1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dmaengine.h>
15#include <linux/dma-mapping.h>
16#include <linux/err.h>
17#include <linux/init.h>
18#include <linux/iopoll.h>
19#include <linux/jiffies.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/of_dma.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/slab.h>
30
31#include "virt-dma.h"
32
33#define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34#define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35#define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36#define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37#define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38#define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39#define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40#define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41#define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42#define STM32_DMA_MASKI			(STM32_DMA_TCI \
43					 | STM32_DMA_TEI \
44					 | STM32_DMA_DMEI \
45					 | STM32_DMA_FEI)
46
47/* DMA Stream x Configuration Register */
48#define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49#define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50#define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51#define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52#define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53#define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54#define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55#define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56#define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57#define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58#define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59#define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60#define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61#define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62#define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63#define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
64#define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
65#define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
66#define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
67#define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
68#define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
69#define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
70#define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
71						*/
72#define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
73#define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
74#define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
75#define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
76					| STM32_DMA_SCR_MINC \
77					| STM32_DMA_SCR_PINCOS \
78					| STM32_DMA_SCR_PL_MASK)
79#define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
80					| STM32_DMA_SCR_TEIE \
81					| STM32_DMA_SCR_DMEIE)
82
83/* DMA Stream x number of data register */
84#define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
85
86/* DMA stream peripheral address register */
87#define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
88
89/* DMA stream x memory 0 address register */
90#define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
91
92/* DMA stream x memory 1 address register */
93#define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
94
95/* DMA stream x FIFO control register */
96#define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
97#define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
98#define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
99#define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
100#define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
101#define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
102					| STM32_DMA_SFCR_DMDIS)
103
104/* DMA direction */
105#define STM32_DMA_DEV_TO_MEM		0x00
106#define	STM32_DMA_MEM_TO_DEV		0x01
107#define	STM32_DMA_MEM_TO_MEM		0x02
108
109/* DMA priority level */
110#define STM32_DMA_PRIORITY_LOW		0x00
111#define STM32_DMA_PRIORITY_MEDIUM	0x01
112#define STM32_DMA_PRIORITY_HIGH		0x02
113#define STM32_DMA_PRIORITY_VERY_HIGH	0x03
114
115/* DMA FIFO threshold selection */
116#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
117#define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
118#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
119#define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
120#define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
121
122#define STM32_DMA_MAX_DATA_ITEMS	0xffff
123/*
124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125 * gather at boundary. Thus it's safer to round down this value on FIFO
126 * size (16 Bytes)
127 */
128#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
129	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130#define STM32_DMA_MAX_CHANNELS		0x08
131#define STM32_DMA_MAX_REQUEST_ID	0x08
132#define STM32_DMA_MAX_DATA_PARAM	0x03
133#define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
134#define STM32_DMA_MIN_BURST		4
135#define STM32_DMA_MAX_BURST		16
136
137/* DMA Features */
138#define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
139#define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140#define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
141#define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) \
142					 >> 2)
143
144enum stm32_dma_width {
145	STM32_DMA_BYTE,
146	STM32_DMA_HALF_WORD,
147	STM32_DMA_WORD,
148};
149
150enum stm32_dma_burst_size {
151	STM32_DMA_BURST_SINGLE,
152	STM32_DMA_BURST_INCR4,
153	STM32_DMA_BURST_INCR8,
154	STM32_DMA_BURST_INCR16,
155};
156
157/**
158 * struct stm32_dma_cfg - STM32 DMA custom configuration
159 * @channel_id: channel ID
160 * @request_line: DMA request
161 * @stream_config: 32bit mask specifying the DMA channel configuration
162 * @features: 32bit mask specifying the DMA Feature list
163 */
164struct stm32_dma_cfg {
165	u32 channel_id;
166	u32 request_line;
167	u32 stream_config;
168	u32 features;
169};
170
171struct stm32_dma_chan_reg {
172	u32 dma_lisr;
173	u32 dma_hisr;
174	u32 dma_lifcr;
175	u32 dma_hifcr;
176	u32 dma_scr;
177	u32 dma_sndtr;
