1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
4 *
5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
6 *
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/interrupt.h>
14#include <linux/list.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/of.h>
18#include <linux/of_dma.h>
19#include <linux/of_platform.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/slab.h>
23#include <linux/spinlock.h>
24
25#include "../dmaengine.h"
26
27/*
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
33 */
34struct rcar_dmac_xfer_chunk {
35	struct list_head node;
36
37	dma_addr_t src_addr;
38	dma_addr_t dst_addr;
39	u32 size;
40};
41
42/*
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
47 */
48struct rcar_dmac_hw_desc {
49	u32 sar;
50	u32 dar;
51	u32 tcr;
52	u32 reserved;
53} __attribute__((__packed__));
54
55/*
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
71 */
72struct rcar_dmac_desc {
73	struct dma_async_tx_descriptor async_tx;
74	enum dma_transfer_direction direction;
75	unsigned int xfer_shift;
76	u32 chcr;
77
78	struct list_head node;
79	struct list_head chunks;
80	struct rcar_dmac_xfer_chunk *running;
81	unsigned int nchunks;
82
83	struct {
84		bool use;
85		struct rcar_dmac_hw_desc *mem;
86		dma_addr_t dma;
87		size_t size;
88	} hwdescs;
89
90	unsigned int size;
91	bool cyclic;
92};
93
94#define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
95
96/*
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
101 */
102struct rcar_dmac_desc_page {
103	struct list_head node;
104
105	union {
106		struct rcar_dmac_desc descs[0];
107		struct rcar_dmac_xfer_chunk chunks[0];
108	};
109};
110
111#define RCAR_DMAC_DESCS_PER_PAGE					\
112	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
113	sizeof(struct rcar_dmac_desc))
114#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
115	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
116	sizeof(struct rcar_dmac_xfer_chunk))
117
118/*
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
122 */
123struct rcar_dmac_chan_slave {
124	phys_addr_t slave_addr;
125	unsigned int xfer_size;
126};
127
128/*
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
133 */
134struct rcar_dmac_chan_map {
135	dma_addr_t addr;
136	enum dma_data_direction dir;
137	struct rcar_dmac_chan_slave slave;
138};
139
140/*
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
145 * @irq: channel IRQ
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
158 */
159struct rcar_dmac_chan {
160	struct dma_chan chan;
161	void __iomem *iomem;
162	unsigned int index;
163	int irq;
164
165	struct rcar_dmac_chan_slave src;
166	struct rcar_dmac_chan_slave dst;
167	struct rcar_dmac_chan_map map;
168	int mid_rid;
169
170	spinlock_t lock;
171
172	struct {
173		struct list_head free;
174		struct list_head pending;
175		struct list_head active;
176		struct list_head done;
177		struct list_head wait;
178		struct rcar_dmac_desc *running;
179
180		struct list_head chunks_free;
181
182		struct list_head pages;
183	} desc;
184};
185
186#define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
187
188/*
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @channels_mask: bitfield of which DMA channels are managed by this driver
196 * @modules: bitmask of client modules in use
197 */
198struct rcar_dmac {
199	struct dma_device engine;
200	struct device *dev;
201	void __iomem *iomem;
202
203	unsigned int n_channels;
204	struct rcar_dmac_chan *channels;
205	u32 channels_mask;
206
207	DECLARE_BITMAP(modules, 256);
208};
209
210#define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
211
212/*
213 * struct rcar_dmac_of_data - This driver's OF data
214 * @chan_offset_base: DMAC channels base offset
215 * @chan_offset_stride: DMAC channels offset stride
216 */
217struct rcar_dmac_of_data {
218	u32 chan_offset_base;
219	u32 chan_offset_stride;
220};
221
222/* -----------------------------------------------------------------------------
223 * Registers
224 */
225
226#define RCAR_DMAISTA			0x0020
227#define RCAR_DMASEC			0x0030
228#define RCAR_DMAOR			0x0060
229#define RCAR_DMAOR_PRI_FIXED		(0 << 8)
230#define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
231#define RCAR_DMAOR_AE			(1 << 2)
232#define RCAR_DMAOR_DME			(1 << 0)
233#define RCAR_DMACHCLR			0x0080
234#define RCAR_DMADPSEC			0x00a0
235
236#define RCAR_DMASAR			0x0000
237#define RCAR_DMADAR			0x0004
238#define RCAR_DMATCR			0x0008
239#define RCAR_DMATCR_MASK		0x00ffffff
240#define RCAR_DMATSR			0x0028
241#define RCAR_DMACHCR			0x000c
242#define RCAR_DMACHCR_CAE		(1 << 31)
243#define RCAR_DMACHCR_CAIE		(1 << 30)
244#define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
245#define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
246#define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
247#define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
248#define RCAR_DMACHCR_RPT_SAR		(1 << 27)
249#define RCAR_DMACHCR_RPT_DAR		(1 << 26)
250#define RCAR_DMACHCR_RPT_TCR		(1 << 25)
251#define RCAR_DMACHCR_DPB		(1 << 22)
252#define RCAR_DMACHCR_DSE		(1 << 19)
253#define RCAR_DMACHCR_DSIE		(1 << 18)
254#define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
255#define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
256#define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
257#define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
258#define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
259#define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
260#define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
261#define RCAR_DMACHCR_DM_FIXED		(0 << 14)
262#define RCAR_DMACHCR_DM_INC		(1 << 14)
263#define RCAR_DMACHCR_DM_DEC		(2 << 14)
264#define RCAR_DMACHCR_SM_FIXED		(0 << 12)
265#define RCAR_DMACHCR_SM_INC		(1 << 12)
266#define RCAR_DMACHCR_SM_DEC		(2 << 12)
267#define RCAR_DMACHCR_RS_AUTO		(4 << 8)
268#define RCAR_DMACHCR_RS_DMARS		(8 << 8)
269#define RCAR_DMACHCR_IE			(1 << 2)
270#define RCAR_DMACHCR_TE			(1 << 1)
271#define RCAR_DMACHCR_DE			(1 << 0)
272#define RCAR_DMATCRB			0x0018
273#define RCAR_DMATSRB			0x0038
274#define RCAR_DMACHCRB			0x001c
275#define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
276#define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
277#define RCAR_DMACHCRB_DPTR_SHIFT	16
278#define RCAR_DMACHCRB_DRST		(1 << 15)
279#define RCAR_DMACHCRB_DTS		(1 << 8)
280#define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
281#define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
282#define RCAR_DMACHCRB_PRI(n)		((n) << 0)
283#define RCAR_DMARS			0x0040
284#define RCAR_DMABUFCR			0x0048
285#define RCAR_DMABUFCR_MBU(n)		((n) << 16)
286#define RCAR_DMABUFCR_ULB(n)		((n) << 0)
287#define RCAR_DMADPBASE			0x0050
288#define RCAR_DMADPBASE_MASK		0xfffffff0
289#define RCAR_DMADPBASE_SEL		(1 << 0)
290#define RCAR_DMADPCR			0x0054
291#define RCAR_DMADPCR_DIPT(n)		((n) << 24)
292#define RCAR_DMAFIXSAR			0x0010
293#define RCAR_DMAFIXDAR			0x0014
294#define RCAR_DMAFIXDPBASE		0x0060
295
296/* Hardcode the MEMCPY transfer size to 4 bytes. */
297#define RCAR_DMAC_MEMCPY_XFER_SIZE	4
298
299/* -----------------------------------------------------------------------------
300 * Device access
301 */
302
303static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
304{
305	if (reg == RCAR_DMAOR)
306		writew(data, dmac->iomem + reg);
307	else
308		writel(data, dmac->iomem + reg);
309}
310
311static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
312{
313	if (reg == RCAR_DMAOR)
314		return readw(dmac->iomem + reg);
315	else
316		return readl(dmac->iomem + reg);
317}
318
319static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
320{
321	if (reg == RCAR_DMARS)
322		return readw(chan->iomem + reg);
