1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/export.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/log2.h>
18#include <linux/pm.h>
19#include <linux/pm_runtime.h>
20#include <linux/err.h>
21#include <linux/of.h>
22#include <linux/of_dma.h>
23#include <linux/amba/bus.h>
24#include <linux/regulator/consumer.h>
25#include <linux/platform_data/dma-ste-dma40.h>
26
27#include "dmaengine.h"
28#include "ste_dma40_ll.h"
29
30#define D40_NAME "dma40"
31
32#define D40_PHY_CHAN -1
33
34/* For masking out/in 2 bit channel positions */
35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38/* Maximum iterations taken before giving up suspending a channel */
39#define D40_SUSPEND_MAX_IT 500
40
41/* Milliseconds */
42#define DMA40_AUTOSUSPEND_DELAY	100
43
44/* Hardware requirement on LCLA alignment */
45#define LCLA_ALIGNMENT 0x40000
46
47/* Max number of links per event group */
48#define D40_LCLA_LINK_PER_EVENT_GRP 128
49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51/* Max number of logical channels per physical channel */
52#define D40_MAX_LOG_CHAN_PER_PHY 32
53
54/* Attempts before giving up to trying to get pages that are aligned */
55#define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57/* Bit markings for allocation map */
58#define D40_ALLOC_FREE		BIT(31)
59#define D40_ALLOC_PHY		BIT(30)
60#define D40_ALLOC_LOG_FREE	0
61
62#define D40_MEMCPY_MAX_CHANS	8
63
64/* Reserved event lines for memcpy only. */
65#define DB8500_DMA_MEMCPY_EV_0	51
66#define DB8500_DMA_MEMCPY_EV_1	56
67#define DB8500_DMA_MEMCPY_EV_2	57
68#define DB8500_DMA_MEMCPY_EV_3	58
69#define DB8500_DMA_MEMCPY_EV_4	59
70#define DB8500_DMA_MEMCPY_EV_5	60
71
72static int dma40_memcpy_channels[] = {
73	DB8500_DMA_MEMCPY_EV_0,
74	DB8500_DMA_MEMCPY_EV_1,
75	DB8500_DMA_MEMCPY_EV_2,
76	DB8500_DMA_MEMCPY_EV_3,
77	DB8500_DMA_MEMCPY_EV_4,
78	DB8500_DMA_MEMCPY_EV_5,
79};
80
81/* Default configuration for physcial memcpy */
82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83	.mode = STEDMA40_MODE_PHYSICAL,
84	.dir = DMA_MEM_TO_MEM,
85
86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93};
94
95/* Default configuration for logical memcpy */
96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97	.mode = STEDMA40_MODE_LOGICAL,
98	.dir = DMA_MEM_TO_MEM,
99
100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107};
108
109/**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117enum d40_command {
118	D40_DMA_STOP		= 0,
119	D40_DMA_RUN		= 1,
120	D40_DMA_SUSPEND_REQ	= 2,
121	D40_DMA_SUSPENDED	= 3
122};
123
124/*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133enum d40_events {
134	D40_DEACTIVATE_EVENTLINE	= 0,
135	D40_ACTIVATE_EVENTLINE		= 1,
136	D40_SUSPEND_REQ_EVENTLINE	= 2,
137	D40_ROUND_EVENTLINE		= 3
138};
139
140/*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145static __maybe_unused u32 d40_backup_regs[] = {
146	D40_DREG_LCPA,
147	D40_DREG_LCLA,
148	D40_DREG_PRMSE,
149	D40_DREG_PRMSO,
150	D40_DREG_PRMOE,
151	D40_DREG_PRMOO,
152};
153
154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156/*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168static u32 d40_backup_regs_v4a[] = {
169	D40_DREG_PSEG1,
170	D40_DREG_PSEG2,
171	D40_DREG_PSEG3,
172	D40_DREG_PSEG4,
173	D40_DREG_PCEG1,
174	D40_DREG_PCEG2,
175	D40_DREG_PCEG3,
176	D40_DREG_PCEG4,
177	D40_DREG_RSEG1,
178	D40_DREG_RSEG2,
179	D40_DREG_RSEG3,
180	D40_DREG_RSEG4,
181	D40_DREG_RCEG1,
182	D40_DREG_RCEG2,
183	D40_DREG_RCEG3,
184	D40_DREG_RCEG4,
185};
186
187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189static u32 d40_backup_regs_v4b[] = {
190	D40_DREG_CPSEG1,
191	D40_DREG_CPSEG2,
192	D40_DREG_CPSEG3,
193	D40_DREG_CPSEG4,
194	D40_DREG_CPSEG5,
195	D40_DREG_CPCEG1,
196	D40_DREG_CPCEG2,
197	D40_DREG_CPCEG3,
198	D40_DREG_CPCEG4,
199	D40_DREG_CPCEG5,
200	D40_DREG_CRSEG1,
201	D40_DREG_CRSEG2,
202	D40_DREG_CRSEG3,
203	D40_DREG_CRSEG4,
204	D40_DREG_CRSEG5,
205	D40_DREG_CRCEG1,
206	D40_DREG_CRCEG2,
207	D40_DREG_CRCEG3,
208	D40_DREG_CRCEG4,
209	D40_DREG_CRCEG5,
210};
211
212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214static __maybe_unused u32 d40_backup_regs_chan[] = {
215	D40_CHAN_REG_SSCFG,
216	D40_CHAN_REG_SSELT,
217	D40_CHAN_REG_SSPTR,
218	D40_CHAN_REG_SSLNK,
219	D40_CHAN_REG_SDCFG,
220	D40_CHAN_REG_SDELT,
221	D40_CHAN_REG_SDPTR,
222	D40_CHAN_REG_SDLNK,
223};
224
225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228/**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237struct d40_interrupt_lookup {
238	u32 src;
239	u32 clr;
240	bool is_error;
241	int offset;
242};
243
244
245static struct d40_interrupt_lookup il_v4a[] = {
246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256};
257
258static struct d40_interrupt_lookup il_v4b[] = {
259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271};
272
273/**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279struct d40_reg_val {
280	unsigned int reg;
281	unsigned int val;
282};
283
284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285	/* Clock every part of the DMA block from start */
286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287
288	/* Interrupts on all logical channels */
289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301};
302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303	/* Clock every part of the DMA block from start */
304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305
306	/* Interrupts on all logical channels */
307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322};
323
324/**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335struct d40_lli_pool {
336	void	*base;
337	int	 size;
338	dma_addr_t	dma_addr;
339	/* Space for dst and src, plus an extra for padding */
340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341};
342
343/**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362struct d40_desc {
363	/* LLI physical */
364	struct d40_phy_lli_bidir	 lli_phy;
365	/* LLI logical */
366	struct d40_log_lli_bidir	 lli_log;
367
368	struct d40_lli_pool		 lli_pool;
369	int				 lli_len;
370	int				 lli_current;
371	int				 lcla_alloc;
372
373	struct dma_async_tx_descriptor	 txd;
374	struct list_head		 node;
375
376	bool				 is_in_client_list;
377	bool				 cyclic;
378};
379
380/**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @dma_addr: DMA address, if mapped
385 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
386 * This pointer is only there for clean-up on error.
387 * @pages: The number of pages needed for all physical channels.
388 * Only used later for clean-up on error
389 * @lock: Lock to protect the content in this struct.
390 * @alloc_map: big map over which LCLA entry is own by which job.
391 */
392struct d40_lcla_pool {
393	void		*base;
394	dma_addr_t	dma_addr;
395	void		*base_unaligned;
396	int		 pages;
397	spinlock_t	 lock;
398	struct d40_desc	**alloc_map;
399};
400
401/**
402 * struct d40_phy_res - struct for handling eventlines mapped to physical
403 * channels.
404 *
405 * @lock: A lock protection this entity.
406 * @reserved: True if used by secure world or otherwise.
407 * @num: The physical channel number of this entity.
408 * @allocated_src: Bit mapped to show which src event line's are mapped to
409 * this physical channel. Can also be free or physically allocated.
410 * @allocated_dst: Same as for src but is dst.
411 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * event line number.
413 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
414 */
415struct d40_phy_res {
416	spinlock_t lock;
417	bool	   reserved;
418	int	   num;
419	u32	   allocated_src;
420	u32	   allocated_dst;
421	bool	   use_soft_lli;
422};
423
424struct d40_base;
425
426/**
427 * struct d40_chan - Struct that describes a channel.
428 *
429 * @lock: A spinlock to protect this struct.
430 * @log_num: The logical number, if any of this channel.
431 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * and tasklet.
433 * @busy: Set to true when transfer is ongoing on this channel.
434 * @phy_chan: Pointer to physical channel which this instance runs on. If this
435 * point is NULL, then the channel is not allocated.
436 * @chan: DMA engine handle.
437 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
438 * transfer and call client callback.
439 * @client: Cliented owned descriptor list.
440 * @pending_queue: Submitted jobs, to be issued by issue_pending()
441 * @active: Active descriptor.
442 * @done: Completed jobs
443 * @queue: Queued jobs.
444 * @prepare_queue: Prepared jobs.
445 * @dma_cfg: The client configuration of this dma channel.
446 * @slave_config: DMA slave configuration.
447 * @configured: whether the dma_cfg configuration is valid
448 * @base: Pointer to the device instance struct.
449 * @src_def_cfg: Default cfg register setting for src.
450 * @dst_def_cfg: Default cfg register setting for dst.
451 * @log_def: Default logical channel settings.
452 * @lcpa: Pointer to dst and src lcpa settings.
453 * @runtime_addr: runtime configured address.
454 * @runtime_direction: runtime configured direction.
455 *
456 * This struct can either "be" a logical or a physical channel.
457 */
458struct d40_chan {
459	spinlock_t			 lock;
460	int				 log_num;
461	int				 pending_tx;
462	bool				 busy;
463	struct d40_phy_res		*phy_chan;
464	struct dma_chan			 chan;
465	struct tasklet_struct		 tasklet;
466	struct list_head		 client;
467	struct list_head		 pending_queue;
468	struct list_head		 active;
469	struct list_head		 done;
470	struct list_head		 queue;
471	struct list_head		 prepare_queue;
472	struct stedma40_chan_cfg	 dma_cfg;
473	struct dma_slave_config		 slave_config;
474	bool				 configured;
475	struct d40_base			*base;
476	/* Default register configurations */
477	u32				 src_def_cfg;
478	u32				 dst_def_cfg;
479	struct d40_def_lcsp		 log_def;
480	struct d40_log_lli_full		*lcpa;
481	/* Runtime reconfiguration */
482	dma_addr_t			runtime_addr;
483	enum dma_transfer_direction	runtime_direction;
484};
485
486/**
487 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
488 * controller
489 *
490 * @backup: the pointer to the registers address array for backup
491 * @backup_size: the size of the registers address array for backup
492 * @realtime_en: the realtime enable register
493 * @realtime_clear: the realtime clear register
494 * @high_prio_en: the high priority enable register
495 * @high_prio_clear: the high priority clear register
496 * @interrupt_en: the interrupt enable register
497 * @interrupt_clear: the interrupt clear register
498 * @il: the pointer to struct d40_interrupt_lookup
499 * @il_size: the size of d40_interrupt_lookup array
500 * @init_reg: the pointer to the struct d40_reg_val
501 * @init_reg_size: the size of d40_reg_val array
502 */
503struct d40_gen_dmac {
504	u32				*backup;
505	u32				 backup_size;
506	u32				 realtime_en;
507	u32				 realtime_clear;
508	u32				 high_prio_en;
509	u32				 high_prio_clear;
510	u32				 interrupt_en;
511	u32				 interrupt_clear;
512	struct d40_interrupt_lookup	*il;
513	u32				 il_size;
514	struct d40_reg_val		*init_reg;
515	u32				 init_reg_size;
516};
517
518/**
519 * struct d40_base - The big global struct, one for each probe'd instance.
520 *
521 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
522 * @execmd_lock: Lock for execute command usage since several channels share
523 * the same physical register.
524 * @dev: The device structure.
525 * @virtbase: The virtual base address of the DMA's register.
526 * @rev: silicon revision detected.
527 * @clk: Pointer to the DMA clock structure.
528 * @phy_start: Physical memory start of the DMA registers.
529 * @phy_size: Size of the DMA register map.
530 * @irq: The IRQ number.
531 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
532 * transfers).
533 * @num_phy_chans: The number of physical channels. Read from HW. This
534 * is the number of available channels for this driver, not counting "Secure
535 * mode" allocated physical channels.
536 * @num_log_chans: The number of logical channels. Calculated from
537 * num_phy_chans.
538 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
539 * @dma_slave: dma_device channels that can do only do slave transfers.
540 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
541 * @phy_chans: Room for all possible physical channels in system.
542 * @log_chans: Room for all possible logical channels in system.
543 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
544 * to log_chans entries.
545 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
546 * to phy_chans entries.
547 * @plat_data: Pointer to provided platform_data which is the driver
548 * configuration.
549 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
550 * @phy_res: Vector containing all physical channels.
551 * @lcla_pool: lcla pool settings and data.
552 * @lcpa_base: The virtual mapped address of LCPA.