178	u32 dma_spar;
179	u32 dma_sm0ar;
180	u32 dma_sm1ar;
181	u32 dma_sfcr;
182};
183
184struct stm32_dma_sg_req {
185	u32 len;
186	struct stm32_dma_chan_reg chan_reg;
187};
188
189struct stm32_dma_desc {
190	struct virt_dma_desc vdesc;
191	bool cyclic;
192	u32 num_sgs;
193	struct stm32_dma_sg_req sg_req[];
194};
195
196struct stm32_dma_chan {
197	struct virt_dma_chan vchan;
198	bool config_init;
199	bool busy;
200	u32 id;
201	u32 irq;
202	struct stm32_dma_desc *desc;
203	u32 next_sg;
204	struct dma_slave_config	dma_sconfig;
205	struct stm32_dma_chan_reg chan_reg;
206	u32 threshold;
207	u32 mem_burst;
208	u32 mem_width;
209};
210
211struct stm32_dma_device {
212	struct dma_device ddev;
213	void __iomem *base;
214	struct clk *clk;
215	bool mem2mem;
216	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217};
218
219static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220{
221	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222			    ddev);
223}
224
225static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226{
227	return container_of(c, struct stm32_dma_chan, vchan.chan);
228}
229
230static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231{
232	return container_of(vdesc, struct stm32_dma_desc, vdesc);
233}
234
235static struct device *chan2dev(struct stm32_dma_chan *chan)
236{
237	return &chan->vchan.chan.dev->device;
238}
239
240static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241{
242	return readl_relaxed(dmadev->base + reg);
243}
244
245static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246{
247	writel_relaxed(val, dmadev->base + reg);
248}
249
250static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251			       enum dma_slave_buswidth width)
252{
253	switch (width) {
254	case DMA_SLAVE_BUSWIDTH_1_BYTE:
255		return STM32_DMA_BYTE;
256	case DMA_SLAVE_BUSWIDTH_2_BYTES:
257		return STM32_DMA_HALF_WORD;
258	case DMA_SLAVE_BUSWIDTH_4_BYTES:
259		return STM32_DMA_WORD;
260	default:
261		dev_err(chan2dev(chan), "Dma bus width not supported\n");
262		return -EINVAL;
263	}
264}
265
266static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267						       u32 threshold)
268{
269	enum dma_slave_buswidth max_width;
270
271	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
272		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
273	else
274		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
275
276	while ((buf_len < max_width  || buf_len % max_width) &&
277	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
278		max_width = max_width >> 1;
279
280	return max_width;
281}
282
283static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
284						enum dma_slave_buswidth width)
285{
286	u32 remaining;
287
288	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
289		return false;
290
291	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
292		if (burst != 0) {
293			/*
294			 * If number of beats fit in several whole bursts
295			 * this configuration is allowed.
296			 */
297			remaining = ((STM32_DMA_FIFO_SIZE / width) *
298				     (threshold + 1) / 4) % burst;
299
300			if (remaining == 0)
301				return true;
302		} else {
303			return true;
304		}
305	}
306
307	return false;
308}
309
310static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
311{
312	/* If FIFO direct mode, burst is not possible */
313	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
314		return false;
315
316	/*
317	 * Buffer or period length has to be aligned on FIFO depth.
318	 * Otherwise bytes may be stuck within FIFO at buffer or period
319	 * length.
320	 */
321	return ((buf_len % ((threshold + 1) * 4)) == 0);
322}
323
324static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
325				    enum dma_slave_buswidth width)
326{
327	u32 best_burst = max_burst;
328
329	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
330		return 0;
331
332	while ((buf_len < best_burst * width && best_burst > 1) ||
333	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
334						    width)) {
335		if (best_burst > STM32_DMA_MIN_BURST)
336			best_burst = best_burst >> 1;
337		else
338			best_burst = 0;
339	}
340
341	return best_burst;
342}
343
344static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
345{
346	switch (maxburst) {
347	case 0:
348	case 1:
349		return STM32_DMA_BURST_SINGLE;
350	case 4:
351		return STM32_DMA_BURST_INCR4;
352	case 8:
353		return STM32_DMA_BURST_INCR8;
354	case 16:
355		return STM32_DMA_BURST_INCR16;
356	default:
357		dev_err(chan2dev(chan), "Dma burst size not supported\n");
358		return -EINVAL;
359	}
360}
361
362static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
363				      u32 src_burst, u32 dst_burst)
364{
365	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
366	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
367
368	if (!src_burst && !dst_burst) {
369		/* Using direct mode */
370		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
371	} else {
372		/* Using FIFO mode */
373		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
374	}
375}
376
377static int stm32_dma_slave_config(struct dma_chan *c,
378				  struct dma_slave_config *config)
379{
380	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
381
382	memcpy(&chan->dma_sconfig, config, sizeof(*config));
383
384	chan->config_init = true;
385
386	return 0;
387}
388
389static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
390{
391	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
392	u32 flags, dma_isr;
393
394	/*
395	 * Read "flags" from DMA_xISR register corresponding to the selected
396	 * DMA channel at the correct bit offset inside that register.
397	 *
398	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
399	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
400	 */
401
402	if (chan->id & 4)
403		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
404	else
405		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
406
407	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
408
409	return flags & STM32_DMA_MASKI;
410}
411
412static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
413{
414	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
415	u32 dma_ifcr;
416
417	/*
418	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
419	 * DMA channel at the correct bit offset inside that register.
