1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Applied Micro X-Gene SoC DMA engine Driver
4 *
5 * Copyright (c) 2015, Applied Micro Circuits Corporation
6 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
7 *	    Loc Ho <lho@apm.com>
8 *
9 * NOTE: PM support is currently not available.
10 */
11
12#include <linux/acpi.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/dmapool.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/irq.h>
21#include <linux/module.h>
22#include <linux/of_device.h>
23
24#include "dmaengine.h"
25
26/* X-Gene DMA ring csr registers and bit definations */
27#define XGENE_DMA_RING_CONFIG			0x04
28#define XGENE_DMA_RING_ENABLE			BIT(31)
29#define XGENE_DMA_RING_ID			0x08
30#define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
31#define XGENE_DMA_RING_ID_BUF			0x0C
32#define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
33#define XGENE_DMA_RING_THRESLD0_SET1		0x30
34#define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
35#define XGENE_DMA_RING_THRESLD1_SET1		0x34
36#define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
37#define XGENE_DMA_RING_HYSTERESIS		0x68
38#define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
39#define XGENE_DMA_RING_STATE			0x6C
40#define XGENE_DMA_RING_STATE_WR_BASE		0x70
41#define XGENE_DMA_RING_NE_INT_MODE		0x017C
42#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
43	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
44#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
45	((m) &= (~BIT(31 - (v))))
46#define XGENE_DMA_RING_CLKEN			0xC208
47#define XGENE_DMA_RING_SRST			0xC200
48#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
49#define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
50#define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
51#define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
52#define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
53#define XGENE_DMA_RING_CMD_OFFSET		0x2C
54#define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
55#define XGENE_DMA_RING_COHERENT_SET(m)		\
56	(((u32 *)(m))[2] |= BIT(4))
57#define XGENE_DMA_RING_ADDRL_SET(m, v)		\
58	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
59#define XGENE_DMA_RING_ADDRH_SET(m, v)		\
60	(((u32 *)(m))[3] |= ((v) >> 35))
61#define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
62	(((u32 *)(m))[3] |= BIT(19))
63#define XGENE_DMA_RING_SIZE_SET(m, v)		\
64	(((u32 *)(m))[3] |= ((v) << 23))
65#define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
66	(((u32 *)(m))[3] |= BIT(27))
67#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
68	(((u32 *)(m))[3] |= (0x7 << 28))
69#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
70	(((u32 *)(m))[4] |= 0x3)
71#define XGENE_DMA_RING_SELTHRSH_SET(m)		\
72	(((u32 *)(m))[4] |= BIT(3))
73#define XGENE_DMA_RING_TYPE_SET(m, v)		\
74	(((u32 *)(m))[4] |= ((v) << 19))
75
76/* X-Gene DMA device csr registers and bit definitions */
77#define XGENE_DMA_IPBRR				0x0
78#define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
79#define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
80#define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
81#define XGENE_DMA_GCR				0x10
82#define XGENE_DMA_CH_SETUP(v)			\
83	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
84#define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
85#define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
86#define XGENE_DMA_RAID6_CONT			0x14
87#define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
88#define XGENE_DMA_INT				0x70
89#define XGENE_DMA_INT_MASK			0x74
90#define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
91#define XGENE_DMA_INT_ALL_UNMASK		0x0
92#define XGENE_DMA_INT_MASK_SHIFT		0x14
93#define XGENE_DMA_RING_INT0_MASK		0x90A0
94#define XGENE_DMA_RING_INT1_MASK		0x90A8
95#define XGENE_DMA_RING_INT2_MASK		0x90B0
96#define XGENE_DMA_RING_INT3_MASK		0x90B8
97#define XGENE_DMA_RING_INT4_MASK		0x90C0
98#define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
99#define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
100#define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
101#define XGENE_DMA_BLK_MEM_RDY			0xD074
102#define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
103#define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
104
105/* X-Gene SoC EFUSE csr register and bit defination */
106#define XGENE_SOC_JTAG1_SHADOW			0x18
107#define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
108
109/* X-Gene DMA Descriptor format */
110#define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
111#define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
112#define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
113#define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
114#define XGENE_DMA_DESC_ELERR_POS		46
115#define XGENE_DMA_DESC_RTYPE_POS		56
116#define XGENE_DMA_DESC_LERR_POS			60
117#define XGENE_DMA_DESC_BUFLEN_POS		48
118#define XGENE_DMA_DESC_HOENQ_NUM_POS		48
119#define XGENE_DMA_DESC_ELERR_RD(m)		\
120	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
121#define XGENE_DMA_DESC_LERR_RD(m)		\
122	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
123#define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
124	(((elerr) << 4) | (lerr))
125
126/* X-Gene DMA descriptor empty s/w signature */
127#define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
128
129/* X-Gene DMA configurable parameters defines */
130#define XGENE_DMA_RING_NUM		512
131#define XGENE_DMA_BUFNUM		0x0
132#define XGENE_DMA_CPU_BUFNUM		0x18
133#define XGENE_DMA_RING_OWNER_DMA	0x03
134#define XGENE_DMA_RING_OWNER_CPU	0x0F
135#define XGENE_DMA_RING_TYPE_REGULAR	0x01
136#define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
137#define XGENE_DMA_RING_NUM_CONFIG	5
138#define XGENE_DMA_MAX_CHANNEL		4
139#define XGENE_DMA_XOR_CHANNEL		0
140#define XGENE_DMA_PQ_CHANNEL		1
141#define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
142#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
143#define XGENE_DMA_MAX_XOR_SRC		5
144#define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
145#define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
146
147/* X-Gene DMA descriptor error codes */
148#define ERR_DESC_AXI			0x01
149#define ERR_BAD_DESC			0x02
150#define ERR_READ_DATA_AXI		0x03
151#define ERR_WRITE_DATA_AXI		0x04
152#define ERR_FBP_TIMEOUT			0x05
153#define ERR_ECC				0x06
154#define ERR_DIFF_SIZE			0x08
155#define ERR_SCT_GAT_LEN			0x09
156#define ERR_CRC_ERR			0x11
157#define ERR_CHKSUM			0x12
158#define ERR_DIF				0x13
159