323	else
324		return readl(chan->iomem + reg);
325}
326
327static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
328{
329	if (reg == RCAR_DMARS)
330		writew(data, chan->iomem + reg);
331	else
332		writel(data, chan->iomem + reg);
333}
334
335/* -----------------------------------------------------------------------------
336 * Initialization and configuration
337 */
338
339static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
340{
341	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
342
343	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
344}
345
346static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
347{
348	struct rcar_dmac_desc *desc = chan->desc.running;
349	u32 chcr = desc->chcr;
350
351	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
352
353	if (chan->mid_rid >= 0)
354		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
355
356	if (desc->hwdescs.use) {
357		struct rcar_dmac_xfer_chunk *chunk =
358			list_first_entry(&desc->chunks,
359					 struct rcar_dmac_xfer_chunk, node);
360
361		dev_dbg(chan->chan.device->dev,
362			"chan%u: queue desc %p: %u@%pad\n",
363			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
364
365#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
366		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
367				     chunk->src_addr >> 32);
368		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
369				     chunk->dst_addr >> 32);
370		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
371				     desc->hwdescs.dma >> 32);
372#endif
373		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
374				     (desc->hwdescs.dma & 0xfffffff0) |
375				     RCAR_DMADPBASE_SEL);
376		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
377				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
378				     RCAR_DMACHCRB_DRST);
379
380		/*
381		 * Errata: When descriptor memory is accessed through an IOMMU
382		 * the DMADAR register isn't initialized automatically from the
383		 * first descriptor at beginning of transfer by the DMAC like it
384		 * should. Initialize it manually with the destination address
385		 * of the first chunk.
386		 */
387		rcar_dmac_chan_write(chan, RCAR_DMADAR,
388				     chunk->dst_addr & 0xffffffff);
389
390		/*
391		 * Program the descriptor stage interrupt to occur after the end
392		 * of the first stage.
393		 */
394		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
395
396		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
397		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
398
399		/*
400		 * If the descriptor isn't cyclic enable normal descriptor mode
401		 * and the transfer completion interrupt.
402		 */
403		if (!desc->cyclic)
404			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
405		/*
406		 * If the descriptor is cyclic and has a callback enable the
407		 * descriptor stage interrupt in infinite repeat mode.
408		 */
409		else if (desc->async_tx.callback)
410			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
411		/*
412		 * Otherwise just select infinite repeat mode without any
413		 * interrupt.
414		 */
415		else
416			chcr |= RCAR_DMACHCR_DPM_INFINITE;
417	} else {
418		struct rcar_dmac_xfer_chunk *chunk = desc->running;
419
420		dev_dbg(chan->chan.device->dev,
421			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
422			chan->index, chunk, chunk->size, &chunk->src_addr,
423			&chunk->dst_addr);
424
425#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
426		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
427				     chunk->src_addr >> 32);
428		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
429				     chunk->dst_addr >> 32);
430#endif
431		rcar_dmac_chan_write(chan, RCAR_DMASAR,
432				     chunk->src_addr & 0xffffffff);
433		rcar_dmac_chan_write(chan, RCAR_DMADAR,
434				     chunk->dst_addr & 0xffffffff);
435		rcar_dmac_chan_write(chan, RCAR_DMATCR,
436				     chunk->size >> desc->xfer_shift);
437
438		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
439	}
440
441	rcar_dmac_chan_write(chan, RCAR_DMACHCR,
442			     chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
443}
444
445static int rcar_dmac_init(struct rcar_dmac *dmac)
446{
447	u16 dmaor;
448
449	/* Clear all channels and enable the DMAC globally. */
450	rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
451	rcar_dmac_write(dmac, RCAR_DMAOR,
452			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
453
454	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
455	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
456		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
457		return -EIO;
458	}
459
460	return 0;
461}
462
463/* -----------------------------------------------------------------------------
464 * Descriptors submission
465 */
466
467static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
468{
469	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
470	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
471	unsigned long flags;
472	dma_cookie_t cookie;
473
474	spin_lock_irqsave(&chan->lock, flags);
475
476	cookie = dma_cookie_assign(tx);
477
478	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
479		chan->index, tx->cookie, desc);
480
481	list_add_tail(&desc->node, &chan->desc.pending);
482	desc->running = list_first_entry(&desc->chunks,
483					 struct rcar_dmac_xfer_chunk, node);
484
485	spin_unlock_irqrestore(&chan->lock, flags);
486
487	return cookie;
488}
489
490/* -----------------------------------------------------------------------------
491 * Descriptors allocation and free
492 */
493
494/*
495 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
496 * @chan: the DMA channel
497 * @gfp: allocation flags
498 */
499static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
500{
501	struct rcar_dmac_desc_page *page;
502	unsigned long flags;
503	LIST_HEAD(list);
504	unsigned int i;
505
506	page = (void *)get_zeroed_page(gfp);
507	if (!page)
508		return -ENOMEM;
509
510	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
511		struct rcar_dmac_desc *desc = &page->descs[i];
512
513		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
514		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
515		INIT_LIST_HEAD(&desc->chunks);
516
517		list_add_tail(&desc->node, &list);
518	}
519
520	spin_lock_irqsave(&chan->lock, flags);
521	list_splice_tail(&list, &chan->desc.free);
522	list_add_tail(&page->node, &chan->desc.pages);
523	spin_unlock_irqrestore(&chan->lock, flags);
524
525	return 0;
526}
527
528/*
529 * rcar_dmac_desc_put - Release a DMA transfer descriptor
530 * @chan: the DMA channel
531 * @desc: the descriptor
532 *
533 * Put the descriptor and its transfer chunk descriptors back in the channel's
534 * free descriptors lists. The descriptor's chunks list will be reinitialized to
535 * an empty list as a result.
536 *
537 * The descriptor must have been removed from the channel's lists before calling
538 * this function.
539 */
540static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
541			       struct rcar_dmac_desc *desc)
542{
543	unsigned long flags;
544
545	spin_lock_irqsave(&chan->lock, flags);
546	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
547	list_add(&desc->node, &chan->desc.free);
548	spin_unlock_irqrestore(&chan->lock, flags);
549}
550
551static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
552{
553	struct rcar_dmac_desc *desc, *_desc;
554	unsigned long flags;
555	LIST_HEAD(list);
556
557	/*
558	 * We have to temporarily move all descriptors from the wait list to a
559	 * local list as iterating over the wait list, even with
560	 * list_for_each_entry_safe, isn't safe if we release the channel lock
561	 * around the rcar_dmac_desc_put() call.