420	 *
421	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
422	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
423	 */
424	flags &= STM32_DMA_MASKI;
425	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
426
427	if (chan->id & 4)
428		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
429	else
430		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
431}
432
433static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
434{
435	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436	u32 dma_scr, id, reg;
437
438	id = chan->id;
439	reg = STM32_DMA_SCR(id);
440	dma_scr = stm32_dma_read(dmadev, reg);
441
442	if (dma_scr & STM32_DMA_SCR_EN) {
443		dma_scr &= ~STM32_DMA_SCR_EN;
444		stm32_dma_write(dmadev, reg, dma_scr);
445
446		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
447					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
448					10, 1000000);
449	}
450
451	return 0;
452}
453
454static void stm32_dma_stop(struct stm32_dma_chan *chan)
455{
456	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
457	u32 dma_scr, dma_sfcr, status;
458	int ret;
459
460	/* Disable interrupts */
461	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
462	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
463	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
464	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
465	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
466	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
467
468	/* Disable DMA */
469	ret = stm32_dma_disable_chan(chan);
470	if (ret < 0)
471		return;
472
473	/* Clear interrupt status if it is there */
474	status = stm32_dma_irq_status(chan);
475	if (status) {
476		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
477			__func__, status);
478		stm32_dma_irq_clear(chan, status);
479	}
480
481	chan->busy = false;
482}
483
484static int stm32_dma_terminate_all(struct dma_chan *c)
485{
486	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
487	unsigned long flags;
488	LIST_HEAD(head);
489
490	spin_lock_irqsave(&chan->vchan.lock, flags);
491
492	if (chan->desc) {
493		vchan_terminate_vdesc(&chan->desc->vdesc);
494		if (chan->busy)
495			stm32_dma_stop(chan);
496		chan->desc = NULL;
497	}
498
499	vchan_get_all_descriptors(&chan->vchan, &head);
500	spin_unlock_irqrestore(&chan->vchan.lock, flags);
501	vchan_dma_desc_free_list(&chan->vchan, &head);
502
503	return 0;
504}
505
506static void stm32_dma_synchronize(struct dma_chan *c)
507{
508	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
509
510	vchan_synchronize(&chan->vchan);
511}
512
513static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
514{
515	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
516	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
517	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
518	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
519	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
520	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
521	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
522
523	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
524	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
525	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
526	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
527	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
528	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
529}
530
531static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
532
533static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
534{
535	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
536	struct virt_dma_desc *vdesc;
537	struct stm32_dma_sg_req *sg_req;
538	struct stm32_dma_chan_reg *reg;
539	u32 status;
540	int ret;
541
542	ret = stm32_dma_disable_chan(chan);
543	if (ret < 0)
544		return;
545
546	if (!chan->desc) {
547		vdesc = vchan_next_desc(&chan->vchan);
548		if (!vdesc)
549			return;
550
551		list_del(&vdesc->node);
552
553		chan->desc = to_stm32_dma_desc(vdesc);
554		chan->next_sg = 0;
555	}
556
557	if (chan->next_sg == chan->desc->num_sgs)
558		chan->next_sg = 0;
559
560	sg_req = &chan->desc->sg_req[chan->next_sg];
561	reg = &sg_req->chan_reg;
562
563	reg->dma_scr &= ~STM32_DMA_SCR_EN;
564	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
565	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
566	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
567	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
568	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
569	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
570
571	chan->next_sg++;
572
573	/* Clear interrupt status if it is there */
574	status = stm32_dma_irq_status(chan);
575	if (status)
576		stm32_dma_irq_clear(chan, status);
577
578	if (chan->desc->cyclic)
579		stm32_dma_configure_next_sg(chan);
580
581	stm32_dma_dump_reg(chan);
582
583	/* Start DMA */
584	reg->dma_scr |= STM32_DMA_SCR_EN;
585	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
586
587	chan->busy = true;
588
589	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
590}
591
592static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
593{
594	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
595	struct stm32_dma_sg_req *sg_req;
596	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
597
598	id = chan->id;
599	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
600