160/* X-Gene DMA error interrupt codes */
161#define ERR_DIF_SIZE_INT		0x0
162#define ERR_GS_ERR_INT			0x1
163#define ERR_FPB_TIMEO_INT		0x2
164#define ERR_WFIFO_OVF_INT		0x3
165#define ERR_RFIFO_OVF_INT		0x4
166#define ERR_WR_TIMEO_INT		0x5
167#define ERR_RD_TIMEO_INT		0x6
168#define ERR_WR_ERR_INT			0x7
169#define ERR_RD_ERR_INT			0x8
170#define ERR_BAD_DESC_INT		0x9
171#define ERR_DESC_DST_INT		0xA
172#define ERR_DESC_SRC_INT		0xB
173
174/* X-Gene DMA flyby operation code */
175#define FLYBY_2SRC_XOR			0x80
176#define FLYBY_3SRC_XOR			0x90
177#define FLYBY_4SRC_XOR			0xA0
178#define FLYBY_5SRC_XOR			0xB0
179
180/* X-Gene DMA SW descriptor flags */
181#define XGENE_DMA_FLAG_64B_DESC		BIT(0)
182
183/* Define to dump X-Gene DMA descriptor */
184#define XGENE_DMA_DESC_DUMP(desc, m)	\
185	print_hex_dump(KERN_ERR, (m),	\
186			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
187
188#define to_dma_desc_sw(tx)		\
189	container_of(tx, struct xgene_dma_desc_sw, tx)
190#define to_dma_chan(dchan)		\
191	container_of(dchan, struct xgene_dma_chan, dma_chan)
192
193#define chan_dbg(chan, fmt, arg...)	\
194	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
195#define chan_err(chan, fmt, arg...)	\
196	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
197
198struct xgene_dma_desc_hw {
199	__le64 m0;
200	__le64 m1;
201	__le64 m2;
202	__le64 m3;
203};
204
205enum xgene_dma_ring_cfgsize {
206	XGENE_DMA_RING_CFG_SIZE_512B,
207	XGENE_DMA_RING_CFG_SIZE_2KB,
208	XGENE_DMA_RING_CFG_SIZE_16KB,
209	XGENE_DMA_RING_CFG_SIZE_64KB,
210	XGENE_DMA_RING_CFG_SIZE_512KB,
211	XGENE_DMA_RING_CFG_SIZE_INVALID
212};
213
214struct xgene_dma_ring {
215	struct xgene_dma *pdma;
216	u8 buf_num;
217	u16 id;
218	u16 num;
219	u16 head;
220	u16 owner;
221	u16 slots;
222	u16 dst_ring_num;
223	u32 size;
224	void __iomem *cmd;
225	void __iomem *cmd_base;
226	dma_addr_t desc_paddr;
227	u32 state[XGENE_DMA_RING_NUM_CONFIG];
228	enum xgene_dma_ring_cfgsize cfgsize;
229	union {
230		void *desc_vaddr;
231		struct xgene_dma_desc_hw *desc_hw;
232	};
233};
234
235struct xgene_dma_desc_sw {
236	struct xgene_dma_desc_hw desc1;
237	struct xgene_dma_desc_hw desc2;
238	u32 flags;
239	struct list_head node;
240	struct list_head tx_list;
241	struct dma_async_tx_descriptor tx;
242};
243
244/**
245 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
246 * @dma_chan: dmaengine channel object member
247 * @pdma: X-Gene DMA device structure reference
248 * @dev: struct device reference for dma mapping api
249 * @id: raw id of this channel
250 * @rx_irq: channel IRQ
251 * @name: name of X-Gene DMA channel
252 * @lock: serializes enqueue/dequeue operations to the descriptor pool
253 * @pending: number of transaction request pushed to DMA controller for
254 *	execution, but still waiting for completion,
255 * @max_outstanding: max number of outstanding request we can push to channel
256 * @ld_pending: descriptors which are queued to run, but have not yet been
257 *	submitted to the hardware for execution
258 * @ld_running: descriptors which are currently being executing by the hardware
259 * @ld_completed: descriptors which have finished execution by the hardware.
260 *	These descriptors have already had their cleanup actions run. They
261 *	are waiting for the ACK bit to be set by the async tx API.
262 * @desc_pool: descriptor pool for DMA operations
263 * @tasklet: bottom half where all completed descriptors cleans
264 * @tx_ring: transmit ring descriptor that we use to prepare actual
265 *	descriptors for further executions
266 * @rx_ring: receive ring descriptor that we use to get completed DMA
267 *	descriptors during cleanup time
268 */
269struct xgene_dma_chan {
270	struct dma_chan dma_chan;
271	struct xgene_dma *pdma;
272	struct device *dev;
273	int id;
274	int rx_irq;
275	char name[10];
276	spinlock_t lock;
277	int pending;
278	int max_outstanding;
279	struct list_head ld_pending;
280	struct list_head ld_running;
281	struct list_head ld_completed;
282	struct dma_pool *desc_pool;
283	struct tasklet_struct tasklet;
284	struct xgene_dma_ring tx_ring;
285	struct xgene_dma_ring rx_ring;
286};
287
288/**
289 * struct xgene_dma - internal representation of an X-Gene DMA device
290 * @dev: reference to this device's struct device
291 * @clk: reference to this device's clock
292 * @err_irq: DMA error irq number
293 * @ring_num: start id number for DMA ring
294 * @csr_dma: base for DMA register access
295 * @csr_ring: base for DMA ring register access
296 * @csr_ring_cmd: base for DMA ring command register access
297 * @csr_efuse: base for efuse register access
298 * @dma_dev: embedded struct dma_device
299 * @chan: reference to X-Gene DMA channels
300 */
301struct xgene_dma {
302	struct device *dev;
303	struct clk *clk;
304	int err_irq;
305	int ring_num;
306	void __iomem *csr_dma;
307	void __iomem *csr_ring;
308	void __iomem *csr_ring_cmd;
309	void __iomem *csr_efuse;
310	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
311	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
312};
313
314static const char * const xgene_dma_desc_err[] = {
315	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
316	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
317	[ERR_READ_DATA_AXI] = "AXI error when reading data",
318	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
319	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
320	[ERR_ECC] = "ECC double bit error",
321	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
322	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
323	[ERR_CRC_ERR] = "CRC error",
324	[ERR_CHKSUM] = "Checksum error",
325	[ERR_DIF] = "DIF error",
326};
327
328static const char * const xgene_dma_err[] = {
329	[ERR_DIF_SIZE_INT] = "DIF size error",
330	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
331	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
332	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
333	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
334	[ERR_WR_TIMEO_INT] = "Write time out error",
335	[ERR_RD_TIMEO_INT] = "Read time out error",
336	[ERR_WR_ERR_INT] = "HBF bus write error",
337	[ERR_RD_ERR_INT] = "HBF bus read error",
338	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
339	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
340	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
341};
342
343static bool is_pq_enabled(struct xgene_dma *pdma)
344{
345	u32 val;
346
347	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
348	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
349}
350
351static u64 xgene_dma_encode_len(size_t len)
352{