553 * @phy_lcpa: The physical address of the LCPA.
554 * @lcpa_size: The size of the LCPA area.
555 * @desc_slab: cache for descriptors.
556 * @reg_val_backup: Here the values of some hardware registers are stored
557 * before the DMA is powered off. They are restored when the power is back on.
558 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
559 * later
560 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
561 * @regs_interrupt: Scratch space for registers during interrupt.
562 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
563 * @gen_dmac: the struct for generic registers values to represent u8500/8540
564 * DMA controller
565 */
566struct d40_base {
567	spinlock_t			 interrupt_lock;
568	spinlock_t			 execmd_lock;
569	struct device			 *dev;
570	void __iomem			 *virtbase;
571	u8				  rev:4;
572	struct clk			 *clk;
573	phys_addr_t			  phy_start;
574	resource_size_t			  phy_size;
575	int				  irq;
576	int				  num_memcpy_chans;
577	int				  num_phy_chans;
578	int				  num_log_chans;
579	struct dma_device		  dma_both;
580	struct dma_device		  dma_slave;
581	struct dma_device		  dma_memcpy;
582	struct d40_chan			 *phy_chans;
583	struct d40_chan			 *log_chans;
584	struct d40_chan			**lookup_log_chans;
585	struct d40_chan			**lookup_phy_chans;
586	struct stedma40_platform_data	 *plat_data;
587	struct regulator		 *lcpa_regulator;
588	/* Physical half channels */
589	struct d40_phy_res		 *phy_res;
590	struct d40_lcla_pool		  lcla_pool;
591	void				 *lcpa_base;
592	dma_addr_t			  phy_lcpa;
593	resource_size_t			  lcpa_size;
594	struct kmem_cache		 *desc_slab;
595	u32				  reg_val_backup[BACKUP_REGS_SZ];
596	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
597	u32				 *reg_val_backup_chan;
598	u32				 *regs_interrupt;
599	u16				  gcc_pwr_off_mask;
600	struct d40_gen_dmac		  gen_dmac;
601};
602
603static struct device *chan2dev(struct d40_chan *d40c)
604{
605	return &d40c->chan.dev->device;
606}
607
608static bool chan_is_physical(struct d40_chan *chan)
609{
610	return chan->log_num == D40_PHY_CHAN;
611}
612
613static bool chan_is_logical(struct d40_chan *chan)
614{
615	return !chan_is_physical(chan);
616}
617
618static void __iomem *chan_base(struct d40_chan *chan)
619{
620	return chan->base->virtbase + D40_DREG_PCBASE +
621	       chan->phy_chan->num * D40_DREG_PCDELTA;
622}
623
624#define d40_err(dev, format, arg...)		\
625	dev_err(dev, "[%s] " format, __func__, ## arg)
626
627#define chan_err(d40c, format, arg...)		\
628	d40_err(chan2dev(d40c), format, ## arg)
629
630static int d40_set_runtime_config_write(struct dma_chan *chan,
631				  struct dma_slave_config *config,
632				  enum dma_transfer_direction direction);
633
634static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
635			      int lli_len)
636{
637	bool is_log = chan_is_logical(d40c);
638	u32 align;
639	void *base;
640
641	if (is_log)
642		align = sizeof(struct d40_log_lli);
643	else
644		align = sizeof(struct d40_phy_lli);
645
646	if (lli_len == 1) {
647		base = d40d->lli_pool.pre_alloc_lli;
648		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
649		d40d->lli_pool.base = NULL;
650	} else {
651		d40d->lli_pool.size = lli_len * 2 * align;
652
653		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
654		d40d->lli_pool.base = base;
655
656		if (d40d->lli_pool.base == NULL)
657			return -ENOMEM;
658	}
659
660	if (is_log) {
661		d40d->lli_log.src = PTR_ALIGN(base, align);
662		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
663
664		d40d->lli_pool.dma_addr = 0;
665	} else {
666		d40d->lli_phy.src = PTR_ALIGN(base, align);
667		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
668
669		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
670							 d40d->lli_phy.src,
671							 d40d->lli_pool.size,
672							 DMA_TO_DEVICE);
673
674		if (dma_mapping_error(d40c->base->dev,
675				      d40d->lli_pool.dma_addr)) {
676			kfree(d40d->lli_pool.base);
677			d40d->lli_pool.base = NULL;
678			d40d->lli_pool.dma_addr = 0;
679			return -ENOMEM;
680		}
681	}
682
683	return 0;
684}
685
686static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
687{
688	if (d40d->lli_pool.dma_addr)
689		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
690				 d40d->lli_pool.size, DMA_TO_DEVICE);
691
692	kfree(d40d->lli_pool.base);
693	d40d->lli_pool.base = NULL;
694	d40d->lli_pool.size = 0;
695	d40d->lli_log.src = NULL;
696	d40d->lli_log.dst = NULL;
697	d40d->lli_phy.src = NULL;
698	d40d->lli_phy.dst = NULL;
699}
700
701static int d40_lcla_alloc_one(struct d40_chan *d40c,
702			      struct d40_desc *d40d)
703{
704	unsigned long flags;
705	int i;
706	int ret = -EINVAL;
707
708	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
709
710	/*
711	 * Allocate both src and dst at the same time, therefore the half
712	 * start on 1 since 0 can't be used since zero is used as end marker.
713	 */
714	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
715		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
716
717		if (!d40c->base->lcla_pool.alloc_map[idx]) {
718			d40c->base->lcla_pool.alloc_map[idx] = d40d;
719			d40d->lcla_alloc++;
720			ret = i;
721			break;
722		}
723	}
724
725	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
726
727	return ret;
728}
729
730static int d40_lcla_free_all(struct d40_chan *d40c,
731			     struct d40_desc *d40d)
732{
733	unsigned long flags;
734	int i;
735	int ret = -EINVAL;
736
737	if (chan_is_physical(d40c))
738		return 0;
739
740	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
741
742	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
743		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
744
745		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
746			d40c->base->lcla_pool.alloc_map[idx] = NULL;
747			d40d->lcla_alloc--;
748			if (d40d->lcla_alloc == 0) {
749				ret = 0;
750				break;
751			}
752		}
753	}
754
755	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
756
757	return ret;
758
759}
760
761static void d40_desc_remove(struct d40_desc *d40d)
762{
763	list_del(&d40d->node);
764}
765
766static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
767{
768	struct d40_desc *desc = NULL;
769
770	if (!list_empty(&d40c->client)) {
771		struct d40_desc *d;
772		struct d40_desc *_d;
773
774		list_for_each_entry_safe(d, _d, &d40c->client, node) {
775			if (async_tx_test_ack(&d->txd)) {
776				d40_desc_remove(d);
777				desc = d;
778				memset(desc, 0, sizeof(*desc));
779				break;
780			}
781		}
782	}
783
784	if (!desc)
785		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
786
787	if (desc)
788		INIT_LIST_HEAD(&desc->node);
789
790	return desc;
791}
792
793static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
794{
795
796	d40_pool_lli_free(d40c, d40d);
797	d40_lcla_free_all(d40c, d40d);
798	kmem_cache_free(d40c->base->desc_slab, d40d);
799}
800
801static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
802{
803	list_add_tail(&desc->node, &d40c->active);
804}
805
806static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
807{
808	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
809	struct d40_phy_lli *lli_src = desc->lli_phy.src;
810	void __iomem *base = chan_base(chan);
811
812	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
813	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
814	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
815	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
816
817	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
818	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
819	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
820	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
821}
822
823static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
824{
825	list_add_tail(&desc->node, &d40c->done);
826}
827
828static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
829{
830	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
831	struct d40_log_lli_bidir *lli = &desc->lli_log;
832	int lli_current = desc->lli_current;
833	int lli_len = desc->lli_len;
834	bool cyclic = desc->cyclic;
835	int curr_lcla = -EINVAL;
836	int first_lcla = 0;
837	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
838	bool linkback;
839
840	/*
841	 * We may have partially running cyclic transfers, in case we did't get
842	 * enough LCLA entries.
843	 */
844	linkback = cyclic && lli_current == 0;
845
846	/*
847	 * For linkback, we need one LCLA even with only one link, because we
848	 * can't link back to the one in LCPA space
849	 */
850	if (linkback || (lli_len - lli_current > 1)) {
851		/*
852		 * If the channel is expected to use only soft_lli don't
853		 * allocate a lcla. This is to avoid a HW issue that exists
854		 * in some controller during a peripheral to memory transfer
855		 * that uses linked lists.
856		 */
857		if (!(chan->phy_chan->use_soft_lli &&
858			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
859			curr_lcla = d40_lcla_alloc_one(chan, desc);
860
861		first_lcla = curr_lcla;
862	}
863
864	/*
865	 * For linkback, we normally load the LCPA in the loop since we need to
866	 * link it to the second LCLA and not the first.  However, if we
867	 * couldn't even get a first LCLA, then we have to run in LCPA and
868	 * reload manually.
869	 */
870	if (!linkback || curr_lcla == -EINVAL) {
871		unsigned int flags = 0;
872
873		if (curr_lcla == -EINVAL)
874			flags |= LLI_TERM_INT;
875
876		d40_log_lli_lcpa_write(chan->lcpa,
877				       &lli->dst[lli_current],
878				       &lli->src[lli_current],
879				       curr_lcla,
880				       flags);
881		lli_current++;
882	}
883
884	if (curr_lcla < 0)
885		goto set_current;
886
887	for (; lli_current < lli_len; lli_current++) {
888		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
889					   8 * curr_lcla * 2;
890		struct d40_log_lli *lcla = pool->base + lcla_offset;
891		unsigned int flags = 0;
892		int next_lcla;
893
894		if (lli_current + 1 < lli_len)
895			next_lcla = d40_lcla_alloc_one(chan, desc);
896		else
897			next_lcla = linkback ? first_lcla : -EINVAL;
898
899		if (cyclic || next_lcla == -EINVAL)
900			flags |= LLI_TERM_INT;
901
902		if (linkback && curr_lcla == first_lcla) {
903			/* First link goes in both LCPA and LCLA */
904			d40_log_lli_lcpa_write(chan->lcpa,
905					       &lli->dst[lli_current],
906					       &lli->src[lli_current],
907					       next_lcla, flags);
908		}
909
910		/*
911		 * One unused LCLA in the cyclic case if the very first
912		 * next_lcla fails...
913		 */
914		d40_log_lli_lcla_write(lcla,
915				       &lli->dst[lli_current],
916				       &lli->src[lli_current],
917				       next_lcla, flags);
918
919		/*
920		 * Cache maintenance is not needed if lcla is
921		 * mapped in esram
922		 */
923		if (!use_esram_lcla) {
924			dma_sync_single_range_for_device(chan->base->dev,
925						pool->dma_addr, lcla_offset,
926						2 * sizeof(struct d40_log_lli),
927						DMA_TO_DEVICE);
928		}
929		curr_lcla = next_lcla;
930
931		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
932			lli_current++;
933			break;
934		}
935	}
936 set_current:
937	desc->lli_current = lli_current;
938}
939
940static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
941{
942	if (chan_is_physical(d40c)) {
943		d40_phy_lli_load(d40c, d40d);
944		d40d->lli_current = d40d->lli_len;
945	} else
946		d40_log_lli_to_lcxa(d40c, d40d);
947}
948
949static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
950{
951	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
952}
953
954/* remove desc from current queue and add it to the pending_queue */
955static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
956{
957	d40_desc_remove(desc);
958	desc->is_in_client_list = false;
959	list_add_tail(&desc->node, &d40c->pending_queue);
960}
961
962static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
963{
964	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
965					node);
966}
967
968static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
969{
970	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
971}
972
973static struct d40_desc *d40_first_done(struct d40_chan *d40c)
974{
975	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
976}
977
978static int d40_psize_2_burst_size(bool is_log, int psize)
979{
980	if (is_log) {
981		if (psize == STEDMA40_PSIZE_LOG_1)
982			return 1;
983	} else {
984		if (psize == STEDMA40_PSIZE_PHY_1)
985			return 1;
986	}
987
988	return 2 << psize;
989}
990
991/*
992 * The dma only supports transmitting packages up to
993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
994 *
995 * Calculate the total number of dma elements required to send the entire sg list.