601	if (dma_scr & STM32_DMA_SCR_DBM) {
602		if (chan->next_sg == chan->desc->num_sgs)
603			chan->next_sg = 0;
604
605		sg_req = &chan->desc->sg_req[chan->next_sg];
606
607		if (dma_scr & STM32_DMA_SCR_CT) {
608			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
609			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
610			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
611				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
612		} else {
613			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
614			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
615			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
616				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
617		}
618	}
619}
620
621static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
622{
623	if (chan->desc) {
624		if (chan->desc->cyclic) {
625			vchan_cyclic_callback(&chan->desc->vdesc);
626			chan->next_sg++;
627			stm32_dma_configure_next_sg(chan);
628		} else {
629			chan->busy = false;
630			if (chan->next_sg == chan->desc->num_sgs) {
631				vchan_cookie_complete(&chan->desc->vdesc);
632				chan->desc = NULL;
633			}
634			stm32_dma_start_transfer(chan);
635		}
636	}
637}
638
639static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
640{
641	struct stm32_dma_chan *chan = devid;
642	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
643	u32 status, scr, sfcr;
644
645	spin_lock(&chan->vchan.lock);
646
647	status = stm32_dma_irq_status(chan);
648	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
649	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
650
651	if (status & STM32_DMA_TCI) {
652		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
653		if (scr & STM32_DMA_SCR_TCIE)
654			stm32_dma_handle_chan_done(chan);
655		status &= ~STM32_DMA_TCI;
656	}
657	if (status & STM32_DMA_HTI) {
658		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
659		status &= ~STM32_DMA_HTI;
660	}
661	if (status & STM32_DMA_FEI) {
662		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
663		status &= ~STM32_DMA_FEI;
664		if (sfcr & STM32_DMA_SFCR_FEIE) {
665			if (!(scr & STM32_DMA_SCR_EN))
666				dev_err(chan2dev(chan), "FIFO Error\n");
667			else
668				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
669		}
670	}
671	if (status & STM32_DMA_DMEI) {
672		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
673		status &= ~STM32_DMA_DMEI;
674		if (sfcr & STM32_DMA_SCR_DMEIE)
675			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
676	}
677	if (status) {
678		stm32_dma_irq_clear(chan, status);
679		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
680		if (!(scr & STM32_DMA_SCR_EN))
681			dev_err(chan2dev(chan), "chan disabled by HW\n");
682	}
683
684	spin_unlock(&chan->vchan.lock);
685
686	return IRQ_HANDLED;
687}
688
689static void stm32_dma_issue_pending(struct dma_chan *c)
690{
691	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
692	unsigned long flags;
693
694	spin_lock_irqsave(&chan->vchan.lock, flags);
695	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
696		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
697		stm32_dma_start_transfer(chan);
698
699	}
700	spin_unlock_irqrestore(&chan->vchan.lock, flags);
701}
702
703static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
704				    enum dma_transfer_direction direction,
705				    enum dma_slave_buswidth *buswidth,
706				    u32 buf_len)
707{
708	enum dma_slave_buswidth src_addr_width, dst_addr_width;
709	int src_bus_width, dst_bus_width;
710	int src_burst_size, dst_burst_size;
711	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
712	u32 dma_scr, fifoth;
713
714	src_addr_width = chan->dma_sconfig.src_addr_width;
715	dst_addr_width = chan->dma_sconfig.dst_addr_width;
716	src_maxburst = chan->dma_sconfig.src_maxburst;
717	dst_maxburst = chan->dma_sconfig.dst_maxburst;
718	fifoth = chan->threshold;
719
720	switch (direction) {
721	case DMA_MEM_TO_DEV:
722		/* Set device data size */
723		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
724		if (dst_bus_width < 0)
725			return dst_bus_width;
726
727		/* Set device burst size */
728		dst_best_burst = stm32_dma_get_best_burst(buf_len,
729							  dst_maxburst,
730							  fifoth,
731							  dst_addr_width);
732
733		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
734		if (dst_burst_size < 0)
735			return dst_burst_size;
736
737		/* Set memory data size */
738		src_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
739		chan->mem_width = src_addr_width;
740		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
741		if (src_bus_width < 0)
742			return src_bus_width;
743
744		/* Set memory burst size */
745		src_maxburst = STM32_DMA_MAX_BURST;
746		src_best_burst = stm32_dma_get_best_burst(buf_len,
747							  src_maxburst,
748							  fifoth,
749							  src_addr_width);
750		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
751		if (src_burst_size < 0)
752			return src_burst_size;
753
754		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
755			STM32_DMA_SCR_PSIZE(dst_bus_width) |
756			STM32_DMA_SCR_MSIZE(src_bus_width) |
757			STM32_DMA_SCR_PBURST(dst_burst_size) |
758			STM32_DMA_SCR_MBURST(src_burst_size);
759
760		/* Set FIFO threshold */
761		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
762		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
763			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
764