353	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
354		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
355		XGENE_DMA_16K_BUFFER_LEN_CODE;
356}
357
358static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
359{
360	static u8 flyby_type[] = {
361		FLYBY_2SRC_XOR, /* Dummy */
362		FLYBY_2SRC_XOR, /* Dummy */
363		FLYBY_2SRC_XOR,
364		FLYBY_3SRC_XOR,
365		FLYBY_4SRC_XOR,
366		FLYBY_5SRC_XOR
367	};
368
369	return flyby_type[src_cnt];
370}
371
372static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
373				     dma_addr_t *paddr)
374{
375	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
376			*len : XGENE_DMA_MAX_BYTE_CNT;
377
378	*ext8 |= cpu_to_le64(*paddr);
379	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
380	*len -= nbytes;
381	*paddr += nbytes;
382}
383
384static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
385{
386	switch (idx) {
387	case 0:
388		return &desc->m1;
389	case 1:
390		return &desc->m0;
391	case 2:
392		return &desc->m3;
393	case 3:
394		return &desc->m2;
395	default:
396		pr_err("Invalid dma descriptor index\n");
397	}
398
399	return NULL;
400}
401
402static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
403				u16 dst_ring_num)
404{
405	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
406	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
407				XGENE_DMA_DESC_RTYPE_POS);
408	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
409	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
410				XGENE_DMA_DESC_HOENQ_NUM_POS);
411}
412
413static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
414				    struct xgene_dma_desc_sw *desc_sw,
415				    dma_addr_t *dst, dma_addr_t *src,
416				    u32 src_cnt, size_t *nbytes,
417				    const u8 *scf)
418{
419	struct xgene_dma_desc_hw *desc1, *desc2;
420	size_t len = *nbytes;
421	int i;
422
423	desc1 = &desc_sw->desc1;
424	desc2 = &desc_sw->desc2;
425
426	/* Initialize DMA descriptor */
427	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
428
429	/* Set destination address */
430	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
431	desc1->m3 |= cpu_to_le64(*dst);
432
433	/* We have multiple source addresses, so need to set NV bit*/
434	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
435
436	/* Set flyby opcode */
437	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
438
439	/* Set 1st to 5th source addresses */
440	for (i = 0; i < src_cnt; i++) {
441		len = *nbytes;
442		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
443					 xgene_dma_lookup_ext8(desc2, i - 1),
444					 &len, &src[i]);
445		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
446	}
447
448	/* Update meta data */
449	*nbytes = len;
450	*dst += XGENE_DMA_MAX_BYTE_CNT;
451
452	/* We need always 64B descriptor to perform xor or pq operations */
453	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
454}
455
456static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
457{
458	struct xgene_dma_desc_sw *desc;
459	struct xgene_dma_chan *chan;
460	dma_cookie_t cookie;
461
462	if (unlikely(!tx))
463		return -EINVAL;
464
465	chan = to_dma_chan(tx->chan);
466	desc = to_dma_desc_sw(tx);
467
468	spin_lock_bh(&chan->lock);
469
470	cookie = dma_cookie_assign(tx);
471
472	/* Add this transaction list onto the tail of the pending queue */
473	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
474
475	spin_unlock_bh(&chan->lock);
476
477	return cookie;
478}
479
480static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
481				       struct xgene_dma_desc_sw *desc)
482{
483	list_del(&desc->node);
484	chan_dbg(chan, "LD %p free\n", desc);
485	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
486}
487
488static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
489				 struct xgene_dma_chan *chan)
490{
491	struct xgene_dma_desc_sw *desc;
492	dma_addr_t phys;
493
494	desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
495	if (!desc) {
496		chan_err(chan, "Failed to allocate LDs\n");
497		return NULL;
498	}
499
500	INIT_LIST_HEAD(&desc->tx_list);
501	desc->tx.phys = phys;
502	desc->tx.tx_submit = xgene_dma_tx_submit;
503	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
504
505	chan_dbg(chan, "LD %p allocated\n", desc);
506
507	return desc;
508}
509
510/**
511 * xgene_dma_clean_completed_descriptor - free all descriptors which
512 * has been completed and acked
513 * @chan: X-Gene DMA channel
514 *
515 * This function is used on all completed and acked descriptors.
516 */
517static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
518{
519	struct xgene_dma_desc_sw *desc, *_desc;
520
521	/* Run the callback for each descriptor, in order */
522	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
523		if (async_tx_test_ack(&desc->tx))
524			xgene_dma_clean_descriptor(chan, desc);
525	}
526}
527
528/**
529 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
530 * @chan: X-Gene DMA channel
531 * @desc: descriptor to cleanup and free
532 *
533 * This function is used on a descriptor which has been executed by the DMA
534 * controller. It will run any callbacks, submit any dependencies.
535 */
536static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
537					      struct xgene_dma_desc_sw *desc)
538{
539	struct dma_async_tx_descriptor *tx = &desc->tx;
540
541	/*
542	 * If this is not the last transaction in the group,
543	 * then no need to complete cookie and run any callback as
544	 * this is not the tx_descriptor which had been sent to caller
545	 * of this DMA request
546	 */
547
548	if (tx->cookie == 0)
549		return;
550
551	dma_cookie_complete(tx);
552	dma_descriptor_unmap(tx);
553
554	/* Run the link descriptor callback function */
555	dmaengine_desc_get_callback_invoke(tx, NULL);
556
557	/* Run any dependencies */
558	dma_run_dependencies(tx);
559}
560
561/**
562 * xgene_dma_clean_running_descriptor - move the completed descriptor from
563 * ld_running to ld_completed
564 * @chan: X-Gene DMA channel
565 * @desc: the descriptor which is completed
566 *
567 * Free the descriptor directly if acked by async_tx api,
568 * else move it to queue ld_completed.
569 */
570static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
571					       struct xgene_dma_desc_sw *desc)
572{
573	/* Remove from the list of running transactions */
574	list_del(&desc->node);
575
576	/*
577	 * the client is allowed to attach dependent operations
578	 * until 'ack' is set
579	 */
580	if (!async_tx_test_ack(&desc->tx)) {
581		/*
582		 * Move this descriptor to the list of descriptors which is
583		 * completed, but still awaiting the 'ack' bit to be set.