996 */
997static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
998{
999	int dmalen;
1000	u32 max_w = max(data_width1, data_width2);
1001	u32 min_w = min(data_width1, data_width2);
1002	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003
1004	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005		seg_max -= max_w;
1006
1007	if (!IS_ALIGNED(size, max_w))
1008		return -EINVAL;
1009
1010	if (size <= seg_max)
1011		dmalen = 1;
1012	else {
1013		dmalen = size / seg_max;
1014		if (dmalen * seg_max < size)
1015			dmalen++;
1016	}
1017	return dmalen;
1018}
1019
1020static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021			   u32 data_width1, u32 data_width2)
1022{
1023	struct scatterlist *sg;
1024	int i;
1025	int len = 0;
1026	int ret;
1027
1028	for_each_sg(sgl, sg, sg_len, i) {
1029		ret = d40_size_2_dmalen(sg_dma_len(sg),
1030					data_width1, data_width2);
1031		if (ret < 0)
1032			return ret;
1033		len += ret;
1034	}
1035	return len;
1036}
1037
1038static int __d40_execute_command_phy(struct d40_chan *d40c,
1039				     enum d40_command command)
1040{
1041	u32 status;
1042	int i;
1043	void __iomem *active_reg;
1044	int ret = 0;
1045	unsigned long flags;
1046	u32 wmask;
1047
1048	if (command == D40_DMA_STOP) {
1049		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050		if (ret)
1051			return ret;
1052	}
1053
1054	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055
1056	if (d40c->phy_chan->num % 2 == 0)
1057		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058	else
1059		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060
1061	if (command == D40_DMA_SUSPEND_REQ) {
1062		status = (readl(active_reg) &
1063			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064			D40_CHAN_POS(d40c->phy_chan->num);
1065
1066		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067			goto unlock;
1068	}
1069
1070	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072	       active_reg);
1073
1074	if (command == D40_DMA_SUSPEND_REQ) {
1075
1076		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077			status = (readl(active_reg) &
1078				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079				D40_CHAN_POS(d40c->phy_chan->num);
1080
1081			cpu_relax();
1082			/*
1083			 * Reduce the number of bus accesses while
1084			 * waiting for the DMA to suspend.
1085			 */
1086			udelay(3);
1087
1088			if (status == D40_DMA_STOP ||
1089			    status == D40_DMA_SUSPENDED)
1090				break;
1091		}
1092
1093		if (i == D40_SUSPEND_MAX_IT) {
1094			chan_err(d40c,
1095				"unable to suspend the chl %d (log: %d) status %x\n",
1096				d40c->phy_chan->num, d40c->log_num,
1097				status);
1098			dump_stack();
1099			ret = -EBUSY;
1100		}
1101
1102	}
1103 unlock:
1104	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105	return ret;
1106}
1107
1108static void d40_term_all(struct d40_chan *d40c)
1109{
1110	struct d40_desc *d40d;
1111	struct d40_desc *_d;
1112
1113	/* Release completed descriptors */
1114	while ((d40d = d40_first_done(d40c))) {
1115		d40_desc_remove(d40d);
1116		d40_desc_free(d40c, d40d);
1117	}
1118
1119	/* Release active descriptors */
1120	while ((d40d = d40_first_active_get(d40c))) {
1121		d40_desc_remove(d40d);
1122		d40_desc_free(d40c, d40d);
1123	}
1124
1125	/* Release queued descriptors waiting for transfer */
1126	while ((d40d = d40_first_queued(d40c))) {
1127		d40_desc_remove(d40d);
1128		d40_desc_free(d40c, d40d);
1129	}
1130
1131	/* Release pending descriptors */
1132	while ((d40d = d40_first_pending(d40c))) {
1133		d40_desc_remove(d40d);
1134		d40_desc_free(d40c, d40d);
1135	}
1136
1137	/* Release client owned descriptors */
1138	if (!list_empty(&d40c->client))
1139		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140			d40_desc_remove(d40d);
1141			d40_desc_free(d40c, d40d);
1142		}
1143
1144	/* Release descriptors in prepare queue */
1145	if (!list_empty(&d40c->prepare_queue))
1146		list_for_each_entry_safe(d40d, _d,
1147					 &d40c->prepare_queue, node) {
1148			d40_desc_remove(d40d);
1149			d40_desc_free(d40c, d40d);
1150		}
1151
1152	d40c->pending_tx = 0;
1153}
1154
1155static void __d40_config_set_event(struct d40_chan *d40c,
1156				   enum d40_events event_type, u32 event,
1157				   int reg)
1158{
1159	void __iomem *addr = chan_base(d40c) + reg;
1160	int tries;
1161	u32 status;
1162
1163	switch (event_type) {
1164
1165	case D40_DEACTIVATE_EVENTLINE:
1166
1167		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168		       | ~D40_EVENTLINE_MASK(event), addr);
1169		break;
1170
1171	case D40_SUSPEND_REQ_EVENTLINE:
1172		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173			  D40_EVENTLINE_POS(event);
1174
1175		if (status == D40_DEACTIVATE_EVENTLINE ||
1176		    status == D40_SUSPEND_REQ_EVENTLINE)
1177			break;
1178
1179		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180		       | ~D40_EVENTLINE_MASK(event), addr);
1181
1182		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183
1184			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185				  D40_EVENTLINE_POS(event);
1186
1187			cpu_relax();
1188			/*
1189			 * Reduce the number of bus accesses while
1190			 * waiting for the DMA to suspend.
1191			 */
1192			udelay(3);
1193
1194			if (status == D40_DEACTIVATE_EVENTLINE)
1195				break;
1196		}
1197
1198		if (tries == D40_SUSPEND_MAX_IT) {
1199			chan_err(d40c,
1200				"unable to stop the event_line chl %d (log: %d)"
1201				"status %x\n", d40c->phy_chan->num,
1202				 d40c->log_num, status);
1203		}
1204		break;
1205
1206	case D40_ACTIVATE_EVENTLINE:
1207	/*
1208	 * The hardware sometimes doesn't register the enable when src and dst
1209	 * event lines are active on the same logical channel.  Retry to ensure
1210	 * it does.  Usually only one retry is sufficient.
1211	 */
1212		tries = 100;
1213		while (--tries) {
1214			writel((D40_ACTIVATE_EVENTLINE <<
1215				D40_EVENTLINE_POS(event)) |
1216				~D40_EVENTLINE_MASK(event), addr);
1217
1218			if (readl(addr) & D40_EVENTLINE_MASK(event))
1219				break;
1220		}
1221
1222		if (tries != 99)
1223			dev_dbg(chan2dev(d40c),
1224				"[%s] workaround enable S%cLNK (%d tries)\n",
1225				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226				100 - tries);
1227
1228		WARN_ON(!tries);
1229		break;
1230
1231	case D40_ROUND_EVENTLINE:
1232		BUG();
1233		break;
1234
1235	}
1236}
1237
1238static void d40_config_set_event(struct d40_chan *d40c,
1239				 enum d40_events event_type)
1240{
1241	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242
1243	/* Enable event line connected to device (or memcpy) */
1244	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246		__d40_config_set_event(d40c, event_type, event,
1247				       D40_CHAN_REG_SSLNK);
1248
1249	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1250		__d40_config_set_event(d40c, event_type, event,
1251				       D40_CHAN_REG_SDLNK);
1252}
1253
1254static u32 d40_chan_has_events(struct d40_chan *d40c)
1255{
1256	void __iomem *chanbase = chan_base(d40c);
1257	u32 val;
1258
1259	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261
1262	return val;
1263}
1264
1265static int
1266__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267{
1268	unsigned long flags;
1269	int ret = 0;
1270	u32 active_status;
1271	void __iomem *active_reg;
1272
1273	if (d40c->phy_chan->num % 2 == 0)
1274		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275	else
1276		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277
1278
1279	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280
1281	switch (command) {
1282	case D40_DMA_STOP:
1283	case D40_DMA_SUSPEND_REQ:
1284
1285		active_status = (readl(active_reg) &
1286				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287				 D40_CHAN_POS(d40c->phy_chan->num);
1288
1289		if (active_status == D40_DMA_RUN)
1290			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291		else
1292			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293
1294		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295			ret = __d40_execute_command_phy(d40c, command);
1296
1297		break;
1298
1299	case D40_DMA_RUN:
1300
1301		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302		ret = __d40_execute_command_phy(d40c, command);
1303		break;
1304
1305	case D40_DMA_SUSPENDED:
1306		BUG();
1307		break;
1308	}
1309
1310	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311	return ret;
1312}
1313
1314static int d40_channel_execute_command(struct d40_chan *d40c,
1315				       enum d40_command command)
1316{
1317	if (chan_is_logical(d40c))
1318		return __d40_execute_command_log(d40c, command);
1319	else
1320		return __d40_execute_command_phy(d40c, command);
1321}
1322
1323static u32 d40_get_prmo(struct d40_chan *d40c)
1324{
1325	static const unsigned int phy_map[] = {
1326		[STEDMA40_PCHAN_BASIC_MODE]
1327			= D40_DREG_PRMO_PCHAN_BASIC,
1328		[STEDMA40_PCHAN_MODULO_MODE]
1329			= D40_DREG_PRMO_PCHAN_MODULO,
1330		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332	};
1333	static const unsigned int log_map[] = {
1334		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340	};
1341
1342	if (chan_is_physical(d40c))
1343		return phy_map[d40c->dma_cfg.mode_opt];
1344	else
1345		return log_map[d40c->dma_cfg.mode_opt];
1346}
1347
1348static void d40_config_write(struct d40_chan *d40c)
1349{
1350	u32 addr_base;
1351	u32 var;
1352
1353	/* Odd addresses are even addresses + 4 */
1354	addr_base = (d40c->phy_chan->num % 2) * 4;
1355	/* Setup channel mode to logical or physical */
1356	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357		D40_CHAN_POS(d40c->phy_chan->num);
1358	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359
1360	/* Setup operational mode option register */
1361	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362
1363	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364
1365	if (chan_is_logical(d40c)) {
1366		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1368		void __iomem *chanbase = chan_base(d40c);
1369
1370		/* Set default config for CFG reg */
1371		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373
1374		/* Set LIDX for lcla */
1375		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377
1378		/* Clear LNK which will be used by d40_chan_has_events() */
1379		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381	}
1382}
1383
1384static u32 d40_residue(struct d40_chan *d40c)
1385{
1386	u32 num_elt;
1387
1388	if (chan_is_logical(d40c))
1389		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390			>> D40_MEM_LCSP2_ECNT_POS;
1391	else {
1392		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1395	}
1396
1397	return num_elt * d40c->dma_cfg.dst_info.data_width;
1398}
1399
1400static bool d40_tx_is_linked(struct d40_chan *d40c)
1401{
1402	bool is_link;
1403
1404	if (chan_is_logical(d40c))
1405		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1406	else
1407		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408			  & D40_SREG_LNK_PHYS_LNK_MASK;
1409
1410	return is_link;
1411}
1412
1413static int d40_pause(struct dma_chan *chan)
1414{
1415	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416	int res = 0;
1417	unsigned long flags;
1418
1419	if (d40c->phy_chan == NULL) {
1420		chan_err(d40c, "Channel is not allocated!\n");
1421		return -EINVAL;
1422	}
1423
1424	if (!d40c->busy)
1425		return 0;
1426
1427	spin_lock_irqsave(&d40c->lock, flags);
1428	pm_runtime_get_sync(d40c->base->dev);
1429
1430	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431
1432	pm_runtime_mark_last_busy(d40c->base->dev);
1433	pm_runtime_put_autosuspend(d40c->base->dev);
1434	spin_unlock_irqrestore(&d40c->lock, flags);
1435	return res;
1436}
1437
1438static int d40_resume(struct dma_chan *chan)
1439{
1440	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441	int res = 0;
1442	unsigned long flags;
1443
1444	if (d40c->phy_chan == NULL) {
1445		chan_err(d40c, "Channel is not allocated!\n");
1446		return -EINVAL;
1447	}
1448
1449	if (!d40c->busy)
1450		return 0;
1451
1452	spin_lock_irqsave(&d40c->lock, flags);
1453	pm_runtime_get_sync(d40c->base->dev);
1454
1455	/* If bytes left to transfer or linked tx resume job */
1456	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458
1459	pm_runtime_mark_last_busy(d40c->base->dev);
1460	pm_runtime_put_autosuspend(d40c->base->dev);
1461	spin_unlock_irqrestore(&d40c->lock, flags);
1462	return res;
1463}
1464
1465static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466{
1467	struct d40_chan *d40c = container_of(tx->chan,
1468					     struct d40_chan,
1469					     chan);
1470	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471	unsigned long flags;
1472	dma_cookie_t cookie;
1473
1474	spin_lock_irqsave(&d40c->lock, flags);
1475	cookie = dma_cookie_assign(tx);
1476	d40_desc_queue(d40c, d40d);
1477	spin_unlock_irqrestore(&d40c->lock, flags);
1478
1479	return cookie;
1480}
1481
1482static int d40_start(struct d40_chan *d40c)
1483{
1484	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485}
1486
1487static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488{
1489	struct d40_desc *d40d;
1490	int err;
1491
1492	/* Start queued jobs, if any */
1493	d40d = d40_first_queued(d40c);
1494
1495	if (d40d != NULL) {
1496		if (!d40c->busy) {
1497			d40c->busy = true;
1498			pm_runtime_get_sync(d40c->base->dev);
1499		}
1500
1501		/* Remove from queue */
1502		d40_desc_remove(d40d);
1503
1504		/* Add to active queue */
1505		d40_desc_submit(d40c, d40d);
1506
1507		/* Initiate DMA job */
1508		d40_desc_load(d40c, d40d);
1509
1510		/* Start dma job */
1511		err = d40_start(d40c);
1512
1513		if (err)
1514			return NULL;
1515	}
1516
1517	return d40d;
1518}
1519
1520/* called from interrupt context */
1521static void dma_tc_handle(struct d40_chan *d40c)
1522{
1523	struct d40_desc *d40d;
1524
1525	/* Get first active entry from list */
1526	d40d = d40_first_active_get(d40c);
1527
1528	if (d40d == NULL)
1529		return;
1530
1531	if (d40d->cyclic) {
1532		/*
1533		 * If this was a paritially loaded list, we need to reloaded
1534		 * it, and only when the list is completed.  We need to check
1535		 * for done because the interrupt will hit for every link, and
1536		 * not just the last one.