765		/* Set peripheral address */
766		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
767		*buswidth = dst_addr_width;
768		break;
769
770	case DMA_DEV_TO_MEM:
771		/* Set device data size */
772		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
773		if (src_bus_width < 0)
774			return src_bus_width;
775
776		/* Set device burst size */
777		src_best_burst = stm32_dma_get_best_burst(buf_len,
778							  src_maxburst,
779							  fifoth,
780							  src_addr_width);
781		chan->mem_burst = src_best_burst;
782		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
783		if (src_burst_size < 0)
784			return src_burst_size;
785
786		/* Set memory data size */
787		dst_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
788		chan->mem_width = dst_addr_width;
789		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
790		if (dst_bus_width < 0)
791			return dst_bus_width;
792
793		/* Set memory burst size */
794		dst_maxburst = STM32_DMA_MAX_BURST;
795		dst_best_burst = stm32_dma_get_best_burst(buf_len,
796							  dst_maxburst,
797							  fifoth,
798							  dst_addr_width);
799		chan->mem_burst = dst_best_burst;
800		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
801		if (dst_burst_size < 0)
802			return dst_burst_size;
803
804		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
805			STM32_DMA_SCR_PSIZE(src_bus_width) |
806			STM32_DMA_SCR_MSIZE(dst_bus_width) |
807			STM32_DMA_SCR_PBURST(src_burst_size) |
808			STM32_DMA_SCR_MBURST(dst_burst_size);
809
810		/* Set FIFO threshold */
811		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
812		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
813			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
814
815		/* Set peripheral address */
816		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
817		*buswidth = chan->dma_sconfig.src_addr_width;
818		break;
819
820	default:
821		dev_err(chan2dev(chan), "Dma direction is not supported\n");
822		return -EINVAL;
823	}
824
825	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
826
827	/* Set DMA control register */
828	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
829			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
830			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
831	chan->chan_reg.dma_scr |= dma_scr;
832
833	return 0;
834}
835
836static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
837{
838	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
839}
840
841static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
842	struct dma_chan *c, struct scatterlist *sgl,
843	u32 sg_len, enum dma_transfer_direction direction,
844	unsigned long flags, void *context)
845{
846	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
847	struct stm32_dma_desc *desc;
848	struct scatterlist *sg;
849	enum dma_slave_buswidth buswidth;
850	u32 nb_data_items;
851	int i, ret;
852
853	if (!chan->config_init) {
854		dev_err(chan2dev(chan), "dma channel is not configured\n");
855		return NULL;
856	}
857
858	if (sg_len < 1) {
859		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
860		return NULL;
861	}
862
863	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
864	if (!desc)
865		return NULL;
866
867	/* Set peripheral flow controller */
868	if (chan->dma_sconfig.device_fc)
869		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
870	else
871		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
872
873	for_each_sg(sgl, sg, sg_len, i) {
874		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
875					       sg_dma_len(sg));
876		if (ret < 0)
877			goto err;
878
879		desc->sg_req[i].len = sg_dma_len(sg);
880
881		nb_data_items = desc->sg_req[i].len / buswidth;
882		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
883			dev_err(chan2dev(chan), "nb items not supported\n");
884			goto err;
885		}
886
887		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
888		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
889		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
890		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
891		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
892		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
893		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
894	}
895
896	desc->num_sgs = sg_len;
897	desc->cyclic = false;
898
899	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
900
901err:
902	kfree(desc);
903	return NULL;
904}
905
906static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
907	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
908	size_t period_len, enum dma_transfer_direction direction,
909	unsigned long flags)
910{
911	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
912	struct stm32_dma_desc *desc;
913	enum dma_slave_buswidth buswidth;
914	u32 num_periods, nb_data_items;
915	int i, ret;
916
917	if (!buf_len || !period_len) {
918		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
919		return NULL;
920	}
921
922	if (!chan->config_init) {
923		dev_err(chan2dev(chan), "dma channel is not configured\n");
924		return NULL;
925	}
926
927	if (buf_len % period_len) {
928		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
929		return NULL;
930	}
931
932	/*
933	 * We allow to take more number of requests till DMA is
934	 * not started. The driver will loop over all requests.
935	 * Once DMA is started then new requests can be queued only after
936	 * terminating the DMA.