584		 */
585		list_add_tail(&desc->node, &chan->ld_completed);
586		return;
587	}
588
589	chan_dbg(chan, "LD %p free\n", desc);
590	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
591}
592
593static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
594				    struct xgene_dma_desc_sw *desc_sw)
595{
596	struct xgene_dma_ring *ring = &chan->tx_ring;
597	struct xgene_dma_desc_hw *desc_hw;
598
599	/* Get hw descriptor from DMA tx ring */
600	desc_hw = &ring->desc_hw[ring->head];
601
602	/*
603	 * Increment the head count to point next
604	 * descriptor for next time
605	 */
606	if (++ring->head == ring->slots)
607		ring->head = 0;
608
609	/* Copy prepared sw descriptor data to hw descriptor */
610	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
611
612	/*
613	 * Check if we have prepared 64B descriptor,
614	 * in this case we need one more hw descriptor
615	 */
616	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
617		desc_hw = &ring->desc_hw[ring->head];
618
619		if (++ring->head == ring->slots)
620			ring->head = 0;
621
622		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
623	}
624
625	/* Increment the pending transaction count */
626	chan->pending += ((desc_sw->flags &
627			  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
628
629	/* Notify the hw that we have descriptor ready for execution */
630	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
631		  2 : 1, ring->cmd);
632}
633
634/**
635 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
636 * @chan : X-Gene DMA channel
637 *
638 * LOCKING: must hold chan->lock
639 */
640static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
641{
642	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
643
644	/*
645	 * If the list of pending descriptors is empty, then we
646	 * don't need to do any work at all
647	 */
648	if (list_empty(&chan->ld_pending)) {
649		chan_dbg(chan, "No pending LDs\n");
650		return;
651	}
652
653	/*
654	 * Move elements from the queue of pending transactions onto the list
655	 * of running transactions and push it to hw for further executions
656	 */
657	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
658		/*
659		 * Check if have pushed max number of transactions to hw
660		 * as capable, so let's stop here and will push remaining
661		 * elements from pening ld queue after completing some
662		 * descriptors that we have already pushed
663		 */
664		if (chan->pending >= chan->max_outstanding)
665			return;
666
667		xgene_chan_xfer_request(chan, desc_sw);
668
669		/*
670		 * Delete this element from ld pending queue and append it to
671		 * ld running queue
672		 */
673		list_move_tail(&desc_sw->node, &chan->ld_running);
674	}
675}
676
677/**
678 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
679 * and move them to ld_completed to free until flag 'ack' is set
680 * @chan: X-Gene DMA channel
681 *
682 * This function is used on descriptors which have been executed by the DMA
683 * controller. It will run any callbacks, submit any dependencies, then
684 * free these descriptors if flag 'ack' is set.
685 */
686static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
687{
688	struct xgene_dma_ring *ring = &chan->rx_ring;
689	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
690	struct xgene_dma_desc_hw *desc_hw;
691	struct list_head ld_completed;
692	u8 status;
693
694	INIT_LIST_HEAD(&ld_completed);
695
696	spin_lock(&chan->lock);
697
698	/* Clean already completed and acked descriptors */
699	xgene_dma_clean_completed_descriptor(chan);
700
701	/* Move all completed descriptors to ld completed queue, in order */
702	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
703		/* Get subsequent hw descriptor from DMA rx ring */
704		desc_hw = &ring->desc_hw[ring->head];
705
706		/* Check if this descriptor has been completed */
707		if (unlikely(le64_to_cpu(desc_hw->m0) ==
708			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
709			break;
710
711		if (++ring->head == ring->slots)
712			ring->head = 0;
713
714		/* Check if we have any error with DMA transactions */
715		status = XGENE_DMA_DESC_STATUS(
716				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
717							desc_hw->m0)),
718				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
719						       desc_hw->m0)));
720		if (status) {
721			/* Print the DMA error type */
722			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
723
724			/*
725			 * We have DMA transactions error here. Dump DMA Tx
726			 * and Rx descriptors for this request */
727			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
728					    "X-Gene DMA TX DESC1: ");
729
730			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
731				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
732						    "X-Gene DMA TX DESC2: ");
733
734			XGENE_DMA_DESC_DUMP(desc_hw,
735					    "X-Gene DMA RX ERR DESC: ");
736		}
737
738		/* Notify the hw about this completed descriptor */
739		iowrite32(-1, ring->cmd);
740
741		/* Mark this hw descriptor as processed */
742		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
743
744		/*
745		 * Decrement the pending transaction count
746		 * as we have processed one
747		 */
748		chan->pending -= ((desc_sw->flags &
749				  XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
750
751		/*
752		 * Delete this node from ld running queue and append it to
753		 * ld completed queue for further processing
754		 */
755		list_move_tail(&desc_sw->node, &ld_completed);
756	}
757
758	/*
759	 * Start any pending transactions automatically
760	 * In the ideal case, we keep the DMA controller busy while we go
761	 * ahead and free the descriptors below.