1537		 */
1538		if (d40d->lli_current < d40d->lli_len
1539		    && !d40_tx_is_linked(d40c)
1540		    && !d40_residue(d40c)) {
1541			d40_lcla_free_all(d40c, d40d);
1542			d40_desc_load(d40c, d40d);
1543			(void) d40_start(d40c);
1544
1545			if (d40d->lli_current == d40d->lli_len)
1546				d40d->lli_current = 0;
1547		}
1548	} else {
1549		d40_lcla_free_all(d40c, d40d);
1550
1551		if (d40d->lli_current < d40d->lli_len) {
1552			d40_desc_load(d40c, d40d);
1553			/* Start dma job */
1554			(void) d40_start(d40c);
1555			return;
1556		}
1557
1558		if (d40_queue_start(d40c) == NULL) {
1559			d40c->busy = false;
1560
1561			pm_runtime_mark_last_busy(d40c->base->dev);
1562			pm_runtime_put_autosuspend(d40c->base->dev);
1563		}
1564
1565		d40_desc_remove(d40d);
1566		d40_desc_done(d40c, d40d);
1567	}
1568
1569	d40c->pending_tx++;
1570	tasklet_schedule(&d40c->tasklet);
1571
1572}
1573
1574static void dma_tasklet(struct tasklet_struct *t)
1575{
1576	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1577	struct d40_desc *d40d;
1578	unsigned long flags;
1579	bool callback_active;
1580	struct dmaengine_desc_callback cb;
1581
1582	spin_lock_irqsave(&d40c->lock, flags);
1583
1584	/* Get first entry from the done list */
1585	d40d = d40_first_done(d40c);
1586	if (d40d == NULL) {
1587		/* Check if we have reached here for cyclic job */
1588		d40d = d40_first_active_get(d40c);
1589		if (d40d == NULL || !d40d->cyclic)
1590			goto check_pending_tx;
1591	}
1592
1593	if (!d40d->cyclic)
1594		dma_cookie_complete(&d40d->txd);
1595
1596	/*
1597	 * If terminating a channel pending_tx is set to zero.
1598	 * This prevents any finished active jobs to return to the client.
1599	 */
1600	if (d40c->pending_tx == 0) {
1601		spin_unlock_irqrestore(&d40c->lock, flags);
1602		return;
1603	}
1604
1605	/* Callback to client */
1606	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607	dmaengine_desc_get_callback(&d40d->txd, &cb);
1608
1609	if (!d40d->cyclic) {
1610		if (async_tx_test_ack(&d40d->txd)) {
1611			d40_desc_remove(d40d);
1612			d40_desc_free(d40c, d40d);
1613		} else if (!d40d->is_in_client_list) {
1614			d40_desc_remove(d40d);
1615			d40_lcla_free_all(d40c, d40d);
1616			list_add_tail(&d40d->node, &d40c->client);
1617			d40d->is_in_client_list = true;
1618		}
1619	}
1620
1621	d40c->pending_tx--;
1622
1623	if (d40c->pending_tx)
1624		tasklet_schedule(&d40c->tasklet);
1625
1626	spin_unlock_irqrestore(&d40c->lock, flags);
1627
1628	if (callback_active)
1629		dmaengine_desc_callback_invoke(&cb, NULL);
1630
1631	return;
1632 check_pending_tx:
1633	/* Rescue manouver if receiving double interrupts */
1634	if (d40c->pending_tx > 0)
1635		d40c->pending_tx--;
1636	spin_unlock_irqrestore(&d40c->lock, flags);
1637}
1638
1639static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640{
1641	int i;
1642	u32 idx;
1643	u32 row;
1644	long chan = -1;
1645	struct d40_chan *d40c;
1646	unsigned long flags;
1647	struct d40_base *base = data;
1648	u32 *regs = base->regs_interrupt;
1649	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1650	u32 il_size = base->gen_dmac.il_size;
1651
1652	spin_lock_irqsave(&base->interrupt_lock, flags);
1653
1654	/* Read interrupt status of both logical and physical channels */
1655	for (i = 0; i < il_size; i++)
1656		regs[i] = readl(base->virtbase + il[i].src);
1657
1658	for (;;) {
1659
1660		chan = find_next_bit((unsigned long *)regs,
1661				     BITS_PER_LONG * il_size, chan + 1);
1662
1663		/* No more set bits found? */
1664		if (chan == BITS_PER_LONG * il_size)
1665			break;
1666
1667		row = chan / BITS_PER_LONG;
1668		idx = chan & (BITS_PER_LONG - 1);
1669
1670		if (il[row].offset == D40_PHY_CHAN)
1671			d40c = base->lookup_phy_chans[idx];
1672		else
1673			d40c = base->lookup_log_chans[il[row].offset + idx];
1674
1675		if (!d40c) {
1676			/*
1677			 * No error because this can happen if something else
1678			 * in the system is using the channel.
1679			 */
1680			continue;
1681		}
1682
1683		/* ACK interrupt */
1684		writel(BIT(idx), base->virtbase + il[row].clr);
1685
1686		spin_lock(&d40c->lock);
1687
1688		if (!il[row].is_error)
1689			dma_tc_handle(d40c);
1690		else
1691			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1692				chan, il[row].offset, idx);
1693
1694		spin_unlock(&d40c->lock);
1695	}
1696
1697	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1698
1699	return IRQ_HANDLED;
1700}
1701
1702static int d40_validate_conf(struct d40_chan *d40c,
1703			     struct stedma40_chan_cfg *conf)
1704{
1705	int res = 0;
1706	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707
1708	if (!conf->dir) {
1709		chan_err(d40c, "Invalid direction.\n");
1710		res = -EINVAL;
1711	}
1712
1713	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1714	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1715	    (conf->dev_type < 0)) {
1716		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1717		res = -EINVAL;
1718	}
1719
1720	if (conf->dir == DMA_DEV_TO_DEV) {
1721		/*
1722		 * DMAC HW supports it. Will be added to this driver,
1723		 * in case any dma client requires it.
1724		 */
1725		chan_err(d40c, "periph to periph not supported\n");
1726		res = -EINVAL;
1727	}
1728
1729	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1730	    conf->src_info.data_width !=
1731	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1732	    conf->dst_info.data_width) {
1733		/*
1734		 * The DMAC hardware only supports
1735		 * src (burst x width) == dst (burst x width)
1736		 */
1737
1738		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1739		res = -EINVAL;
1740	}
1741
1742	return res;
1743}
1744
1745static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1746			       bool is_src, int log_event_line, bool is_log,
1747			       bool *first_user)
1748{
1749	unsigned long flags;
1750	spin_lock_irqsave(&phy->lock, flags);
1751
1752	*first_user = ((phy->allocated_src | phy->allocated_dst)
1753			== D40_ALLOC_FREE);
1754
1755	if (!is_log) {
1756		/* Physical interrupts are masked per physical full channel */
1757		if (phy->allocated_src == D40_ALLOC_FREE &&
1758		    phy->allocated_dst == D40_ALLOC_FREE) {
1759			phy->allocated_dst = D40_ALLOC_PHY;
1760			phy->allocated_src = D40_ALLOC_PHY;
1761			goto found_unlock;
1762		} else
1763			goto not_found_unlock;
1764	}
1765
1766	/* Logical channel */
1767	if (is_src) {
1768		if (phy->allocated_src == D40_ALLOC_PHY)
1769			goto not_found_unlock;
1770
1771		if (phy->allocated_src == D40_ALLOC_FREE)
1772			phy->allocated_src = D40_ALLOC_LOG_FREE;
1773
1774		if (!(phy->allocated_src & BIT(log_event_line))) {
1775			phy->allocated_src |= BIT(log_event_line);
1776			goto found_unlock;
1777		} else
1778			goto not_found_unlock;
1779	} else {
1780		if (phy->allocated_dst == D40_ALLOC_PHY)
1781			goto not_found_unlock;
1782
1783		if (phy->allocated_dst == D40_ALLOC_FREE)
1784			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785
1786		if (!(phy->allocated_dst & BIT(log_event_line))) {
1787			phy->allocated_dst |= BIT(log_event_line);
1788			goto found_unlock;
1789		}
1790	}
1791 not_found_unlock:
1792	spin_unlock_irqrestore(&phy->lock, flags);
1793	return false;
1794 found_unlock:
1795	spin_unlock_irqrestore(&phy->lock, flags);
1796	return true;
1797}
1798
1799static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1800			       int log_event_line)
1801{
1802	unsigned long flags;
1803	bool is_free = false;
1804
1805	spin_lock_irqsave(&phy->lock, flags);
1806	if (!log_event_line) {
1807		phy->allocated_dst = D40_ALLOC_FREE;
1808		phy->allocated_src = D40_ALLOC_FREE;
1809		is_free = true;
1810		goto unlock;
1811	}
1812
1813	/* Logical channel */
1814	if (is_src) {
1815		phy->allocated_src &= ~BIT(log_event_line);
1816		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1817			phy->allocated_src = D40_ALLOC_FREE;
1818	} else {
1819		phy->allocated_dst &= ~BIT(log_event_line);
1820		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1821			phy->allocated_dst = D40_ALLOC_FREE;
1822	}
1823
1824	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1825		   D40_ALLOC_FREE);
1826 unlock:
1827	spin_unlock_irqrestore(&phy->lock, flags);
1828
1829	return is_free;
1830}
1831
1832static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833{
1834	int dev_type = d40c->dma_cfg.dev_type;
1835	int event_group;
1836	int event_line;
1837	struct d40_phy_res *phys;
1838	int i;
1839	int j;
1840	int log_num;
1841	int num_phy_chans;
1842	bool is_src;
1843	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844
1845	phys = d40c->base->phy_res;
1846	num_phy_chans = d40c->base->num_phy_chans;
1847
1848	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1849		log_num = 2 * dev_type;
1850		is_src = true;
1851	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1852		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1853		/* dst event lines are used for logical memcpy */
1854		log_num = 2 * dev_type + 1;
1855		is_src = false;
1856	} else
1857		return -EINVAL;
1858
1859	event_group = D40_TYPE_TO_GROUP(dev_type);
1860	event_line = D40_TYPE_TO_EVENT(dev_type);
1861
1862	if (!is_log) {
1863		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1864			/* Find physical half channel */
1865			if (d40c->dma_cfg.use_fixed_channel) {
1866				i = d40c->dma_cfg.phy_channel;
1867				if (d40_alloc_mask_set(&phys[i], is_src,
1868						       0, is_log,
1869						       first_phy_user))
1870					goto found_phy;
1871			} else {
1872				for (i = 0; i < num_phy_chans; i++) {
1873					if (d40_alloc_mask_set(&phys[i], is_src,
1874						       0, is_log,
1875						       first_phy_user))
1876						goto found_phy;
1877				}
1878			}
1879		} else
1880			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1881				int phy_num = j  + event_group * 2;
1882				for (i = phy_num; i < phy_num + 2; i++) {
1883					if (d40_alloc_mask_set(&phys[i],
1884							       is_src,
1885							       0,
1886							       is_log,
1887							       first_phy_user))
1888						goto found_phy;
1889				}
1890			}
1891		return -EINVAL;
1892found_phy:
1893		d40c->phy_chan = &phys[i];
1894		d40c->log_num = D40_PHY_CHAN;
1895		goto out;
1896	}
1897	if (dev_type == -1)
1898		return -EINVAL;
1899
1900	/* Find logical channel */
1901	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1902		int phy_num = j + event_group * 2;
1903
1904		if (d40c->dma_cfg.use_fixed_channel) {
1905			i = d40c->dma_cfg.phy_channel;
1906
1907			if ((i != phy_num) && (i != phy_num + 1)) {
1908				dev_err(chan2dev(d40c),
1909					"invalid fixed phy channel %d\n", i);
1910				return -EINVAL;
1911			}
1912
1913			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1914					       is_log, first_phy_user))
1915				goto found_log;
1916
1917			dev_err(chan2dev(d40c),
1918				"could not allocate fixed phy channel %d\n", i);
1919			return -EINVAL;
1920		}
1921
1922		/*
1923		 * Spread logical channels across all available physical rather
1924		 * than pack every logical channel at the first available phy
1925		 * channels.
