xref: /kernel/linux/linux-5.10/drivers/dma/ti/edma.c (revision 8c2ecf20)
1/*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/dmaengine.h>
17#include <linux/dma-mapping.h>
18#include <linux/bitmap.h>
19#include <linux/err.h>
20#include <linux/init.h>
21#include <linux/interrupt.h>
22#include <linux/list.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27#include <linux/of.h>
28#include <linux/of_dma.h>
29#include <linux/of_irq.h>
30#include <linux/of_address.h>
31#include <linux/of_device.h>
32#include <linux/pm_runtime.h>
33
34#include <linux/platform_data/edma.h>
35
36#include "../dmaengine.h"
37#include "../virt-dma.h"
38
39/* Offsets matching "struct edmacc_param" */
40#define PARM_OPT		0x00
41#define PARM_SRC		0x04
42#define PARM_A_B_CNT		0x08
43#define PARM_DST		0x0c
44#define PARM_SRC_DST_BIDX	0x10
45#define PARM_LINK_BCNTRLD	0x14
46#define PARM_SRC_DST_CIDX	0x18
47#define PARM_CCNT		0x1c
48
49#define PARM_SIZE		0x20
50
51/* Offsets for EDMA CC global channel registers and their shadows */
52#define SH_ER			0x00	/* 64 bits */
53#define SH_ECR			0x08	/* 64 bits */
54#define SH_ESR			0x10	/* 64 bits */
55#define SH_CER			0x18	/* 64 bits */
56#define SH_EER			0x20	/* 64 bits */
57#define SH_EECR			0x28	/* 64 bits */
58#define SH_EESR			0x30	/* 64 bits */
59#define SH_SER			0x38	/* 64 bits */
60#define SH_SECR			0x40	/* 64 bits */
61#define SH_IER			0x50	/* 64 bits */
62#define SH_IECR			0x58	/* 64 bits */
63#define SH_IESR			0x60	/* 64 bits */
64#define SH_IPR			0x68	/* 64 bits */
65#define SH_ICR			0x70	/* 64 bits */
66#define SH_IEVAL		0x78
67#define SH_QER			0x80
68#define SH_QEER			0x84
69#define SH_QEECR		0x88
70#define SH_QEESR		0x8c
71#define SH_QSER			0x90
72#define SH_QSECR		0x94
73#define SH_SIZE			0x200
74
75/* Offsets for EDMA CC global registers */
76#define EDMA_REV		0x0000
77#define EDMA_CCCFG		0x0004
78#define EDMA_QCHMAP		0x0200	/* 8 registers */
79#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80#define EDMA_QDMAQNUM		0x0260
81#define EDMA_QUETCMAP		0x0280
82#define EDMA_QUEPRI		0x0284
83#define EDMA_EMR		0x0300	/* 64 bits */
84#define EDMA_EMCR		0x0308	/* 64 bits */
85#define EDMA_QEMR		0x0310
86#define EDMA_QEMCR		0x0314
87#define EDMA_CCERR		0x0318
88#define EDMA_CCERRCLR		0x031c
89#define EDMA_EEVAL		0x0320
90#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91#define EDMA_QRAE		0x0380	/* 4 registers */
92#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93#define EDMA_QSTAT		0x0600	/* 2 registers */
94#define EDMA_QWMTHRA		0x0620
95#define EDMA_QWMTHRB		0x0624
96#define EDMA_CCSTAT		0x0640
97
98#define EDMA_M			0x1000	/* global channel registers */
99#define EDMA_ECR		0x1008
100#define EDMA_ECRH		0x100C
101#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102#define EDMA_PARM		0x4000	/* PaRAM entries */
103
104#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105
106#define EDMA_DCHMAP		0x0100  /* 64 registers */
107
108/* CCCFG register */
109#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114#define CHMAP_EXIST		BIT(24)
115
116/* CCSTAT register */
117#define EDMA_CCSTAT_ACTV	BIT(4)
118
119/*
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
125 */
126#define MAX_NR_SG		20
127#define EDMA_MAX_SLOTS		MAX_NR_SG
128#define EDMA_DESCRIPTORS	16
129
130#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
131#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
132#define EDMA_CONT_PARAMS_ANY		 1001
133#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135
136/*
137 * 64bit array registers are split into two 32bit registers:
138 * reg0: channel/event 0-31
139 * reg1: channel/event 32-63
140 *
141 * bit 5 in the channel number tells the array index (0/1)
142 * bit 0-4 (0x1f) is the bit offset within the register
143 */
144#define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
145#define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
146
147/* PaRAM slots are laid out like this */
148struct edmacc_param {
149	u32 opt;
150	u32 src;
151	u32 a_b_cnt;
152	u32 dst;
153	u32 src_dst_bidx;
154	u32 link_bcntrld;
155	u32 src_dst_cidx;
156	u32 ccnt;
157} __packed;
158
159/* fields in edmacc_param.opt */
160#define SAM		BIT(0)
161#define DAM		BIT(1)
162#define SYNCDIM		BIT(2)
163#define STATIC		BIT(3)
164#define EDMA_FWID	(0x07 << 8)
165#define TCCMODE		BIT(11)
166#define EDMA_TCC(t)	((t) << 12)
167#define TCINTEN		BIT(20)
168#define ITCINTEN	BIT(21)
169#define TCCHEN		BIT(22)
170#define ITCCHEN		BIT(23)
171
172struct edma_pset {
173	u32				len;
174	dma_addr_t			addr;
175	struct edmacc_param		param;
176};
177
178struct edma_desc {
179	struct virt_dma_desc		vdesc;
180	struct list_head		node;
181	enum dma_transfer_direction	direction;
182	int				cyclic;
183	bool				polled;
184	int				absync;
185	int				pset_nr;
186	struct edma_chan		*echan;
187	int				processed;
188
189	/*
190	 * The following 4 elements are used for residue accounting.
191	 *
192	 * - processed_stat: the number of SG elements we have traversed
193	 * so far to cover accounting. This is updated directly to processed
194	 * during edma_callback and is always <= processed, because processed
195	 * refers to the number of pending transfer (programmed to EDMA
196	 * controller), where as processed_stat tracks number of transfers
197	 * accounted for so far.
198	 *
199	 * - residue: The amount of bytes we have left to transfer for this desc
200	 *
201	 * - residue_stat: The residue in bytes of data we have covered
202	 * so far for accounting. This is updated directly to residue
203	 * during callbacks to keep it current.
204	 *
205	 * - sg_len: Tracks the length of the current intermediate transfer,
206	 * this is required to update the residue during intermediate transfer
207	 * completion callback.
208	 */
209	int				processed_stat;
210	u32				sg_len;
211	u32				residue;
212	u32				residue_stat;
213
214	struct edma_pset		pset[];
215};
216
217struct edma_cc;
218
219struct edma_tc {
220	struct device_node		*node;
221	u16				id;
222};
223
224struct edma_chan {
225	struct virt_dma_chan		vchan;
226	struct list_head		node;
227	struct edma_desc		*edesc;
228	struct edma_cc			*ecc;
229	struct edma_tc			*tc;
230	int				ch_num;
231	bool				alloced;
232	bool				hw_triggered;
233	int				slot[EDMA_MAX_SLOTS];
234	int				missed;
235	struct dma_slave_config		cfg;
236};
237
238struct edma_cc {
239	struct device			*dev;
240	struct edma_soc_info		*info;
241	void __iomem			*base;
242	int				id;
243	bool				legacy_mode;
244
245	/* eDMA3 resource information */
246	unsigned			num_channels;
247	unsigned			num_qchannels;
248	unsigned			num_region;
249	unsigned			num_slots;
250	unsigned			num_tc;
251	bool				chmap_exist;
252	enum dma_event_q		default_queue;
253
254	unsigned int			ccint;
255	unsigned int			ccerrint;
256
257	/*
258	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
259	 * in use by Linux or if it is allocated to be used by DSP.
260	 */
261	unsigned long *slot_inuse;
262
263	/*
264	 * For tracking reserved channels used by DSP.
265	 * If the bit is cleared, the channel is allocated to be used by DSP
266	 * and Linux must not touch it.