762	 */
763	xgene_chan_xfer_ld_pending(chan);
764
765	spin_unlock(&chan->lock);
766
767	/* Run the callback for each descriptor, in order */
768	list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
769		xgene_dma_run_tx_complete_actions(chan, desc_sw);
770		xgene_dma_clean_running_descriptor(chan, desc_sw);
771	}
772}
773
774static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
775{
776	struct xgene_dma_chan *chan = to_dma_chan(dchan);
777
778	/* Has this channel already been allocated? */
779	if (chan->desc_pool)
780		return 1;
781
782	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
783					  sizeof(struct xgene_dma_desc_sw),
784					  0, 0);
785	if (!chan->desc_pool) {
786		chan_err(chan, "Failed to allocate descriptor pool\n");
787		return -ENOMEM;
788	}
789
790	chan_dbg(chan, "Allocate descriptor pool\n");
791
792	return 1;
793}
794
795/**
796 * xgene_dma_free_desc_list - Free all descriptors in a queue
797 * @chan: X-Gene DMA channel
798 * @list: the list to free
799 *
800 * LOCKING: must hold chan->lock
801 */
802static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
803				     struct list_head *list)
804{
805	struct xgene_dma_desc_sw *desc, *_desc;
806
807	list_for_each_entry_safe(desc, _desc, list, node)
808		xgene_dma_clean_descriptor(chan, desc);
809}
810
811static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
812{
813	struct xgene_dma_chan *chan = to_dma_chan(dchan);
814
815	chan_dbg(chan, "Free all resources\n");
816
817	if (!chan->desc_pool)
818		return;
819
820	/* Process all running descriptor */
821	xgene_dma_cleanup_descriptors(chan);
822
823	spin_lock_bh(&chan->lock);
824
825	/* Clean all link descriptor queues */
826	xgene_dma_free_desc_list(chan, &chan->ld_pending);
827	xgene_dma_free_desc_list(chan, &chan->ld_running);
828	xgene_dma_free_desc_list(chan, &chan->ld_completed);
829
830	spin_unlock_bh(&chan->lock);
831
832	/* Delete this channel DMA pool */
833	dma_pool_destroy(chan->desc_pool);
834	chan->desc_pool = NULL;
835}
836
837static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
838	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
839	u32 src_cnt, size_t len, unsigned long flags)
840{
841	struct xgene_dma_desc_sw *first = NULL, *new;
842	struct xgene_dma_chan *chan;
843	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
844				0x01, 0x01, 0x01, 0x01, 0x01};
845
846	if (unlikely(!dchan || !len))
847		return NULL;
848
849	chan = to_dma_chan(dchan);
850
851	do {
852		/* Allocate the link descriptor from DMA pool */
853		new = xgene_dma_alloc_descriptor(chan);
854		if (!new)
855			goto fail;
856
857		/* Prepare xor DMA descriptor */
858		xgene_dma_prep_xor_desc(chan, new, &dst, src,
859					src_cnt, &len, multi);
860
861		if (!first)
862			first = new;
863
864		new->tx.cookie = 0;
865		async_tx_ack(&new->tx);
866
867		/* Insert the link descriptor to the LD ring */
868		list_add_tail(&new->node, &first->tx_list);
869	} while (len);
870
871	new->tx.flags = flags; /* client is in control of this ack */
872	new->tx.cookie = -EBUSY;
873	list_splice(&first->tx_list, &new->tx_list);
874
875	return &new->tx;
876
877fail:
878	if (!first)
879		return NULL;
880
881	xgene_dma_free_desc_list(chan, &first->tx_list);
882	return NULL;
883}
884
885static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
886	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
887	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
888{
889	struct xgene_dma_desc_sw *first = NULL, *new;
890	struct xgene_dma_chan *chan;
891	size_t _len = len;
892	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
893	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
894
895	if (unlikely(!dchan || !len))
896		return NULL;
897
898	chan = to_dma_chan(dchan);
899
900	/*
901	 * Save source addresses on local variable, may be we have to
902	 * prepare two descriptor to generate P and Q if both enabled
903	 * in the flags by client
904	 */
905	memcpy(_src, src, sizeof(*src) * src_cnt);
906
907	if (flags & DMA_PREP_PQ_DISABLE_P)
908		len = 0;
909
910	if (flags & DMA_PREP_PQ_DISABLE_Q)
911		_len = 0;
912
913	do {
914		/* Allocate the link descriptor from DMA pool */
915		new = xgene_dma_alloc_descriptor(chan);
916		if (!new)
917			goto fail;
918
919		if (!first)
920			first = new;
921
922		new->tx.cookie = 0;
923		async_tx_ack(&new->tx);
924
925		/* Insert the link descriptor to the LD ring */
926		list_add_tail(&new->node, &first->tx_list);
927
928		/*
929		 * Prepare DMA descriptor to generate P,
930		 * if DMA_PREP_PQ_DISABLE_P flag is not set
931		 */
932		if (len) {
933			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
934						src_cnt, &len, multi);
935			continue;
936		}
937
938		/*
939		 * Prepare DMA descriptor to generate Q,
940		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
941		 */
942		if (_len) {
943			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
944						src_cnt, &_len, scf);
945		}
946	} while (len || _len);
947
948	new->tx.flags = flags; /* client is in control of this ack */
949	new->tx.cookie = -EBUSY;
950	list_splice(&first->tx_list, &new->tx_list);
951
952	return &new->tx;
953
954fail:
955	if (!first)
956		return NULL;
957
958	xgene_dma_free_desc_list(chan, &first->tx_list);
959	return NULL;
960}
961
962static void xgene_dma_issue_pending(struct dma_chan *dchan)
963{
964	struct xgene_dma_chan *chan = to_dma_chan(dchan);
965
966	spin_lock_bh(&chan->lock);
967	xgene_chan_xfer_ld_pending(chan);
968	spin_unlock_bh(&chan->lock);
969}
970
971static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
972					   dma_cookie_t cookie,
973					   struct dma_tx_state *txstate)
974{
975	return dma_cookie_status(dchan, cookie, txstate);
976}
977
978static void xgene_dma_tasklet_cb(struct tasklet_struct *t)
979{
980	struct xgene_dma_chan *chan = from_tasklet(chan, t, tasklet);
981
982	/* Run all cleanup for descriptors which have been completed */
983	xgene_dma_cleanup_descriptors(chan);
984
985	/* Re-enable DMA channel IRQ */
986	enable_irq(chan->rx_irq);
987}
988
989static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
990{
991	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
992
993	BUG_ON(!chan);
994
995	/*
996	 * Disable DMA channel IRQ until we process completed
997	 * descriptors
998	 */
999	disable_irq_nosync(chan->rx_irq);
1000
1001	/*
1002	 * Schedule the tasklet to handle all cleanup of the current
1003	 * transaction. It will start a new transaction if there is
1004	 * one pending.
