1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
4 *
5 * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6 */
7
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/of_dma.h>
22#include <linux/platform_device.h>
23#include <linux/pm.h>
24#include <linux/pm_runtime.h>
25#include <linux/reset.h>
26#include <linux/slab.h>
27#include <linux/wait.h>
28
29#include "dmaengine.h"
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/tegra_apb_dma.h>
33
34#define TEGRA_APBDMA_GENERAL			0x0
35#define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
36
37#define TEGRA_APBDMA_CONTROL			0x010
38#define TEGRA_APBDMA_IRQ_MASK			0x01c
39#define TEGRA_APBDMA_IRQ_MASK_SET		0x020
40
41/* CSR register */
42#define TEGRA_APBDMA_CHAN_CSR			0x00
43#define TEGRA_APBDMA_CSR_ENB			BIT(31)
44#define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
45#define TEGRA_APBDMA_CSR_HOLD			BIT(29)
46#define TEGRA_APBDMA_CSR_DIR			BIT(28)
47#define TEGRA_APBDMA_CSR_ONCE			BIT(27)
48#define TEGRA_APBDMA_CSR_FLOW			BIT(21)
49#define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
50#define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
51#define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
52
53/* STATUS register */
54#define TEGRA_APBDMA_CHAN_STATUS		0x004
55#define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
56#define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
57#define TEGRA_APBDMA_STATUS_HALT		BIT(29)
58#define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
59#define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
60#define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
61
62#define TEGRA_APBDMA_CHAN_CSRE			0x00C
63#define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
64
65/* AHB memory address */
66#define TEGRA_APBDMA_CHAN_AHBPTR		0x010
67
68/* AHB sequence register */
69#define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
70#define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
71#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
72#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
73#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
74#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
75#define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
76#define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
77#define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
78#define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
79#define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
80#define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
81#define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
82#define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
83
84/* APB address */
85#define TEGRA_APBDMA_CHAN_APBPTR		0x018
86
87/* APB sequence register */
88#define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
89#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
90#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
91#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
92#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
93#define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
94#define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
95#define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
96
97/* Tegra148 specific registers */
98#define TEGRA_APBDMA_CHAN_WCOUNT		0x20
99
100#define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
101
102/*
103 * If any burst is in flight and DMA paused then this is the time to complete
104 * on-flight burst and update DMA status register.
105 */
106#define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
107
108/* Channel base address offset from APBDMA base address */
109#define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
110
111#define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112
113struct tegra_dma;
114
115/*
116 * tegra_dma_chip_data Tegra chip specific DMA data
117 * @nr_channels: Number of channels available in the controller.
118 * @channel_reg_size: Channel register size/stride.
119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120 * @support_channel_pause: Support channel wise pause of dma.
121 * @support_separate_wcount_reg: Support separate word count register.
122 */
123struct tegra_dma_chip_data {
124	unsigned int nr_channels;
125	unsigned int channel_reg_size;
126	unsigned int max_dma_count;
127	bool support_channel_pause;
128	bool support_separate_wcount_reg;
129};
130
131/* DMA channel registers */
132struct tegra_dma_channel_regs {
133	u32 csr;
134	u32 ahb_ptr;
135	u32 apb_ptr;
136	u32 ahb_seq;
137	u32 apb_seq;
138	u32 wcount;
139};
140
141/*
142 * tegra_dma_sg_req: DMA request details to configure hardware. This
143 * contains the details for one transfer to configure DMA hw.
144 * The client's request for data transfer can be broken into multiple
145 * sub-transfer as per requester details and hw support.
146 * This sub transfer get added in the list of transfer and point to Tegra
147 * DMA descriptor which manages the transfer details.
148 */
149struct tegra_dma_sg_req {
150	struct tegra_dma_channel_regs	ch_regs;
151	unsigned int			req_len;
152	bool				configured;
153	bool				last_sg;
154	struct list_head		node;
155	struct tegra_dma_desc		*dma_desc;
156	unsigned int			words_xferred;
157};
158
159/*
160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161 * This descriptor keep track of transfer status, callbacks and request
162 * counts etc.
163 */
164struct tegra_dma_desc {
165	struct dma_async_tx_descriptor	txd;
166	unsigned int			bytes_requested;
167	unsigned int			bytes_transferred;
168	enum dma_status			dma_status;
169	struct list_head		node;
170	struct list_head		tx_list;
171	struct list_head		cb_node;
172	unsigned int			cb_count;
173};
174
175struct tegra_dma_channel;
176
177typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178				bool to_terminate);
179
180/* tegra_dma_channel: Channel specific information */
181struct tegra_dma_channel {
182	struct dma_chan		dma_chan;
183	char			name[12];
184	bool			config_init;
185	unsigned int		id;
186	void __iomem		*chan_addr;
187	spinlock_t		lock;
188	bool			busy;
189	struct tegra_dma	*tdma;
190	bool			cyclic;
191
192	/* Different lists for managing the requests */
193	struct list_head	free_sg_req;
194	struct list_head	pending_sg_req;
195	struct list_head	free_dma_desc;
196	struct list_head	cb_desc;
197
198	/* ISR handler and tasklet for bottom half of isr handling */
199	dma_isr_handler		isr_handler;
200	struct tasklet_struct	tasklet;
201
202	/* Channel-slave specific configuration */
203	unsigned int slave_id;
204	struct dma_slave_config dma_sconfig;
205	struct tegra_dma_channel_regs channel_reg;
206
207	struct wait_queue_head wq;
208};
209
210/* tegra_dma: Tegra DMA specific information */
211struct tegra_dma {
212	struct dma_device		dma_dev;
213	struct device			*dev;
214	struct clk			*dma_clk;
215	struct reset_control		*rst;
216	spinlock_t			global_lock;
217	void __iomem			*base_addr;
218	const struct tegra_dma_chip_data *chip_data;
219
220	/*
221	 * Counter for managing global pausing of the DMA controller.