267	 */
268	unsigned long *channels_mask;
269
270	struct dma_device		dma_slave;
271	struct dma_device		*dma_memcpy;
272	struct edma_chan		*slave_chans;
273	struct edma_tc			*tc_list;
274	int				dummy_slot;
275};
276
277/* dummy param set used to (re)initialize parameter RAM slots */
278static const struct edmacc_param dummy_paramset = {
279	.link_bcntrld = 0xffff,
280	.ccnt = 1,
281};
282
283#define EDMA_BINDING_LEGACY	0
284#define EDMA_BINDING_TPCC	1
285static const u32 edma_binding_type[] = {
286	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
287	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
288};
289
290static const struct of_device_id edma_of_ids[] = {
291	{
292		.compatible = "ti,edma3",
293		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
294	},
295	{
296		.compatible = "ti,edma3-tpcc",
297		.data = &edma_binding_type[EDMA_BINDING_TPCC],
298	},
299	{}
300};
301MODULE_DEVICE_TABLE(of, edma_of_ids);
302
303static const struct of_device_id edma_tptc_of_ids[] = {
304	{ .compatible = "ti,edma3-tptc", },
305	{}
306};
307MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
308
309static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
310{
311	return (unsigned int)__raw_readl(ecc->base + offset);
312}
313
314static inline void edma_write(struct edma_cc *ecc, int offset, int val)
315{
316	__raw_writel(val, ecc->base + offset);
317}
318
319static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
320			       unsigned or)
321{
322	unsigned val = edma_read(ecc, offset);
323
324	val &= and;
325	val |= or;
326	edma_write(ecc, offset, val);
327}
328
329static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
330{
331	unsigned val = edma_read(ecc, offset);
332
333	val &= and;
334	edma_write(ecc, offset, val);
335}
336
337static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
338{
339	unsigned val = edma_read(ecc, offset);
340
341	val |= or;
342	edma_write(ecc, offset, val);
343}
344
345static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
346					   int i)
347{
348	return edma_read(ecc, offset + (i << 2));
349}
350
351static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
352				    unsigned val)
353{
354	edma_write(ecc, offset + (i << 2), val);
355}
356
357static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
358				     unsigned and, unsigned or)
359{
360	edma_modify(ecc, offset + (i << 2), and, or);
361}
362
363static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
364				 unsigned or)
365{
366	edma_or(ecc, offset + (i << 2), or);
367}
368
369static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
370				  unsigned or)
371{
372	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
373}
374
375static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
376				     int j, unsigned val)
377{
378	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
379}
380
381static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
382{
383	return edma_read(ecc, EDMA_SHADOW0 + offset);
384}
385
386static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
387						   int offset, int i)
388{
389	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
390}
391
392static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
393				      unsigned val)
394{
395	edma_write(ecc, EDMA_SHADOW0 + offset, val);
396}
397
398static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
399					    int i, unsigned val)
400{
401	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
402}
403
404static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
405					   int param_no)
406{
407	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
408}
409
410static inline void edma_param_write(struct edma_cc *ecc, int offset,
411				    int param_no, unsigned val)
412{
413	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
414}
415
416static inline void edma_param_modify(struct edma_cc *ecc, int offset,
417				     int param_no, unsigned and, unsigned or)
418{
419	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
420}
421
422static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
423				  unsigned and)
424{
425	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
426}
427
428static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
429				 unsigned or)
430{
431	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
432}
433
434static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
435					  int priority)
436{
437	int bit = queue_no * 4;
438
439	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
440}
441
442static void edma_set_chmap(struct edma_chan *echan, int slot)
443{
444	struct edma_cc *ecc = echan->ecc;
445	int channel = EDMA_CHAN_SLOT(echan->ch_num);
446
447	if (ecc->chmap_exist) {
448		slot = EDMA_CHAN_SLOT(slot);
449		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
450	}
451}
452
453static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
454{
455	struct edma_cc *ecc = echan->ecc;
456	int channel = EDMA_CHAN_SLOT(echan->ch_num);
457	int idx = EDMA_REG_ARRAY_INDEX(channel);
458	int ch_bit = EDMA_CHANNEL_BIT(channel);
459
460	if (enable) {
461		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
462		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
463	} else {
464		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
465	}
466}
467
468/*
469 * paRAM slot management functions
470 */
471static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
472			    const struct edmacc_param *param)
473{
474	slot = EDMA_CHAN_SLOT(slot);
475	if (slot >= ecc->num_slots)
476		return;
477	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
478}
479
480static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
481			   struct edmacc_param *param)
482{
483	slot = EDMA_CHAN_SLOT(slot);
484	if (slot >= ecc->num_slots)
485		return -EINVAL;
486	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
487
488	return 0;
489}
490
491/**
492 * edma_alloc_slot - allocate DMA parameter RAM
493 * @ecc: pointer to edma_cc struct
494 * @slot: specific slot to allocate; negative for "any unused slot"
495 *
496 * This allocates a parameter RAM slot, initializing it to hold a
497 * dummy transfer.  Slots allocated using this routine have not been
498 * mapped to a hardware DMA channel, and will normally be used by
499 * linking to them from a slot associated with a DMA channel.
500 *
501 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
502 * slots may be allocated on behalf of DSP firmware.
503 *
504 * Returns the number of the slot, else negative errno.
505 */
506static int edma_alloc_slot(struct edma_cc *ecc, int slot)
507{
508	if (slot >= 0) {
509		slot = EDMA_CHAN_SLOT(slot);
510		/* Requesting entry paRAM slot for a HW triggered channel. */
511		if (ecc->chmap_exist && slot < ecc->num_channels)
512			slot = EDMA_SLOT_ANY;
513	}
514
515	if (slot < 0) {
516		if (ecc->chmap_exist)
517			slot = 0;
518		else
519			slot = ecc->num_channels;
520		for (;;) {
521			slot = find_next_zero_bit(ecc->slot_inuse,
522						  ecc->num_slots,
523						  slot);
524			if (slot == ecc->num_slots)
525				return -ENOMEM;
526			if (!test_and_set_bit(slot, ecc->slot_inuse))
527				break;
528		}
529	} else if (slot >= ecc->num_slots) {
530		return -EINVAL;
531	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
532		return -EBUSY;
533	}
534
535	edma_write_slot(ecc, slot, &dummy_paramset);
536
537	return EDMA_CTLR_CHAN(ecc->id, slot);
538}
539
540static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
541{
542	slot = EDMA_CHAN_SLOT(slot);
543	if (slot >= ecc->num_slots)
544		return;
545
546	edma_write_slot(ecc, slot, &dummy_paramset);
547	clear_bit(slot, ecc->slot_inuse);
548}
549
550/**
551 * edma_link - link one parameter RAM slot to another
552 * @ecc: pointer to edma_cc struct
553 * @from: parameter RAM slot originating the link
554 * @to: parameter RAM slot which is the link target
555 *
556 * The originating slot should not be part of any active DMA transfer.
557 */
558static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
559{
560	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
561		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
562
563	from = EDMA_CHAN_SLOT(from);
564	to = EDMA_CHAN_SLOT(to);
565	if (from >= ecc->num_slots || to >= ecc->num_slots)
566		return;
567
568	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
569			  PARM_OFFSET(to));
570}
571
572/**
573 * edma_get_position - returns the current transfer point
574 * @ecc: pointer to edma_cc struct
575 * @slot: parameter RAM slot being examined
576 * @dst:  true selects the dest position, false the source
577 *
578 * Returns the position of the current active slot
579 */
580static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
581				    bool dst)
582{
583	u32 offs;
584
585	slot = EDMA_CHAN_SLOT(slot);
586	offs = PARM_OFFSET(slot);
587	offs += dst ? PARM_DST : PARM_SRC;
588
589	return edma_read(ecc, offs);
590}
591
592/*
593 * Channels with event associations will be triggered by their hardware
594 * events, and channels without such associations will be triggered by
595 * software.  (At this writing there is no interface for using software
596 * triggers except with channels that don't support hardware triggers.)
597 */
598static void edma_start(struct edma_chan *echan)
599{
600	struct edma_cc *ecc = echan->ecc;
601	int channel = EDMA_CHAN_SLOT(echan->ch_num);
602	int idx = EDMA_REG_ARRAY_INDEX(channel);
603	int ch_bit = EDMA_CHANNEL_BIT(channel);
604
605	if (!echan->hw_triggered) {
606		/* EDMA channels without event association */
607		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
608			edma_shadow0_read_array(ecc, SH_ESR, idx));
609		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
610	} else {
611		/* EDMA channel with event association */
612		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
613			edma_shadow0_read_array(ecc, SH_ER, idx));
614		/* Clear any pending event or error */
615		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
616		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
617		/* Clear any SER */
618		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
619		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
620		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
621			edma_shadow0_read_array(ecc, SH_EER, idx));
622	}
623}
624
625static void edma_stop(struct edma_chan *echan)
626{
627	struct edma_cc *ecc = echan->ecc;
628	int channel = EDMA_CHAN_SLOT(echan->ch_num);
629	int idx = EDMA_REG_ARRAY_INDEX(channel);
630	int ch_bit = EDMA_CHANNEL_BIT(channel);
631
632	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
633	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
634	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
635	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
636
637	/* clear possibly pending completion interrupt */
638	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
639
640	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
641		edma_shadow0_read_array(ecc, SH_EER, idx));
642
643	/* REVISIT:  consider guarding against inappropriate event
644	 * chaining by overwriting with dummy_paramset.
645	 */
646}
647
648/*
649 * Temporarily disable EDMA hardware events on the specified channel,
650 * preventing them from triggering new transfers
651 */
652static void edma_pause(struct edma_chan *echan)
653{
654	int channel = EDMA_CHAN_SLOT(echan->ch_num);
655
656	edma_shadow0_write_array(echan->ecc, SH_EECR,
657				 EDMA_REG_ARRAY_INDEX(channel),
658				 EDMA_CHANNEL_BIT(channel));
659}
660
661/* Re-enable EDMA hardware events on the specified channel.  */
662static void edma_resume(struct edma_chan *echan)
663{
664	int channel = EDMA_CHAN_SLOT(echan->ch_num);
665
666	edma_shadow0_write_array(echan->ecc, SH_EESR,
667				 EDMA_REG_ARRAY_INDEX(channel),
668				 EDMA_CHANNEL_BIT(channel));
669}
670
671static void edma_trigger_channel(struct edma_chan *echan)
672{
673	struct edma_cc *ecc = echan->ecc;
674	int channel = EDMA_CHAN_SLOT(echan->ch_num);