562	 */
563	spin_lock_irqsave(&chan->lock, flags);
564	list_splice_init(&chan->desc.wait, &list);
565	spin_unlock_irqrestore(&chan->lock, flags);
566
567	list_for_each_entry_safe(desc, _desc, &list, node) {
568		if (async_tx_test_ack(&desc->async_tx)) {
569			list_del(&desc->node);
570			rcar_dmac_desc_put(chan, desc);
571		}
572	}
573
574	if (list_empty(&list))
575		return;
576
577	/* Put the remaining descriptors back in the wait list. */
578	spin_lock_irqsave(&chan->lock, flags);
579	list_splice(&list, &chan->desc.wait);
580	spin_unlock_irqrestore(&chan->lock, flags);
581}
582
583/*
584 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
585 * @chan: the DMA channel
586 *
587 * Locking: This function must be called in a non-atomic context.
588 *
589 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
590 * be allocated.
591 */
592static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
593{
594	struct rcar_dmac_desc *desc;
595	unsigned long flags;
596	int ret;
597
598	/* Recycle acked descriptors before attempting allocation. */
599	rcar_dmac_desc_recycle_acked(chan);
600
601	spin_lock_irqsave(&chan->lock, flags);
602
603	while (list_empty(&chan->desc.free)) {
604		/*
605		 * No free descriptors, allocate a page worth of them and try
606		 * again, as someone else could race us to get the newly
607		 * allocated descriptors. If the allocation fails return an
608		 * error.
609		 */
610		spin_unlock_irqrestore(&chan->lock, flags);
611		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
612		if (ret < 0)
613			return NULL;
614		spin_lock_irqsave(&chan->lock, flags);
615	}
616
617	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
618	list_del(&desc->node);
619
620	spin_unlock_irqrestore(&chan->lock, flags);
621
622	return desc;
623}
624
625/*
626 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
627 * @chan: the DMA channel
628 * @gfp: allocation flags
629 */
630static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
631{
632	struct rcar_dmac_desc_page *page;
633	unsigned long flags;
634	LIST_HEAD(list);
635	unsigned int i;
636
637	page = (void *)get_zeroed_page(gfp);
638	if (!page)
639		return -ENOMEM;
640
641	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
642		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
643
644		list_add_tail(&chunk->node, &list);
645	}
646
647	spin_lock_irqsave(&chan->lock, flags);
648	list_splice_tail(&list, &chan->desc.chunks_free);
649	list_add_tail(&page->node, &chan->desc.pages);
650	spin_unlock_irqrestore(&chan->lock, flags);
651
652	return 0;
653}
654
655/*
656 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
657 * @chan: the DMA channel
658 *
659 * Locking: This function must be called in a non-atomic context.
660 *
661 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
662 * descriptor can be allocated.
663 */
664static struct rcar_dmac_xfer_chunk *
665rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
666{
667	struct rcar_dmac_xfer_chunk *chunk;
668	unsigned long flags;
669	int ret;
670
671	spin_lock_irqsave(&chan->lock, flags);
672
673	while (list_empty(&chan->desc.chunks_free)) {
674		/*
675		 * No free descriptors, allocate a page worth of them and try
676		 * again, as someone else could race us to get the newly
677		 * allocated descriptors. If the allocation fails return an
678		 * error.
679		 */
680		spin_unlock_irqrestore(&chan->lock, flags);
681		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
682		if (ret < 0)
683			return NULL;
684		spin_lock_irqsave(&chan->lock, flags);
685	}
686
687	chunk = list_first_entry(&chan->desc.chunks_free,
688				 struct rcar_dmac_xfer_chunk, node);
689	list_del(&chunk->node);
690
691	spin_unlock_irqrestore(&chan->lock, flags);
692
693	return chunk;
694}
695
696static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
697				     struct rcar_dmac_desc *desc, size_t size)
698{
699	/*
700	 * dma_alloc_coherent() allocates memory in page size increments. To
701	 * avoid reallocating the hardware descriptors when the allocated size
702	 * wouldn't change align the requested size to a multiple of the page
703	 * size.
704	 */
705	size = PAGE_ALIGN(size);
706
707	if (desc->hwdescs.size == size)
708		return;
709
710	if (desc->hwdescs.mem) {
711		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
712				  desc->hwdescs.mem, desc->hwdescs.dma);
713		desc->hwdescs.mem = NULL;
714		desc->hwdescs.size = 0;
715	}
716
717	if (!size)
718		return;
719
720	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
721					       &desc->hwdescs.dma, GFP_NOWAIT);
722	if (!desc->hwdescs.mem)
723		return;
724
725	desc->hwdescs.size = size;
726}
727
728static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
729				 struct rcar_dmac_desc *desc)
730{
731	struct rcar_dmac_xfer_chunk *chunk;
732	struct rcar_dmac_hw_desc *hwdesc;
733
734	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
735
736	hwdesc = desc->hwdescs.mem;
737	if (!hwdesc)
738		return -ENOMEM;
739
740	list_for_each_entry(chunk, &desc->chunks, node) {
741		hwdesc->sar = chunk->src_addr;
742		hwdesc->dar = chunk->dst_addr;
743		hwdesc->tcr = chunk->size >> desc->xfer_shift;
744		hwdesc++;
745	}
746
747	return 0;
748}
749
750/* -----------------------------------------------------------------------------
751 * Stop and reset
752 */
753static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
754{
755	u32 chcr;
756	unsigned int i;
757
758	/*
759	 * Ensure that the setting of the DE bit is actually 0 after
760	 * clearing it.