937	 */
938	if (chan->busy) {
939		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
940		return NULL;
941	}
942
943	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
944	if (ret < 0)
945		return NULL;
946
947	nb_data_items = period_len / buswidth;
948	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
949		dev_err(chan2dev(chan), "number of items not supported\n");
950		return NULL;
951	}
952
953	/*  Enable Circular mode or double buffer mode */
954	if (buf_len == period_len)
955		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
956	else
957		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
958
959	/* Clear periph ctrl if client set it */
960	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
961
962	num_periods = buf_len / period_len;
963
964	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
965	if (!desc)
966		return NULL;
967
968	for (i = 0; i < num_periods; i++) {
969		desc->sg_req[i].len = period_len;
970
971		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
972		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
973		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
974		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
975		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
976		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
977		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
978		buf_addr += period_len;
979	}
980
981	desc->num_sgs = num_periods;
982	desc->cyclic = true;
983
984	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
985}
986
987static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
988	struct dma_chan *c, dma_addr_t dest,
989	dma_addr_t src, size_t len, unsigned long flags)
990{
991	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
992	enum dma_slave_buswidth max_width;
993	struct stm32_dma_desc *desc;
994	size_t xfer_count, offset;
995	u32 num_sgs, best_burst, dma_burst, threshold;
996	int i;
997
998	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
999	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1000	if (!desc)
1001		return NULL;
1002
1003	threshold = chan->threshold;
1004
1005	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1006		xfer_count = min_t(size_t, len - offset,
1007				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1008
1009		/* Compute best burst size */
1010		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1012						      threshold, max_width);
1013		dma_burst = stm32_dma_get_burst(chan, best_burst);
1014
1015		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1016		desc->sg_req[i].chan_reg.dma_scr =
1017			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1018			STM32_DMA_SCR_PBURST(dma_burst) |
1019			STM32_DMA_SCR_MBURST(dma_burst) |
1020			STM32_DMA_SCR_MINC |
1021			STM32_DMA_SCR_PINC |
1022			STM32_DMA_SCR_TCIE |
1023			STM32_DMA_SCR_TEIE;
1024		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1025		desc->sg_req[i].chan_reg.dma_sfcr |=
1026			STM32_DMA_SFCR_FTH(threshold);
1027		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1028		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1029		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1030		desc->sg_req[i].len = xfer_count;
1031	}
1032
1033	desc->num_sgs = num_sgs;
1034	desc->cyclic = false;
1035
1036	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1037}
1038
1039static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1040{
1041	u32 dma_scr, width, ndtr;
1042	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1043
1044	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1045	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1046	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1047
1048	return ndtr << width;
1049}
1050
1051/**
1052 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1053 * @chan: dma channel
1054 *
1055 * This function called when IRQ are disable, checks that the hardware has not
1056 * switched on the next transfer in double buffer mode. The test is done by
1057 * comparing the next_sg memory address with the hardware related register
1058 * (based on CT bit value).
1059 *
1060 * Returns true if expected current transfer is still running or double
1061 * buffer mode is not activated.
1062 */
1063static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1064{
1065	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1066	struct stm32_dma_sg_req *sg_req;
1067	u32 dma_scr, dma_smar, id;
1068
1069	id = chan->id;
1070	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1071
1072	if (!(dma_scr & STM32_DMA_SCR_DBM))
1073		return true;
1074
1075	sg_req = &chan->desc->sg_req[chan->next_sg];
1076
1077	if (dma_scr & STM32_DMA_SCR_CT) {
1078		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1079		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1080	}
1081
1082	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1083
1084	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1085}
1086
1087static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1088				     struct stm32_dma_desc *desc,
1089				     u32 next_sg)
1090{
1091	u32 modulo, burst_size;
1092	u32 residue;
1093	u32 n_sg = next_sg;
1094	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1095	int i;
1096
1097	/*
1098	 * Calculate the residue means compute the descriptors
1099	 * information:
1100	 * - the sg_req currently transferred
1101	 * - the Hardware remaining position in this sg (NDTR bits field).
1102	 *
1103	 * A race condition may occur if DMA is running in cyclic or double
1104	 * buffer mode, since the DMA register are automatically reloaded at end
1105	 * of period transfer. The hardware may have switched to the next
1106	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1107	 * read.
1108	 * In this case the SxNDTR reg could (or not) correspond to the new
1109	 * transfer position, and not the expected one.
1110	 * The strategy implemented in the stm32 driver is to:
1111	 *  - read the SxNDTR register
1112	 *  - crosscheck that hardware is still in current transfer.
1113	 * In case of switch, we can assume that the DMA is at the beginning of
1114	 * the next transfer. So we approximate the residue in consequence, by
1115	 * pointing on the beginning of next transfer.
1116	 *
1117	 * This race condition doesn't apply for none cyclic mode, as double
1118	 * buffer is not used. In such situation registers are updated by the
1119	 * software.