1926		 */
1927		if (is_src) {
1928			for (i = phy_num; i < phy_num + 2; i++) {
1929				if (d40_alloc_mask_set(&phys[i], is_src,
1930						       event_line, is_log,
1931						       first_phy_user))
1932					goto found_log;
1933			}
1934		} else {
1935			for (i = phy_num + 1; i >= phy_num; i--) {
1936				if (d40_alloc_mask_set(&phys[i], is_src,
1937						       event_line, is_log,
1938						       first_phy_user))
1939					goto found_log;
1940			}
1941		}
1942	}
1943	return -EINVAL;
1944
1945found_log:
1946	d40c->phy_chan = &phys[i];
1947	d40c->log_num = log_num;
1948out:
1949
1950	if (is_log)
1951		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1952	else
1953		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954
1955	return 0;
1956
1957}
1958
1959static int d40_config_memcpy(struct d40_chan *d40c)
1960{
1961	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962
1963	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1964		d40c->dma_cfg = dma40_memcpy_conf_log;
1965		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966
1967		d40_log_cfg(&d40c->dma_cfg,
1968			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969
1970	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1971		   dma_has_cap(DMA_SLAVE, cap)) {
1972		d40c->dma_cfg = dma40_memcpy_conf_phy;
1973
1974		/* Generate interrrupt at end of transfer or relink. */
1975		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976
1977		/* Generate interrupt on error. */
1978		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980
1981	} else {
1982		chan_err(d40c, "No memcpy\n");
1983		return -EINVAL;
1984	}
1985
1986	return 0;
1987}
1988
1989static int d40_free_dma(struct d40_chan *d40c)
1990{
1991
1992	int res = 0;
1993	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1994	struct d40_phy_res *phy = d40c->phy_chan;
1995	bool is_src;
1996
1997	/* Terminate all queued and active transfers */
1998	d40_term_all(d40c);
1999
2000	if (phy == NULL) {
2001		chan_err(d40c, "phy == null\n");
2002		return -EINVAL;
2003	}
2004
2005	if (phy->allocated_src == D40_ALLOC_FREE &&
2006	    phy->allocated_dst == D40_ALLOC_FREE) {
2007		chan_err(d40c, "channel already free\n");
2008		return -EINVAL;
2009	}
2010
2011	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2012	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2013		is_src = false;
2014	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2015		is_src = true;
2016	else {
2017		chan_err(d40c, "Unknown direction\n");
2018		return -EINVAL;
2019	}
2020
2021	pm_runtime_get_sync(d40c->base->dev);
2022	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2023	if (res) {
2024		chan_err(d40c, "stop failed\n");
2025		goto mark_last_busy;
2026	}
2027
2028	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029
2030	if (chan_is_logical(d40c))
2031		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2032	else
2033		d40c->base->lookup_phy_chans[phy->num] = NULL;
2034
2035	if (d40c->busy) {
2036		pm_runtime_mark_last_busy(d40c->base->dev);
2037		pm_runtime_put_autosuspend(d40c->base->dev);
2038	}
2039
2040	d40c->busy = false;
2041	d40c->phy_chan = NULL;
2042	d40c->configured = false;
2043 mark_last_busy:
2044	pm_runtime_mark_last_busy(d40c->base->dev);
2045	pm_runtime_put_autosuspend(d40c->base->dev);
2046	return res;
2047}
2048
2049static bool d40_is_paused(struct d40_chan *d40c)
2050{
2051	void __iomem *chanbase = chan_base(d40c);
2052	bool is_paused = false;
2053	unsigned long flags;
2054	void __iomem *active_reg;
2055	u32 status;
2056	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057
2058	spin_lock_irqsave(&d40c->lock, flags);
2059
2060	if (chan_is_physical(d40c)) {
2061		if (d40c->phy_chan->num % 2 == 0)
2062			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2063		else
2064			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065
2066		status = (readl(active_reg) &
2067			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2068			D40_CHAN_POS(d40c->phy_chan->num);
2069		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2070			is_paused = true;
2071		goto unlock;
2072	}
2073
2074	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2075	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2076		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2077	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2078		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2079	} else {
2080		chan_err(d40c, "Unknown direction\n");
2081		goto unlock;
2082	}
2083
2084	status = (status & D40_EVENTLINE_MASK(event)) >>
2085		D40_EVENTLINE_POS(event);
2086
2087	if (status != D40_DMA_RUN)
2088		is_paused = true;
2089 unlock:
2090	spin_unlock_irqrestore(&d40c->lock, flags);
2091	return is_paused;
2092
2093}
2094
2095static u32 stedma40_residue(struct dma_chan *chan)
2096{
2097	struct d40_chan *d40c =
2098		container_of(chan, struct d40_chan, chan);
2099	u32 bytes_left;
2100	unsigned long flags;
2101
2102	spin_lock_irqsave(&d40c->lock, flags);
2103	bytes_left = d40_residue(d40c);
2104	spin_unlock_irqrestore(&d40c->lock, flags);
2105
2106	return bytes_left;
2107}
2108
2109static int
2110d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2111		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2112		unsigned int sg_len, dma_addr_t src_dev_addr,
2113		dma_addr_t dst_dev_addr)
2114{
2115	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2116	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2117	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2118	int ret;
2119
2120	ret = d40_log_sg_to_lli(sg_src, sg_len,
2121				src_dev_addr,
2122				desc->lli_log.src,
2123				chan->log_def.lcsp1,
2124				src_info->data_width,
2125				dst_info->data_width);
2126
2127	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2128				dst_dev_addr,
2129				desc->lli_log.dst,
2130				chan->log_def.lcsp3,
2131				dst_info->data_width,
2132				src_info->data_width);
2133
2134	return ret < 0 ? ret : 0;
2135}
2136
2137static int
2138d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2139		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2140		unsigned int sg_len, dma_addr_t src_dev_addr,
2141		dma_addr_t dst_dev_addr)
2142{
2143	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2144	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2145	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2146	unsigned long flags = 0;
2147	int ret;
2148
2149	if (desc->cyclic)
2150		flags |= LLI_CYCLIC | LLI_TERM_INT;
2151
2152	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2153				desc->lli_phy.src,
2154				virt_to_phys(desc->lli_phy.src),
2155				chan->src_def_cfg,
2156				src_info, dst_info, flags);
2157
2158	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2159				desc->lli_phy.dst,
2160				virt_to_phys(desc->lli_phy.dst),
2161				chan->dst_def_cfg,
2162				dst_info, src_info, flags);
2163
2164	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2165				   desc->lli_pool.size, DMA_TO_DEVICE);
2166
2167	return ret < 0 ? ret : 0;
2168}
2169
2170static struct d40_desc *
2171d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2172	      unsigned int sg_len, unsigned long dma_flags)
2173{
2174	struct stedma40_chan_cfg *cfg;
2175	struct d40_desc *desc;
2176	int ret;
2177
2178	desc = d40_desc_get(chan);
2179	if (!desc)
2180		return NULL;
2181
2182	cfg = &chan->dma_cfg;
2183	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2184					cfg->dst_info.data_width);
2185	if (desc->lli_len < 0) {
2186		chan_err(chan, "Unaligned size\n");
2187		goto free_desc;
2188	}
2189
2190	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2191	if (ret < 0) {
2192		chan_err(chan, "Could not allocate lli\n");
2193		goto free_desc;
2194	}
2195
2196	desc->lli_current = 0;
2197	desc->txd.flags = dma_flags;
2198	desc->txd.tx_submit = d40_tx_submit;
2199
2200	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201
2202	return desc;
2203 free_desc:
2204	d40_desc_free(chan, desc);
2205	return NULL;
2206}
2207
2208static struct dma_async_tx_descriptor *
2209d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2210	    struct scatterlist *sg_dst, unsigned int sg_len,
2211	    enum dma_transfer_direction direction, unsigned long dma_flags)
2212{
2213	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2214	dma_addr_t src_dev_addr;
2215	dma_addr_t dst_dev_addr;
2216	struct d40_desc *desc;
2217	unsigned long flags;
2218	int ret;
2219
2220	if (!chan->phy_chan) {
2221		chan_err(chan, "Cannot prepare unallocated channel\n");
2222		return NULL;
2223	}
2224
2225	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226
2227	spin_lock_irqsave(&chan->lock, flags);
2228
2229	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2230	if (desc == NULL)
2231		goto unlock;
2232
2233	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2234		desc->cyclic = true;
2235
2236	src_dev_addr = 0;
2237	dst_dev_addr = 0;
2238	if (direction == DMA_DEV_TO_MEM)
2239		src_dev_addr = chan->runtime_addr;
2240	else if (direction == DMA_MEM_TO_DEV)
2241		dst_dev_addr = chan->runtime_addr;
2242
2243	if (chan_is_logical(chan))
2244		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2245				      sg_len, src_dev_addr, dst_dev_addr);
2246	else
2247		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2248				      sg_len, src_dev_addr, dst_dev_addr);
2249
2250	if (ret) {
2251		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2252			 chan_is_logical(chan) ? "log" : "phy", ret);
2253		goto free_desc;
2254	}
2255
2256	/*
2257	 * add descriptor to the prepare queue in order to be able
2258	 * to free them later in terminate_all
2259	 */
2260	list_add_tail(&desc->node, &chan->prepare_queue);
2261
2262	spin_unlock_irqrestore(&chan->lock, flags);
2263
2264	return &desc->txd;
2265 free_desc:
2266	d40_desc_free(chan, desc);
2267 unlock:
2268	spin_unlock_irqrestore(&chan->lock, flags);
2269	return NULL;
2270}
2271
2272bool stedma40_filter(struct dma_chan *chan, void *data)
2273{
2274	struct stedma40_chan_cfg *info = data;
2275	struct d40_chan *d40c =
2276		container_of(chan, struct d40_chan, chan);
2277	int err;
2278
2279	if (data) {
2280		err = d40_validate_conf(d40c, info);
2281		if (!err)
2282			d40c->dma_cfg = *info;
2283	} else
2284		err = d40_config_memcpy(d40c);
2285
2286	if (!err)
2287		d40c->configured = true;
2288
2289	return err == 0;
2290}
2291EXPORT_SYMBOL(stedma40_filter);
2292
2293static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294{
2295	bool realtime = d40c->dma_cfg.realtime;
2296	bool highprio = d40c->dma_cfg.high_priority;
2297	u32 rtreg;
2298	u32 event = D40_TYPE_TO_EVENT(dev_type);
2299	u32 group = D40_TYPE_TO_GROUP(dev_type);
2300	u32 bit = BIT(event);
2301	u32 prioreg;
2302	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303
2304	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305	/*
2306	 * Due to a hardware bug, in some cases a logical channel triggered by
2307	 * a high priority destination event line can generate extra packet
2308	 * transactions.
2309	 *
2310	 * The workaround is to not set the high priority level for the
2311	 * destination event lines that trigger logical channels.
2312	 */
2313	if (!src && chan_is_logical(d40c))
2314		highprio = false;
2315
2316	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317
2318	/* Destination event lines are stored in the upper halfword */
2319	if (!src)
2320		bit <<= 16;
2321
2322	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2323	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2324}
2325
2326static void d40_set_prio_realtime(struct d40_chan *d40c)
2327{
2328	if (d40c->base->rev < 3)
2329		return;
2330
2331	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2332	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334
2335	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2336	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2337		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2338}
2339
2340#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2341#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2342#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2343#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2344#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2345
2346static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2347				  struct of_dma *ofdma)
2348{
2349	struct stedma40_chan_cfg cfg;
2350	dma_cap_mask_t cap;
2351	u32 flags;
2352
2353	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354
2355	dma_cap_zero(cap);
2356	dma_cap_set(DMA_SLAVE, cap);
2357
2358	cfg.dev_type = dma_spec->args[0];
2359	flags = dma_spec->args[2];
2360
2361	switch (D40_DT_FLAGS_MODE(flags)) {
2362	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2363	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2364	}
2365
2366	switch (D40_DT_FLAGS_DIR(flags)) {
2367	case 0:
2368		cfg.dir = DMA_MEM_TO_DEV;
2369		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370		break;
2371	case 1:
2372		cfg.dir = DMA_DEV_TO_MEM;
2373		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2374		break;
2375	}
2376
2377	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2378		cfg.phy_channel = dma_spec->args[1];
2379		cfg.use_fixed_channel = true;
2380	}
2381
2382	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2383		cfg.high_priority = true;
2384
2385	return dma_request_channel(cap, stedma40_filter, &cfg);
2386}
2387
2388/* DMA ENGINE functions */
2389static int d40_alloc_chan_resources(struct dma_chan *chan)
2390{
2391	int err;
2392	unsigned long flags;
2393	struct d40_chan *d40c =
2394		container_of(chan, struct d40_chan, chan);
2395	bool is_free_phy;
2396	spin_lock_irqsave(&d40c->lock, flags);
2397
2398	dma_cookie_init(chan);
2399
2400	/* If no dma configuration is set use default configuration (memcpy) */
2401	if (!d40c->configured) {
2402		err = d40_config_memcpy(d40c);
2403		if (err) {
2404			chan_err(d40c, "Failed to configure memcpy channel\n");
2405			goto mark_last_busy;
2406		}
2407	}
2408
2409	err = d40_allocate_channel(d40c, &is_free_phy);
2410	if (err) {
2411		chan_err(d40c, "Failed to allocate channel\n");
2412		d40c->configured = false;
2413		goto mark_last_busy;
2414	}
2415
2416	pm_runtime_get_sync(d40c->base->dev);
2417
2418	d40_set_prio_realtime(d40c);
2419
2420	if (chan_is_logical(d40c)) {
2421		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2422			d40c->lcpa = d40c->base->lcpa_base +
2423				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2424		else
2425			d40c->lcpa = d40c->base->lcpa_base +
2426				d40c->dma_cfg.dev_type *
2427				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428
2429		/* Unmask the Global Interrupt Mask. */
2430		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2432	}
2433
2434	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2435		 chan_is_logical(d40c) ? "logical" : "physical",
2436		 d40c->phy_chan->num,
2437		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2438
2439
2440	/*
2441	 * Only write channel configuration to the DMA if the physical
2442	 * resource is free. In case of multiple logical channels
2443	 * on the same physical resource, only the first write is necessary.