761	 */
762	for (i = 0; i < 1024; i++) {
763		chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
764		if (!(chcr & RCAR_DMACHCR_DE))
765			return;
766		udelay(1);
767	}
768
769	dev_err(chan->chan.device->dev, "CHCR DE check error\n");
770}
771
772static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
773{
774	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
775
776	/* set DE=0 and flush remaining data */
777	rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
778
779	/* make sure all remaining data was flushed */
780	rcar_dmac_chcr_de_barrier(chan);
781}
782
783static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
784{
785	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
786
787	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
788		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
789		  RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
790	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
791	rcar_dmac_chcr_de_barrier(chan);
792}
793
794static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
795{
796	struct rcar_dmac_desc *desc, *_desc;
797	unsigned long flags;
798	LIST_HEAD(descs);
799
800	spin_lock_irqsave(&chan->lock, flags);
801
802	/* Move all non-free descriptors to the local lists. */
803	list_splice_init(&chan->desc.pending, &descs);
804	list_splice_init(&chan->desc.active, &descs);
805	list_splice_init(&chan->desc.done, &descs);
806	list_splice_init(&chan->desc.wait, &descs);
807
808	chan->desc.running = NULL;
809
810	spin_unlock_irqrestore(&chan->lock, flags);
811
812	list_for_each_entry_safe(desc, _desc, &descs, node) {
813		list_del(&desc->node);
814		rcar_dmac_desc_put(chan, desc);
815	}
816}
817
818static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
819{
820	unsigned int i;
821
822	/* Stop all channels. */
823	for (i = 0; i < dmac->n_channels; ++i) {
824		struct rcar_dmac_chan *chan = &dmac->channels[i];
825
826		if (!(dmac->channels_mask & BIT(i)))
827			continue;
828
829		/* Stop and reinitialize the channel. */
830		spin_lock_irq(&chan->lock);
831		rcar_dmac_chan_halt(chan);
832		spin_unlock_irq(&chan->lock);
833	}
834}
835
836static int rcar_dmac_chan_pause(struct dma_chan *chan)
837{
838	unsigned long flags;
839	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
840
841	spin_lock_irqsave(&rchan->lock, flags);
842	rcar_dmac_clear_chcr_de(rchan);
843	spin_unlock_irqrestore(&rchan->lock, flags);
844
845	return 0;
846}
847
848/* -----------------------------------------------------------------------------
849 * Descriptors preparation
850 */
851
852static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
853					  struct rcar_dmac_desc *desc)
854{
855	static const u32 chcr_ts[] = {
856		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
857		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
858		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
859		RCAR_DMACHCR_TS_64B,
860	};
861
862	unsigned int xfer_size;
863	u32 chcr;
864
865	switch (desc->direction) {
866	case DMA_DEV_TO_MEM:
867		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
868		     | RCAR_DMACHCR_RS_DMARS;
869		xfer_size = chan->src.xfer_size;
870		break;
871
872	case DMA_MEM_TO_DEV:
873		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
874		     | RCAR_DMACHCR_RS_DMARS;
875		xfer_size = chan->dst.xfer_size;
876		break;
877
878	case DMA_MEM_TO_MEM:
879	default:
880		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
881		     | RCAR_DMACHCR_RS_AUTO;
882		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
883		break;
884	}
885
886	desc->xfer_shift = ilog2(xfer_size);
887	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
888}
889
890/*
891 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
892 *
893 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
894 * converted to scatter-gather to guarantee consistent locking and a correct
895 * list manipulation. For slave DMA direction carries the usual meaning, and,
896 * logically, the SG list is RAM and the addr variable contains slave address,
897 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
898 * and the SG list contains only one element and points at the source buffer.
899 */
900static struct dma_async_tx_descriptor *
901rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
902		       unsigned int sg_len, dma_addr_t dev_addr,
903		       enum dma_transfer_direction dir, unsigned long dma_flags,
904		       bool cyclic)
905{
906	struct rcar_dmac_xfer_chunk *chunk;
907	struct rcar_dmac_desc *desc;
908	struct scatterlist *sg;
909	unsigned int nchunks = 0;
910	unsigned int max_chunk_size;
911	unsigned int full_size = 0;
912	bool cross_boundary = false;
913	unsigned int i;
914#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
915	u32 high_dev_addr;
916	u32 high_mem_addr;
917#endif
918
919	desc = rcar_dmac_desc_get(chan);
920	if (!desc)
921		return NULL;
922
923	desc->async_tx.flags = dma_flags;
924	desc->async_tx.cookie = -EBUSY;
925
926	desc->cyclic = cyclic;
927	desc->direction = dir;
928
929	rcar_dmac_chan_configure_desc(chan, desc);
930
931	max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
932
933	/*
934	 * Allocate and fill the transfer chunk descriptors. We own the only
935	 * reference to the DMA descriptor, there's no need for locking.
936	 */
937	for_each_sg(sgl, sg, sg_len, i) {
938		dma_addr_t mem_addr = sg_dma_address(sg);
939		unsigned int len = sg_dma_len(sg);
940
941		full_size += len;
942
943#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
944		if (i == 0) {
945			high_dev_addr = dev_addr >> 32;
946			high_mem_addr = mem_addr >> 32;
947		}
948
949		if ((dev_addr >> 32 != high_dev_addr) ||
950		    (mem_addr >> 32 != high_mem_addr))
951			cross_boundary = true;
952#endif
953		while (len) {
954			unsigned int size = min(len, max_chunk_size);
955
956#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
957			/*
958			 * Prevent individual transfers from crossing 4GB
959			 * boundaries.
960			 */
961			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
962				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
963				cross_boundary = true;
964			}
965			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
966				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
967				cross_boundary = true;
968			}
969#endif
970
971			chunk = rcar_dmac_xfer_chunk_get(chan);
972			if (!chunk) {
973				rcar_dmac_desc_put(chan, desc);
974				return NULL;
975			}
976
977			if (dir == DMA_DEV_TO_MEM) {
978				chunk->src_addr = dev_addr;
979				chunk->dst_addr = mem_addr;
980			} else {
981				chunk->src_addr = mem_addr;
982				chunk->dst_addr = dev_addr;
983			}
984
985			chunk->size = size;
986
987			dev_dbg(chan->chan.device->dev,
988				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
989				chan->index, chunk, desc, i, sg, size, len,
990				&chunk->src_addr, &chunk->dst_addr);
991
992			mem_addr += size;
993			if (dir == DMA_MEM_TO_MEM)
994				dev_addr += size;
995
996			len -= size;
997
998			list_add_tail(&chunk->node, &desc->chunks);
999			nchunks++;
1000		}
1001	}
1002
1003	desc->nchunks = nchunks;
1004	desc->size = full_size;
1005
1006	/*
1007	 * Use hardware descriptor lists if possible when more than one chunk
1008	 * needs to be transferred (otherwise they don't make much sense).
1009	 *
1010	 * Source/Destination address should be located in same 4GiB region
1011	 * in the 40bit address space when it uses Hardware descriptor,
1012	 * and cross_boundary is checking it.
1013	 */
1014	desc->hwdescs.use = !cross_boundary && nchunks > 1;
1015	if (desc->hwdescs.use) {
1016		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1017			desc->hwdescs.use = false;
1018	}
1019
1020	return &desc->async_tx;
1021}
1022
1023/* -----------------------------------------------------------------------------
1024 * DMA engine operations
1025 */
1026
1027static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1028{
1029	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030	int ret;
1031
1032	INIT_LIST_HEAD(&rchan->desc.chunks_free);
1033	INIT_LIST_HEAD(&rchan->desc.pages);
1034
1035	/* Preallocate descriptors. */
1036	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1037	if (ret < 0)
1038		return -ENOMEM;
1039
1040	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1041	if (ret < 0)
1042		return -ENOMEM;
1043
1044	return pm_runtime_get_sync(chan->device->dev);
1045}
1046
1047static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1048{
1049	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1050	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1051	struct rcar_dmac_chan_map *map = &rchan->map;
1052	struct rcar_dmac_desc_page *page, *_page;
1053	struct rcar_dmac_desc *desc;
1054	LIST_HEAD(list);
1055
1056	/* Protect against ISR */
1057	spin_lock_irq(&rchan->lock);
1058	rcar_dmac_chan_halt(rchan);
1059	spin_unlock_irq(&rchan->lock);
1060
1061	/*
1062	 * Now no new interrupts will occur, but one might already be
1063	 * running. Wait for it to finish before freeing resources.