222	 * Only applicable for devices that don't support individual
223	 * channel pausing.
224	 */
225	u32				global_pause_count;
226
227	/* Last member of the structure */
228	struct tegra_dma_channel channels[];
229};
230
231static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232{
233	writel(val, tdma->base_addr + reg);
234}
235
236static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237{
238	return readl(tdma->base_addr + reg);
239}
240
241static inline void tdc_write(struct tegra_dma_channel *tdc,
242			     u32 reg, u32 val)
243{
244	writel(val, tdc->chan_addr + reg);
245}
246
247static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248{
249	return readl(tdc->chan_addr + reg);
250}
251
252static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253{
254	return container_of(dc, struct tegra_dma_channel, dma_chan);
255}
256
257static inline struct tegra_dma_desc *
258txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
259{
260	return container_of(td, struct tegra_dma_desc, txd);
261}
262
263static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264{
265	return &tdc->dma_chan.dev->device;
266}
267
268static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269
270/* Get DMA desc from free list, if not there then allocate it.  */
271static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
272{
273	struct tegra_dma_desc *dma_desc;
274	unsigned long flags;
275
276	spin_lock_irqsave(&tdc->lock, flags);
277
278	/* Do not allocate if desc are waiting for ack */
279	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281			list_del(&dma_desc->node);
282			spin_unlock_irqrestore(&tdc->lock, flags);
283			dma_desc->txd.flags = 0;
284			return dma_desc;
285		}
286	}
287
288	spin_unlock_irqrestore(&tdc->lock, flags);
289
290	/* Allocate DMA desc */
291	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292	if (!dma_desc)
293		return NULL;
294
295	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297	dma_desc->txd.flags = 0;
298
299	return dma_desc;
300}
301
302static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303			       struct tegra_dma_desc *dma_desc)
304{
305	unsigned long flags;
306
307	spin_lock_irqsave(&tdc->lock, flags);
308	if (!list_empty(&dma_desc->tx_list))
309		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311	spin_unlock_irqrestore(&tdc->lock, flags);
312}
313
314static struct tegra_dma_sg_req *
315tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
316{
317	struct tegra_dma_sg_req *sg_req;
318	unsigned long flags;
319
320	spin_lock_irqsave(&tdc->lock, flags);
321	if (!list_empty(&tdc->free_sg_req)) {
322		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323					  node);
324		list_del(&sg_req->node);
325		spin_unlock_irqrestore(&tdc->lock, flags);
326		return sg_req;
327	}
328	spin_unlock_irqrestore(&tdc->lock, flags);
329
330	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
331
332	return sg_req;
333}
334
335static int tegra_dma_slave_config(struct dma_chan *dc,
336				  struct dma_slave_config *sconfig)
337{
338	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
339
340	if (!list_empty(&tdc->pending_sg_req)) {
341		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342		return -EBUSY;
343	}
344
345	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346	if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
347	    sconfig->device_fc) {
348		if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
349			return -EINVAL;
350		tdc->slave_id = sconfig->slave_id;
351	}
352	tdc->config_init = true;
353
354	return 0;
355}
356
357static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
358				   bool wait_for_burst_complete)
359{
360	struct tegra_dma *tdma = tdc->tdma;
361
362	spin_lock(&tdma->global_lock);
363
364	if (tdc->tdma->global_pause_count == 0) {
365		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
366		if (wait_for_burst_complete)
367			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
368	}
369
370	tdc->tdma->global_pause_count++;
371
372	spin_unlock(&tdma->global_lock);
373}
374
375static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
376{
377	struct tegra_dma *tdma = tdc->tdma;
378
379	spin_lock(&tdma->global_lock);
380
381	if (WARN_ON(tdc->tdma->global_pause_count == 0))
382		goto out;
383
384	if (--tdc->tdma->global_pause_count == 0)
385		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
386			   TEGRA_APBDMA_GENERAL_ENABLE);
387
388out:
389	spin_unlock(&tdma->global_lock);
390}
391
392static void tegra_dma_pause(struct tegra_dma_channel *tdc,
393			    bool wait_for_burst_complete)
394{
395	struct tegra_dma *tdma = tdc->tdma;
396
397	if (tdma->chip_data->support_channel_pause) {
398		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
399			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
400		if (wait_for_burst_complete)
401			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
402	} else {
403		tegra_dma_global_pause(tdc, wait_for_burst_complete);
404	}
405}
406
407static void tegra_dma_resume(struct tegra_dma_channel *tdc)
408{
409	struct tegra_dma *tdma = tdc->tdma;
410
411	if (tdma->chip_data->support_channel_pause)
412		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
413	else
414		tegra_dma_global_resume(tdc);
415}
416
417static void tegra_dma_stop(struct tegra_dma_channel *tdc)
418{
419	u32 csr, status;
420
421	/* Disable interrupts */
422	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
423	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
424	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
425
426	/* Disable DMA */
427	csr &= ~TEGRA_APBDMA_CSR_ENB;
428	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
429
430	/* Clear interrupt status if it is there */
431	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
432	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
433		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
434		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
435	}
436	tdc->busy = false;
437}
438
439static void tegra_dma_start(struct tegra_dma_channel *tdc,
440			    struct tegra_dma_sg_req *sg_req)
441{
442	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
443
444	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
445	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
446	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
447	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
448	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
449	if (tdc->tdma->chip_data->support_separate_wcount_reg)
450		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
451
452	/* Start DMA */
453	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
454		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
455}
456
457static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
458					 struct tegra_dma_sg_req *nsg_req)
459{
460	unsigned long status;
461
462	/*
463	 * The DMA controller reloads the new configuration for next transfer
464	 * after last burst of current transfer completes.
465	 * If there is no IEC status then this makes sure that last burst
466	 * has not be completed. There may be case that last burst is on
467	 * flight and so it can complete but because DMA is paused, it
468	 * will not generates interrupt as well as not reload the new
469	 * configuration.
470	 * If there is already IEC status then interrupt handler need to
471	 * load new configuration.