2444	 */
2445	if (is_free_phy)
2446		d40_config_write(d40c);
2447 mark_last_busy:
2448	pm_runtime_mark_last_busy(d40c->base->dev);
2449	pm_runtime_put_autosuspend(d40c->base->dev);
2450	spin_unlock_irqrestore(&d40c->lock, flags);
2451	return err;
2452}
2453
2454static void d40_free_chan_resources(struct dma_chan *chan)
2455{
2456	struct d40_chan *d40c =
2457		container_of(chan, struct d40_chan, chan);
2458	int err;
2459	unsigned long flags;
2460
2461	if (d40c->phy_chan == NULL) {
2462		chan_err(d40c, "Cannot free unallocated channel\n");
2463		return;
2464	}
2465
2466	spin_lock_irqsave(&d40c->lock, flags);
2467
2468	err = d40_free_dma(d40c);
2469
2470	if (err)
2471		chan_err(d40c, "Failed to free channel\n");
2472	spin_unlock_irqrestore(&d40c->lock, flags);
2473}
2474
2475static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2476						       dma_addr_t dst,
2477						       dma_addr_t src,
2478						       size_t size,
2479						       unsigned long dma_flags)
2480{
2481	struct scatterlist dst_sg;
2482	struct scatterlist src_sg;
2483
2484	sg_init_table(&dst_sg, 1);
2485	sg_init_table(&src_sg, 1);
2486
2487	sg_dma_address(&dst_sg) = dst;
2488	sg_dma_address(&src_sg) = src;
2489
2490	sg_dma_len(&dst_sg) = size;
2491	sg_dma_len(&src_sg) = size;
2492
2493	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2494			   DMA_MEM_TO_MEM, dma_flags);
2495}
2496
2497static struct dma_async_tx_descriptor *
2498d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2499		  unsigned int sg_len, enum dma_transfer_direction direction,
2500		  unsigned long dma_flags, void *context)
2501{
2502	if (!is_slave_direction(direction))
2503		return NULL;
2504
2505	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2506}
2507
2508static struct dma_async_tx_descriptor *
2509dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2510		     size_t buf_len, size_t period_len,
2511		     enum dma_transfer_direction direction, unsigned long flags)
2512{
2513	unsigned int periods = buf_len / period_len;
2514	struct dma_async_tx_descriptor *txd;
2515	struct scatterlist *sg;
2516	int i;
2517
2518	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2519	if (!sg)
2520		return NULL;
2521
2522	for (i = 0; i < periods; i++) {
2523		sg_dma_address(&sg[i]) = dma_addr;
2524		sg_dma_len(&sg[i]) = period_len;
2525		dma_addr += period_len;
2526	}
2527
2528	sg_chain(sg, periods + 1, sg);
2529
2530	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2531			  DMA_PREP_INTERRUPT);
2532
2533	kfree(sg);
2534
2535	return txd;
2536}
2537
2538static enum dma_status d40_tx_status(struct dma_chan *chan,
2539				     dma_cookie_t cookie,
2540				     struct dma_tx_state *txstate)
2541{
2542	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2543	enum dma_status ret;
2544
2545	if (d40c->phy_chan == NULL) {
2546		chan_err(d40c, "Cannot read status of unallocated channel\n");
2547		return -EINVAL;
2548	}
2549
2550	ret = dma_cookie_status(chan, cookie, txstate);
2551	if (ret != DMA_COMPLETE && txstate)
2552		dma_set_residue(txstate, stedma40_residue(chan));
2553
2554	if (d40_is_paused(d40c))
2555		ret = DMA_PAUSED;
2556
2557	return ret;
2558}
2559
2560static void d40_issue_pending(struct dma_chan *chan)
2561{
2562	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2563	unsigned long flags;
2564
2565	if (d40c->phy_chan == NULL) {
2566		chan_err(d40c, "Channel is not allocated!\n");
2567		return;
2568	}
2569
2570	spin_lock_irqsave(&d40c->lock, flags);
2571
2572	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573
2574	/* Busy means that queued jobs are already being processed */
2575	if (!d40c->busy)
2576		(void) d40_queue_start(d40c);
2577
2578	spin_unlock_irqrestore(&d40c->lock, flags);
2579}
2580
2581static int d40_terminate_all(struct dma_chan *chan)
2582{
2583	unsigned long flags;
2584	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2585	int ret;
2586
2587	if (d40c->phy_chan == NULL) {
2588		chan_err(d40c, "Channel is not allocated!\n");
2589		return -EINVAL;
2590	}
2591
2592	spin_lock_irqsave(&d40c->lock, flags);
2593
2594	pm_runtime_get_sync(d40c->base->dev);
2595	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2596	if (ret)
2597		chan_err(d40c, "Failed to stop channel\n");
2598
2599	d40_term_all(d40c);
2600	pm_runtime_mark_last_busy(d40c->base->dev);
2601	pm_runtime_put_autosuspend(d40c->base->dev);
2602	if (d40c->busy) {
2603		pm_runtime_mark_last_busy(d40c->base->dev);
2604		pm_runtime_put_autosuspend(d40c->base->dev);
2605	}
2606	d40c->busy = false;
2607
2608	spin_unlock_irqrestore(&d40c->lock, flags);
2609	return 0;
2610}
2611
2612static int
2613dma40_config_to_halfchannel(struct d40_chan *d40c,
2614			    struct stedma40_half_channel_info *info,
2615			    u32 maxburst)
2616{
2617	int psize;
2618
2619	if (chan_is_logical(d40c)) {
2620		if (maxburst >= 16)
2621			psize = STEDMA40_PSIZE_LOG_16;
2622		else if (maxburst >= 8)
2623			psize = STEDMA40_PSIZE_LOG_8;
2624		else if (maxburst >= 4)
2625			psize = STEDMA40_PSIZE_LOG_4;
2626		else
2627			psize = STEDMA40_PSIZE_LOG_1;
2628	} else {
2629		if (maxburst >= 16)
2630			psize = STEDMA40_PSIZE_PHY_16;
2631		else if (maxburst >= 8)
2632			psize = STEDMA40_PSIZE_PHY_8;
2633		else if (maxburst >= 4)
2634			psize = STEDMA40_PSIZE_PHY_4;
2635		else
2636			psize = STEDMA40_PSIZE_PHY_1;
2637	}
2638
2639	info->psize = psize;
2640	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641
2642	return 0;
2643}
2644
2645static int d40_set_runtime_config(struct dma_chan *chan,
2646				  struct dma_slave_config *config)
2647{
2648	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649
2650	memcpy(&d40c->slave_config, config, sizeof(*config));
2651
2652	return 0;
2653}
2654
2655/* Runtime reconfiguration extension */
2656static int d40_set_runtime_config_write(struct dma_chan *chan,
2657				  struct dma_slave_config *config,
2658				  enum dma_transfer_direction direction)
2659{
2660	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2661	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2662	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2663	dma_addr_t config_addr;
2664	u32 src_maxburst, dst_maxburst;
2665	int ret;
2666
2667	if (d40c->phy_chan == NULL) {
2668		chan_err(d40c, "Channel is not allocated!\n");
2669		return -EINVAL;
2670	}
2671
2672	src_addr_width = config->src_addr_width;
2673	src_maxburst = config->src_maxburst;
2674	dst_addr_width = config->dst_addr_width;
2675	dst_maxburst = config->dst_maxburst;
2676
2677	if (direction == DMA_DEV_TO_MEM) {
2678		config_addr = config->src_addr;
2679
2680		if (cfg->dir != DMA_DEV_TO_MEM)
2681			dev_dbg(d40c->base->dev,
2682				"channel was not configured for peripheral "
2683				"to memory transfer (%d) overriding\n",
2684				cfg->dir);
2685		cfg->dir = DMA_DEV_TO_MEM;
2686
2687		/* Configure the memory side */
2688		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2689			dst_addr_width = src_addr_width;
2690		if (dst_maxburst == 0)
2691			dst_maxburst = src_maxburst;
2692
2693	} else if (direction == DMA_MEM_TO_DEV) {
2694		config_addr = config->dst_addr;
2695
2696		if (cfg->dir != DMA_MEM_TO_DEV)
2697			dev_dbg(d40c->base->dev,
2698				"channel was not configured for memory "
2699				"to peripheral transfer (%d) overriding\n",
2700				cfg->dir);
2701		cfg->dir = DMA_MEM_TO_DEV;
2702
2703		/* Configure the memory side */
2704		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2705			src_addr_width = dst_addr_width;
2706		if (src_maxburst == 0)
2707			src_maxburst = dst_maxburst;
2708	} else {
2709		dev_err(d40c->base->dev,
2710			"unrecognized channel direction %d\n",
2711			direction);
2712		return -EINVAL;
2713	}
2714
2715	if (config_addr <= 0) {
2716		dev_err(d40c->base->dev, "no address supplied\n");
2717		return -EINVAL;
2718	}
2719
2720	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2721		dev_err(d40c->base->dev,
2722			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2723			src_maxburst,
2724			src_addr_width,
2725			dst_maxburst,
2726			dst_addr_width);
2727		return -EINVAL;
2728	}
2729
2730	if (src_maxburst > 16) {
2731		src_maxburst = 16;
2732		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2733	} else if (dst_maxburst > 16) {
2734		dst_maxburst = 16;
2735		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2736	}
2737
2738	/* Only valid widths are; 1, 2, 4 and 8. */
2739	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2740	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2741	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743	    !is_power_of_2(src_addr_width) ||
2744	    !is_power_of_2(dst_addr_width))
2745		return -EINVAL;
2746
2747	cfg->src_info.data_width = src_addr_width;
2748	cfg->dst_info.data_width = dst_addr_width;
2749
2750	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2751					  src_maxburst);
2752	if (ret)
2753		return ret;
2754
2755	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2756					  dst_maxburst);
2757	if (ret)
2758		return ret;
2759
2760	/* Fill in register values */
2761	if (chan_is_logical(d40c))
2762		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2763	else
2764		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765
2766	/* These settings will take precedence later */
2767	d40c->runtime_addr = config_addr;
2768	d40c->runtime_direction = direction;
2769	dev_dbg(d40c->base->dev,
2770		"configured channel %s for %s, data width %d/%d, "
2771		"maxburst %d/%d elements, LE, no flow control\n",
2772		dma_chan_name(chan),
2773		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2774		src_addr_width, dst_addr_width,
2775		src_maxburst, dst_maxburst);
2776
2777	return 0;
2778}
2779
2780/* Initialization functions */
2781
2782static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2783				 struct d40_chan *chans, int offset,
2784				 int num_chans)
2785{
2786	int i = 0;
2787	struct d40_chan *d40c;
2788
2789	INIT_LIST_HEAD(&dma->channels);
2790
2791	for (i = offset; i < offset + num_chans; i++) {
2792		d40c = &chans[i];
2793		d40c->base = base;
2794		d40c->chan.device = dma;
2795
2796		spin_lock_init(&d40c->lock);
2797
2798		d40c->log_num = D40_PHY_CHAN;
2799
2800		INIT_LIST_HEAD(&d40c->done);
2801		INIT_LIST_HEAD(&d40c->active);
2802		INIT_LIST_HEAD(&d40c->queue);
2803		INIT_LIST_HEAD(&d40c->pending_queue);
2804		INIT_LIST_HEAD(&d40c->client);
2805		INIT_LIST_HEAD(&d40c->prepare_queue);
2806
2807		tasklet_setup(&d40c->tasklet, dma_tasklet);
2808
2809		list_add_tail(&d40c->chan.device_node,
2810			      &dma->channels);
2811	}
2812}
2813
2814static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2815{
2816	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2817		dev->device_prep_slave_sg = d40_prep_slave_sg;
2818		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2819	}
2820
2821	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2822		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2823		dev->directions = BIT(DMA_MEM_TO_MEM);
2824		/*
2825		 * This controller can only access address at even
2826		 * 32bit boundaries, i.e. 2^2
2827		 */
2828		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2829	}
2830
2831	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2832		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2833
2834	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2835	dev->device_free_chan_resources = d40_free_chan_resources;
2836	dev->device_issue_pending = d40_issue_pending;
2837	dev->device_tx_status = d40_tx_status;
2838	dev->device_config = d40_set_runtime_config;
2839	dev->device_pause = d40_pause;
2840	dev->device_resume = d40_resume;
2841	dev->device_terminate_all = d40_terminate_all;
2842	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2843	dev->dev = base->dev;
2844}
2845
2846static int __init d40_dmaengine_init(struct d40_base *base,
2847				     int num_reserved_chans)
2848{
2849	int err ;
2850
2851	d40_chan_init(base, &base->dma_slave, base->log_chans,
2852		      0, base->num_log_chans);
2853
2854	dma_cap_zero(base->dma_slave.cap_mask);
2855	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2856	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2857
2858	d40_ops_init(base, &base->dma_slave);
2859
2860	err = dmaenginem_async_device_register(&base->dma_slave);
2861
2862	if (err) {
2863		d40_err(base->dev, "Failed to register slave channels\n");
2864		goto exit;
2865	}
2866
2867	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2868		      base->num_log_chans, base->num_memcpy_chans);
2869
2870	dma_cap_zero(base->dma_memcpy.cap_mask);
2871	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2872
2873	d40_ops_init(base, &base->dma_memcpy);
2874
2875	err = dmaenginem_async_device_register(&base->dma_memcpy);
2876
2877	if (err) {
2878		d40_err(base->dev,
2879			"Failed to register memcpy only channels\n");
2880		goto exit;
2881	}
2882
2883	d40_chan_init(base, &base->dma_both, base->phy_chans,
2884		      0, num_reserved_chans);
2885
2886	dma_cap_zero(base->dma_both.cap_mask);
2887	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2888	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2889	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2890
2891	d40_ops_init(base, &base->dma_both);
2892	err = dmaenginem_async_device_register(&base->dma_both);
2893
2894	if (err) {
2895		d40_err(base->dev,
2896			"Failed to register logical and physical capable channels\n");
2897		goto exit;
2898	}
2899	return 0;
2900 exit:
2901	return err;
2902}
2903
2904/* Suspend resume functionality */
2905#ifdef CONFIG_PM_SLEEP
2906static int dma40_suspend(struct device *dev)
2907{
2908	struct d40_base *base = dev_get_drvdata(dev);
2909	int ret;
2910
2911	ret = pm_runtime_force_suspend(dev);
2912	if (ret)
2913		return ret;
2914
2915	if (base->lcpa_regulator)
2916		ret = regulator_disable(base->lcpa_regulator);
2917	return ret;
2918}
2919
2920static int dma40_resume(struct device *dev)
2921{
2922	struct d40_base *base = dev_get_drvdata(dev);
2923	int ret = 0;
2924
2925	if (base->lcpa_regulator) {
2926		ret = regulator_enable(base->lcpa_regulator);
2927		if (ret)
2928			return ret;
2929	}
2930
2931	return pm_runtime_force_resume(dev);
2932}
2933#endif