1005	 */
1006	tasklet_schedule(&chan->tasklet);
1007
1008	return IRQ_HANDLED;
1009}
1010
1011static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1012{
1013	struct xgene_dma *pdma = (struct xgene_dma *)id;
1014	unsigned long int_mask;
1015	u32 val, i;
1016
1017	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1018
1019	/* Clear DMA interrupts */
1020	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1021
1022	/* Print DMA error info */
1023	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1024	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1025		dev_err(pdma->dev,
1026			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1027
1028	return IRQ_HANDLED;
1029}
1030
1031static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1032{
1033	int i;
1034
1035	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1036
1037	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1038		iowrite32(ring->state[i], ring->pdma->csr_ring +
1039			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1040}
1041
1042static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1043{
1044	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1045	xgene_dma_wr_ring_state(ring);
1046}
1047
1048static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1049{
1050	void *ring_cfg = ring->state;
1051	u64 addr = ring->desc_paddr;
1052	u32 i, val;
1053
1054	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1055
1056	/* Clear DMA ring state */
1057	xgene_dma_clr_ring_state(ring);
1058
1059	/* Set DMA ring type */
1060	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1061
1062	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1063		/* Set recombination buffer and timeout */
1064		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1065		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1066		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1067	}
1068
1069	/* Initialize DMA ring state */
1070	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1071	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1072	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1073	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1074	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1075	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1076
1077	/* Write DMA ring configurations */
1078	xgene_dma_wr_ring_state(ring);
1079
1080	/* Set DMA ring id */
1081	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1082		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1083
1084	/* Set DMA ring buffer */
1085	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1086		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1087
1088	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1089		return;
1090
1091	/* Set empty signature to DMA Rx ring descriptors */
1092	for (i = 0; i < ring->slots; i++) {
1093		struct xgene_dma_desc_hw *desc;
1094
1095		desc = &ring->desc_hw[i];
1096		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1097	}
1098
1099	/* Enable DMA Rx ring interrupt */
1100	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1101	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1102	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1103}
1104
1105static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1106{
1107	u32 ring_id, val;
1108
1109	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1110		/* Disable DMA Rx ring interrupt */
1111		val = ioread32(ring->pdma->csr_ring +
1112			       XGENE_DMA_RING_NE_INT_MODE);
1113		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1114		iowrite32(val, ring->pdma->csr_ring +
1115			  XGENE_DMA_RING_NE_INT_MODE);
1116	}
1117
1118	/* Clear DMA ring state */
1119	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1120	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1121
1122	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1123	xgene_dma_clr_ring_state(ring);
1124}
1125
1126static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1127{
1128	ring->cmd_base = ring->pdma->csr_ring_cmd +
1129				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1130							  XGENE_DMA_RING_NUM));
1131
1132	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1133}
1134
1135static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1136				   enum xgene_dma_ring_cfgsize cfgsize)
1137{
1138	int size;
1139
1140	switch (cfgsize) {
1141	case XGENE_DMA_RING_CFG_SIZE_512B:
1142		size = 0x200;
1143		break;
1144	case XGENE_DMA_RING_CFG_SIZE_2KB:
1145		size = 0x800;
1146		break;
1147	case XGENE_DMA_RING_CFG_SIZE_16KB:
1148		size = 0x4000;
1149		break;
1150	case XGENE_DMA_RING_CFG_SIZE_64KB:
1151		size = 0x10000;
1152		break;
1153	case XGENE_DMA_RING_CFG_SIZE_512KB:
1154		size = 0x80000;
1155		break;
1156	default:
1157		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1158		return -EINVAL;
1159	}
1160
1161	return size;
1162}
1163
1164static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1165{
1166	/* Clear DMA ring configurations */
1167	xgene_dma_clear_ring(ring);
1168
1169	/* De-allocate DMA ring descriptor */
1170	if (ring->desc_vaddr) {
1171		dma_free_coherent(ring->pdma->dev, ring->size,
1172				  ring->desc_vaddr, ring->desc_paddr);
1173		ring->desc_vaddr = NULL;
1174	}
1175}
1176
1177static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1178{
1179	xgene_dma_delete_ring_one(&chan->rx_ring);
1180	xgene_dma_delete_ring_one(&chan->tx_ring);
1181}
1182
1183static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1184				     struct xgene_dma_ring *ring,
1185				     enum xgene_dma_ring_cfgsize cfgsize)
1186{
1187	int ret;
1188
1189	/* Setup DMA ring descriptor variables */
1190	ring->pdma = chan->pdma;
1191	ring->cfgsize = cfgsize;
1192	ring->num = chan->pdma->ring_num++;
1193	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1194
1195	ret = xgene_dma_get_ring_size(chan, cfgsize);
1196	if (ret <= 0)
1197		return ret;
1198	ring->size = ret;
1199
1200	/* Allocate memory for DMA ring descriptor */
1201	ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
1202					      &ring->desc_paddr, GFP_KERNEL);
1203	if (!ring->desc_vaddr) {
1204		chan_err(chan, "Failed to allocate ring desc\n");
1205		return -ENOMEM;
1206	}
1207
1208	/* Configure and enable DMA ring */
1209	xgene_dma_set_ring_cmd(ring);
1210	xgene_dma_setup_ring(ring);
1211
1212	return 0;
1213}
1214
1215static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1216{
1217	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1218	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1219	int ret;
1220
1221	/* Create DMA Rx ring descriptor */
1222	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1223	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1224
1225	ret = xgene_dma_create_ring_one(chan, rx_ring,
1226					XGENE_DMA_RING_CFG_SIZE_64KB);
1227	if (ret)
1228		return ret;
1229
1230	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1231		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1232
1233	/* Create DMA Tx ring descriptor */
1234	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1235	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1236
1237	ret = xgene_dma_create_ring_one(chan, tx_ring,
1238					XGENE_DMA_RING_CFG_SIZE_64KB);
1239	if (ret) {
1240		xgene_dma_delete_ring_one(rx_ring);
1241		return ret;
1242	}
1243
1244	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1245
1246	chan_dbg(chan,
1247		 "Tx ring id 0x%X num %d desc 0x%p\n",
1248		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1249
1250	/* Set the max outstanding request possible to this channel */
1251	chan->max_outstanding = tx_ring->slots;
1252
1253	return ret;
1254}
1255
1256static int xgene_dma_init_rings(struct xgene_dma *pdma)
1257{
1258	int ret, i, j;
1259
1260	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1261		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1262		if (ret) {
1263			for (j = 0; j < i; j++)
1264				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1265			return ret;
1266		}
1267	}
1268
1269	return ret;
1270}
1271
1272static void xgene_dma_enable(struct xgene_dma *pdma)
1273{
1274	u32 val;
1275
1276	/* Configure and enable DMA engine */
1277	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1278	XGENE_DMA_CH_SETUP(val);
1279	XGENE_DMA_ENABLE(val);
1280	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1281}
1282
1283static void xgene_dma_disable(struct xgene_dma *pdma)