675	int idx = EDMA_REG_ARRAY_INDEX(channel);
676	int ch_bit = EDMA_CHANNEL_BIT(channel);
677
678	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
679
680	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
681		edma_shadow0_read_array(ecc, SH_ESR, idx));
682}
683
684static void edma_clean_channel(struct edma_chan *echan)
685{
686	struct edma_cc *ecc = echan->ecc;
687	int channel = EDMA_CHAN_SLOT(echan->ch_num);
688	int idx = EDMA_REG_ARRAY_INDEX(channel);
689	int ch_bit = EDMA_CHANNEL_BIT(channel);
690
691	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
692		edma_read_array(ecc, EDMA_EMR, idx));
693	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
694	/* Clear the corresponding EMR bits */
695	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
696	/* Clear any SER */
697	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
698	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
699}
700
701/* Move channel to a specific event queue */
702static void edma_assign_channel_eventq(struct edma_chan *echan,
703				       enum dma_event_q eventq_no)
704{
705	struct edma_cc *ecc = echan->ecc;
706	int channel = EDMA_CHAN_SLOT(echan->ch_num);
707	int bit = (channel & 0x7) * 4;
708
709	/* default to low priority queue */
710	if (eventq_no == EVENTQ_DEFAULT)
711		eventq_no = ecc->default_queue;
712	if (eventq_no >= ecc->num_tc)
713		return;
714
715	eventq_no &= 7;
716	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
717			  eventq_no << bit);
718}
719
720static int edma_alloc_channel(struct edma_chan *echan,
721			      enum dma_event_q eventq_no)
722{
723	struct edma_cc *ecc = echan->ecc;
724	int channel = EDMA_CHAN_SLOT(echan->ch_num);
725
726	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
727		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
728			echan->ch_num);
729		return -EINVAL;
730	}
731
732	/* ensure access through shadow region 0 */
733	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
734		       EDMA_CHANNEL_BIT(channel));
735
736	/* ensure no events are pending */
737	edma_stop(echan);
738
739	edma_setup_interrupt(echan, true);
740
741	edma_assign_channel_eventq(echan, eventq_no);
742
743	return 0;
744}
745
746static void edma_free_channel(struct edma_chan *echan)
747{
748	/* ensure no events are pending */
749	edma_stop(echan);
750	/* REVISIT should probably take out of shadow region 0 */
751	edma_setup_interrupt(echan, false);
752}
753
754static inline struct edma_cc *to_edma_cc(struct dma_device *d)
755{
756	return container_of(d, struct edma_cc, dma_slave);
757}
758
759static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
760{
761	return container_of(c, struct edma_chan, vchan.chan);
762}
763
764static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
765{
766	return container_of(tx, struct edma_desc, vdesc.tx);
767}
768
769static void edma_desc_free(struct virt_dma_desc *vdesc)
770{
771	kfree(container_of(vdesc, struct edma_desc, vdesc));
772}
773
774/* Dispatch a queued descriptor to the controller (caller holds lock) */
775static void edma_execute(struct edma_chan *echan)
776{
777	struct edma_cc *ecc = echan->ecc;
778	struct virt_dma_desc *vdesc;
779	struct edma_desc *edesc;
780	struct device *dev = echan->vchan.chan.device->dev;
781	int i, j, left, nslots;
782
783	if (!echan->edesc) {
784		/* Setup is needed for the first transfer */
785		vdesc = vchan_next_desc(&echan->vchan);
786		if (!vdesc)
787			return;
788		list_del(&vdesc->node);
789		echan->edesc = to_edma_desc(&vdesc->tx);
790	}
791
792	edesc = echan->edesc;
793
794	/* Find out how many left */
795	left = edesc->pset_nr - edesc->processed;
796	nslots = min(MAX_NR_SG, left);
797	edesc->sg_len = 0;
798
799	/* Write descriptor PaRAM set(s) */
800	for (i = 0; i < nslots; i++) {
801		j = i + edesc->processed;
802		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
803		edesc->sg_len += edesc->pset[j].len;
804		dev_vdbg(dev,
805			 "\n pset[%d]:\n"
806			 "  chnum\t%d\n"
807			 "  slot\t%d\n"
808			 "  opt\t%08x\n"
809			 "  src\t%08x\n"
810			 "  dst\t%08x\n"
811			 "  abcnt\t%08x\n"
812			 "  ccnt\t%08x\n"
813			 "  bidx\t%08x\n"
814			 "  cidx\t%08x\n"
815			 "  lkrld\t%08x\n",
816			 j, echan->ch_num, echan->slot[i],
817			 edesc->pset[j].param.opt,
818			 edesc->pset[j].param.src,
819			 edesc->pset[j].param.dst,
820			 edesc->pset[j].param.a_b_cnt,
821			 edesc->pset[j].param.ccnt,
822			 edesc->pset[j].param.src_dst_bidx,
823			 edesc->pset[j].param.src_dst_cidx,
824			 edesc->pset[j].param.link_bcntrld);
825		/* Link to the previous slot if not the last set */
826		if (i != (nslots - 1))
827			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
828	}
829
830	edesc->processed += nslots;
831
832	/*
833	 * If this is either the last set in a set of SG-list transactions
834	 * then setup a link to the dummy slot, this results in all future
835	 * events being absorbed and that's OK because we're done
836	 */
837	if (edesc->processed == edesc->pset_nr) {
838		if (edesc->cyclic)
839			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
840		else
841			edma_link(ecc, echan->slot[nslots - 1],
842				  echan->ecc->dummy_slot);
843	}
844
845	if (echan->missed) {
846		/*
847		 * This happens due to setup times between intermediate
848		 * transfers in long SG lists which have to be broken up into
849		 * transfers of MAX_NR_SG
850		 */
851		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
852		edma_clean_channel(echan);
853		edma_stop(echan);
854		edma_start(echan);
855		edma_trigger_channel(echan);
856		echan->missed = 0;
857	} else if (edesc->processed <= MAX_NR_SG) {
858		dev_dbg(dev, "first transfer starting on channel %d\n",
859			echan->ch_num);
860		edma_start(echan);
861	} else {
862		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
863			echan->ch_num, edesc->processed);
864		edma_resume(echan);
865	}
866}
867
868static int edma_terminate_all(struct dma_chan *chan)
869{
870	struct edma_chan *echan = to_edma_chan(chan);
871	unsigned long flags;
872	LIST_HEAD(head);
873
874	spin_lock_irqsave(&echan->vchan.lock, flags);
875
876	/*
877	 * Stop DMA activity: we assume the callback will not be called
878	 * after edma_dma() returns (even if it does, it will see
879	 * echan->edesc is NULL and exit.)
880	 */
881	if (echan->edesc) {
882		edma_stop(echan);
883		/* Move the cyclic channel back to default queue */
884		if (!echan->tc && echan->edesc->cyclic)
885			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
886
887		vchan_terminate_vdesc(&echan->edesc->vdesc);
888		echan->edesc = NULL;
889	}
890
891	vchan_get_all_descriptors(&echan->vchan, &head);
892	spin_unlock_irqrestore(&echan->vchan.lock, flags);
893	vchan_dma_desc_free_list(&echan->vchan, &head);
894
895	return 0;
896}
897
898static void edma_synchronize(struct dma_chan *chan)
899{
900	struct edma_chan *echan = to_edma_chan(chan);
901
902	vchan_synchronize(&echan->vchan);
903}
904
905static int edma_slave_config(struct dma_chan *chan,
906	struct dma_slave_config *cfg)
907{
908	struct edma_chan *echan = to_edma_chan(chan);
909
910	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
911	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
912		return -EINVAL;
913
914	if (cfg->src_maxburst > chan->device->max_burst ||
915	    cfg->dst_maxburst > chan->device->max_burst)
916		return -EINVAL;
917
918	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
919
920	return 0;
921}
922
923static int edma_dma_pause(struct dma_chan *chan)
924{
925	struct edma_chan *echan = to_edma_chan(chan);
926
927	if (!echan->edesc)
928		return -EINVAL;
929
930	edma_pause(echan);
931	return 0;
932}
933
934static int edma_dma_resume(struct dma_chan *chan)
935{
936	struct edma_chan *echan = to_edma_chan(chan);
937
938	edma_resume(echan);
939	return 0;
940}
941
942/*
943 * A PaRAM set configuration abstraction used by other modes
944 * @chan: Channel who's PaRAM set we're configuring
945 * @pset: PaRAM set to initialize and setup.
946 * @src_addr: Source address of the DMA
947 * @dst_addr: Destination address of the DMA
948 * @burst: In units of dev_width, how much to send
949 * @dev_width: How much is the dev_width
950 * @dma_length: Total length of the DMA transfer
951 * @direction: Direction of the transfer
952 */
953static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
954			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
955			    unsigned int acnt, unsigned int dma_length,
956			    enum dma_transfer_direction direction)
957{
958	struct edma_chan *echan = to_edma_chan(chan);
959	struct device *dev = chan->device->dev;
960	struct edmacc_param *param = &epset->param;
961	int bcnt, ccnt, cidx;
962	int src_bidx, dst_bidx, src_cidx, dst_cidx;
963	int absync;
964
965	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
966	if (!burst)
967		burst = 1;
968	/*
969	 * If the maxburst is equal to the fifo width, use
970	 * A-synced transfers. This allows for large contiguous
971	 * buffer transfers using only one PaRAM set.
972	 */
973	if (burst == 1) {
974		/*
975		 * For the A-sync case, bcnt and ccnt are the remainder
976		 * and quotient respectively of the division of:
977		 * (dma_length / acnt) by (SZ_64K -1). This is so
978		 * that in case bcnt over flows, we have ccnt to use.
979		 * Note: In A-sync tranfer only, bcntrld is used, but it
980		 * only applies for sg_dma_len(sg) >= SZ_64K.
981		 * In this case, the best way adopted is- bccnt for the
982		 * first frame will be the remainder below. Then for
983		 * every successive frame, bcnt will be SZ_64K-1. This
984		 * is assured as bcntrld = 0xffff in end of function.
985		 */
986		absync = false;
987		ccnt = dma_length / acnt / (SZ_64K - 1);
988		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
989		/*
990		 * If bcnt is non-zero, we have a remainder and hence an
991		 * extra frame to transfer, so increment ccnt.
992		 */
993		if (bcnt)
994			ccnt++;
995		else
996			bcnt = SZ_64K - 1;
997		cidx = acnt;
998	} else {
999		/*
1000		 * If maxburst is greater than the fifo address_width,
1001		 * use AB-synced transfers where A count is the fifo
1002		 * address_width and B count is the maxburst. In this
1003		 * case, we are limited to transfers of C count frames
1004		 * of (address_width * maxburst) where C count is limited
1005		 * to SZ_64K-1. This places an upper bound on the length
1006		 * of an SG segment that can be handled.
1007		 */
1008		absync = true;
1009		bcnt = burst;
1010		ccnt = dma_length / (acnt * bcnt);
1011		if (ccnt > (SZ_64K - 1)) {
1012			dev_err(dev, "Exceeded max SG segment size\n");
1013			return -EINVAL;
1014		}
1015		cidx = acnt * bcnt;
1016	}
1017
1018	epset->len = dma_length;
1019
1020	if (direction == DMA_MEM_TO_DEV) {
1021		src_bidx = acnt;
1022		src_cidx = cidx;
1023		dst_bidx = 0;
1024		dst_cidx = 0;
1025		epset->addr = src_addr;
1026	} else if (direction == DMA_DEV_TO_MEM)  {
1027		src_bidx = 0;
1028		src_cidx = 0;
1029		dst_bidx = acnt;
1030		dst_cidx = cidx;
1031		epset->addr = dst_addr;
1032	} else if (direction == DMA_MEM_TO_MEM)  {
1033		src_bidx = acnt;
1034		src_cidx = cidx;
1035		dst_bidx = acnt;
1036		dst_cidx = cidx;
1037		epset->addr = src_addr;
1038	} else {
1039		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1040		return -EINVAL;
1041	}
1042
1043	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1044	/* Configure A or AB synchronized transfers */
1045	if (absync)
1046		param->opt |= SYNCDIM;
1047
1048	param->src = src_addr;
1049	param->dst = dst_addr;
1050
1051	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1052	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1053
1054	param->a_b_cnt = bcnt << 16 | acnt;
1055	param->ccnt = ccnt;
1056	/*
1057	 * Only time when (bcntrld) auto reload is required is for
1058	 * A-sync case, and in this case, a requirement of reload value
1059	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1060	 * and then later will be populated by edma_execute.