1120	 */
1121
1122	residue = stm32_dma_get_remaining_bytes(chan);
1123
1124	if (!stm32_dma_is_current_sg(chan)) {
1125		n_sg++;
1126		if (n_sg == chan->desc->num_sgs)
1127			n_sg = 0;
1128		residue = sg_req->len;
1129	}
1130
1131	/*
1132	 * In cyclic mode, for the last period, residue = remaining bytes
1133	 * from NDTR,
1134	 * else for all other periods in cyclic mode, and in sg mode,
1135	 * residue = remaining bytes from NDTR + remaining
1136	 * periods/sg to be transferred
1137	 */
1138	if (!chan->desc->cyclic || n_sg != 0)
1139		for (i = n_sg; i < desc->num_sgs; i++)
1140			residue += desc->sg_req[i].len;
1141
1142	if (!chan->mem_burst)
1143		return residue;
1144
1145	burst_size = chan->mem_burst * chan->mem_width;
1146	modulo = residue % burst_size;
1147	if (modulo)
1148		residue = residue - modulo + burst_size;
1149
1150	return residue;
1151}
1152
1153static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1154					   dma_cookie_t cookie,
1155					   struct dma_tx_state *state)
1156{
1157	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1158	struct virt_dma_desc *vdesc;
1159	enum dma_status status;
1160	unsigned long flags;
1161	u32 residue = 0;
1162
1163	status = dma_cookie_status(c, cookie, state);
1164	if (status == DMA_COMPLETE || !state)
1165		return status;
1166
1167	spin_lock_irqsave(&chan->vchan.lock, flags);
1168	vdesc = vchan_find_desc(&chan->vchan, cookie);
1169	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1170		residue = stm32_dma_desc_residue(chan, chan->desc,
1171						 chan->next_sg);
1172	else if (vdesc)
1173		residue = stm32_dma_desc_residue(chan,
1174						 to_stm32_dma_desc(vdesc), 0);
1175	dma_set_residue(state, residue);
1176
1177	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1178
1179	return status;
1180}
1181
1182static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1183{
1184	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1186	int ret;
1187
1188	chan->config_init = false;
1189
1190	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1191	if (ret < 0)
1192		return ret;
1193
1194	ret = stm32_dma_disable_chan(chan);
1195	if (ret < 0)
1196		pm_runtime_put(dmadev->ddev.dev);
1197
1198	return ret;
1199}
1200
1201static void stm32_dma_free_chan_resources(struct dma_chan *c)
1202{
1203	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1204	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1205	unsigned long flags;
1206
1207	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1208
1209	if (chan->busy) {
1210		spin_lock_irqsave(&chan->vchan.lock, flags);
1211		stm32_dma_stop(chan);
1212		chan->desc = NULL;
1213		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1214	}
1215
1216	pm_runtime_put(dmadev->ddev.dev);
1217
1218	vchan_free_chan_resources(to_virt_chan(c));
1219}
1220
1221static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1222{
1223	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1224}
1225
1226static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1227				 struct stm32_dma_cfg *cfg)
1228{
1229	stm32_dma_clear_reg(&chan->chan_reg);
1230
1231	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1232	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1233
1234	/* Enable Interrupts  */
1235	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1236
1237	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1238	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1239		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1240}
1241
1242static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1243					   struct of_dma *ofdma)
1244{
1245	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1246	struct device *dev = dmadev->ddev.dev;
1247	struct stm32_dma_cfg cfg;
1248	struct stm32_dma_chan *chan;
1249	struct dma_chan *c;
1250
1251	if (dma_spec->args_count < 4) {
1252		dev_err(dev, "Bad number of cells\n");
1253		return NULL;
1254	}
1255
1256	cfg.channel_id = dma_spec->args[0];
1257	cfg.request_line = dma_spec->args[1];
1258	cfg.stream_config = dma_spec->args[2];
1259	cfg.features = dma_spec->args[3];
1260
1261	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1262	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1263		dev_err(dev, "Bad channel and/or request id\n");
1264		return NULL;
1265	}
1266
1267	chan = &dmadev->chan[cfg.channel_id];
1268
1269	c = dma_get_slave_channel(&chan->vchan.chan);
1270	if (!c) {
1271		dev_err(dev, "No more channels available\n");
1272		return NULL;
1273	}
1274
1275	stm32_dma_set_config(chan, &cfg);
1276
1277	return c;
1278}
1279
1280static const struct of_device_id stm32_dma_of_match[] = {
1281	{ .compatible = "st,stm32-dma", },
1282	{ /* sentinel */ },
1283};
1284MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1285
1286static int stm32_dma_probe(struct platform_device *pdev)
1287{
1288	struct stm32_dma_chan *chan;
1289	struct stm32_dma_device *dmadev;
1290	struct dma_device *dd;
1291	const struct of_device_id *match;
1292	struct resource *res;
1293	struct reset_control *rst;
1294	int i, ret;
1295
1296	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1297	if (!match) {
1298		dev_err(&pdev->dev, "Error: No device match found\n");
1299		return -ENODEV;
1300	}
1301
1302	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1303	if (!dmadev)
1304		return -ENOMEM;
1305
1306	dd = &dmadev->ddev;
1307
1308	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1309	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1310	if (IS_ERR(dmadev->base))
1311		return PTR_ERR(dmadev->base);
1312
1313	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1314	if (IS_ERR(dmadev->clk))