1284{
1285	u32 val;
1286
1287	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1288	XGENE_DMA_DISABLE(val);
1289	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1290}
1291
1292static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1293{
1294	/*
1295	 * Mask DMA ring overflow, underflow and
1296	 * AXI write/read error interrupts
1297	 */
1298	iowrite32(XGENE_DMA_INT_ALL_MASK,
1299		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1300	iowrite32(XGENE_DMA_INT_ALL_MASK,
1301		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1302	iowrite32(XGENE_DMA_INT_ALL_MASK,
1303		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1304	iowrite32(XGENE_DMA_INT_ALL_MASK,
1305		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1306	iowrite32(XGENE_DMA_INT_ALL_MASK,
1307		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1308
1309	/* Mask DMA error interrupts */
1310	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1311}
1312
1313static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1314{
1315	/*
1316	 * Unmask DMA ring overflow, underflow and
1317	 * AXI write/read error interrupts
1318	 */
1319	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1320		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1321	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1322		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1323	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1324		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1325	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1326		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1327	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1328		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1329
1330	/* Unmask DMA error interrupts */
1331	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1332		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1333}
1334
1335static void xgene_dma_init_hw(struct xgene_dma *pdma)
1336{
1337	u32 val;
1338
1339	/* Associate DMA ring to corresponding ring HW */
1340	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1341		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1342
1343	/* Configure RAID6 polynomial control setting */
1344	if (is_pq_enabled(pdma))
1345		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1346			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1347	else
1348		dev_info(pdma->dev, "PQ is disabled in HW\n");
1349
1350	xgene_dma_enable(pdma);
1351	xgene_dma_unmask_interrupts(pdma);
1352
1353	/* Get DMA id and version info */
1354	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1355
1356	/* DMA device info */
1357	dev_info(pdma->dev,
1358		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1359		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1360		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1361}
1362
1363static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1364{
1365	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1366	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1367		return 0;
1368
1369	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1370	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1371
1372	/* Bring up memory */
1373	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1374
1375	/* Force a barrier */
1376	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1377
1378	/* reset may take up to 1ms */
1379	usleep_range(1000, 1100);
1380
1381	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1382		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1383		dev_err(pdma->dev,
1384			"Failed to release ring mngr memory from shutdown\n");
1385		return -ENODEV;
1386	}
1387
1388	/* program threshold set 1 and all hysteresis */
1389	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1390		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1391	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1392		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1393	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1394		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1395
1396	/* Enable QPcore and assign error queue */
1397	iowrite32(XGENE_DMA_RING_ENABLE,
1398		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1399
1400	return 0;
1401}
1402
1403static int xgene_dma_init_mem(struct xgene_dma *pdma)
1404{
1405	int ret;
1406
1407	ret = xgene_dma_init_ring_mngr(pdma);
1408	if (ret)
1409		return ret;
1410
1411	/* Bring up memory */
1412	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1413
1414	/* Force a barrier */
1415	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1416
1417	/* reset may take up to 1ms */
1418	usleep_range(1000, 1100);
1419
1420	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1421		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1422		dev_err(pdma->dev,
1423			"Failed to release DMA memory from shutdown\n");
1424		return -ENODEV;
1425	}
1426
1427	return 0;
1428}
1429
1430static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1431{
1432	struct xgene_dma_chan *chan;
1433	int ret, i, j;
1434
1435	/* Register DMA error irq */
1436	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1437			       0, "dma_error", pdma);
1438	if (ret) {
1439		dev_err(pdma->dev,
1440			"Failed to register error IRQ %d\n", pdma->err_irq);
1441		return ret;
1442	}
1443
1444	/* Register DMA channel rx irq */
1445	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1446		chan = &pdma->chan[i];
1447		irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1448		ret = devm_request_irq(chan->dev, chan->rx_irq,
1449				       xgene_dma_chan_ring_isr,
1450				       0, chan->name, chan);
1451		if (ret) {
1452			chan_err(chan, "Failed to register Rx IRQ %d\n",
1453				 chan->rx_irq);
1454			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1455
1456			for (j = 0; j < i; j++) {
1457				chan = &pdma->chan[i];
1458				irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1459				devm_free_irq(chan->dev, chan->rx_irq, chan);
1460			}
1461
1462			return ret;
1463		}
1464	}
1465
1466	return 0;
1467}
1468
1469static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1470{
1471	struct xgene_dma_chan *chan;
1472	int i;
1473
1474	/* Free DMA device error irq */
1475	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1476
1477	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1478		chan = &pdma->chan[i];
1479		irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1480		devm_free_irq(chan->dev, chan->rx_irq, chan);
1481	}
1482}
1483
1484static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1485			       struct dma_device *dma_dev)
1486{
1487	/* Initialize DMA device capability mask */
1488	dma_cap_zero(dma_dev->cap_mask);
1489
1490	/* Set DMA device capability */
1491
1492	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1493	 * and channel 1 supports XOR, PQ both. First thing here is we have
1494	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1495	 * we can make sure this by reading SoC Efuse register.
1496	 * Second thing, we have hw errata that if we run channel 0 and
1497	 * channel 1 simultaneously with executing XOR and PQ request,
1498	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1499	 * if XOR and PQ supports on channel 1 is disabled.
1500	 */
1501	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1502	    is_pq_enabled(chan->pdma)) {
1503		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1504		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1505	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1506		   !is_pq_enabled(chan->pdma)) {
1507		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1508	}
1509
1510	/* Set base and prep routines */
1511	dma_dev->dev = chan->dev;
1512	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1513	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1514	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1515	dma_dev->device_tx_status = xgene_dma_tx_status;
1516
1517	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1518		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1519		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1520		dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1521	}
1522
1523	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1524		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1525		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1526		dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1527	}