1061	 */
1062	param->link_bcntrld = 0xffffffff;
1063	return absync;
1064}
1065
1066static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1067	struct dma_chan *chan, struct scatterlist *sgl,
1068	unsigned int sg_len, enum dma_transfer_direction direction,
1069	unsigned long tx_flags, void *context)
1070{
1071	struct edma_chan *echan = to_edma_chan(chan);
1072	struct device *dev = chan->device->dev;
1073	struct edma_desc *edesc;
1074	dma_addr_t src_addr = 0, dst_addr = 0;
1075	enum dma_slave_buswidth dev_width;
1076	u32 burst;
1077	struct scatterlist *sg;
1078	int i, nslots, ret;
1079
1080	if (unlikely(!echan || !sgl || !sg_len))
1081		return NULL;
1082
1083	if (direction == DMA_DEV_TO_MEM) {
1084		src_addr = echan->cfg.src_addr;
1085		dev_width = echan->cfg.src_addr_width;
1086		burst = echan->cfg.src_maxburst;
1087	} else if (direction == DMA_MEM_TO_DEV) {
1088		dst_addr = echan->cfg.dst_addr;
1089		dev_width = echan->cfg.dst_addr_width;
1090		burst = echan->cfg.dst_maxburst;
1091	} else {
1092		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1093		return NULL;
1094	}
1095
1096	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1097		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1098		return NULL;
1099	}
1100
1101	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1102	if (!edesc)
1103		return NULL;
1104
1105	edesc->pset_nr = sg_len;
1106	edesc->residue = 0;
1107	edesc->direction = direction;
1108	edesc->echan = echan;
1109
1110	/* Allocate a PaRAM slot, if needed */
1111	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1112
1113	for (i = 0; i < nslots; i++) {
1114		if (echan->slot[i] < 0) {
1115			echan->slot[i] =
1116				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1117			if (echan->slot[i] < 0) {
1118				kfree(edesc);
1119				dev_err(dev, "%s: Failed to allocate slot\n",
1120					__func__);
1121				return NULL;
1122			}
1123		}
1124	}
1125
1126	/* Configure PaRAM sets for each SG */
1127	for_each_sg(sgl, sg, sg_len, i) {
1128		/* Get address for each SG */
1129		if (direction == DMA_DEV_TO_MEM)
1130			dst_addr = sg_dma_address(sg);
1131		else
1132			src_addr = sg_dma_address(sg);
1133
1134		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1135				       dst_addr, burst, dev_width,
1136				       sg_dma_len(sg), direction);
1137		if (ret < 0) {
1138			kfree(edesc);
1139			return NULL;
1140		}
1141
1142		edesc->absync = ret;
1143		edesc->residue += sg_dma_len(sg);
1144
1145		if (i == sg_len - 1)
1146			/* Enable completion interrupt */
1147			edesc->pset[i].param.opt |= TCINTEN;
1148		else if (!((i+1) % MAX_NR_SG))
1149			/*
1150			 * Enable early completion interrupt for the
1151			 * intermediateset. In this case the driver will be
1152			 * notified when the paRAM set is submitted to TC. This
1153			 * will allow more time to set up the next set of slots.
1154			 */
1155			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1156	}
1157	edesc->residue_stat = edesc->residue;
1158
1159	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1160}
1161
1162static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1163	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1164	size_t len, unsigned long tx_flags)
1165{
1166	int ret, nslots;
1167	struct edma_desc *edesc;
1168	struct device *dev = chan->device->dev;
1169	struct edma_chan *echan = to_edma_chan(chan);
1170	unsigned int width, pset_len, array_size;
1171
1172	if (unlikely(!echan || !len))
1173		return NULL;
1174
1175	/* Align the array size (acnt block) with the transfer properties */
1176	switch (__ffs((src | dest | len))) {
1177	case 0:
1178		array_size = SZ_32K - 1;
1179		break;
1180	case 1:
1181		array_size = SZ_32K - 2;
1182		break;
1183	default:
1184		array_size = SZ_32K - 4;
1185		break;
1186	}
1187
1188	if (len < SZ_64K) {
1189		/*
1190		 * Transfer size less than 64K can be handled with one paRAM
1191		 * slot and with one burst.
1192		 * ACNT = length
1193		 */
1194		width = len;
1195		pset_len = len;
1196		nslots = 1;
1197	} else {
1198		/*
1199		 * Transfer size bigger than 64K will be handled with maximum of
1200		 * two paRAM slots.
1201		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1202		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1203		 * slot2: the remaining amount of data after slot1.
1204		 *	  ACNT = full_length - length1, length2 = ACNT
1205		 *
1206		 * When the full_length is multibple of 32767 one slot can be
1207		 * used to complete the transfer.
1208		 */
1209		width = array_size;
1210		pset_len = rounddown(len, width);
1211		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1212		if (unlikely(pset_len == len))
1213			nslots = 1;
1214		else
1215			nslots = 2;
1216	}
1217
1218	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1219	if (!edesc)
1220		return NULL;
1221
1222	edesc->pset_nr = nslots;
1223	edesc->residue = edesc->residue_stat = len;
1224	edesc->direction = DMA_MEM_TO_MEM;
1225	edesc->echan = echan;
1226
1227	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1228			       width, pset_len, DMA_MEM_TO_MEM);
1229	if (ret < 0) {
1230		kfree(edesc);
1231		return NULL;
1232	}
1233
1234	edesc->absync = ret;
1235
1236	edesc->pset[0].param.opt |= ITCCHEN;
1237	if (nslots == 1) {
1238		/* Enable transfer complete interrupt if requested */
1239		if (tx_flags & DMA_PREP_INTERRUPT)
1240			edesc->pset[0].param.opt |= TCINTEN;
1241	} else {
1242		/* Enable transfer complete chaining for the first slot */
1243		edesc->pset[0].param.opt |= TCCHEN;
1244
1245		if (echan->slot[1] < 0) {
1246			echan->slot[1] = edma_alloc_slot(echan->ecc,
1247							 EDMA_SLOT_ANY);
1248			if (echan->slot[1] < 0) {
1249				kfree(edesc);
1250				dev_err(dev, "%s: Failed to allocate slot\n",
1251					__func__);
1252				return NULL;
1253			}
1254		}
1255		dest += pset_len;
1256		src += pset_len;
1257		pset_len = width = len % array_size;
1258
1259		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1260				       width, pset_len, DMA_MEM_TO_MEM);
1261		if (ret < 0) {
1262			kfree(edesc);
1263			return NULL;
1264		}
1265
1266		edesc->pset[1].param.opt |= ITCCHEN;
1267		/* Enable transfer complete interrupt if requested */
1268		if (tx_flags & DMA_PREP_INTERRUPT)
1269			edesc->pset[1].param.opt |= TCINTEN;
1270	}
1271
1272	if (!(tx_flags & DMA_PREP_INTERRUPT))
1273		edesc->polled = true;
1274
1275	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1276}
1277
1278static struct dma_async_tx_descriptor *
1279edma_prep_dma_interleaved(struct dma_chan *chan,
1280			  struct dma_interleaved_template *xt,
1281			  unsigned long tx_flags)
1282{
1283	struct device *dev = chan->device->dev;
1284	struct edma_chan *echan = to_edma_chan(chan);
1285	struct edmacc_param *param;
1286	struct edma_desc *edesc;
1287	size_t src_icg, dst_icg;
1288	int src_bidx, dst_bidx;
1289
1290	/* Slave mode is not supported */
1291	if (is_slave_direction(xt->dir))
1292		return NULL;
1293
1294	if (xt->frame_size != 1 || xt->numf == 0)
1295		return NULL;
1296
1297	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1298		return NULL;
1299
1300	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1301	if (src_icg) {
1302		src_bidx = src_icg + xt->sgl[0].size;
1303	} else if (xt->src_inc) {
1304		src_bidx = xt->sgl[0].size;
1305	} else {
1306		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1307			__func__);
1308		return NULL;
1309	}
1310
1311	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1312	if (dst_icg) {
1313		dst_bidx = dst_icg + xt->sgl[0].size;
1314	} else if (xt->dst_inc) {
1315		dst_bidx = xt->sgl[0].size;
1316	} else {
1317		dev_err(dev, "%s: DST constant addressing is not supported\n",
1318			__func__);
1319		return NULL;
1320	}
1321
1322	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1323		return NULL;
1324
1325	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1326	if (!edesc)
1327		return NULL;
1328
1329	edesc->direction = DMA_MEM_TO_MEM;
1330	edesc->echan = echan;
1331	edesc->pset_nr = 1;
1332
1333	param = &edesc->pset[0].param;
1334
1335	param->src = xt->src_start;
1336	param->dst = xt->dst_start;
1337	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1338	param->ccnt = 1;
1339	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1340	param->src_dst_cidx = 0;
1341
1342	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1343	param->opt |= ITCCHEN;
1344	/* Enable transfer complete interrupt if requested */
1345	if (tx_flags & DMA_PREP_INTERRUPT)
1346		param->opt |= TCINTEN;
1347	else
1348		edesc->polled = true;
1349
1350	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1351}
1352
1353static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1354	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1355	size_t period_len, enum dma_transfer_direction direction,
1356	unsigned long tx_flags)
1357{
1358	struct edma_chan *echan = to_edma_chan(chan);
1359	struct device *dev = chan->device->dev;
1360	struct edma_desc *edesc;
1361	dma_addr_t src_addr, dst_addr;
1362	enum dma_slave_buswidth dev_width;
1363	bool use_intermediate = false;
1364	u32 burst;
1365	int i, ret, nslots;
1366
1367	if (unlikely(!echan || !buf_len || !period_len))
1368		return NULL;
1369
1370	if (direction == DMA_DEV_TO_MEM) {
1371		src_addr = echan->cfg.src_addr;
1372		dst_addr = buf_addr;
1373		dev_width = echan->cfg.src_addr_width;
1374		burst = echan->cfg.src_maxburst;
1375	} else if (direction == DMA_MEM_TO_DEV) {
1376		src_addr = buf_addr;
1377		dst_addr = echan->cfg.dst_addr;
1378		dev_width = echan->cfg.dst_addr_width;
1379		burst = echan->cfg.dst_maxburst;
1380	} else {
1381		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1382		return NULL;
1383	}
1384
1385	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1386		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1387		return NULL;
1388	}
1389
1390	if (unlikely(buf_len % period_len)) {
1391		dev_err(dev, "Period should be multiple of Buffer length\n");
1392		return NULL;
1393	}
1394
1395	nslots = (buf_len / period_len) + 1;
1396
1397	/*
1398	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1399	 * by cases where the number of periods is more than the maximum
1400	 * number of SGs the EDMA driver can handle at a time. For DMA types
1401	 * such as Slave SGs, such delays are tolerable and synchronized,
1402	 * but the synchronization is difficult to achieve with Cyclic and
1403	 * cannot be guaranteed, so we error out early.
