_mutex);
760
761	/* find the requested mci struct in the global list */
762	mci = __find_mci_by_dev(dev);
763	if (mci == NULL) {
764		mutex_unlock(&mem_ctls_mutex);
765		return NULL;
766	}
767
768	/* mark MCI offline: */
769	mci->op_state = OP_OFFLINE;
770
771	if (del_mc_from_global_list(mci))
772		edac_mc_owner = NULL;
773
774	mutex_unlock(&mem_ctls_mutex);
775
776	if (mci->edac_check)
777		edac_stop_work(&mci->work);
778
779	/* remove from sysfs */
780	edac_remove_sysfs_mci_device(mci);
781
782	edac_printk(KERN_INFO, EDAC_MC,
783		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
784		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
785
786	return mci;
787}
788EXPORT_SYMBOL_GPL(edac_mc_del_mc);
789
790static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
791				u32 size)
792{
793	struct page *pg;
794	void *virt_addr;
795	unsigned long flags = 0;
796
797	edac_dbg(3, "\n");
798
799	/* ECC error page was not in our memory. Ignore it. */
800	if (!pfn_valid(page))
801		return;
802
803	/* Find the actual page structure then map it and fix */
804	pg = pfn_to_page(page);
805
806	if (PageHighMem(pg))
807		local_irq_save(flags);
808
809	virt_addr = kmap_atomic(pg);
810
811	/* Perform architecture specific atomic scrub operation */
812	edac_atomic_scrub(virt_addr + offset, size);
813
814	/* Unmap and complete */
815	kunmap_atomic(virt_addr);
816
817	if (PageHighMem(pg))
818		local_irq_restore(flags);
819}
820
821/* FIXME - should return -1 */
822int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
823{
824	struct csrow_info **csrows = mci->csrows;
825	int row, i, j, n;
826
827	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
828	row = -1;
829
830	for (i = 0; i < mci->nr_csrows; i++) {
831		struct csrow_info *csrow = csrows[i];
832		n = 0;
833		for (j = 0; j < csrow->nr_channels; j++) {
834			struct dimm_info *dimm = csrow->channels[j]->dimm;
835			n += dimm->nr_pages;
836		}
837		if (n == 0)
838			continue;
839
840		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
841			 mci->mc_idx,
842			 csrow->first_page, page, csrow->last_page,
843			 csrow->page_mask);
844
845		if ((page >= csrow->first_page) &&
846		    (page <= csrow->last_page) &&
847		    ((page & csrow->page_mask) ==
848		     (csrow->first_page & csrow->page_mask))) {
849			row = i;
850			break;
851		}
852	}
853
854	if (row == -1)
855		edac_mc_printk(mci, KERN_ERR,
856			"could not look up page error address %lx\n",
857			(unsigned long)page);
858
859	return row;
860}
861EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
862
863const char *edac_layer_name[] = {
864	[EDAC_MC_LAYER_BRANCH] = "branch",
865	[EDAC_MC_LAYER_CHANNEL] = "channel",
866	[EDAC_MC_LAYER_SLOT] = "slot",
867	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
868	[EDAC_MC_LAYER_ALL_MEM] = "memory",
869};
870EXPORT_SYMBOL_GPL(edac_layer_name);
871
872static void edac_inc_ce_error(struct edac_raw_error_desc *e)
873{
874	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
875	struct mem_ctl_info *mci = error_desc_to_mci(e);
876	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
877
878	mci->ce_mc += e->error_count;
879
880	if (dimm)
881		dimm->ce_count += e->error_count;
882	else
883		mci->ce_noinfo_count += e->error_count;
884}
885
886static void edac_inc_ue_error(struct edac_raw_error_desc *e)
887{
888	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
889	struct mem_ctl_info *mci = error_desc_to_mci(e);
890	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
891
892	mci->ue_mc += e->error_count;
893
894	if (dimm)
895		dimm->ue_count += e->error_count;
896	else
897		mci->ue_noinfo_count += e->error_count;
898}
899
900static void edac_ce_error(struct edac_raw_error_desc *e)
901{
902	struct mem_ctl_info *mci = error_desc_to_mci(e);
903	unsigned long remapped_page;
904
905	if (edac_mc_get_log_ce()) {
906		edac_mc_printk(mci, KERN_WARNING,
907			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
908			e->error_count, e->msg,
909			*e->msg ? " " : "",
910			e->label, e->location, e->page_frame_number, e->offset_in_page,
911			e->grain, e->syndrome,
912			*e->other_detail ? " - " : "",
913			e->other_detail);
914	}
915
916	edac_inc_ce_error(e);
917
918	if (mci->scrub_mode == SCRUB_SW_SRC) {
919		/*
920			* Some memory controllers (called MCs below) can remap
921			* memory so that it is still available at a different
922			* address when PCI devices map into memory.