1528}
1529
1530static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1531{
1532	struct xgene_dma_chan *chan = &pdma->chan[id];
1533	struct dma_device *dma_dev = &pdma->dma_dev[id];
1534	int ret;
1535
1536	chan->dma_chan.device = dma_dev;
1537
1538	spin_lock_init(&chan->lock);
1539	INIT_LIST_HEAD(&chan->ld_pending);
1540	INIT_LIST_HEAD(&chan->ld_running);
1541	INIT_LIST_HEAD(&chan->ld_completed);
1542	tasklet_setup(&chan->tasklet, xgene_dma_tasklet_cb);
1543
1544	chan->pending = 0;
1545	chan->desc_pool = NULL;
1546	dma_cookie_init(&chan->dma_chan);
1547
1548	/* Setup dma device capabilities and prep routines */
1549	xgene_dma_set_caps(chan, dma_dev);
1550
1551	/* Initialize DMA device list head */
1552	INIT_LIST_HEAD(&dma_dev->channels);
1553	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1554
1555	/* Register with Linux async DMA framework*/
1556	ret = dma_async_device_register(dma_dev);
1557	if (ret) {
1558		chan_err(chan, "Failed to register async device %d", ret);
1559		tasklet_kill(&chan->tasklet);
1560
1561		return ret;
1562	}
1563
1564	/* DMA capability info */
1565	dev_info(pdma->dev,
1566		 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1567		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1568		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1569
1570	return 0;
1571}
1572
1573static int xgene_dma_init_async(struct xgene_dma *pdma)
1574{
1575	int ret, i, j;
1576
1577	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1578		ret = xgene_dma_async_register(pdma, i);
1579		if (ret) {
1580			for (j = 0; j < i; j++) {
1581				dma_async_device_unregister(&pdma->dma_dev[j]);
1582				tasklet_kill(&pdma->chan[j].tasklet);
1583			}
1584
1585			return ret;
1586		}
1587	}
1588
1589	return ret;
1590}
1591
1592static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1593{
1594	int i;
1595
1596	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1597		dma_async_device_unregister(&pdma->dma_dev[i]);
1598}
1599
1600static void xgene_dma_init_channels(struct xgene_dma *pdma)
1601{
1602	struct xgene_dma_chan *chan;
1603	int i;
1604
1605	pdma->ring_num = XGENE_DMA_RING_NUM;
1606
1607	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1608		chan = &pdma->chan[i];
1609		chan->dev = pdma->dev;
1610		chan->pdma = pdma;
1611		chan->id = i;
1612		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1613	}
1614}
1615
1616static int xgene_dma_get_resources(struct platform_device *pdev,
1617				   struct xgene_dma *pdma)
1618{
1619	struct resource *res;
1620	int irq, i;
1621
1622	/* Get DMA csr region */
1623	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1624	if (!res) {
1625		dev_err(&pdev->dev, "Failed to get csr region\n");
1626		return -ENXIO;
1627	}
1628
1629	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1630				     resource_size(res));
1631	if (!pdma->csr_dma) {
1632		dev_err(&pdev->dev, "Failed to ioremap csr region");
1633		return -ENOMEM;
1634	}
1635
1636	/* Get DMA ring csr region */
1637	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1638	if (!res) {
1639		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1640		return -ENXIO;
1641	}
1642
1643	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1644				       resource_size(res));
1645	if (!pdma->csr_ring) {
1646		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1647		return -ENOMEM;
1648	}
1649
1650	/* Get DMA ring cmd csr region */
1651	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1652	if (!res) {
1653		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1654		return -ENXIO;
1655	}
1656
1657	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1658					  resource_size(res));
1659	if (!pdma->csr_ring_cmd) {
1660		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1661		return -ENOMEM;
1662	}
1663
1664	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1665
1666	/* Get efuse csr region */
1667	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1668	if (!res) {
1669		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1670		return -ENXIO;
1671	}
1672
1673	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1674				       resource_size(res));
1675	if (!pdma->csr_efuse) {
1676		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1677		return -ENOMEM;
1678	}
1679
1680	/* Get DMA error interrupt */
1681	irq = platform_get_irq(pdev, 0);
1682	if (irq <= 0)
1683		return -ENXIO;
1684
1685	pdma->err_irq = irq;
1686
1687	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1688	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1689		irq = platform_get_irq(pdev, i);
1690		if (irq <= 0)
1691			return -ENXIO;
1692
1693		pdma->chan[i - 1].rx_irq = irq;
1694	}
1695
1696	return 0;
1697}
1698
1699static int xgene_dma_probe(struct platform_device *pdev)
1700{
1701	struct xgene_dma *pdma;
1702	int ret, i;
1703
1704	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1705	if (!pdma)
1706		return -ENOMEM;
1707
1708	pdma->dev = &pdev->dev;
1709	platform_set_drvdata(pdev, pdma);
1710
1711	ret = xgene_dma_get_resources(pdev, pdma);
1712	if (ret)
1713		return ret;
1714
1715	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1716	if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1717		dev_err(&pdev->dev, "Failed to get clk\n");
1718		return PTR_ERR(pdma->clk);
1719	}
1720
1721	/* Enable clk before accessing registers */
1722	if (!IS_ERR(pdma->clk)) {
1723		ret = clk_prepare_enable(pdma->clk);
1724		if (ret) {
1725			dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1726			return ret;
1727		}
1728	}
1729
1730	/* Remove DMA RAM out of shutdown */
1731	ret = xgene_dma_init_mem(pdma);
1732	if (ret)
1733		goto err_clk_enable;
1734
1735	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1736	if (ret) {
1737		dev_err(&pdev->dev, "No usable DMA configuration\n");
1738		goto err_dma_mask;
1739	}
1740
1741	/* Initialize DMA channels software state */
1742	xgene_dma_init_channels(pdma);
1743
1744	/* Configue DMA rings */
1745	ret = xgene_dma_init_rings(pdma);
1746	if (ret)
1747		goto err_clk_enable;
1748
1749	ret = xgene_dma_request_irqs(pdma);
1750	if (ret)
1751		goto err_request_irq;
1752
1753	/* Configure and enable DMA engine */
1754	xgene_dma_init_hw(pdma);
1755
1756	/* Register DMA device with linux async framework */
1757	ret = xgene_dma_init_async(pdma);
1758	if (ret)
1759		goto err_async_init;
1760
1761	return 0;
1762
1763err_async_init:
1764	xgene_dma_free_irqs(pdma);
1765
1766err_request_irq:
1767	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1768		xgene_dma_delete_chan_rings(&pdma->chan[i]);
1769
1770err_dma_mask:
1771err_clk_enable:
1772	if (!IS_ERR(pdma->clk))
1773		clk_disable_unprepare(pdma->clk);
1774
1775	return ret;
1776}
1777
1778static int xgene_dma_remove(struct platform_device *pdev)
1779{
1780	struct xgene_dma *pdma = platform_get_drvdata(pdev);
1781	struct xgene_dma_chan *chan;
1782	int i;
1783
1784	xgene_dma_async_unregister(pdma);
1785
1786	/* Mask interrupts and disable DMA engine */
1787	xgene_dma_mask_interrupts(pdma);
1788	xgene_dma_disable(pdma);
1789	xgene_dma_free_irqs(pdma);
1790
1791	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1792		chan = &pdma->chan[i];
1793		tasklet_kill(&chan->tasklet);
1794		xgene_dma_delete_chan_rings(chan);
1795	}
1796
1797	if (!IS_ERR(pdma->clk))
1798		clk_disable_unprepare(pdma->clk);
1799
1800	return 0;
1801}
1802
1803#ifdef CONFIG_ACPI
1804static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1805	{"APMC0D43", 0},
1806	{},
1807};
1808MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1809#endif
1810
1811static const struct of_device_id xgene_dma_of_match_ptr[] = {
1812	{.compatible = "apm,xgene-storm-dma",},
1813	{},
1814};
1815MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1816
1817static struct platform_driver xgene_dma_driver = {
1818	.probe = xgene_dma_probe,
1819	.remove = xgene_dma_remove,
1820	.driver = {
1821		.name = "X-Gene-DMA",
1822		.of_match_table = xgene_dma_of_match_ptr,
1823		.acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1824	},
1825};
1826
1827module_platform_driver(xgene_dma_driver);
1828
1829MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1830MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1831MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1832MODULE_LICENSE("GPL");
1833MODULE_VERSION("1.0");
1834