472	 */
473	tegra_dma_pause(tdc, false);
474	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
475
476	/*
477	 * If interrupt is pending then do nothing as the ISR will handle
478	 * the programing for new request.
479	 */
480	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
481		dev_err(tdc2dev(tdc),
482			"Skipping new configuration as interrupt is pending\n");
483		tegra_dma_resume(tdc);
484		return;
485	}
486
487	/* Safe to program new configuration */
488	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
489	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
490	if (tdc->tdma->chip_data->support_separate_wcount_reg)
491		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
492			  nsg_req->ch_regs.wcount);
493	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
494		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
495	nsg_req->configured = true;
496	nsg_req->words_xferred = 0;
497
498	tegra_dma_resume(tdc);
499}
500
501static void tdc_start_head_req(struct tegra_dma_channel *tdc)
502{
503	struct tegra_dma_sg_req *sg_req;
504
505	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
506	tegra_dma_start(tdc, sg_req);
507	sg_req->configured = true;
508	sg_req->words_xferred = 0;
509	tdc->busy = true;
510}
511
512static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
513{
514	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
515
516	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
517	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
518		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
519					   node);
520		tegra_dma_configure_for_next(tdc, hnsgreq);
521	}
522}
523
524static inline unsigned int
525get_current_xferred_count(struct tegra_dma_channel *tdc,
526			  struct tegra_dma_sg_req *sg_req,
527			  unsigned long status)
528{
529	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
530}
531
532static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
533{
534	struct tegra_dma_desc *dma_desc;
535	struct tegra_dma_sg_req *sgreq;
536
537	while (!list_empty(&tdc->pending_sg_req)) {
538		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
539					 node);
540		list_move_tail(&sgreq->node, &tdc->free_sg_req);
541		if (sgreq->last_sg) {
542			dma_desc = sgreq->dma_desc;
543			dma_desc->dma_status = DMA_ERROR;
544			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
545
546			/* Add in cb list if it is not there. */
547			if (!dma_desc->cb_count)
548				list_add_tail(&dma_desc->cb_node,
549					      &tdc->cb_desc);
550			dma_desc->cb_count++;
551		}
552	}
553	tdc->isr_handler = NULL;
554}
555
556static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
557					   bool to_terminate)
558{
559	struct tegra_dma_sg_req *hsgreq;
560
561	/*
562	 * Check that head req on list should be in flight.
563	 * If it is not in flight then abort transfer as
564	 * looping of transfer can not continue.
565	 */
566	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
567	if (!hsgreq->configured) {
568		tegra_dma_stop(tdc);
569		pm_runtime_put(tdc->tdma->dev);
570		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
571		tegra_dma_abort_all(tdc);
572		return false;
573	}
574
575	/* Configure next request */
576	if (!to_terminate)
577		tdc_configure_next_head_desc(tdc);
578
579	return true;
580}
581
582static void handle_once_dma_done(struct tegra_dma_channel *tdc,
583				 bool to_terminate)
584{
585	struct tegra_dma_desc *dma_desc;
586	struct tegra_dma_sg_req *sgreq;
587
588	tdc->busy = false;
589	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
590	dma_desc = sgreq->dma_desc;
591	dma_desc->bytes_transferred += sgreq->req_len;
592
593	list_del(&sgreq->node);
594	if (sgreq->last_sg) {
595		dma_desc->dma_status = DMA_COMPLETE;
596		dma_cookie_complete(&dma_desc->txd);
597		if (!dma_desc->cb_count)
598			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
599		dma_desc->cb_count++;
600		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
601	}
602	list_add_tail(&sgreq->node, &tdc->free_sg_req);
603
604	/* Do not start DMA if it is going to be terminate */
605	if (to_terminate)
606		return;
607
608	if (list_empty(&tdc->pending_sg_req)) {
609		pm_runtime_put(tdc->tdma->dev);
610		return;
611	}
612
613	tdc_start_head_req(tdc);
614}
615
616static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
617					    bool to_terminate)
618{
619	struct tegra_dma_desc *dma_desc;
620	struct tegra_dma_sg_req *sgreq;
621	bool st;
622
623	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
624	dma_desc = sgreq->dma_desc;
625	/* if we dma for long enough the transfer count will wrap */
626	dma_desc->bytes_transferred =
627		(dma_desc->bytes_transferred + sgreq->req_len) %
628		dma_desc->bytes_requested;
629
630	/* Callback need to be call */
631	if (!dma_desc->cb_count)
632		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
633	dma_desc->cb_count++;
634
635	sgreq->words_xferred = 0;
636
637	/* If not last req then put at end of pending list */
638	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
639		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
640		sgreq->configured = false;
641		st = handle_continuous_head_request(tdc, to_terminate);
642		if (!st)
643			dma_desc->dma_status = DMA_ERROR;
644	}
645}
646
647static void tegra_dma_tasklet(struct tasklet_struct *t)
648{
649	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
650	struct dmaengine_desc_callback cb;
651	struct tegra_dma_desc *dma_desc;
652	unsigned int cb_count;
653	unsigned long flags;
654
655	spin_lock_irqsave(&tdc->lock, flags);
656	while (!list_empty(&tdc->cb_desc)) {
657		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
658					    cb_node);
659		list_del(&dma_desc->cb_node);
660		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
661		cb_count = dma_desc->cb_count;
662		dma_desc->cb_count = 0;
663		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
664					    cb.callback);
665		spin_unlock_irqrestore(&tdc->lock, flags);
666		while (cb_count--)
667			dmaengine_desc_callback_invoke(&cb, NULL);
668		spin_lock_irqsave(&tdc->lock, flags);
669	}
670	spin_unlock_irqrestore(&tdc->lock, flags);
671}
672
673static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
674{
675	struct tegra_dma_channel *tdc = dev_id;
676	u32 status;
677
678	spin_lock(&tdc->lock);
679
680	trace_tegra_dma_isr(&tdc->dma_chan, irq);
681	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
682	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
683		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
684		tdc->isr_handler(tdc, false);
685		tasklet_schedule(&tdc->tasklet);
686		wake_up_all(&tdc->wq);
687		spin_unlock(&tdc->lock);
688		return IRQ_HANDLED;
689	}
690
691	spin_unlock(&tdc->lock);
692	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
693		 status);
694
695	return IRQ_NONE;
696}
697
698static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
699{
700	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
701	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
702	unsigned long flags;
703	dma_cookie_t cookie;
704
705	spin_lock_irqsave(&tdc->lock, flags);
706	dma_desc->dma_status = DMA_IN_PROGRESS;
707	cookie = dma_cookie_assign(&dma_desc->txd);
708	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
709	spin_unlock_irqrestore(&tdc->lock, flags);
710
711	return cookie;
712}
713
714static void tegra_dma_issue_pending(struct dma_chan *dc)
715{
716	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
717	unsigned long flags;
718	int err;
719
720	spin_lock_irqsave(&tdc->lock, flags);
721	if (list_empty(&tdc->pending_sg_req)) {
722		dev_err(tdc2dev(tdc), "No DMA request\n");
723		goto end;
724	}
725	if (!tdc->busy) {
726		err = pm_runtime_resume_and_get(tdc->tdma->dev);
727		if (err < 0) {
728			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
729			goto end;
730		}
731
732		tdc_start_head_req(tdc);
733
734		/* Continuous single mode: Configure next req */
735		if (tdc->cyclic) {
736			/*
737			 * Wait for 1 burst time for configure DMA for
738			 * next transfer.