2934
2935#ifdef CONFIG_PM
2936static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2937			 u32 *regaddr, int num, bool save)
2938{
2939	int i;
2940
2941	for (i = 0; i < num; i++) {
2942		void __iomem *addr = baseaddr + regaddr[i];
2943
2944		if (save)
2945			backup[i] = readl_relaxed(addr);
2946		else
2947			writel_relaxed(backup[i], addr);
2948	}
2949}
2950
2951static void d40_save_restore_registers(struct d40_base *base, bool save)
2952{
2953	int i;
2954
2955	/* Save/Restore channel specific registers */
2956	for (i = 0; i < base->num_phy_chans; i++) {
2957		void __iomem *addr;
2958		int idx;
2959
2960		if (base->phy_res[i].reserved)
2961			continue;
2962
2963		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2964		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2965
2966		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2967			     d40_backup_regs_chan,
2968			     ARRAY_SIZE(d40_backup_regs_chan),
2969			     save);
2970	}
2971
2972	/* Save/Restore global registers */
2973	dma40_backup(base->virtbase, base->reg_val_backup,
2974		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2975		     save);
2976
2977	/* Save/Restore registers only existing on dma40 v3 and later */
2978	if (base->gen_dmac.backup)
2979		dma40_backup(base->virtbase, base->reg_val_backup_v4,
2980			     base->gen_dmac.backup,
2981			base->gen_dmac.backup_size,
2982			save);
2983}
2984
2985static int dma40_runtime_suspend(struct device *dev)
2986{
2987	struct d40_base *base = dev_get_drvdata(dev);
2988
2989	d40_save_restore_registers(base, true);
2990
2991	/* Don't disable/enable clocks for v1 due to HW bugs */
2992	if (base->rev != 1)
2993		writel_relaxed(base->gcc_pwr_off_mask,
2994			       base->virtbase + D40_DREG_GCC);
2995
2996	return 0;
2997}
2998
2999static int dma40_runtime_resume(struct device *dev)
3000{
3001	struct d40_base *base = dev_get_drvdata(dev);
3002
3003	d40_save_restore_registers(base, false);
3004
3005	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3006		       base->virtbase + D40_DREG_GCC);
3007	return 0;
3008}
3009#endif
3010
3011static const struct dev_pm_ops dma40_pm_ops = {
3012	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3013	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3014				dma40_runtime_resume,
3015				NULL)
3016};
3017
3018/* Initialization functions. */
3019
3020static int __init d40_phy_res_init(struct d40_base *base)
3021{
3022	int i;
3023	int num_phy_chans_avail = 0;
3024	u32 val[2];
3025	int odd_even_bit = -2;
3026	int gcc = D40_DREG_GCC_ENA;
3027
3028	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3029	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3030
3031	for (i = 0; i < base->num_phy_chans; i++) {
3032		base->phy_res[i].num = i;
3033		odd_even_bit += 2 * ((i % 2) == 0);
3034		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3035			/* Mark security only channels as occupied */
3036			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3037			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3038			base->phy_res[i].reserved = true;
3039			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3040						       D40_DREG_GCC_SRC);
3041			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3042						       D40_DREG_GCC_DST);
3043
3044
3045		} else {
3046			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3047			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3048			base->phy_res[i].reserved = false;
3049			num_phy_chans_avail++;
3050		}
3051		spin_lock_init(&base->phy_res[i].lock);
3052	}
3053
3054	/* Mark disabled channels as occupied */
3055	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3056		int chan = base->plat_data->disabled_channels[i];
3057
3058		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3059		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3060		base->phy_res[chan].reserved = true;
3061		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3062					       D40_DREG_GCC_SRC);
3063		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3064					       D40_DREG_GCC_DST);
3065		num_phy_chans_avail--;
3066	}
3067
3068	/* Mark soft_lli channels */
3069	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3070		int chan = base->plat_data->soft_lli_chans[i];
3071
3072		base->phy_res[chan].use_soft_lli = true;
3073	}
3074
3075	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3076		 num_phy_chans_avail, base->num_phy_chans);
3077
3078	/* Verify settings extended vs standard */
3079	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3080
3081	for (i = 0; i < base->num_phy_chans; i++) {
3082
3083		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3084		    (val[0] & 0x3) != 1)
3085			dev_info(base->dev,
3086				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3087				 __func__, i, val[0] & 0x3);
3088
3089		val[0] = val[0] >> 2;
3090	}
3091
3092	/*
3093	 * To keep things simple, Enable all clocks initially.
3094	 * The clocks will get managed later post channel allocation.
3095	 * The clocks for the event lines on which reserved channels exists
3096	 * are not managed here.
3097	 */
3098	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3099	base->gcc_pwr_off_mask = gcc;
3100
3101	return num_phy_chans_avail;
3102}
3103
3104static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3105{
3106	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3107	struct clk *clk;
3108	void __iomem *virtbase;
3109	struct resource *res;
3110	struct d40_base *base;
3111	int num_log_chans;
3112	int num_phy_chans;
3113	int num_memcpy_chans;
3114	int clk_ret = -EINVAL;
3115	int i;
3116	u32 pid;
3117	u32 cid;
3118	u8 rev;
3119
3120	clk = clk_get(&pdev->dev, NULL);
3121	if (IS_ERR(clk)) {
3122		d40_err(&pdev->dev, "No matching clock found\n");
3123		goto check_prepare_enabled;
3124	}
3125
3126	clk_ret = clk_prepare_enable(clk);
3127	if (clk_ret) {
3128		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3129		goto disable_unprepare;
3130	}
3131
3132	/* Get IO for DMAC base address */
3133	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3134	if (!res)
3135		goto disable_unprepare;
3136
3137	if (request_mem_region(res->start, resource_size(res),
3138			       D40_NAME " I/O base") == NULL)
3139		goto release_region;
3140
3141	virtbase = ioremap(res->start, resource_size(res));
3142	if (!virtbase)
3143		goto release_region;
3144
3145	/* This is just a regular AMBA PrimeCell ID actually */
3146	for (pid = 0, i = 0; i < 4; i++)
3147		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3148			& 255) << (i * 8);
3149	for (cid = 0, i = 0; i < 4; i++)
3150		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3151			& 255) << (i * 8);
3152
3153	if (cid != AMBA_CID) {
3154		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3155		goto unmap_io;
3156	}
3157	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3158		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3159			AMBA_MANF_BITS(pid),
3160			AMBA_VENDOR_ST);
3161		goto unmap_io;
3162	}
3163	/*
3164	 * HW revision:
3165	 * DB8500ed has revision 0
3166	 * ? has revision 1
3167	 * DB8500v1 has revision 2
3168	 * DB8500v2 has revision 3
3169	 * AP9540v1 has revision 4
3170	 * DB8540v1 has revision 4
3171	 */
3172	rev = AMBA_REV_BITS(pid);
3173	if (rev < 2) {
3174		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3175		goto unmap_io;
3176	}
3177
3178	/* The number of physical channels on this HW */
3179	if (plat_data->num_of_phy_chans)
3180		num_phy_chans = plat_data->num_of_phy_chans;
3181	else
3182		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3183
3184	/* The number of channels used for memcpy */
3185	if (plat_data->num_of_memcpy_chans)
3186		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3187	else
3188		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3189
3190	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3191
3192	dev_info(&pdev->dev,
3193		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3194		 rev, &res->start, num_phy_chans, num_log_chans);
3195
3196	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3197		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3198		       sizeof(struct d40_chan), GFP_KERNEL);
3199
3200	if (base == NULL)
3201		goto unmap_io;
3202
3203	base->rev = rev;
3204	base->clk = clk;
3205	base->num_memcpy_chans = num_memcpy_chans;
3206	base->num_phy_chans = num_phy_chans;
3207	base->num_log_chans = num_log_chans;
3208	base->phy_start = res->start;
3209	base->phy_size = resource_size(res);
3210	base->virtbase = virtbase;
3211	base->plat_data = plat_data;
3212	base->dev = &pdev->dev;
3213	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3214	base->log_chans = &base->phy_chans[num_phy_chans];
3215
3216	if (base->plat_data->num_of_phy_chans == 14) {
3217		base->gen_dmac.backup = d40_backup_regs_v4b;
3218		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3219		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3220		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3221		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3222		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3223		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3224		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3225		base->gen_dmac.il = il_v4b;
3226		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3227		base->gen_dmac.init_reg = dma_init_reg_v4b;
3228		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3229	} else {
3230		if (base->rev >= 3) {
3231			base->gen_dmac.backup = d40_backup_regs_v4a;
3232			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3233		}
3234		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3235		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3236		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3237		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3238		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3239		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3240		base->gen_dmac.il = il_v4a;
3241		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3242		base->gen_dmac.init_reg = dma_init_reg_v4a;
3243		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3244	}
3245
3246	base->phy_res = kcalloc(num_phy_chans,
3247				sizeof(*base->phy_res),
3248				GFP_KERNEL);
3249	if (!base->phy_res)
3250		goto free_base;
3251
3252	base->lookup_phy_chans = kcalloc(num_phy_chans,
3253					 sizeof(*base->lookup_phy_chans),
3254					 GFP_KERNEL);
3255	if (!base->lookup_phy_chans)
3256		goto free_phy_res;
3257
3258	base->lookup_log_chans = kcalloc(num_log_chans,
3259					 sizeof(*base->lookup_log_chans),
3260					 GFP_KERNEL);
3261	if (!base->lookup_log_chans)
3262		goto free_phy_chans;
3263
3264	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3265						  sizeof(d40_backup_regs_chan),
3266						  GFP_KERNEL);
3267	if (!base->reg_val_backup_chan)
3268		goto free_log_chans;
3269
3270	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3271					    * D40_LCLA_LINK_PER_EVENT_GRP,
3272					    sizeof(*base->lcla_pool.alloc_map),
3273					    GFP_KERNEL);
3274	if (!base->lcla_pool.alloc_map)
3275		goto free_backup_chan;
3276
3277	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3278					     sizeof(*base->regs_interrupt),
3279					     GFP_KERNEL);
3280	if (!base->regs_interrupt)
3281		goto free_map;
3282
3283	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3284					    0, SLAB_HWCACHE_ALIGN,
3285					    NULL);
3286	if (base->desc_slab == NULL)
3287		goto free_regs;
3288
3289
3290	return base;
3291 free_regs:
3292	kfree(base->regs_interrupt);
3293 free_map:
3294	kfree(base->lcla_pool.alloc_map);
3295 free_backup_chan:
3296	kfree(base->reg_val_backup_chan);
3297 free_log_chans:
3298	kfree(base->lookup_log_chans);
3299 free_phy_chans:
3300	kfree(base->lookup_phy_chans);
3301 free_phy_res:
3302	kfree(base->phy_res);
3303 free_base:
3304	kfree(base);
3305 unmap_io:
3306	iounmap(virtbase);
3307 release_region:
3308	release_mem_region(res->start, resource_size(res));
3309 check_prepare_enabled:
3310	if (!clk_ret)
3311 disable_unprepare:
3312		clk_disable_unprepare(clk);
3313	if (!IS_ERR(clk))
3314		clk_put(clk);
3315	return NULL;
3316}
3317
3318static void __init d40_hw_init(struct d40_base *base)
3319{
3320
3321	int i;
3322	u32 prmseo[2] = {0, 0};
3323	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3324	u32 pcmis = 0;
3325	u32 pcicr = 0;
3326	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3327	u32 reg_size = base->gen_dmac.init_reg_size;
3328
3329	for (i = 0; i < reg_size; i++)
3330		writel(dma_init_reg[i].val,
3331		       base->virtbase + dma_init_reg[i].reg);
3332
3333	/* Configure all our dma channels to default settings */
3334	for (i = 0; i < base->num_phy_chans; i++) {
3335
3336		activeo[i % 2] = activeo[i % 2] << 2;
3337
3338		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3339		    == D40_ALLOC_PHY) {
3340			activeo[i % 2] |= 3;
3341			continue;
3342		}
3343
3344		/* Enable interrupt # */
3345		pcmis = (pcmis << 1) | 1;
3346
3347		/* Clear interrupt # */
3348		pcicr = (pcicr << 1) | 1;
3349
3350		/* Set channel to physical mode */
3351		prmseo[i % 2] = prmseo[i % 2] << 2;
3352		prmseo[i % 2] |= 1;
3353
3354	}
3355
3356	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3357	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3358	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3359	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3360
3361	/* Write which interrupt to enable */
3362	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3363
3364	/* Write which interrupt to clear */
3365	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3366
3367	/* These are __initdata and cannot be accessed after init */
3368	base->gen_dmac.init_reg = NULL;
3369	base->gen_dmac.init_reg_size = 0;
3370}
3371
3372static int __init d40_lcla_allocate(struct d40_base *base)
3373{
3374	struct d40_lcla_pool *pool = &base->lcla_pool;
3375	unsigned long *page_list;
3376	int i, j;
3377	int ret;
3378
3379	/*
3380	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3381	 * To full fill this hardware requirement without wasting 256 kb
3382	 * we allocate pages until we get an aligned one.