923			* MC's that can't do this, lose the memory where PCI
924			* devices are mapped. This mapping is MC-dependent
925			* and so we call back into the MC driver for it to
926			* map the MC page to a physical (CPU) page which can
927			* then be mapped to a virtual page - which can then
928			* be scrubbed.
929			*/
930		remapped_page = mci->ctl_page_to_phys ?
931			mci->ctl_page_to_phys(mci, e->page_frame_number) :
932			e->page_frame_number;
933
934		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
935	}
936}
937
938static void edac_ue_error(struct edac_raw_error_desc *e)
939{
940	struct mem_ctl_info *mci = error_desc_to_mci(e);
941
942	if (edac_mc_get_log_ue()) {
943		edac_mc_printk(mci, KERN_WARNING,
944			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
945			e->error_count, e->msg,
946			*e->msg ? " " : "",
947			e->label, e->location, e->page_frame_number, e->offset_in_page,
948			e->grain,
949			*e->other_detail ? " - " : "",
950			e->other_detail);
951	}
952
953	edac_inc_ue_error(e);
954
955	if (edac_mc_get_panic_on_ue()) {
956		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
957			e->msg,
958			*e->msg ? " " : "",
959			e->label, e->location, e->page_frame_number, e->offset_in_page,
960			e->grain,
961			*e->other_detail ? " - " : "",
962			e->other_detail);
963	}
964}
965
966static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
967{
968	struct mem_ctl_info *mci = error_desc_to_mci(e);
969	enum hw_event_mc_err_type type = e->type;
970	u16 count = e->error_count;
971
972	if (row < 0)
973		return;
974
975	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
976
977	if (type == HW_EVENT_ERR_CORRECTED) {
978		mci->csrows[row]->ce_count += count;
979		if (chan >= 0)
980			mci->csrows[row]->channels[chan]->ce_count += count;
981	} else {
982		mci->csrows[row]->ue_count += count;
983	}
984}
985
986void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
987{
988	struct mem_ctl_info *mci = error_desc_to_mci(e);
989	u8 grain_bits;
990
991	/* Sanity-check driver-supplied grain value. */
992	if (WARN_ON_ONCE(!e->grain))
993		e->grain = 1;
994
995	grain_bits = fls_long(e->grain - 1);
996
997	/* Report the error via the trace interface */
998	if (IS_ENABLED(CONFIG_RAS))
999		trace_mc_event(e->type, e->msg, e->label, e->error_count,
1000			       mci->mc_idx, e->top_layer, e->mid_layer,
1001			       e->low_layer,
1002			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1003			       grain_bits, e->syndrome, e->other_detail);
1004
1005	if (e->type == HW_EVENT_ERR_CORRECTED)
1006		edac_ce_error(e);
1007	else
1008		edac_ue_error(e);
1009}
1010EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1011
1012void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1013			  struct mem_ctl_info *mci,
1014			  const u16 error_count,
1015			  const unsigned long page_frame_number,
1016			  const unsigned long offset_in_page,
1017			  const unsigned long syndrome,
1018			  const int top_layer,
1019			  const int mid_layer,
1020			  const int low_layer,
1021			  const char *msg,
1022			  const char *other_detail)
1023{
1024	struct dimm_info *dimm;
1025	char *p;
1026	int row = -1, chan = -1;
1027	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1028	int i, n_labels = 0;
1029	struct edac_raw_error_desc *e = &mci->error_desc;
1030	bool any_memory = true;
1031
1032	edac_dbg(3, "MC%d\n", mci->mc_idx);
1033
1034	/* Fills the error report buffer */
1035	memset(e, 0, sizeof (*e));
1036	e->error_count = error_count;
1037	e->type = type;
1038	e->top_layer = top_layer;
1039	e->mid_layer = mid_layer;
1040	e->low_layer = low_layer;
1041	e->page_frame_number = page_frame_number;
1042	e->offset_in_page = offset_in_page;
1043	e->syndrome = syndrome;
1044	/* need valid strings here for both: */
1045	e->msg = msg ?: "";
1046	e->other_detail = other_detail ?: "";
1047
1048	/*
1049	 * Check if the event report is consistent and if the memory location is
1050	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1051	 * error counters will be incremented.