739			 */
740			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741			tdc_configure_next_head_desc(tdc);
742		}
743	}
744end:
745	spin_unlock_irqrestore(&tdc->lock, flags);
746}
747
748static int tegra_dma_terminate_all(struct dma_chan *dc)
749{
750	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751	struct tegra_dma_desc *dma_desc;
752	struct tegra_dma_sg_req *sgreq;
753	unsigned long flags;
754	u32 status, wcount;
755	bool was_busy;
756
757	spin_lock_irqsave(&tdc->lock, flags);
758
759	if (!tdc->busy)
760		goto skip_dma_stop;
761
762	/* Pause DMA before checking the queue status */
763	tegra_dma_pause(tdc, true);
764
765	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768		tdc->isr_handler(tdc, true);
769		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770	}
771	if (tdc->tdma->chip_data->support_separate_wcount_reg)
772		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773	else
774		wcount = status;
775
776	was_busy = tdc->busy;
777	tegra_dma_stop(tdc);
778
779	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
781					 node);
782		sgreq->dma_desc->bytes_transferred +=
783				get_current_xferred_count(tdc, sgreq, wcount);
784	}
785	tegra_dma_resume(tdc);
786
787	pm_runtime_put(tdc->tdma->dev);
788	wake_up_all(&tdc->wq);
789
790skip_dma_stop:
791	tegra_dma_abort_all(tdc);
792
793	while (!list_empty(&tdc->cb_desc)) {
794		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
795					    cb_node);
796		list_del(&dma_desc->cb_node);
797		dma_desc->cb_count = 0;
798	}
799	spin_unlock_irqrestore(&tdc->lock, flags);
800
801	return 0;
802}
803
804static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
805{
806	unsigned long flags;
807	u32 status;
808
809	spin_lock_irqsave(&tdc->lock, flags);
810	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
811	spin_unlock_irqrestore(&tdc->lock, flags);
812
813	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
814}
815
816static void tegra_dma_synchronize(struct dma_chan *dc)
817{
818	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
819	int err;
820
821	err = pm_runtime_resume_and_get(tdc->tdma->dev);
822	if (err < 0) {
823		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
824		return;
825	}
826
827	/*
828	 * CPU, which handles interrupt, could be busy in
829	 * uninterruptible state, in this case sibling CPU
830	 * should wait until interrupt is handled.
831	 */
832	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
833
834	tasklet_kill(&tdc->tasklet);
835
836	pm_runtime_put(tdc->tdma->dev);
837}
838
839static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
840					       struct tegra_dma_sg_req *sg_req)
841{
842	u32 status, wcount = 0;
843
844	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
845		return 0;
846
847	if (tdc->tdma->chip_data->support_separate_wcount_reg)
848		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
849
850	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
851
852	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
853		wcount = status;
854
855	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
856		return sg_req->req_len;
857
858	wcount = get_current_xferred_count(tdc, sg_req, wcount);
859
860	if (!wcount) {
861		/*
862		 * If wcount wasn't ever polled for this SG before, then
863		 * simply assume that transfer hasn't started yet.
864		 *
865		 * Otherwise it's the end of the transfer.
866		 *
867		 * The alternative would be to poll the status register
868		 * until EOC bit is set or wcount goes UP. That's so
869		 * because EOC bit is getting set only after the last
870		 * burst's completion and counter is less than the actual
871		 * transfer size by 4 bytes. The counter value wraps around
872		 * in a cyclic mode before EOC is set(!), so we can't easily
873		 * distinguish start of transfer from its end.
874		 */
875		if (sg_req->words_xferred)
876			wcount = sg_req->req_len - 4;
877
878	} else if (wcount < sg_req->words_xferred) {
879		/*
880		 * This case will never happen for a non-cyclic transfer.
881		 *
882		 * For a cyclic transfer, although it is possible for the
883		 * next transfer to have already started (resetting the word
884		 * count), this case should still not happen because we should
885		 * have detected that the EOC bit is set and hence the transfer
886		 * was completed.