1315		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1316
1317	ret = clk_prepare_enable(dmadev->clk);
1318	if (ret < 0) {
1319		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1320		return ret;
1321	}
1322
1323	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1324						"st,mem2mem");
1325
1326	rst = devm_reset_control_get(&pdev->dev, NULL);
1327	if (IS_ERR(rst)) {
1328		ret = PTR_ERR(rst);
1329		if (ret == -EPROBE_DEFER)
1330			goto clk_free;
1331	} else {
1332		reset_control_assert(rst);
1333		udelay(2);
1334		reset_control_deassert(rst);
1335	}
1336
1337	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1338
1339	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1340	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1341	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1342	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1343	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1344	dd->device_tx_status = stm32_dma_tx_status;
1345	dd->device_issue_pending = stm32_dma_issue_pending;
1346	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1347	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1348	dd->device_config = stm32_dma_slave_config;
1349	dd->device_terminate_all = stm32_dma_terminate_all;
1350	dd->device_synchronize = stm32_dma_synchronize;
1351	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1352		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1353		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1354	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1355		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1356		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1357	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1358	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1359	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1360	dd->max_burst = STM32_DMA_MAX_BURST;
1361	dd->descriptor_reuse = true;
1362	dd->dev = &pdev->dev;
1363	INIT_LIST_HEAD(&dd->channels);
1364
1365	if (dmadev->mem2mem) {
1366		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1367		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1368		dd->directions |= BIT(DMA_MEM_TO_MEM);
1369	}
1370
1371	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1372		chan = &dmadev->chan[i];
1373		chan->id = i;
1374		chan->vchan.desc_free = stm32_dma_desc_free;
1375		vchan_init(&chan->vchan, dd);
1376	}
1377
1378	ret = dma_async_device_register(dd);
1379	if (ret)
1380		goto clk_free;
1381
1382	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1383		chan = &dmadev->chan[i];
1384		ret = platform_get_irq(pdev, i);
1385		if (ret < 0)
1386			goto err_unregister;
1387		chan->irq = ret;
1388
1389		ret = devm_request_irq(&pdev->dev, chan->irq,
1390				       stm32_dma_chan_irq, 0,
1391				       dev_name(chan2dev(chan)), chan);
1392		if (ret) {
1393			dev_err(&pdev->dev,
1394				"request_irq failed with err %d channel %d\n",
1395				ret, i);
1396			goto err_unregister;
1397		}
1398	}
1399
1400	ret = of_dma_controller_register(pdev->dev.of_node,
1401					 stm32_dma_of_xlate, dmadev);
1402	if (ret < 0) {
1403		dev_err(&pdev->dev,
1404			"STM32 DMA DMA OF registration failed %d\n", ret);
1405		goto err_unregister;
1406	}
1407
1408	platform_set_drvdata(pdev, dmadev);
1409
1410	pm_runtime_set_active(&pdev->dev);
1411	pm_runtime_enable(&pdev->dev);
1412	pm_runtime_get_noresume(&pdev->dev);
1413	pm_runtime_put(&pdev->dev);
1414
1415	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1416
1417	return 0;
1418
1419err_unregister:
1420	dma_async_device_unregister(dd);
1421clk_free:
1422	clk_disable_unprepare(dmadev->clk);
1423
1424	return ret;
1425}
1426
1427#ifdef CONFIG_PM
1428static int stm32_dma_runtime_suspend(struct device *dev)
1429{
1430	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1431
1432	clk_disable_unprepare(dmadev->clk);
1433
1434	return 0;
1435}
1436
1437static int stm32_dma_runtime_resume(struct device *dev)
1438{
1439	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1440	int ret;
1441
1442	ret = clk_prepare_enable(dmadev->clk);
1443	if (ret) {
1444		dev_err(dev, "failed to prepare_enable clock\n");
1445		return ret;
1446	}
1447
1448	return 0;
1449}
1450#endif
1451
1452#ifdef CONFIG_PM_SLEEP
1453static int stm32_dma_suspend(struct device *dev)
1454{
1455	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1456	int id, ret, scr;
1457
1458	ret = pm_runtime_resume_and_get(dev);
1459	if (ret < 0)
1460		return ret;
1461
1462	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1463		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1464		if (scr & STM32_DMA_SCR_EN) {
1465			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1466			return -EBUSY;
1467		}
1468	}
1469
1470	pm_runtime_put_sync(dev);
1471
1472	pm_runtime_force_suspend(dev);
1473
1474	return 0;
1475}
1476
1477static int stm32_dma_resume(struct device *dev)
1478{
1479	return pm_runtime_force_resume(dev);
1480}
1481#endif
1482
1483static const struct dev_pm_ops stm32_dma_pm_ops = {
1484	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1485	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1486			   stm32_dma_runtime_resume, NULL)
1487};
1488
1489static struct platform_driver stm32_dma_driver = {
1490	.driver = {
1491		.name = "stm32-dma",
1492		.of_match_table = stm32_dma_of_match,
1493		.pm = &stm32_dma_pm_ops,
1494	},
1495	.probe = stm32_dma_probe,
1496};
1497
1498static int __init stm32_dma_init(void)
1499{
1500	return platform_driver_register(&stm32_dma_driver);
1501}
1502subsys_initcall(stm32_dma_init);
1503