1064	 */
1065	synchronize_irq(rchan->irq);
1066
1067	if (rchan->mid_rid >= 0) {
1068		/* The caller is holding dma_list_mutex */
1069		clear_bit(rchan->mid_rid, dmac->modules);
1070		rchan->mid_rid = -EINVAL;
1071	}
1072
1073	list_splice_init(&rchan->desc.free, &list);
1074	list_splice_init(&rchan->desc.pending, &list);
1075	list_splice_init(&rchan->desc.active, &list);
1076	list_splice_init(&rchan->desc.done, &list);
1077	list_splice_init(&rchan->desc.wait, &list);
1078
1079	rchan->desc.running = NULL;
1080
1081	list_for_each_entry(desc, &list, node)
1082		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1083
1084	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1085		list_del(&page->node);
1086		free_page((unsigned long)page);
1087	}
1088
1089	/* Remove slave mapping if present. */
1090	if (map->slave.xfer_size) {
1091		dma_unmap_resource(chan->device->dev, map->addr,
1092				   map->slave.xfer_size, map->dir, 0);
1093		map->slave.xfer_size = 0;
1094	}
1095
1096	pm_runtime_put(chan->device->dev);
1097}
1098
1099static struct dma_async_tx_descriptor *
1100rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1101			  dma_addr_t dma_src, size_t len, unsigned long flags)
1102{
1103	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1104	struct scatterlist sgl;
1105
1106	if (!len)
1107		return NULL;
1108
1109	sg_init_table(&sgl, 1);
1110	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1111		    offset_in_page(dma_src));
1112	sg_dma_address(&sgl) = dma_src;
1113	sg_dma_len(&sgl) = len;
1114
1115	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1116				      DMA_MEM_TO_MEM, flags, false);
1117}
1118
1119static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1120				    enum dma_transfer_direction dir)
1121{
1122	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1123	struct rcar_dmac_chan_map *map = &rchan->map;
1124	phys_addr_t dev_addr;
1125	size_t dev_size;
1126	enum dma_data_direction dev_dir;
1127
1128	if (dir == DMA_DEV_TO_MEM) {
1129		dev_addr = rchan->src.slave_addr;
1130		dev_size = rchan->src.xfer_size;
1131		dev_dir = DMA_TO_DEVICE;
1132	} else {
1133		dev_addr = rchan->dst.slave_addr;
1134		dev_size = rchan->dst.xfer_size;
1135		dev_dir = DMA_FROM_DEVICE;
1136	}
1137
1138	/* Reuse current map if possible. */
1139	if (dev_addr == map->slave.slave_addr &&
1140	    dev_size == map->slave.xfer_size &&
1141	    dev_dir == map->dir)
1142		return 0;
1143
1144	/* Remove old mapping if present. */
1145	if (map->slave.xfer_size)
1146		dma_unmap_resource(chan->device->dev, map->addr,
1147				   map->slave.xfer_size, map->dir, 0);
1148	map->slave.xfer_size = 0;
1149
1150	/* Create new slave address map. */
1151	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1152				     dev_dir, 0);
1153
1154	if (dma_mapping_error(chan->device->dev, map->addr)) {
1155		dev_err(chan->device->dev,
1156			"chan%u: failed to map %zx@%pap", rchan->index,
1157			dev_size, &dev_addr);
1158		return -EIO;
1159	}
1160
1161	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1162		rchan->index, dev_size, &dev_addr, &map->addr,
1163		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1164
1165	map->slave.slave_addr = dev_addr;
1166	map->slave.xfer_size = dev_size;
1167	map->dir = dev_dir;
1168
1169	return 0;
1170}
1171
1172static struct dma_async_tx_descriptor *
1173rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1174			unsigned int sg_len, enum dma_transfer_direction dir,
1175			unsigned long flags, void *context)
1176{
1177	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1178
1179	/* Someone calling slave DMA on a generic channel? */
1180	if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1181		dev_warn(chan->device->dev,
1182			 "%s: bad parameter: len=%d, id=%d\n",
1183			 __func__, sg_len, rchan->mid_rid);
1184		return NULL;
1185	}
1186
1187	if (rcar_dmac_map_slave_addr(chan, dir))
1188		return NULL;
1189
1190	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1191				      dir, flags, false);
1192}
1193
1194#define RCAR_DMAC_MAX_SG_LEN	32
1195
1196static struct dma_async_tx_descriptor *
1197rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1198			  size_t buf_len, size_t period_len,
1199			  enum dma_transfer_direction dir, unsigned long flags)
1200{
1201	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1202	struct dma_async_tx_descriptor *desc;
1203	struct scatterlist *sgl;
1204	unsigned int sg_len;
1205	unsigned int i;
1206
1207	/* Someone calling slave DMA on a generic channel? */
1208	if (rchan->mid_rid < 0 || buf_len < period_len) {
1209		dev_warn(chan->device->dev,
1210			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1211			__func__, buf_len, period_len, rchan->mid_rid);
1212		return NULL;
1213	}
1214
1215	if (rcar_dmac_map_slave_addr(chan, dir))
1216		return NULL;
1217
1218	sg_len = buf_len / period_len;
1219	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1220		dev_err(chan->device->dev,
1221			"chan%u: sg length %d exceeds limit %d",
1222			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1223		return NULL;
1224	}
1225
1226	/*
1227	 * Allocate the sg list dynamically as it would consume too much stack
1228	 * space.
1229	 */
1230	sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1231	if (!sgl)
1232		return NULL;
1233
1234	sg_init_table(sgl, sg_len);
1235
1236	for (i = 0; i < sg_len; ++i) {
1237		dma_addr_t src = buf_addr + (period_len * i);
1238
1239		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1240			    offset_in_page(src));
1241		sg_dma_address(&sgl[i]) = src;
1242		sg_dma_len(&sgl[i]) = period_len;
1243	}
1244
1245	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1246				      dir, flags, true);
1247
1248	kfree(sgl);
1249	return desc;
1250}
1251
1252static int rcar_dmac_device_config(struct dma_chan *chan,
1253				   struct dma_slave_config *cfg)
1254{
1255	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1256
1257	/*
1258	 * We could lock this, but you shouldn't be configuring the
1259	 * channel, while using it...
1260	 */
1261	rchan->src.slave_addr = cfg->src_addr;
1262	rchan->dst.slave_addr = cfg->dst_addr;
1263	rchan->src.xfer_size = cfg->src_addr_width;
1264	rchan->dst.xfer_size = cfg->dst_addr_width;
1265
1266	return 0;
1267}
1268
1269static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1270{
1271	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1272	unsigned long flags;
1273
1274	spin_lock_irqsave(&rchan->lock, flags);
1275	rcar_dmac_chan_halt(rchan);
1276	spin_unlock_irqrestore(&rchan->lock, flags);
1277
1278	/*
1279	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1280	 * be running.
1281	 */
1282
1283	rcar_dmac_chan_reinit(rchan);
1284
1285	return 0;
1286}
1287
1288static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1289					       dma_cookie_t cookie)
1290{
1291	struct rcar_dmac_desc *desc = chan->desc.running;
1292	struct rcar_dmac_xfer_chunk *running = NULL;
1293	struct rcar_dmac_xfer_chunk *chunk;
1294	enum dma_status status;
1295	unsigned int residue = 0;
1296	unsigned int dptr = 0;
1297	unsigned int chcrb;
1298	unsigned int tcrb;
1299	unsigned int i;
1300
1301	if (!desc)
1302		return 0;
1303
1304	/*
1305	 * If the cookie corresponds to a descriptor that has been completed
1306	 * there is no residue. The same check has already been performed by the
1307	 * caller but without holding the channel lock, so the descriptor could
1308	 * now be complete.