887		 */
888		WARN_ON_ONCE(1);
889
890		wcount = sg_req->req_len - 4;
891	} else {
892		sg_req->words_xferred = wcount;
893	}
894
895	return wcount;
896}
897
898static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
899					   dma_cookie_t cookie,
900					   struct dma_tx_state *txstate)
901{
902	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
903	struct tegra_dma_desc *dma_desc;
904	struct tegra_dma_sg_req *sg_req;
905	enum dma_status ret;
906	unsigned long flags;
907	unsigned int residual;
908	unsigned int bytes = 0;
909
910	ret = dma_cookie_status(dc, cookie, txstate);
911	if (ret == DMA_COMPLETE)
912		return ret;
913
914	spin_lock_irqsave(&tdc->lock, flags);
915
916	/* Check on wait_ack desc status */
917	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
918		if (dma_desc->txd.cookie == cookie) {
919			ret = dma_desc->dma_status;
920			goto found;
921		}
922	}
923
924	/* Check in pending list */
925	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
926		dma_desc = sg_req->dma_desc;
927		if (dma_desc->txd.cookie == cookie) {
928			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
929			ret = dma_desc->dma_status;
930			goto found;
931		}
932	}
933
934	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
935	dma_desc = NULL;
936
937found:
938	if (dma_desc && txstate) {
939		residual = dma_desc->bytes_requested -
940			   ((dma_desc->bytes_transferred + bytes) %
941			    dma_desc->bytes_requested);
942		dma_set_residue(txstate, residual);
943	}
944
945	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
946	spin_unlock_irqrestore(&tdc->lock, flags);
947
948	return ret;
949}
950
951static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
952					 enum dma_slave_buswidth slave_bw)
953{
954	switch (slave_bw) {
955	case DMA_SLAVE_BUSWIDTH_1_BYTE:
956		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
957	case DMA_SLAVE_BUSWIDTH_2_BYTES:
958		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
959	case DMA_SLAVE_BUSWIDTH_4_BYTES:
960		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961	case DMA_SLAVE_BUSWIDTH_8_BYTES:
962		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
963	default:
964		dev_warn(tdc2dev(tdc),
965			 "slave bw is not supported, using 32bits\n");
966		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
967	}
968}
969
970static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
971					  u32 burst_size,
972					  enum dma_slave_buswidth slave_bw,
973					  u32 len)
974{
975	unsigned int burst_byte, burst_ahb_width;
976
977	/*
978	 * burst_size from client is in terms of the bus_width.
979	 * convert them into AHB memory width which is 4 byte.
980	 */
981	burst_byte = burst_size * slave_bw;
982	burst_ahb_width = burst_byte / 4;
983
984	/* If burst size is 0 then calculate the burst size based on length */
985	if (!burst_ahb_width) {
986		if (len & 0xF)
987			return TEGRA_APBDMA_AHBSEQ_BURST_1;
988		else if ((len >> 4) & 0x1)
989			return TEGRA_APBDMA_AHBSEQ_BURST_4;
990		else
991			return TEGRA_APBDMA_AHBSEQ_BURST_8;
992	}
993	if (burst_ahb_width < 4)
994		return TEGRA_APBDMA_AHBSEQ_BURST_1;
995	else if (burst_ahb_width < 8)
996		return TEGRA_APBDMA_AHBSEQ_BURST_4;
997	else
998		return TEGRA_APBDMA_AHBSEQ_BURST_8;
999}
1000
1001static int get_transfer_param(struct tegra_dma_channel *tdc,
1002			      enum dma_transfer_direction direction,
1003			      u32 *apb_addr,
1004			      u32 *apb_seq,
1005			      u32 *csr,
1006			      unsigned int *burst_size,
1007			      enum dma_slave_buswidth *slave_bw)
1008{
1009	switch (direction) {
1010	case DMA_MEM_TO_DEV:
1011		*apb_addr = tdc->dma_sconfig.dst_addr;
1012		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1013		*burst_size = tdc->dma_sconfig.dst_maxburst;
1014		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1015		*csr = TEGRA_APBDMA_CSR_DIR;
1016		return 0;
1017
1018	case DMA_DEV_TO_MEM:
1019		*apb_addr = tdc->dma_sconfig.src_addr;
1020		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1021		*burst_size = tdc->dma_sconfig.src_maxburst;
1022		*slave_bw = tdc->dma_sconfig.src_addr_width;
1023		*csr = 0;
1024		return 0;
1025
1026	default:
1027		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1028		break;
1029	}
1030
1031	return -EINVAL;
1032}
1033
1034static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1035				  struct tegra_dma_channel_regs *ch_regs,
1036				  u32 len)
1037{
1038	u32 len_field = (len - 4) & 0xFFFC;
1039
1040	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1041		ch_regs->wcount = len_field;
1042	else
1043		ch_regs->csr |= len_field;
1044}
1045
1046static struct dma_async_tx_descriptor *
1047tegra_dma_prep_slave_sg(struct dma_chan *dc,
1048			struct scatterlist *sgl,
1049			unsigned int sg_len,
1050			enum dma_transfer_direction direction,
1051			unsigned long flags,
1052			void *context)
1053{
1054	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1055	struct tegra_dma_sg_req *sg_req = NULL;
1056	u32 csr, ahb_seq, apb_ptr, apb_seq;
1057	enum dma_slave_buswidth slave_bw;
1058	struct tegra_dma_desc *dma_desc;
1059	struct list_head req_list;
1060	struct scatterlist *sg;
1061	unsigned int burst_size;
1062	unsigned int i;
1063
1064	if (!tdc->config_init) {
1065		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1066		return NULL;
1067	}
1068	if (sg_len < 1) {
1069		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1070		return NULL;
1071	}
1072
1073	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1074			       &burst_size, &slave_bw) < 0)
1075		return NULL;
1076
1077	INIT_LIST_HEAD(&req_list);
1078
1079	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1080	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1081					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1082	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1083
1084	csr |= TEGRA_APBDMA_CSR_ONCE;
1085
1086	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1087		csr |= TEGRA_APBDMA_CSR_FLOW;
1088		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089	}
1090
1091	if (flags & DMA_PREP_INTERRUPT) {