1404	 */
1405	if (nslots > MAX_NR_SG) {
1406		/*
1407		 * If the burst and period sizes are the same, we can put
1408		 * the full buffer into a single period and activate
1409		 * intermediate interrupts. This will produce interrupts
1410		 * after each burst, which is also after each desired period.
1411		 */
1412		if (burst == period_len) {
1413			period_len = buf_len;
1414			nslots = 2;
1415			use_intermediate = true;
1416		} else {
1417			return NULL;
1418		}
1419	}
1420
1421	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1422	if (!edesc)
1423		return NULL;
1424
1425	edesc->cyclic = 1;
1426	edesc->pset_nr = nslots;
1427	edesc->residue = edesc->residue_stat = buf_len;
1428	edesc->direction = direction;
1429	edesc->echan = echan;
1430
1431	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1432		__func__, echan->ch_num, nslots, period_len, buf_len);
1433
1434	for (i = 0; i < nslots; i++) {
1435		/* Allocate a PaRAM slot, if needed */
1436		if (echan->slot[i] < 0) {
1437			echan->slot[i] =
1438				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1439			if (echan->slot[i] < 0) {
1440				kfree(edesc);
1441				dev_err(dev, "%s: Failed to allocate slot\n",
1442					__func__);
1443				return NULL;
1444			}
1445		}
1446
1447		if (i == nslots - 1) {
1448			memcpy(&edesc->pset[i], &edesc->pset[0],
1449			       sizeof(edesc->pset[0]));
1450			break;
1451		}
1452
1453		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1454				       dst_addr, burst, dev_width, period_len,
1455				       direction);
1456		if (ret < 0) {
1457			kfree(edesc);
1458			return NULL;
1459		}
1460
1461		if (direction == DMA_DEV_TO_MEM)
1462			dst_addr += period_len;
1463		else
1464			src_addr += period_len;
1465
1466		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1467		dev_vdbg(dev,
1468			"\n pset[%d]:\n"
1469			"  chnum\t%d\n"
1470			"  slot\t%d\n"
1471			"  opt\t%08x\n"
1472			"  src\t%08x\n"
1473			"  dst\t%08x\n"
1474			"  abcnt\t%08x\n"
1475			"  ccnt\t%08x\n"
1476			"  bidx\t%08x\n"
1477			"  cidx\t%08x\n"
1478			"  lkrld\t%08x\n",
1479			i, echan->ch_num, echan->slot[i],
1480			edesc->pset[i].param.opt,
1481			edesc->pset[i].param.src,
1482			edesc->pset[i].param.dst,
1483			edesc->pset[i].param.a_b_cnt,
1484			edesc->pset[i].param.ccnt,
1485			edesc->pset[i].param.src_dst_bidx,
1486			edesc->pset[i].param.src_dst_cidx,
1487			edesc->pset[i].param.link_bcntrld);
1488
1489		edesc->absync = ret;
1490
1491		/*
1492		 * Enable period interrupt only if it is requested
1493		 */
1494		if (tx_flags & DMA_PREP_INTERRUPT) {
1495			edesc->pset[i].param.opt |= TCINTEN;
1496
1497			/* Also enable intermediate interrupts if necessary */
1498			if (use_intermediate)
1499				edesc->pset[i].param.opt |= ITCINTEN;
1500		}
1501	}
1502
1503	/* Place the cyclic channel to highest priority queue */
1504	if (!echan->tc)
1505		edma_assign_channel_eventq(echan, EVENTQ_0);
1506
1507	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1508}
1509
1510static void edma_completion_handler(struct edma_chan *echan)
1511{
1512	struct device *dev = echan->vchan.chan.device->dev;
1513	struct edma_desc *edesc;
1514
1515	spin_lock(&echan->vchan.lock);
1516	edesc = echan->edesc;
1517	if (edesc) {
1518		if (edesc->cyclic) {
1519			vchan_cyclic_callback(&edesc->vdesc);
1520			spin_unlock(&echan->vchan.lock);
1521			return;
1522		} else if (edesc->processed == edesc->pset_nr) {
1523			edesc->residue = 0;
1524			edma_stop(echan);
1525			vchan_cookie_complete(&edesc->vdesc);
1526			echan->edesc = NULL;
1527
1528			dev_dbg(dev, "Transfer completed on channel %d\n",
1529				echan->ch_num);
1530		} else {
1531			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1532				echan->ch_num);
1533
1534			edma_pause(echan);
1535
1536			/* Update statistics for tx_status */
1537			edesc->residue -= edesc->sg_len;
1538			edesc->residue_stat = edesc->residue;
1539			edesc->processed_stat = edesc->processed;
1540		}
1541		edma_execute(echan);
1542	}
1543
1544	spin_unlock(&echan->vchan.lock);
1545}
1546
1547/* eDMA interrupt handler */
1548static irqreturn_t dma_irq_handler(int irq, void *data)
1549{
1550	struct edma_cc *ecc = data;
1551	int ctlr;
1552	u32 sh_ier;
1553	u32 sh_ipr;
1554	u32 bank;
1555
1556	ctlr = ecc->id;
1557	if (ctlr < 0)
1558		return IRQ_NONE;
1559
1560	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1561
1562	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1563	if (!sh_ipr) {
1564		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1565		if (!sh_ipr)
1566			return IRQ_NONE;
1567		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1568		bank = 1;
1569	} else {
1570		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1571		bank = 0;
1572	}
1573
1574	do {
1575		u32 slot;
1576		u32 channel;
1577
1578		slot = __ffs(sh_ipr);
1579		sh_ipr &= ~(BIT(slot));
1580
1581		if (sh_ier & BIT(slot)) {
1582			channel = (bank << 5) | slot;
1583			/* Clear the corresponding IPR bits */
1584			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1585			edma_completion_handler(&ecc->slave_chans[channel]);
1586		}
1587	} while (sh_ipr);
1588
1589	edma_shadow0_write(ecc, SH_IEVAL, 1);
1590	return IRQ_HANDLED;
1591}
1592
1593static void edma_error_handler(struct edma_chan *echan)
1594{
1595	struct edma_cc *ecc = echan->ecc;
1596	struct device *dev = echan->vchan.chan.device->dev;
1597	struct edmacc_param p;
1598	int err;
1599
1600	if (!echan->edesc)
1601		return;
1602
1603	spin_lock(&echan->vchan.lock);
1604
1605	err = edma_read_slot(ecc, echan->slot[0], &p);
1606
1607	/*
1608	 * Issue later based on missed flag which will be sure
1609	 * to happen as:
1610	 * (1) we finished transmitting an intermediate slot and
1611	 *     edma_execute is coming up.
1612	 * (2) or we finished current transfer and issue will
1613	 *     call edma_execute.
1614	 *
1615	 * Important note: issuing can be dangerous here and
1616	 * lead to some nasty recursion when we are in a NULL
1617	 * slot. So we avoid doing so and set the missed flag.
1618	 */
1619	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1620		dev_dbg(dev, "Error on null slot, setting miss\n");
1621		echan->missed = 1;
1622	} else {
1623		/*
1624		 * The slot is already programmed but the event got
1625		 * missed, so its safe to issue it here.
1626		 */
1627		dev_dbg(dev, "Missed event, TRIGGERING\n");
1628		edma_clean_channel(echan);
1629		edma_stop(echan);
1630		edma_start(echan);
1631		edma_trigger_channel(echan);
1632	}
1633	spin_unlock(&echan->vchan.lock);
1634}
1635
1636static inline bool edma_error_pending(struct edma_cc *ecc)
1637{
1638	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1639	    edma_read_array(ecc, EDMA_EMR, 1) ||
1640	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1641		return true;
1642
1643	return false;
1644}
1645
1646/* eDMA error interrupt handler */
1647static irqreturn_t dma_ccerr_handler(int irq, void *data)
1648{
1649	struct edma_cc *ecc = data;
1650	int i, j;
1651	int ctlr;
1652	unsigned int cnt = 0;
1653	unsigned int val;
1654
1655	ctlr = ecc->id;
1656	if (ctlr < 0)
1657		return IRQ_NONE;
1658
1659	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1660
1661	if (!edma_error_pending(ecc)) {
1662		/*
1663		 * The registers indicate no pending error event but the irq
1664		 * handler has been called.
1665		 * Ask eDMA to re-evaluate the error registers.