3383	 */
3384	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3385				  sizeof(*page_list),
3386				  GFP_KERNEL);
3387	if (!page_list)
3388		return -ENOMEM;
3389
3390	/* Calculating how many pages that are required */
3391	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3392
3393	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3394		page_list[i] = __get_free_pages(GFP_KERNEL,
3395						base->lcla_pool.pages);
3396		if (!page_list[i]) {
3397
3398			d40_err(base->dev, "Failed to allocate %d pages.\n",
3399				base->lcla_pool.pages);
3400			ret = -ENOMEM;
3401
3402			for (j = 0; j < i; j++)
3403				free_pages(page_list[j], base->lcla_pool.pages);
3404			goto free_page_list;
3405		}
3406
3407		if ((virt_to_phys((void *)page_list[i]) &
3408		     (LCLA_ALIGNMENT - 1)) == 0)
3409			break;
3410	}
3411
3412	for (j = 0; j < i; j++)
3413		free_pages(page_list[j], base->lcla_pool.pages);
3414
3415	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3416		base->lcla_pool.base = (void *)page_list[i];
3417	} else {
3418		/*
3419		 * After many attempts and no succees with finding the correct
3420		 * alignment, try with allocating a big buffer.
3421		 */
3422		dev_warn(base->dev,
3423			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3424			 __func__, base->lcla_pool.pages);
3425		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3426							 base->num_phy_chans +
3427							 LCLA_ALIGNMENT,
3428							 GFP_KERNEL);
3429		if (!base->lcla_pool.base_unaligned) {
3430			ret = -ENOMEM;
3431			goto free_page_list;
3432		}
3433
3434		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3435						 LCLA_ALIGNMENT);
3436	}
3437
3438	pool->dma_addr = dma_map_single(base->dev, pool->base,
3439					SZ_1K * base->num_phy_chans,
3440					DMA_TO_DEVICE);
3441	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3442		pool->dma_addr = 0;
3443		ret = -ENOMEM;
3444		goto free_page_list;
3445	}
3446
3447	writel(virt_to_phys(base->lcla_pool.base),
3448	       base->virtbase + D40_DREG_LCLA);
3449	ret = 0;
3450 free_page_list:
3451	kfree(page_list);
3452	return ret;
3453}
3454
3455static int __init d40_of_probe(struct platform_device *pdev,
3456			       struct device_node *np)
3457{
3458	struct stedma40_platform_data *pdata;
3459	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3460	const __be32 *list;
3461
3462	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3463	if (!pdata)
3464		return -ENOMEM;
3465
3466	/* If absent this value will be obtained from h/w. */
3467	of_property_read_u32(np, "dma-channels", &num_phy);
3468	if (num_phy > 0)
3469		pdata->num_of_phy_chans = num_phy;
3470
3471	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3472	num_memcpy /= sizeof(*list);
3473
3474	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3475		d40_err(&pdev->dev,
3476			"Invalid number of memcpy channels specified (%d)\n",
3477			num_memcpy);
3478		return -EINVAL;
3479	}
3480	pdata->num_of_memcpy_chans = num_memcpy;
3481
3482	of_property_read_u32_array(np, "memcpy-channels",
3483				   dma40_memcpy_channels,
3484				   num_memcpy);
3485
3486	list = of_get_property(np, "disabled-channels", &num_disabled);
3487	num_disabled /= sizeof(*list);
3488
3489	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3490		d40_err(&pdev->dev,
3491			"Invalid number of disabled channels specified (%d)\n",
3492			num_disabled);
3493		return -EINVAL;
3494	}
3495
3496	of_property_read_u32_array(np, "disabled-channels",
3497				   pdata->disabled_channels,
3498				   num_disabled);
3499	pdata->disabled_channels[num_disabled] = -1;
3500
3501	pdev->dev.platform_data = pdata;
3502
3503	return 0;
3504}
3505
3506static int __init d40_probe(struct platform_device *pdev)
3507{
3508	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3509	struct device_node *np = pdev->dev.of_node;
3510	int ret = -ENOENT;
3511	struct d40_base *base;
3512	struct resource *res;
3513	int num_reserved_chans;
3514	u32 val;
3515
3516	if (!plat_data) {
3517		if (np) {
3518			if (d40_of_probe(pdev, np)) {
3519				ret = -ENOMEM;
3520				goto report_failure;
3521			}
3522		} else {
3523			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3524			goto report_failure;
3525		}
3526	}
3527
3528	base = d40_hw_detect_init(pdev);
3529	if (!base)
3530		goto report_failure;
3531
3532	num_reserved_chans = d40_phy_res_init(base);
3533
3534	platform_set_drvdata(pdev, base);
3535
3536	spin_lock_init(&base->interrupt_lock);
3537	spin_lock_init(&base->execmd_lock);
3538
3539	/* Get IO for logical channel parameter address */
3540	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3541	if (!res) {
3542		ret = -ENOENT;
3543		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3544		goto destroy_cache;
3545	}
3546	base->lcpa_size = resource_size(res);
3547	base->phy_lcpa = res->start;
3548
3549	if (request_mem_region(res->start, resource_size(res),
3550			       D40_NAME " I/O lcpa") == NULL) {
3551		ret = -EBUSY;
3552		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3553		goto destroy_cache;
3554	}
3555
3556	/* We make use of ESRAM memory for this. */
3557	val = readl(base->virtbase + D40_DREG_LCPA);
3558	if (res->start != val && val != 0) {
3559		dev_warn(&pdev->dev,
3560			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3561			 __func__, val, &res->start);
3562	} else
3563		writel(res->start, base->virtbase + D40_DREG_LCPA);
3564
3565	base->lcpa_base = ioremap(res->start, resource_size(res));
3566	if (!base->lcpa_base) {
3567		ret = -ENOMEM;
3568		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3569		goto destroy_cache;
3570	}
3571	/* If lcla has to be located in ESRAM we don't need to allocate */
3572	if (base->plat_data->use_esram_lcla) {
3573		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3574							"lcla_esram");
3575		if (!res) {
3576			ret = -ENOENT;
3577			d40_err(&pdev->dev,
3578				"No \"lcla_esram\" memory resource\n");
3579			goto destroy_cache;
3580		}
3581		base->lcla_pool.base = ioremap(res->start,
3582						resource_size(res));
3583		if (!base->lcla_pool.base) {
3584			ret = -ENOMEM;
3585			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3586			goto destroy_cache;
3587		}
3588		writel(res->start, base->virtbase + D40_DREG_LCLA);
3589
3590	} else {
3591		ret = d40_lcla_allocate(base);
3592		if (ret) {
3593			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3594			goto destroy_cache;
3595		}
3596	}
3597
3598	spin_lock_init(&base->lcla_pool.lock);
3599
3600	base->irq = platform_get_irq(pdev, 0);
3601	if (base->irq < 0) {
3602		ret = base->irq;
3603		goto destroy_cache;
3604	}
3605
3606	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3607	if (ret) {
3608		d40_err(&pdev->dev, "No IRQ defined\n");
3609		goto destroy_cache;
3610	}
3611
3612	if (base->plat_data->use_esram_lcla) {
3613
3614		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3615		if (IS_ERR(base->lcpa_regulator)) {
3616			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3617			ret = PTR_ERR(base->lcpa_regulator);
3618			base->lcpa_regulator = NULL;
3619			goto destroy_cache;
3620		}
3621
3622		ret = regulator_enable(base->lcpa_regulator);
3623		if (ret) {
3624			d40_err(&pdev->dev,
3625				"Failed to enable lcpa_regulator\n");
3626			regulator_put(base->lcpa_regulator);
3627			base->lcpa_regulator = NULL;
3628			goto destroy_cache;
3629		}
3630	}
3631
3632	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3633
3634	pm_runtime_irq_safe(base->dev);
3635	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3636	pm_runtime_use_autosuspend(base->dev);
3637	pm_runtime_mark_last_busy(base->dev);
3638	pm_runtime_set_active(base->dev);
3639	pm_runtime_enable(base->dev);
3640
3641	ret = d40_dmaengine_init(base, num_reserved_chans);
3642	if (ret)
3643		goto destroy_cache;
3644
3645	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3646	if (ret) {
3647		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3648		goto destroy_cache;
3649	}
3650
3651	d40_hw_init(base);
3652
3653	if (np) {
3654		ret = of_dma_controller_register(np, d40_xlate, NULL);
3655		if (ret)
3656			dev_err(&pdev->dev,
3657				"could not register of_dma_controller\n");
3658	}
3659
3660	dev_info(base->dev, "initialized\n");
3661	return 0;
3662 destroy_cache:
3663	kmem_cache_destroy(base->desc_slab);
3664	if (base->virtbase)
3665		iounmap(base->virtbase);
3666
3667	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3668		iounmap(base->lcla_pool.base);
3669		base->lcla_pool.base = NULL;
3670	}
3671
3672	if (base->lcla_pool.dma_addr)
3673		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3674				 SZ_1K * base->num_phy_chans,
3675				 DMA_TO_DEVICE);
3676
3677	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3678		free_pages((unsigned long)base->lcla_pool.base,
3679			   base->lcla_pool.pages);
3680
3681	kfree(base->lcla_pool.base_unaligned);
3682
3683	if (base->lcpa_base)
3684		iounmap(base->lcpa_base);
3685
3686	if (base->phy_lcpa)
3687		release_mem_region(base->phy_lcpa,
3688				   base->lcpa_size);
3689	if (base->phy_start)
3690		release_mem_region(base->phy_start,
3691				   base->phy_size);
3692	if (base->clk) {
3693		clk_disable_unprepare(base->clk);
3694		clk_put(base->clk);
3695	}
3696
3697	if (base->lcpa_regulator) {
3698		regulator_disable(base->lcpa_regulator);
3699		regulator_put(base->lcpa_regulator);
3700	}
3701	pm_runtime_disable(base->dev);
3702
3703	kfree(base->lcla_pool.alloc_map);
3704	kfree(base->lookup_log_chans);
3705	kfree(base->lookup_phy_chans);
3706	kfree(base->phy_res);
3707	kfree(base);
3708 report_failure:
3709	d40_err(&pdev->dev, "probe failed\n");
3710	return ret;
3711}
3712
3713static const struct of_device_id d40_match[] = {
3714        { .compatible = "stericsson,dma40", },
3715        {}
3716};
3717
3718static struct platform_driver d40_driver = {
3719	.driver = {
3720		.name  = D40_NAME,
3721		.pm = &dma40_pm_ops,
3722		.of_match_table = d40_match,
3723	},
3724};
3725
3726static int __init stedma40_init(void)
3727{
3728	return platform_driver_probe(&d40_driver, d40_probe);
3729}
3730subsys_initcall(stedma40_init);
3731