1092		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1093	} else {
1094		WARN_ON_ONCE(1);
1095		return NULL;
1096	}
1097
1098	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1099
1100	dma_desc = tegra_dma_desc_get(tdc);
1101	if (!dma_desc) {
1102		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1103		return NULL;
1104	}
1105	INIT_LIST_HEAD(&dma_desc->tx_list);
1106	INIT_LIST_HEAD(&dma_desc->cb_node);
1107	dma_desc->cb_count = 0;
1108	dma_desc->bytes_requested = 0;
1109	dma_desc->bytes_transferred = 0;
1110	dma_desc->dma_status = DMA_IN_PROGRESS;
1111
1112	/* Make transfer requests */
1113	for_each_sg(sgl, sg, sg_len, i) {
1114		u32 len, mem;
1115
1116		mem = sg_dma_address(sg);
1117		len = sg_dma_len(sg);
1118
1119		if ((len & 3) || (mem & 3) ||
1120		    len > tdc->tdma->chip_data->max_dma_count) {
1121			dev_err(tdc2dev(tdc),
1122				"DMA length/memory address is not supported\n");
1123			tegra_dma_desc_put(tdc, dma_desc);
1124			return NULL;
1125		}
1126
1127		sg_req = tegra_dma_sg_req_get(tdc);
1128		if (!sg_req) {
1129			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1130			tegra_dma_desc_put(tdc, dma_desc);
1131			return NULL;
1132		}
1133
1134		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1135		dma_desc->bytes_requested += len;
1136
1137		sg_req->ch_regs.apb_ptr = apb_ptr;
1138		sg_req->ch_regs.ahb_ptr = mem;
1139		sg_req->ch_regs.csr = csr;
1140		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1141		sg_req->ch_regs.apb_seq = apb_seq;
1142		sg_req->ch_regs.ahb_seq = ahb_seq;
1143		sg_req->configured = false;
1144		sg_req->last_sg = false;
1145		sg_req->dma_desc = dma_desc;
1146		sg_req->req_len = len;
1147
1148		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1149	}
1150	sg_req->last_sg = true;
1151	if (flags & DMA_CTRL_ACK)
1152		dma_desc->txd.flags = DMA_CTRL_ACK;
1153
1154	/*
1155	 * Make sure that mode should not be conflicting with currently
1156	 * configured mode.
1157	 */
1158	if (!tdc->isr_handler) {
1159		tdc->isr_handler = handle_once_dma_done;
1160		tdc->cyclic = false;
1161	} else {
1162		if (tdc->cyclic) {
1163			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1164			tegra_dma_desc_put(tdc, dma_desc);
1165			return NULL;
1166		}
1167	}
1168
1169	return &dma_desc->txd;
1170}
1171
1172static struct dma_async_tx_descriptor *
1173tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1174			  size_t buf_len,
1175			  size_t period_len,
1176			  enum dma_transfer_direction direction,
1177			  unsigned long flags)
1178{
1179	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1180	struct tegra_dma_sg_req *sg_req = NULL;
1181	u32 csr, ahb_seq, apb_ptr, apb_seq;
1182	enum dma_slave_buswidth slave_bw;
1183	struct tegra_dma_desc *dma_desc;
1184	dma_addr_t mem = buf_addr;
1185	unsigned int burst_size;
1186	size_t len, remain_len;
1187
1188	if (!buf_len || !period_len) {
1189		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1190		return NULL;
1191	}
1192
1193	if (!tdc->config_init) {
1194		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1195		return NULL;
1196	}
1197
1198	/*
1199	 * We allow to take more number of requests till DMA is
1200	 * not started. The driver will loop over all requests.
1201	 * Once DMA is started then new requests can be queued only after
1202	 * terminating the DMA.
1203	 */
1204	if (tdc->busy) {
1205		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1206		return NULL;
1207	}
1208
1209	/*
1210	 * We only support cycle transfer when buf_len is multiple of
1211	 * period_len.
1212	 */
1213	if (buf_len % period_len) {
1214		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1215		return NULL;
1216	}
1217
1218	len = period_len;
1219	if ((len & 3) || (buf_addr & 3) ||
1220	    len > tdc->tdma->chip_data->max_dma_count) {
1221		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1222		return NULL;
1223	}
1224
1225	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1226			       &burst_size, &slave_bw) < 0)
1227		return NULL;
1228
1229	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1230	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1231					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1232	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1233
1234	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1235		csr |= TEGRA_APBDMA_CSR_FLOW;
1236		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1237	}
1238
1239	if (flags & DMA_PREP_INTERRUPT) {
1240		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1241	} else {
1242		WARN_ON_ONCE(1);
1243		return NULL;
1244	}
1245
1246	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1247
1248	dma_desc = tegra_dma_desc_get(tdc);
1249	if (!dma_desc) {
1250		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1251		return NULL;
1252	}
1253
1254	INIT_LIST_HEAD(&dma_desc->tx_list);
1255	INIT_LIST_HEAD(&dma_desc->cb_node);
1256	dma_desc->cb_count = 0;
1257
1258	dma_desc->bytes_transferred = 0;
1259	dma_desc->bytes_requested = buf_len;
1260	remain_len = buf_len;
1261
1262	/* Split transfer equal to period size */
1263	while (remain_len) {
1264		sg_req = tegra_dma_sg_req_get(tdc);
1265		if (!sg_req) {
1266			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1267			tegra_dma_desc_put(tdc, dma_desc);
1268			return NULL;
1269		}
1270
1271		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1272		sg_req->ch_regs.apb_ptr = apb_ptr;
1273		sg_req->ch_regs.ahb_ptr = mem;
1274		sg_req->ch_regs.csr = csr;
1275		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1276		sg_req->ch_regs.apb_seq = apb_seq;
1277		sg_req->ch_regs.ahb_seq = ahb_seq;
1278		sg_req->configured = false;
1279		sg_req->last_sg = false;
1280		sg_req->dma_desc = dma_desc;
1281		sg_req->req_len = len;
1282
1283		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1284		remain_len -= len;
1285		mem += len;
1286	}
1287	sg_req->last_sg = true;
1288	if (flags & DMA_CTRL_ACK)
1289		dma_desc->txd.flags = DMA_CTRL_ACK;
1290
1291	/*
1292	 * Make sure that mode should not be conflicting with currently
1293	 * configured mode.