1309	 */
1310	status = dma_cookie_status(&chan->chan, cookie, NULL);
1311	if (status == DMA_COMPLETE)
1312		return 0;
1313
1314	/*
1315	 * If the cookie doesn't correspond to the currently running transfer
1316	 * then the descriptor hasn't been processed yet, and the residue is
1317	 * equal to the full descriptor size.
1318	 * Also, a client driver is possible to call this function before
1319	 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1320	 * will be the next descriptor, and the done list will appear. So, if
1321	 * the argument cookie matches the done list's cookie, we can assume
1322	 * the residue is zero.
1323	 */
1324	if (cookie != desc->async_tx.cookie) {
1325		list_for_each_entry(desc, &chan->desc.done, node) {
1326			if (cookie == desc->async_tx.cookie)
1327				return 0;
1328		}
1329		list_for_each_entry(desc, &chan->desc.pending, node) {
1330			if (cookie == desc->async_tx.cookie)
1331				return desc->size;
1332		}
1333		list_for_each_entry(desc, &chan->desc.active, node) {
1334			if (cookie == desc->async_tx.cookie)
1335				return desc->size;
1336		}
1337
1338		/*
1339		 * No descriptor found for the cookie, there's thus no residue.
1340		 * This shouldn't happen if the calling driver passes a correct
1341		 * cookie value.
1342		 */
1343		WARN(1, "No descriptor for cookie!");
1344		return 0;
1345	}
1346
1347	/*
1348	 * We need to read two registers.
1349	 * Make sure the control register does not skip to next chunk
1350	 * while reading the counter.
1351	 * Trying it 3 times should be enough: Initial read, retry, retry
1352	 * for the paranoid.
1353	 */
1354	for (i = 0; i < 3; i++) {
1355		chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1356					    RCAR_DMACHCRB_DPTR_MASK;
1357		tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1358		/* Still the same? */
1359		if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1360			      RCAR_DMACHCRB_DPTR_MASK))
1361			break;
1362	}
1363	WARN_ONCE(i >= 3, "residue might be not continuous!");
1364
1365	/*
1366	 * In descriptor mode the descriptor running pointer is not maintained
1367	 * by the interrupt handler, find the running descriptor from the
1368	 * descriptor pointer field in the CHCRB register. In non-descriptor
1369	 * mode just use the running descriptor pointer.
1370	 */
1371	if (desc->hwdescs.use) {
1372		dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1373		if (dptr == 0)
1374			dptr = desc->nchunks;
1375		dptr--;
1376		WARN_ON(dptr >= desc->nchunks);
1377	} else {
1378		running = desc->running;
1379	}
1380
1381	/* Compute the size of all chunks still to be transferred. */
1382	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1383		if (chunk == running || ++dptr == desc->nchunks)
1384			break;
1385
1386		residue += chunk->size;
1387	}
1388
1389	/* Add the residue for the current chunk. */
1390	residue += tcrb << desc->xfer_shift;
1391
1392	return residue;
1393}
1394
1395static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1396					   dma_cookie_t cookie,
1397					   struct dma_tx_state *txstate)
1398{
1399	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1400	enum dma_status status;
1401	unsigned long flags;
1402	unsigned int residue;
1403	bool cyclic;
1404
1405	status = dma_cookie_status(chan, cookie, txstate);
1406	if (status == DMA_COMPLETE || !txstate)
1407		return status;
1408
1409	spin_lock_irqsave(&rchan->lock, flags);
1410	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1411	cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1412	spin_unlock_irqrestore(&rchan->lock, flags);
1413
1414	/* if there's no residue, the cookie is complete */
1415	if (!residue && !cyclic)
1416		return DMA_COMPLETE;
1417
1418	dma_set_residue(txstate, residue);
1419
1420	return status;
1421}
1422
1423static void rcar_dmac_issue_pending(struct dma_chan *chan)
1424{
1425	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1426	unsigned long flags;
1427
1428	spin_lock_irqsave(&rchan->lock, flags);
1429
1430	if (list_empty(&rchan->desc.pending))
1431		goto done;
1432
1433	/* Append the pending list to the active list. */
1434	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1435
1436	/*
1437	 * If no transfer is running pick the first descriptor from the active
1438	 * list and start the transfer.
1439	 */
1440	if (!rchan->desc.running) {
1441		struct rcar_dmac_desc *desc;
1442
1443		desc = list_first_entry(&rchan->desc.active,
1444					struct rcar_dmac_desc, node);
1445		rchan->desc.running = desc;
1446
1447		rcar_dmac_chan_start_xfer(rchan);
1448	}
1449
1450done:
1451	spin_unlock_irqrestore(&rchan->lock, flags);
1452}
1453
1454static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1455{
1456	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1457
1458	synchronize_irq(rchan->irq);
1459}
1460
1461/* -----------------------------------------------------------------------------
1462 * IRQ handling
1463 */
1464
1465static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1466{
1467	struct rcar_dmac_desc *desc = chan->desc.running;
1468	unsigned int stage;
1469
1470	if (WARN_ON(!desc || !desc->cyclic)) {
1471		/*
1472		 * This should never happen, there should always be a running
1473		 * cyclic descriptor when a descriptor stage end interrupt is
1474		 * triggered. Warn and return.
1475		 */
1476		return IRQ_NONE;
1477	}
1478
1479	/* Program the interrupt pointer to the next stage. */
1480	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1481		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1482	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1483
1484	return IRQ_WAKE_THREAD;
1485}
1486
1487static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1488{
1489	struct rcar_dmac_desc *desc = chan->desc.running;
1490	irqreturn_t ret = IRQ_WAKE_THREAD;
1491
1492	if (WARN_ON_ONCE(!desc)) {
1493		/*
1494		 * This should never happen, there should always be a running
1495		 * descriptor when a transfer end interrupt is triggered. Warn
1496		 * and return.
1497		 */
1498		return IRQ_NONE;
1499	}
1500
1501	/*
1502	 * The transfer end interrupt isn't generated for each chunk when using
1503	 * descriptor mode. Only update the running chunk pointer in
1504	 * non-descriptor mode.
1505	 */
1506	if (!desc->hwdescs.use) {
1507		/*
1508		 * If we haven't completed the last transfer chunk simply move
1509		 * to the next one. Only wake the IRQ thread if the transfer is
1510		 * cyclic.
1511		 */
1512		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1513			desc->running = list_next_entry(desc->running, node);
1514			if (!desc->cyclic)
1515				ret = IRQ_HANDLED;
1516			goto done;
1517		}
1518
1519		/*
1520		 * We've completed the last transfer chunk. If the transfer is
1521		 * cyclic, move back to the first one.