1666		 */
1667		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1668			__func__);
1669		edma_write(ecc, EDMA_EEVAL, 1);
1670		return IRQ_NONE;
1671	}
1672
1673	while (1) {
1674		/* Event missed register(s) */
1675		for (j = 0; j < 2; j++) {
1676			unsigned long emr;
1677
1678			val = edma_read_array(ecc, EDMA_EMR, j);
1679			if (!val)
1680				continue;
1681
1682			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1683			emr = val;
1684			for (i = find_next_bit(&emr, 32, 0); i < 32;
1685			     i = find_next_bit(&emr, 32, i + 1)) {
1686				int k = (j << 5) + i;
1687
1688				/* Clear the corresponding EMR bits */
1689				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1690				/* Clear any SER */
1691				edma_shadow0_write_array(ecc, SH_SECR, j,
1692							 BIT(i));
1693				edma_error_handler(&ecc->slave_chans[k]);
1694			}
1695		}
1696
1697		val = edma_read(ecc, EDMA_QEMR);
1698		if (val) {
1699			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1700			/* Not reported, just clear the interrupt reason. */
1701			edma_write(ecc, EDMA_QEMCR, val);
1702			edma_shadow0_write(ecc, SH_QSECR, val);
1703		}
1704
1705		val = edma_read(ecc, EDMA_CCERR);
1706		if (val) {
1707			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1708			/* Not reported, just clear the interrupt reason. */
1709			edma_write(ecc, EDMA_CCERRCLR, val);
1710		}
1711
1712		if (!edma_error_pending(ecc))
1713			break;
1714		cnt++;
1715		if (cnt > 10)
1716			break;
1717	}
1718	edma_write(ecc, EDMA_EEVAL, 1);
1719	return IRQ_HANDLED;
1720}
1721
1722/* Alloc channel resources */
1723static int edma_alloc_chan_resources(struct dma_chan *chan)
1724{
1725	struct edma_chan *echan = to_edma_chan(chan);
1726	struct edma_cc *ecc = echan->ecc;
1727	struct device *dev = ecc->dev;
1728	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1729	int ret;
1730
1731	if (echan->tc) {
1732		eventq_no = echan->tc->id;
1733	} else if (ecc->tc_list) {
1734		/* memcpy channel */
1735		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1736		eventq_no = echan->tc->id;
1737	}
1738
1739	ret = edma_alloc_channel(echan, eventq_no);
1740	if (ret)
1741		return ret;
1742
1743	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1744	if (echan->slot[0] < 0) {
1745		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1746			EDMA_CHAN_SLOT(echan->ch_num));
1747		ret = echan->slot[0];
1748		goto err_slot;
1749	}
1750
1751	/* Set up channel -> slot mapping for the entry slot */
1752	edma_set_chmap(echan, echan->slot[0]);
1753	echan->alloced = true;
1754
1755	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1756		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1757		echan->hw_triggered ? "HW" : "SW");
1758
1759	return 0;
1760
1761err_slot:
1762	edma_free_channel(echan);
1763	return ret;
1764}
1765
1766/* Free channel resources */
1767static void edma_free_chan_resources(struct dma_chan *chan)
1768{
1769	struct edma_chan *echan = to_edma_chan(chan);
1770	struct device *dev = echan->ecc->dev;
1771	int i;
1772
1773	/* Terminate transfers */
1774	edma_stop(echan);
1775
1776	vchan_free_chan_resources(&echan->vchan);
1777
1778	/* Free EDMA PaRAM slots */
1779	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1780		if (echan->slot[i] >= 0) {
1781			edma_free_slot(echan->ecc, echan->slot[i]);
1782			echan->slot[i] = -1;
1783		}
1784	}
1785
1786	/* Set entry slot to the dummy slot */
1787	edma_set_chmap(echan, echan->ecc->dummy_slot);
1788
1789	/* Free EDMA channel */
1790	if (echan->alloced) {
1791		edma_free_channel(echan);
1792		echan->alloced = false;
1793	}
1794
1795	echan->tc = NULL;
1796	echan->hw_triggered = false;
1797
1798	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1799		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1800}
1801
1802/* Send pending descriptor to hardware */
1803static void edma_issue_pending(struct dma_chan *chan)
1804{
1805	struct edma_chan *echan = to_edma_chan(chan);
1806	unsigned long flags;
1807
1808	spin_lock_irqsave(&echan->vchan.lock, flags);
1809	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1810		edma_execute(echan);
1811	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1812}
1813
1814/*
1815 * This limit exists to avoid a possible infinite loop when waiting for proof
1816 * that a particular transfer is completed. This limit can be hit if there
1817 * are large bursts to/from slow devices or the CPU is never able to catch
1818 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1819 * RX-FIFO, as many as 55 loops have been seen.
1820 */
1821#define EDMA_MAX_TR_WAIT_LOOPS 1000
1822
1823static u32 edma_residue(struct edma_desc *edesc)
1824{
1825	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1826	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1827	struct edma_chan *echan = edesc->echan;
1828	struct edma_pset *pset = edesc->pset;
1829	dma_addr_t done, pos, pos_old;
1830	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1831	int idx = EDMA_REG_ARRAY_INDEX(channel);
1832	int ch_bit = EDMA_CHANNEL_BIT(channel);
1833	int event_reg;
1834	int i;
1835
1836	/*
1837	 * We always read the dst/src position from the first RamPar
1838	 * pset. That's the one which is active now.
1839	 */
1840	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1841
1842	/*
1843	 * "pos" may represent a transfer request that is still being
1844	 * processed by the EDMACC or EDMATC. We will busy wait until
1845	 * any one of the situations occurs:
1846	 *   1. while and event is pending for the channel
1847	 *   2. a position updated
1848	 *   3. we hit the loop limit
1849	 */
1850	if (is_slave_direction(edesc->direction))
1851		event_reg = SH_ER;
1852	else
1853		event_reg = SH_ESR;
1854
1855	pos_old = pos;
1856	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1857		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1858		if (pos != pos_old)
1859			break;
1860
1861		if (!--loop_count) {
1862			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1863				"%s: timeout waiting for PaRAM update\n",
1864				__func__);
1865			break;
1866		}
1867
1868		cpu_relax();
1869	}
1870
1871	/*
1872	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1873	 *
1874	 * We never update edesc->residue in the cyclic case, so we
1875	 * can tell the remaining room to the end of the circular
1876	 * buffer.
1877	 */
1878	if (edesc->cyclic) {
1879		done = pos - pset->addr;
1880		edesc->residue_stat = edesc->residue - done;
1881		return edesc->residue_stat;
1882	}
1883
1884	/*
1885	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1886	 * transfer is completed
1887	 */
1888	if (!pos)
1889		return 0;
1890	/*
1891	 * For SG operation we catch up with the last processed
1892	 * status.
1893	 */
1894	pset += edesc->processed_stat;
1895
1896	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1897		/*
1898		 * If we are inside this pset address range, we know
1899		 * this is the active one. Get the current delta and
1900		 * stop walking the psets.
1901		 */
1902		if (pos >= pset->addr && pos < pset->addr + pset->len)
1903			return edesc->residue_stat - (pos - pset->addr);
1904
1905		/* Otherwise mark it done and update residue_stat. */
1906		edesc->processed_stat++;
1907		edesc->residue_stat -= pset->len;
1908	}
1909	return edesc->residue_stat;
1910}
1911
1912/* Check request completion status */
1913static enum dma_status edma_tx_status(struct dma_chan *chan,
1914				      dma_cookie_t cookie,
1915				      struct dma_tx_state *txstate)
1916{
1917	struct edma_chan *echan = to_edma_chan(chan);
1918	struct dma_tx_state txstate_tmp;
1919	enum dma_status ret;
1920	unsigned long flags;
1921
1922	ret = dma_cookie_status(chan, cookie, txstate);
1923
1924	if (ret == DMA_COMPLETE)
1925		return ret;
1926
1927	/* Provide a dummy dma_tx_state for completion checking */
1928	if (!txstate)
1929		txstate = &txstate_tmp;
1930
1931	spin_lock_irqsave(&echan->vchan.lock, flags);
1932	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1933		txstate->residue = edma_residue(echan->edesc);
1934	} else {
1935		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1936							      cookie);
1937
1938		if (vdesc)
1939			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1940		else
1941			txstate->residue = 0;
1942	}
1943
1944	/*
1945	 * Mark the cookie completed if the residue is 0 for non cyclic
1946	 * transfers
1947	 */
1948	if (ret != DMA_COMPLETE && !txstate->residue &&
1949	    echan->edesc && echan->edesc->polled &&
1950	    echan->edesc->vdesc.tx.cookie == cookie) {
1951		edma_stop(echan);
1952		vchan_cookie_complete(&echan->edesc->vdesc);
1953		echan->edesc = NULL;
1954		edma_execute(echan);
1955		ret = DMA_COMPLETE;
1956	}
1957
1958	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1959
1960	return ret;
1961}
1962
1963static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1964{
1965	if (!memcpy_channels)
1966		return false;
1967	while (*memcpy_channels != -1) {
1968		if (*memcpy_channels == ch_num)
1969			return true;
1970		memcpy_channels++;
1971	}
1972	return false;
1973}
1974
1975#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1976				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1977				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1978				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1979
1980static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1981{
1982	struct dma_device *s_ddev = &ecc->dma_slave;
1983	struct dma_device *m_ddev = NULL;
1984	s32 *memcpy_channels = ecc->info->memcpy_channels;
1985	int i, j;
1986
1987	dma_cap_zero(s_ddev->cap_mask);
1988	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1989	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1990	if (ecc->legacy_mode && !memcpy_channels) {
1991		dev_warn(ecc->dev,
1992			 "Legacy memcpy is enabled, things might not work\n");
1993
1994		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1995		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1996		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1997		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1998		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1999	}
2000
2001	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
2002	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
2003	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2004	s_ddev->device_free_chan_resources = edma_free_chan_resources;
2005	s_ddev->device_issue_pending = edma_issue_pending;
2006	s_ddev->device_tx_status = edma_tx_status;
2007	s_ddev->device_config = edma_slave_config;
2008	s_ddev->device_pause = edma_dma_pause;
2009	s_ddev->device_resume = edma_dma_resume;
2010	s_ddev->device_terminate_all = edma_terminate_all;
2011	s_ddev->device_synchronize = edma_synchronize;
2012
2013	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2014	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2015	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
2016	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2017	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
2018
2019	s_ddev->dev = ecc->dev;
2020	INIT_LIST_HEAD(&s_ddev->channels);
2021
2022	if (memcpy_channels) {
2023		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
2024		if (!m_ddev) {
2025			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
2026			memcpy_channels = NULL;
2027			goto ch_setup;
2028		}
2029		ecc->dma_memcpy = m_ddev;
2030
2031		dma_cap_zero(m_ddev->cap_mask);
2032		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
2033		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
2034
2035		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
2036		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
2037		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2038		m_ddev->device_free_chan_resources = edma_free_chan_resources;
2039		m_ddev->device_issue_pending = edma_issue_pending;
2040		m_ddev->device_tx_status = edma_tx_status;
2041		m_ddev->device_config = edma_slave_config;
2042		m_ddev->device_pause = edma_dma_pause;
2043		m_ddev->device_resume = edma_dma_resume;
2044		m_ddev->device_terminate_all = edma_terminate_all;
2045		m_ddev->device_synchronize = edma_synchronize;
2046
2047		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2048		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2049		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2050		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2051
2052		m_ddev->dev = ecc->dev;
2053		INIT_LIST_HEAD(&m_ddev->channels);
2054	} else if (!ecc->legacy_mode) {
2055		dev_info(ecc->dev, "memcpy is disabled\n");
2056	}
2057
2058ch_setup:
2059	for (i = 0; i < ecc->num_channels; i++) {
2060		struct edma_chan *echan = &ecc->slave_chans[i];
2061		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2062		echan->ecc = ecc;
2063		echan->vchan.desc_free = edma_desc_free;
2064
2065		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2066			vchan_init(&echan->vchan, m_ddev);
2067		else
2068			vchan_init(&echan->vchan, s_ddev);
2069
2070		INIT_LIST_HEAD(&echan->node);
2071		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2072			echan->slot[j] = -1;
2073	}
2074}
2075
2076static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2077			      struct edma_cc *ecc)
2078{
2079	int i;
2080	u32 value, cccfg;
2081	s8 (*queue_priority_map)[2];
2082
2083	/* Decode the eDMA3 configuration from CCCFG register */
2084	cccfg = edma_read(ecc, EDMA_CCCFG);
2085
2086	value = GET_NUM_REGN(cccfg);
2087	ecc->num_region = BIT(value);
2088
2089	value = GET_NUM_DMACH(cccfg);
2090	ecc->num_channels = BIT(value + 1);
2091
2092	value = GET_NUM_QDMACH(cccfg);
2093	ecc->num_qchannels = value * 2;
2094
2095	value = GET_NUM_PAENTRY(cccfg);
2096	ecc->num_slots = BIT(value + 4);
2097
2098	value = GET_NUM_EVQUE(cccfg);
2099	ecc->num_tc = value + 1;
2100
2101	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2102
2103	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2104	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2105	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2106	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2107	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2108	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2109	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2110
2111	/* Nothing need to be done if queue priority is provided */
2112	if (pdata->queue_priority_mapping)
2113		return 0;
2114
2115	/*
2116	 * Configure TC/queue priority as follows:
2117	 * Q0 - priority 0
2118	 * Q1 - priority 1
2119	 * Q2 - priority 2
2120	 * ...