1294	 */
1295	if (!tdc->isr_handler) {
1296		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1297		tdc->cyclic = true;
1298	} else {
1299		if (!tdc->cyclic) {
1300			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1301			tegra_dma_desc_put(tdc, dma_desc);
1302			return NULL;
1303		}
1304	}
1305
1306	return &dma_desc->txd;
1307}
1308
1309static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1310{
1311	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1312
1313	dma_cookie_init(&tdc->dma_chan);
1314
1315	return 0;
1316}
1317
1318static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1319{
1320	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1321	struct tegra_dma_desc *dma_desc;
1322	struct tegra_dma_sg_req *sg_req;
1323	struct list_head dma_desc_list;
1324	struct list_head sg_req_list;
1325
1326	INIT_LIST_HEAD(&dma_desc_list);
1327	INIT_LIST_HEAD(&sg_req_list);
1328
1329	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1330
1331	tegra_dma_terminate_all(dc);
1332	tasklet_kill(&tdc->tasklet);
1333
1334	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1335	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1336	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1337	INIT_LIST_HEAD(&tdc->cb_desc);
1338	tdc->config_init = false;
1339	tdc->isr_handler = NULL;
1340
1341	while (!list_empty(&dma_desc_list)) {
1342		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1343					    node);
1344		list_del(&dma_desc->node);
1345		kfree(dma_desc);
1346	}
1347
1348	while (!list_empty(&sg_req_list)) {
1349		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1350		list_del(&sg_req->node);
1351		kfree(sg_req);
1352	}
1353
1354	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1355}
1356
1357static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1358					   struct of_dma *ofdma)
1359{
1360	struct tegra_dma *tdma = ofdma->of_dma_data;
1361	struct tegra_dma_channel *tdc;
1362	struct dma_chan *chan;
1363
1364	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1365		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1366		return NULL;
1367	}
1368
1369	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1370	if (!chan)
1371		return NULL;
1372
1373	tdc = to_tegra_dma_chan(chan);
1374	tdc->slave_id = dma_spec->args[0];
1375
1376	return chan;
1377}
1378
1379/* Tegra20 specific DMA controller information */
1380static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1381	.nr_channels		= 16,
1382	.channel_reg_size	= 0x20,
1383	.max_dma_count		= 1024UL * 64,
1384	.support_channel_pause	= false,
1385	.support_separate_wcount_reg = false,
1386};
1387
1388/* Tegra30 specific DMA controller information */
1389static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1390	.nr_channels		= 32,
1391	.channel_reg_size	= 0x20,
1392	.max_dma_count		= 1024UL * 64,
1393	.support_channel_pause	= false,
1394	.support_separate_wcount_reg = false,
1395};
1396
1397/* Tegra114 specific DMA controller information */
1398static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1399	.nr_channels		= 32,
1400	.channel_reg_size	= 0x20,
1401	.max_dma_count		= 1024UL * 64,
1402	.support_channel_pause	= true,
1403	.support_separate_wcount_reg = false,
1404};
1405
1406/* Tegra148 specific DMA controller information */
1407static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1408	.nr_channels		= 32,
1409	.channel_reg_size	= 0x40,
1410	.max_dma_count		= 1024UL * 64,
1411	.support_channel_pause	= true,
1412	.support_separate_wcount_reg = true,
1413};
1414
1415static int tegra_dma_init_hw(struct tegra_dma *tdma)
1416{
1417	int err;
1418
1419	err = reset_control_assert(tdma->rst);
1420	if (err) {
1421		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1422		return err;
1423	}
1424
1425	err = clk_enable(tdma->dma_clk);
1426	if (err) {
1427		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1428		return err;
1429	}
1430
1431	/* reset DMA controller */
1432	udelay(2);
1433	reset_control_deassert(tdma->rst);
1434
1435	/* enable global DMA registers */
1436	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1439
1440	clk_disable(tdma->dma_clk);
1441
1442	return 0;
1443}
1444
1445static int tegra_dma_probe(struct platform_device *pdev)
1446{
1447	const struct tegra_dma_chip_data *cdata;
1448	struct tegra_dma *tdma;
1449	unsigned int i;
1450	size_t size;
1451	int ret;
1452
1453	cdata = of_device_get_match_data(&pdev->dev);
1454	size = struct_size(tdma, channels, cdata->nr_channels);
1455
1456	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1457	if (!tdma)
1458		return -ENOMEM;
1459
1460	tdma->dev = &pdev->dev;
1461	tdma->chip_data = cdata;
1462	platform_set_drvdata(pdev, tdma);
1463
1464	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1465	if (IS_ERR(tdma->base_addr))
1466		return PTR_ERR(tdma->base_addr);
1467
1468	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1469	if (IS_ERR(tdma->dma_clk)) {
1470		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1471		return PTR_ERR(tdma->dma_clk);
1472	}
1473
1474	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1475	if (IS_ERR(tdma->rst)) {
1476		dev_err(&pdev->dev, "Error: Missing reset\n");
1477		return PTR_ERR(tdma->rst);
1478	}
1479
1480	spin_lock_init(&tdma->global_lock);
1481
1482	ret = clk_prepare(tdma->dma_clk);
1483	if (ret)
1484		return ret;
1485
1486	ret = tegra_dma_init_hw(tdma);
1487	if (ret)
1488		goto err_clk_unprepare;
1489
1490	pm_runtime_irq_safe(&pdev->dev);
1491	pm_runtime_enable(&pdev->dev);
1492
1493	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1494	for (i = 0; i < cdata->nr_channels; i++) {
1495		struct tegra_dma_channel *tdc = &tdma->channels[i];
1496		int irq;
1497
1498		tdc->chan_addr = tdma->base_addr +
1499				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1500				 (i * cdata->channel_reg_size);
1501
1502		irq = platform_get_irq(pdev, i);
1503		if (irq < 0) {
1504			ret = irq;
1505			goto err_pm_disable;
1506		}