1522		 */
1523		if (desc->cyclic) {
1524			desc->running =
1525				list_first_entry(&desc->chunks,
1526						 struct rcar_dmac_xfer_chunk,
1527						 node);
1528			goto done;
1529		}
1530	}
1531
1532	/* The descriptor is complete, move it to the done list. */
1533	list_move_tail(&desc->node, &chan->desc.done);
1534
1535	/* Queue the next descriptor, if any. */
1536	if (!list_empty(&chan->desc.active))
1537		chan->desc.running = list_first_entry(&chan->desc.active,
1538						      struct rcar_dmac_desc,
1539						      node);
1540	else
1541		chan->desc.running = NULL;
1542
1543done:
1544	if (chan->desc.running)
1545		rcar_dmac_chan_start_xfer(chan);
1546
1547	return ret;
1548}
1549
1550static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1551{
1552	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1553	struct rcar_dmac_chan *chan = dev;
1554	irqreturn_t ret = IRQ_NONE;
1555	bool reinit = false;
1556	u32 chcr;
1557
1558	spin_lock(&chan->lock);
1559
1560	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1561	if (chcr & RCAR_DMACHCR_CAE) {
1562		struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1563
1564		/*
1565		 * We don't need to call rcar_dmac_chan_halt()
1566		 * because channel is already stopped in error case.
1567		 * We need to clear register and check DE bit as recovery.
1568		 */
1569		rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
1570		rcar_dmac_chcr_de_barrier(chan);
1571		reinit = true;
1572		goto spin_lock_end;
1573	}
1574
1575	if (chcr & RCAR_DMACHCR_TE)
1576		mask |= RCAR_DMACHCR_DE;
1577	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1578	if (mask & RCAR_DMACHCR_DE)
1579		rcar_dmac_chcr_de_barrier(chan);
1580
1581	if (chcr & RCAR_DMACHCR_DSE)
1582		ret |= rcar_dmac_isr_desc_stage_end(chan);
1583
1584	if (chcr & RCAR_DMACHCR_TE)
1585		ret |= rcar_dmac_isr_transfer_end(chan);
1586
1587spin_lock_end:
1588	spin_unlock(&chan->lock);
1589
1590	if (reinit) {
1591		dev_err(chan->chan.device->dev, "Channel Address Error\n");
1592
1593		rcar_dmac_chan_reinit(chan);
1594		ret = IRQ_HANDLED;
1595	}
1596
1597	return ret;
1598}
1599
1600static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1601{
1602	struct rcar_dmac_chan *chan = dev;
1603	struct rcar_dmac_desc *desc;
1604	struct dmaengine_desc_callback cb;
1605
1606	spin_lock_irq(&chan->lock);
1607
1608	/* For cyclic transfers notify the user after every chunk. */
1609	if (chan->desc.running && chan->desc.running->cyclic) {
1610		desc = chan->desc.running;
1611		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1612
1613		if (dmaengine_desc_callback_valid(&cb)) {
1614			spin_unlock_irq(&chan->lock);
1615			dmaengine_desc_callback_invoke(&cb, NULL);
1616			spin_lock_irq(&chan->lock);
1617		}
1618	}
1619
1620	/*
1621	 * Call the callback function for all descriptors on the done list and
1622	 * move them to the ack wait list.
1623	 */
1624	while (!list_empty(&chan->desc.done)) {
1625		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1626					node);
1627		dma_cookie_complete(&desc->async_tx);
1628		list_del(&desc->node);
1629
1630		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1631		if (dmaengine_desc_callback_valid(&cb)) {
1632			spin_unlock_irq(&chan->lock);
1633			/*
1634			 * We own the only reference to this descriptor, we can
1635			 * safely dereference it without holding the channel
1636			 * lock.
1637			 */
1638			dmaengine_desc_callback_invoke(&cb, NULL);
1639			spin_lock_irq(&chan->lock);
1640		}
1641
1642		list_add_tail(&desc->node, &chan->desc.wait);
1643	}
1644
1645	spin_unlock_irq(&chan->lock);
1646
1647	/* Recycle all acked descriptors. */
1648	rcar_dmac_desc_recycle_acked(chan);
1649
1650	return IRQ_HANDLED;
1651}
1652
1653/* -----------------------------------------------------------------------------
1654 * OF xlate and channel filter
1655 */
1656
1657static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1658{
1659	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1660	struct of_phandle_args *dma_spec = arg;
1661
1662	/*
1663	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1664	 * function knows from which device it wants to allocate a channel from,
1665	 * and would be perfectly capable of selecting the channel it wants.
1666	 * Forcing it to call dma_request_channel() and iterate through all
1667	 * channels from all controllers is just pointless.
1668	 */
1669	if (chan->device->device_config != rcar_dmac_device_config)
1670		return false;
1671
1672	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1673}
1674
1675static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1676					   struct of_dma *ofdma)
1677{
1678	struct rcar_dmac_chan *rchan;
1679	struct dma_chan *chan;
1680	dma_cap_mask_t mask;
1681
1682	if (dma_spec->args_count != 1)
1683		return NULL;
1684
1685	/* Only slave DMA channels can be allocated via DT */
1686	dma_cap_zero(mask);
1687	dma_cap_set(DMA_SLAVE, mask);
1688
1689	chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1690				     ofdma->of_node);
1691	if (!chan)
1692		return NULL;
1693
1694	rchan = to_rcar_dmac_chan(chan);
1695	rchan->mid_rid = dma_spec->args[0];
1696
1697	return chan;
1698}
1699
1700/* -----------------------------------------------------------------------------
1701 * Power management
1702 */
1703
1704#ifdef CONFIG_PM
1705static int rcar_dmac_runtime_suspend(struct device *dev)
1706{
1707	return 0;
1708}
1709
1710static int rcar_dmac_runtime_resume(struct device *dev)
1711{
1712	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1713
1714	return rcar_dmac_init(dmac);
1715}
1716#endif
1717
1718static const struct dev_pm_ops rcar_dmac_pm = {
1719	/*
1720	 * TODO for system sleep/resume:
1721	 *   - Wait for the current transfer to complete and stop the device,
1722	 *   - Resume transfers, if any.
1723	 */
1724	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1725				      pm_runtime_force_resume)
1726	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1727			   NULL)
1728};
1729
1730/* -----------------------------------------------------------------------------
1731 * Probe and remove
1732 */
1733
1734static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1735				struct rcar_dmac_chan *rchan,
1736				const struct rcar_dmac_of_data *data,
1737				unsigned int index)
1738{
1739	struct platform_device *pdev = to_platform_device(dmac->dev);
1740	struct dma_chan *chan = &rchan->chan;
1741	char pdev_irqname[5];
1742	char *irqname;
1743	int ret;
1744
1745	rchan->index = index;
1746	rchan->iomem = dmac->iomem + data->chan_offset_base +
1747		       data->chan_offset_stride * index;
1748	rchan->mid_rid = -EINVAL;
1749
1750	spin_lock_init(&rchan->lock);
1751
1752	INIT_LIST_HEAD(&rchan->desc.free);
1753	INIT_LIST_HEAD(&rchan->desc.pending);
1754	INIT_LIST_HEAD(&rchan->desc.active);
1755	INIT_LIST_HEAD(&rchan->desc.done);
1756	INIT_LIST_HEAD(&rchan->desc.wait);
1757
1758	/* Request the channel interrupt. */
1759	sprintf(pdev_irqname, "ch%u", index);
1760	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1761	if (rchan->irq < 0)
1762		return -ENODEV;
1763
1764	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1765				 dev_name(dmac->dev), index);
1766	if (!irqname)
1767		return -ENOMEM;
1768
1769	/*
1770	 * Initialize the DMA engine channel and add it to the DMA engine
1771	 * channels list.