2121	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2122	 * priority. So Q0 is the highest priority queue and the last queue has
2123	 * the lowest priority.
2124	 */
2125	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2126					  GFP_KERNEL);
2127	if (!queue_priority_map)
2128		return -ENOMEM;
2129
2130	for (i = 0; i < ecc->num_tc; i++) {
2131		queue_priority_map[i][0] = i;
2132		queue_priority_map[i][1] = i;
2133	}
2134	queue_priority_map[i][0] = -1;
2135	queue_priority_map[i][1] = -1;
2136
2137	pdata->queue_priority_mapping = queue_priority_map;
2138	/* Default queue has the lowest priority */
2139	pdata->default_queue = i - 1;
2140
2141	return 0;
2142}
2143
2144#if IS_ENABLED(CONFIG_OF)
2145static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2146			       size_t sz)
2147{
2148	const char pname[] = "ti,edma-xbar-event-map";
2149	struct resource res;
2150	void __iomem *xbar;
2151	s16 (*xbar_chans)[2];
2152	size_t nelm = sz / sizeof(s16);
2153	u32 shift, offset, mux;
2154	int ret, i;
2155
2156	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2157	if (!xbar_chans)
2158		return -ENOMEM;
2159
2160	ret = of_address_to_resource(dev->of_node, 1, &res);
2161	if (ret)
2162		return -ENOMEM;
2163
2164	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2165	if (!xbar)
2166		return -ENOMEM;
2167
2168	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2169					 nelm);
2170	if (ret)
2171		return -EIO;
2172
2173	/* Invalidate last entry for the other user of this mess */
2174	nelm >>= 1;
2175	xbar_chans[nelm][0] = -1;
2176	xbar_chans[nelm][1] = -1;
2177
2178	for (i = 0; i < nelm; i++) {
2179		shift = (xbar_chans[i][1] & 0x03) << 3;
2180		offset = xbar_chans[i][1] & 0xfffffffc;
2181		mux = readl(xbar + offset);
2182		mux &= ~(0xff << shift);
2183		mux |= xbar_chans[i][0] << shift;
2184		writel(mux, (xbar + offset));
2185	}
2186
2187	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2188	return 0;
2189}
2190
2191static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2192						     bool legacy_mode)
2193{
2194	struct edma_soc_info *info;
2195	struct property *prop;
2196	int sz, ret;
2197
2198	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2199	if (!info)
2200		return ERR_PTR(-ENOMEM);
2201
2202	if (legacy_mode) {
2203		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2204					&sz);
2205		if (prop) {
2206			ret = edma_xbar_event_map(dev, info, sz);
2207			if (ret)
2208				return ERR_PTR(ret);
2209		}
2210		return info;
2211	}
2212
2213	/* Get the list of channels allocated to be used for memcpy */
2214	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2215	if (prop) {
2216		const char pname[] = "ti,edma-memcpy-channels";
2217		size_t nelm = sz / sizeof(s32);
2218		s32 *memcpy_ch;
2219
2220		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2221					 GFP_KERNEL);
2222		if (!memcpy_ch)
2223			return ERR_PTR(-ENOMEM);
2224
2225		ret = of_property_read_u32_array(dev->of_node, pname,
2226						 (u32 *)memcpy_ch, nelm);
2227		if (ret)
2228			return ERR_PTR(ret);
2229
2230		memcpy_ch[nelm] = -1;
2231		info->memcpy_channels = memcpy_ch;
2232	}
2233
2234	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2235				&sz);
2236	if (prop) {
2237		const char pname[] = "ti,edma-reserved-slot-ranges";
2238		u32 (*tmp)[2];
2239		s16 (*rsv_slots)[2];
2240		size_t nelm = sz / sizeof(*tmp);
2241		struct edma_rsv_info *rsv_info;
2242		int i;
2243
2244		if (!nelm)
2245			return info;
2246
2247		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2248		if (!tmp)
2249			return ERR_PTR(-ENOMEM);
2250
2251		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2252		if (!rsv_info) {
2253			kfree(tmp);
2254			return ERR_PTR(-ENOMEM);
2255		}
2256
2257		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2258					 GFP_KERNEL);
2259		if (!rsv_slots) {
2260			kfree(tmp);
2261			return ERR_PTR(-ENOMEM);
2262		}
2263
2264		ret = of_property_read_u32_array(dev->of_node, pname,
2265						 (u32 *)tmp, nelm * 2);
2266		if (ret) {
2267			kfree(tmp);
2268			return ERR_PTR(ret);
2269		}
2270
2271		for (i = 0; i < nelm; i++) {
2272			rsv_slots[i][0] = tmp[i][0];
2273			rsv_slots[i][1] = tmp[i][1];
2274		}
2275		rsv_slots[nelm][0] = -1;
2276		rsv_slots[nelm][1] = -1;
2277
2278		info->rsv = rsv_info;
2279		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2280
2281		kfree(tmp);
2282	}
2283
2284	return info;
2285}
2286
2287static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2288				      struct of_dma *ofdma)
2289{
2290	struct edma_cc *ecc = ofdma->of_dma_data;
2291	struct dma_chan *chan = NULL;
2292	struct edma_chan *echan;
2293	int i;
2294
2295	if (!ecc || dma_spec->args_count < 1)
2296		return NULL;
2297
2298	for (i = 0; i < ecc->num_channels; i++) {
2299		echan = &ecc->slave_chans[i];
2300		if (echan->ch_num == dma_spec->args[0]) {
2301			chan = &echan->vchan.chan;
2302			break;
2303		}
2304	}
2305
2306	if (!chan)
2307		return NULL;
2308
2309	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2310		goto out;
2311
2312	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2313	    dma_spec->args[1] < echan->ecc->num_tc) {
2314		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2315		goto out;
2316	}
2317
2318	return NULL;
2319out:
2320	/* The channel is going to be used as HW synchronized */
2321	echan->hw_triggered = true;
2322	return dma_get_slave_channel(chan);
2323}
2324#else
2325static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2326						     bool legacy_mode)
2327{
2328	return ERR_PTR(-EINVAL);
2329}
2330
2331static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2332				      struct of_dma *ofdma)
2333{
2334	return NULL;
2335}
2336#endif
2337
2338static bool edma_filter_fn(struct dma_chan *chan, void *param);
2339
2340static int edma_probe(struct platform_device *pdev)
2341{
2342	struct edma_soc_info	*info = pdev->dev.platform_data;
2343	s8			(*queue_priority_mapping)[2];
2344	const s16		(*reserved)[2];
2345	int			i, irq;
2346	char			*irq_name;
2347	struct resource		*mem;
2348	struct device_node	*node = pdev->dev.of_node;
2349	struct device		*dev = &pdev->dev;
2350	struct edma_cc		*ecc;
2351	bool			legacy_mode = true;
2352	int ret;
2353
2354	if (node) {
2355		const struct of_device_id *match;
2356
2357		match = of_match_node(edma_of_ids, node);
2358		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2359			legacy_mode = false;
2360
2361		info = edma_setup_info_from_dt(dev, legacy_mode);
2362		if (IS_ERR(info)) {
2363			dev_err(dev, "failed to get DT data\n");
2364			return PTR_ERR(info);
2365		}
2366	}
2367
2368	if (!info)
2369		return -ENODEV;
2370
2371	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2372	if (ret)
2373		return ret;
2374
2375	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2376	if (!ecc)
2377		return -ENOMEM;
2378
2379	ecc->dev = dev;
2380	ecc->id = pdev->id;
2381	ecc->legacy_mode = legacy_mode;
2382	/* When booting with DT the pdev->id is -1 */
2383	if (ecc->id < 0)
2384		ecc->id = 0;
2385
2386	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2387	if (!mem) {
2388		dev_dbg(dev, "mem resource not found, using index 0\n");
2389		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2390		if (!mem) {
2391			dev_err(dev, "no mem resource?\n");
2392			return -ENODEV;
2393		}
2394	}
2395	ecc->base = devm_ioremap_resource(dev, mem);
2396	if (IS_ERR(ecc->base))
2397		return PTR_ERR(ecc->base);
2398
2399	platform_set_drvdata(pdev, ecc);
2400
2401	pm_runtime_enable(dev);
2402	ret = pm_runtime_get_sync(dev);
2403	if (ret < 0) {
2404		dev_err(dev, "pm_runtime_get_sync() failed\n");
2405		pm_runtime_disable(dev);
2406		return ret;
2407	}
2408
2409	/* Get eDMA3 configuration from IP */
2410	ret = edma_setup_from_hw(dev, info, ecc);
2411	if (ret)
2412		goto err_disable_pm;
2413
2414	/* Allocate memory based on the information we got from the IP */
2415	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2416					sizeof(*ecc->slave_chans), GFP_KERNEL);
2417
2418	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2419				       sizeof(unsigned long), GFP_KERNEL);
2420
2421	ecc->channels_mask = devm_kcalloc(dev,
2422					   BITS_TO_LONGS(ecc->num_channels),
2423					   sizeof(unsigned long), GFP_KERNEL);
2424	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2425		ret = -ENOMEM;
2426		goto err_disable_pm;
2427	}
2428
2429	/* Mark all channels available initially */
2430	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2431
2432	ecc->default_queue = info->default_queue;
2433
2434	if (info->rsv) {
2435		/* Set the reserved slots in inuse list */
2436		reserved = info->rsv->rsv_slots;
2437		if (reserved) {
2438			for (i = 0; reserved[i][0] != -1; i++)
2439				bitmap_set(ecc->slot_inuse, reserved[i][0],
2440					   reserved[i][1]);
2441		}
2442
2443		/* Clear channels not usable for Linux */
2444		reserved = info->rsv->rsv_chans;
2445		if (reserved) {
2446			for (i = 0; reserved[i][0] != -1; i++)