1507
1508		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1509		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1510				       tdc->name, tdc);
1511		if (ret) {
1512			dev_err(&pdev->dev,
1513				"request_irq failed with err %d channel %d\n",
1514				ret, i);
1515			goto err_pm_disable;
1516		}
1517
1518		tdc->dma_chan.device = &tdma->dma_dev;
1519		dma_cookie_init(&tdc->dma_chan);
1520		list_add_tail(&tdc->dma_chan.device_node,
1521			      &tdma->dma_dev.channels);
1522		tdc->tdma = tdma;
1523		tdc->id = i;
1524		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1525
1526		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1527		spin_lock_init(&tdc->lock);
1528		init_waitqueue_head(&tdc->wq);
1529
1530		INIT_LIST_HEAD(&tdc->pending_sg_req);
1531		INIT_LIST_HEAD(&tdc->free_sg_req);
1532		INIT_LIST_HEAD(&tdc->free_dma_desc);
1533		INIT_LIST_HEAD(&tdc->cb_desc);
1534	}
1535
1536	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1537	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1538	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1539
1540	tdma->global_pause_count = 0;
1541	tdma->dma_dev.dev = &pdev->dev;
1542	tdma->dma_dev.device_alloc_chan_resources =
1543					tegra_dma_alloc_chan_resources;
1544	tdma->dma_dev.device_free_chan_resources =
1545					tegra_dma_free_chan_resources;
1546	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1547	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1548	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1549		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1550		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1551		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1552	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1553		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1554		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1555		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1556	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1557	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1558	tdma->dma_dev.device_config = tegra_dma_slave_config;
1559	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1560	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1561	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1562	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1563
1564	ret = dma_async_device_register(&tdma->dma_dev);
1565	if (ret < 0) {
1566		dev_err(&pdev->dev,
1567			"Tegra20 APB DMA driver registration failed %d\n", ret);
1568		goto err_pm_disable;
1569	}
1570
1571	ret = of_dma_controller_register(pdev->dev.of_node,
1572					 tegra_dma_of_xlate, tdma);
1573	if (ret < 0) {
1574		dev_err(&pdev->dev,
1575			"Tegra20 APB DMA OF registration failed %d\n", ret);
1576		goto err_unregister_dma_dev;
1577	}
1578
1579	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1580		 cdata->nr_channels);
1581
1582	return 0;
1583
1584err_unregister_dma_dev:
1585	dma_async_device_unregister(&tdma->dma_dev);
1586
1587err_pm_disable:
1588	pm_runtime_disable(&pdev->dev);
1589
1590err_clk_unprepare:
1591	clk_unprepare(tdma->dma_clk);
1592
1593	return ret;
1594}
1595
1596static int tegra_dma_remove(struct platform_device *pdev)
1597{
1598	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1599
1600	of_dma_controller_free(pdev->dev.of_node);
1601	dma_async_device_unregister(&tdma->dma_dev);
1602	pm_runtime_disable(&pdev->dev);
1603	clk_unprepare(tdma->dma_clk);
1604
1605	return 0;
1606}
1607
1608static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1609{
1610	struct tegra_dma *tdma = dev_get_drvdata(dev);
1611
1612	clk_disable(tdma->dma_clk);
1613
1614	return 0;
1615}
1616
1617static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1618{
1619	struct tegra_dma *tdma = dev_get_drvdata(dev);
1620
1621	return clk_enable(tdma->dma_clk);
1622}
1623
1624static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1625{
1626	struct tegra_dma *tdma = dev_get_drvdata(dev);
1627	unsigned long flags;
1628	unsigned int i;
1629	bool busy;
1630
1631	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1632		struct tegra_dma_channel *tdc = &tdma->channels[i];
1633
1634		tasklet_kill(&tdc->tasklet);
1635
1636		spin_lock_irqsave(&tdc->lock, flags);
1637		busy = tdc->busy;
1638		spin_unlock_irqrestore(&tdc->lock, flags);
1639
1640		if (busy) {
1641			dev_err(tdma->dev, "channel %u busy\n", i);
1642			return -EBUSY;
1643		}
1644	}
1645
1646	return pm_runtime_force_suspend(dev);
1647}
1648
1649static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1650{
1651	struct tegra_dma *tdma = dev_get_drvdata(dev);
1652	int err;
1653
1654	err = tegra_dma_init_hw(tdma);
1655	if (err)
1656		return err;
1657
1658	return pm_runtime_force_resume(dev);
1659}
1660
1661static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1662	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1663			   NULL)
1664	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1665};
1666
1667static const struct of_device_id tegra_dma_of_match[] = {
1668	{
1669		.compatible = "nvidia,tegra148-apbdma",
1670		.data = &tegra148_dma_chip_data,
1671	}, {
1672		.compatible = "nvidia,tegra114-apbdma",
1673		.data = &tegra114_dma_chip_data,
1674	}, {
1675		.compatible = "nvidia,tegra30-apbdma",
1676		.data = &tegra30_dma_chip_data,
1677	}, {
1678		.compatible = "nvidia,tegra20-apbdma",
1679		.data = &tegra20_dma_chip_data,
1680	}, {
1681	},
1682};
1683MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1684
1685static struct platform_driver tegra_dmac_driver = {
1686	.driver = {
1687		.name	= "tegra-apbdma",
1688		.pm	= &tegra_dma_dev_pm_ops,
1689		.of_match_table = tegra_dma_of_match,
1690	},
1691	.probe		= tegra_dma_probe,
1692	.remove		= tegra_dma_remove,
1693};
1694
1695module_platform_driver(tegra_dmac_driver);
1696
1697MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1698MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1699MODULE_LICENSE("GPL v2");
1700