1772	 */
1773	chan->device = &dmac->engine;
1774	dma_cookie_init(chan);
1775
1776	list_add_tail(&chan->device_node, &dmac->engine.channels);
1777
1778	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1779					rcar_dmac_isr_channel,
1780					rcar_dmac_isr_channel_thread, 0,
1781					irqname, rchan);
1782	if (ret) {
1783		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1784			rchan->irq, ret);
1785		return ret;
1786	}
1787
1788	return 0;
1789}
1790
1791#define RCAR_DMAC_MAX_CHANNELS	32
1792
1793static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1794{
1795	struct device_node *np = dev->of_node;
1796	int ret;
1797
1798	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1799	if (ret < 0) {
1800		dev_err(dev, "unable to read dma-channels property\n");
1801		return ret;
1802	}
1803
1804	/* The hardware and driver don't support more than 32 bits in CHCLR */
1805	if (dmac->n_channels <= 0 ||
1806	    dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1807		dev_err(dev, "invalid number of channels %u\n",
1808			dmac->n_channels);
1809		return -EINVAL;
1810	}
1811
1812	/*
1813	 * If the driver is unable to read dma-channel-mask property,
1814	 * the driver assumes that it can use all channels.
1815	 */
1816	dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1817	of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1818
1819	/* If the property has out-of-channel mask, this driver clears it */
1820	dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1821
1822	return 0;
1823}
1824
1825static int rcar_dmac_probe(struct platform_device *pdev)
1826{
1827	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1828		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1829		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1830		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1831	struct dma_device *engine;
1832	struct rcar_dmac *dmac;
1833	const struct rcar_dmac_of_data *data;
1834	unsigned int i;
1835	int ret;
1836
1837	data = of_device_get_match_data(&pdev->dev);
1838	if (!data)
1839		return -EINVAL;
1840
1841	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1842	if (!dmac)
1843		return -ENOMEM;
1844
1845	dmac->dev = &pdev->dev;
1846	platform_set_drvdata(pdev, dmac);
1847	ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1848	if (ret)
1849		return ret;
1850
1851	ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1852	if (ret)
1853		return ret;
1854
1855	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1856	if (ret < 0)
1857		return ret;
1858
1859	/*
1860	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1861	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1862	 * is connected to microTLB 0 on currently supported platforms, so we
1863	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1864	 * level we can't disable it selectively, so ignore channel 0 for now if
1865	 * the device is part of an IOMMU group.
1866	 */
1867	if (device_iommu_mapped(&pdev->dev))
1868		dmac->channels_mask &= ~BIT(0);
1869
1870	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1871				      sizeof(*dmac->channels), GFP_KERNEL);
1872	if (!dmac->channels)
1873		return -ENOMEM;
1874
1875	/* Request resources. */
1876	dmac->iomem = devm_platform_ioremap_resource(pdev, 0);
1877	if (IS_ERR(dmac->iomem))
1878		return PTR_ERR(dmac->iomem);
1879
1880	/* Enable runtime PM and initialize the device. */
1881	pm_runtime_enable(&pdev->dev);
1882	ret = pm_runtime_resume_and_get(&pdev->dev);
1883	if (ret < 0) {
1884		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1885		return ret;
1886	}
1887
1888	ret = rcar_dmac_init(dmac);
1889	pm_runtime_put(&pdev->dev);
1890
1891	if (ret) {
1892		dev_err(&pdev->dev, "failed to reset device\n");
1893		goto error;
1894	}
1895
1896	/* Initialize engine */
1897	engine = &dmac->engine;
1898
1899	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1900	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1901
1902	engine->dev		= &pdev->dev;
1903	engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1904
1905	engine->src_addr_widths	= widths;
1906	engine->dst_addr_widths	= widths;
1907	engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1908	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1909
1910	engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources;
1911	engine->device_free_chan_resources	= rcar_dmac_free_chan_resources;
1912	engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy;
1913	engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg;
1914	engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic;
1915	engine->device_config			= rcar_dmac_device_config;
1916	engine->device_pause			= rcar_dmac_chan_pause;
1917	engine->device_terminate_all		= rcar_dmac_chan_terminate_all;
1918	engine->device_tx_status		= rcar_dmac_tx_status;
1919	engine->device_issue_pending		= rcar_dmac_issue_pending;
1920	engine->device_synchronize		= rcar_dmac_device_synchronize;
1921
1922	INIT_LIST_HEAD(&engine->channels);
1923
1924	for (i = 0; i < dmac->n_channels; ++i) {
1925		if (!(dmac->channels_mask & BIT(i)))
1926			continue;
1927
1928		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], data, i);
1929		if (ret < 0)
1930			goto error;
1931	}
1932
1933	/* Register the DMAC as a DMA provider for DT. */
1934	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1935					 NULL);
1936	if (ret < 0)
1937		goto error;
1938
1939	/*
1940	 * Register the DMA engine device.
1941	 *
1942	 * Default transfer size of 32 bytes requires 32-byte alignment.
1943	 */
1944	ret = dma_async_device_register(engine);
1945	if (ret < 0)
1946		goto error;
1947
1948	return 0;
1949
1950error:
1951	of_dma_controller_free(pdev->dev.of_node);
1952	pm_runtime_disable(&pdev->dev);
1953	return ret;
1954}
1955
1956static int rcar_dmac_remove(struct platform_device *pdev)
1957{
1958	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1959
1960	of_dma_controller_free(pdev->dev.of_node);
1961	dma_async_device_unregister(&dmac->engine);
1962
1963	pm_runtime_disable(&pdev->dev);
1964
1965	return 0;
1966}
1967
1968static void rcar_dmac_shutdown(struct platform_device *pdev)
1969{
1970	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1971
1972	rcar_dmac_stop_all_chan(dmac);
1973}
1974
1975static const struct rcar_dmac_of_data rcar_dmac_data = {
1976	.chan_offset_base = 0x8000,
1977	.chan_offset_stride = 0x80,
1978};
1979
1980static const struct of_device_id rcar_dmac_of_ids[] = {
1981	{
1982		.compatible = "renesas,rcar-dmac",
1983		.data = &rcar_dmac_data,
1984	},
1985	{ /* Sentinel */ }
1986};
1987MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1988
1989static struct platform_driver rcar_dmac_driver = {
1990	.driver		= {
1991		.pm	= &rcar_dmac_pm,
1992		.name	= "rcar-dmac",
1993		.of_match_table = rcar_dmac_of_ids,
1994	},
1995	.probe		= rcar_dmac_probe,
1996	.remove		= rcar_dmac_remove,
1997	.shutdown	= rcar_dmac_shutdown,
1998};
1999
2000module_platform_driver(rcar_dmac_driver);
2001
2002MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
2003MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
2004MODULE_LICENSE("GPL v2");
2005