2447				bitmap_clear(ecc->channels_mask, reserved[i][0],
2448					     reserved[i][1]);
2449		}
2450	}
2451
2452	for (i = 0; i < ecc->num_slots; i++) {
2453		/* Reset only unused - not reserved - paRAM slots */
2454		if (!test_bit(i, ecc->slot_inuse))
2455			edma_write_slot(ecc, i, &dummy_paramset);
2456	}
2457
2458	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2459	if (irq < 0 && node)
2460		irq = irq_of_parse_and_map(node, 0);
2461
2462	if (irq > 0) {
2463		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2464					  dev_name(dev));
2465		if (!irq_name) {
2466			ret = -ENOMEM;
2467			goto err_disable_pm;
2468		}
2469
2470		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2471				       ecc);
2472		if (ret) {
2473			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2474			goto err_disable_pm;
2475		}
2476		ecc->ccint = irq;
2477	}
2478
2479	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2480	if (irq < 0 && node)
2481		irq = irq_of_parse_and_map(node, 2);
2482
2483	if (irq > 0) {
2484		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2485					  dev_name(dev));
2486		if (!irq_name) {
2487			ret = -ENOMEM;
2488			goto err_disable_pm;
2489		}
2490
2491		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2492				       ecc);
2493		if (ret) {
2494			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2495			goto err_disable_pm;
2496		}
2497		ecc->ccerrint = irq;
2498	}
2499
2500	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2501	if (ecc->dummy_slot < 0) {
2502		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2503		ret = ecc->dummy_slot;
2504		goto err_disable_pm;
2505	}
2506
2507	queue_priority_mapping = info->queue_priority_mapping;
2508
2509	if (!ecc->legacy_mode) {
2510		int lowest_priority = 0;
2511		unsigned int array_max;
2512		struct of_phandle_args tc_args;
2513
2514		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2515					    sizeof(*ecc->tc_list), GFP_KERNEL);
2516		if (!ecc->tc_list) {
2517			ret = -ENOMEM;
2518			goto err_reg1;
2519		}
2520
2521		for (i = 0;; i++) {
2522			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2523							       1, i, &tc_args);
2524			if (ret || i == ecc->num_tc)
2525				break;
2526
2527			ecc->tc_list[i].node = tc_args.np;
2528			ecc->tc_list[i].id = i;
2529			queue_priority_mapping[i][1] = tc_args.args[0];
2530			if (queue_priority_mapping[i][1] > lowest_priority) {
2531				lowest_priority = queue_priority_mapping[i][1];
2532				info->default_queue = i;
2533			}
2534		}
2535
2536		/* See if we have optional dma-channel-mask array */
2537		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2538		ret = of_property_read_variable_u32_array(node,
2539						"dma-channel-mask",
2540						(u32 *)ecc->channels_mask,
2541						1, array_max);
2542		if (ret > 0 && ret != array_max)
2543			dev_warn(dev, "dma-channel-mask is not complete.\n");
2544		else if (ret == -EOVERFLOW || ret == -ENODATA)
2545			dev_warn(dev,
2546				 "dma-channel-mask is out of range or empty\n");
2547	}
2548
2549	/* Event queue priority mapping */
2550	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2551		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2552					      queue_priority_mapping[i][1]);
2553
2554	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2555	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2556	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2557
2558	ecc->info = info;
2559
2560	/* Init the dma device and channels */
2561	edma_dma_init(ecc, legacy_mode);
2562
2563	for (i = 0; i < ecc->num_channels; i++) {
2564		/* Do not touch reserved channels */
2565		if (!test_bit(i, ecc->channels_mask))
2566			continue;
2567
2568		/* Assign all channels to the default queue */
2569		edma_assign_channel_eventq(&ecc->slave_chans[i],
2570					   info->default_queue);
2571		/* Set entry slot to the dummy slot */
2572		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2573	}
2574
2575	ecc->dma_slave.filter.map = info->slave_map;
2576	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2577	ecc->dma_slave.filter.fn = edma_filter_fn;
2578
2579	ret = dma_async_device_register(&ecc->dma_slave);
2580	if (ret) {
2581		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2582		goto err_reg1;
2583	}
2584
2585	if (ecc->dma_memcpy) {
2586		ret = dma_async_device_register(ecc->dma_memcpy);
2587		if (ret) {
2588			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2589				ret);
2590			dma_async_device_unregister(&ecc->dma_slave);
2591			goto err_reg1;
2592		}
2593	}
2594
2595	if (node)
2596		of_dma_controller_register(node, of_edma_xlate, ecc);
2597
2598	dev_info(dev, "TI EDMA DMA engine driver\n");
2599
2600	return 0;
2601
2602err_reg1:
2603	edma_free_slot(ecc, ecc->dummy_slot);
2604err_disable_pm:
2605	pm_runtime_put_sync(dev);
2606	pm_runtime_disable(dev);
2607	return ret;
2608}
2609
2610static void edma_cleanupp_vchan(struct dma_device *dmadev)
2611{
2612	struct edma_chan *echan, *_echan;
2613
2614	list_for_each_entry_safe(echan, _echan,
2615			&dmadev->channels, vchan.chan.device_node) {
2616		list_del(&echan->vchan.chan.device_node);
2617		tasklet_kill(&echan->vchan.task);
2618	}
2619}
2620
2621static int edma_remove(struct platform_device *pdev)
2622{
2623	struct device *dev = &pdev->dev;
2624	struct edma_cc *ecc = dev_get_drvdata(dev);
2625
2626	devm_free_irq(dev, ecc->ccint, ecc);
2627	devm_free_irq(dev, ecc->ccerrint, ecc);
2628
2629	edma_cleanupp_vchan(&ecc->dma_slave);
2630
2631	if (dev->of_node)
2632		of_dma_controller_free(dev->of_node);
2633	dma_async_device_unregister(&ecc->dma_slave);
2634	if (ecc->dma_memcpy)
2635		dma_async_device_unregister(ecc->dma_memcpy);
2636	edma_free_slot(ecc, ecc->dummy_slot);
2637	pm_runtime_put_sync(dev);
2638	pm_runtime_disable(dev);
2639
2640	return 0;
2641}
2642
2643#ifdef CONFIG_PM_SLEEP
2644static int edma_pm_suspend(struct device *dev)
2645{
2646	struct edma_cc *ecc = dev_get_drvdata(dev);
2647	struct edma_chan *echan = ecc->slave_chans;
2648	int i;
2649
2650	for (i = 0; i < ecc->num_channels; i++) {
2651		if (echan[i].alloced)
2652			edma_setup_interrupt(&echan[i], false);
2653	}
2654
2655	return 0;
2656}
2657
2658static int edma_pm_resume(struct device *dev)
2659{
2660	struct edma_cc *ecc = dev_get_drvdata(dev);
2661	struct edma_chan *echan = ecc->slave_chans;
2662	int i;
2663	s8 (*queue_priority_mapping)[2];
2664
2665	/* re initialize dummy slot to dummy param set */
2666	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2667
2668	queue_priority_mapping = ecc->info->queue_priority_mapping;
2669
2670	/* Event queue priority mapping */
2671	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2672		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2673					      queue_priority_mapping[i][1]);
2674
2675	for (i = 0; i < ecc->num_channels; i++) {
2676		if (echan[i].alloced) {
2677			/* ensure access through shadow region 0 */
2678			edma_or_array2(ecc, EDMA_DRAE, 0,
2679				       EDMA_REG_ARRAY_INDEX(i),
2680				       EDMA_CHANNEL_BIT(i));
2681
2682			edma_setup_interrupt(&echan[i], true);
2683
2684			/* Set up channel -> slot mapping for the entry slot */
2685			edma_set_chmap(&echan[i], echan[i].slot[0]);
2686		}
2687	}
2688
2689	return 0;
2690}
2691#endif
2692
2693static const struct dev_pm_ops edma_pm_ops = {
2694	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2695};
2696
2697static struct platform_driver edma_driver = {
2698	.probe		= edma_probe,
2699	.remove		= edma_remove,
2700	.driver = {
2701		.name	= "edma",
2702		.pm	= &edma_pm_ops,
2703		.of_match_table = edma_of_ids,
2704	},
2705};
2706
2707static int edma_tptc_probe(struct platform_device *pdev)
2708{
2709	pm_runtime_enable(&pdev->dev);
2710	return pm_runtime_get_sync(&pdev->dev);
2711}
2712
2713static struct platform_driver edma_tptc_driver = {
2714	.probe		= edma_tptc_probe,
2715	.driver = {
2716		.name	= "edma3-tptc",
2717		.of_match_table = edma_tptc_of_ids,
2718	},
2719};
2720
2721static bool edma_filter_fn(struct dma_chan *chan, void *param)
2722{
2723	bool match = false;
2724
2725	if (chan->device->dev->driver == &edma_driver.driver) {
2726		struct edma_chan *echan = to_edma_chan(chan);
2727		unsigned ch_req = *(unsigned *)param;
2728		if (ch_req == echan->ch_num) {
2729			/* The channel is going to be used as HW synchronized */
2730			echan->hw_triggered = true;
2731			match = true;
2732		}
2733	}
2734	return match;
2735}
2736
2737static int edma_init(void)
2738{
2739	int ret;
2740
2741	ret = platform_driver_register(&edma_tptc_driver);
2742	if (ret)
2743		return ret;
2744
2745	return platform_driver_register(&edma_driver);
2746}
2747subsys_initcall(edma_init);
2748
2749static void __exit edma_exit(void)
2750{
2751	platform_driver_unregister(&edma_driver);
2752	platform_driver_unregister(&edma_tptc_driver);
2753}
2754module_exit(edma_exit);
2755
2756MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2757MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2758MODULE_LICENSE("GPL v2");
2759