1052	 */
1053	for (i = 0; i < mci->n_layers; i++) {
1054		if (pos[i] >= (int)mci->layers[i].size) {
1055
1056			edac_mc_printk(mci, KERN_ERR,
1057				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1058				       edac_layer_name[mci->layers[i].type],
1059				       pos[i], mci->layers[i].size);
1060			/*
1061			 * Instead of just returning it, let's use what's
1062			 * known about the error. The increment routines and
1063			 * the DIMM filter logic will do the right thing by
1064			 * pointing the likely damaged DIMMs.
1065			 */
1066			pos[i] = -1;
1067		}
1068		if (pos[i] >= 0)
1069			any_memory = false;
1070	}
1071
1072	/*
1073	 * Get the dimm label/grain that applies to the match criteria.
1074	 * As the error algorithm may not be able to point to just one memory
1075	 * stick, the logic here will get all possible labels that could
1076	 * pottentially be affected by the error.
1077	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1078	 * to have only the MC channel and the MC dimm (also called "branch")
1079	 * but the channel is not known, as the memory is arranged in pairs,
1080	 * where each memory belongs to a separate channel within the same
1081	 * branch.
1082	 */
1083	p = e->label;
1084	*p = '\0';
1085
1086	mci_for_each_dimm(mci, dimm) {
1087		if (top_layer >= 0 && top_layer != dimm->location[0])
1088			continue;
1089		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1090			continue;
1091		if (low_layer >= 0 && low_layer != dimm->location[2])
1092			continue;
1093
1094		/* get the max grain, over the error match range */
1095		if (dimm->grain > e->grain)
1096			e->grain = dimm->grain;
1097
1098		/*
1099		 * If the error is memory-controller wide, there's no need to
1100		 * seek for the affected DIMMs because the whole channel/memory
1101		 * controller/... may be affected. Also, don't show errors for
1102		 * empty DIMM slots.
1103		 */
1104		if (!dimm->nr_pages)
1105			continue;
1106
1107		n_labels++;
1108		if (n_labels > EDAC_MAX_LABELS) {
1109			p = e->label;
1110			*p = '\0';
1111		} else {
1112			if (p != e->label) {
1113				strcpy(p, OTHER_LABEL);
1114				p += strlen(OTHER_LABEL);
1115			}
1116			strcpy(p, dimm->label);
1117			p += strlen(p);
1118		}
1119
1120		/*
1121		 * get csrow/channel of the DIMM, in order to allow
1122		 * incrementing the compat API counters
1123		 */
1124		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1125			mci->csbased ? "rank" : "dimm",
1126			dimm->csrow, dimm->cschannel);
1127		if (row == -1)
1128			row = dimm->csrow;
1129		else if (row >= 0 && row != dimm->csrow)
1130			row = -2;
1131
1132		if (chan == -1)
1133			chan = dimm->cschannel;
1134		else if (chan >= 0 && chan != dimm->cschannel)
1135			chan = -2;
1136	}
1137
1138	if (any_memory)
1139		strcpy(e->label, "any memory");
1140	else if (!*e->label)
1141		strcpy(e->label, "unknown memory");
1142
1143	edac_inc_csrow(e, row, chan);
1144
1145	/* Fill the RAM location data */
1146	p = e->location;
1147
1148	for (i = 0; i < mci->n_layers; i++) {
1149		if (pos[i] < 0)
1150			continue;
1151
1152		p += sprintf(p, "%s:%d ",
1153			     edac_layer_name[mci->layers[i].type],
1154			     pos[i]);
1155	}
1156	if (p > e->location)
1157		*(p - 1) = '\0';
1158
1159	edac_raw_mc_handle_error(e);
1160}
1161EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1162