1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006-2009 DENX Software Engineering.
4 *
5 * Author: Yuri Tikhonov <yur@emcraft.com>
6 *
7 * Further porting to arch/powerpc by
8 * 	Anatolij Gustschin <agust@denx.de>
9 */
10
11/*
12 * This driver supports the asynchrounous DMA copy and RAID engines available
13 * on the AMCC PPC440SPe Processors.
14 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
15 * ADMA driver written by D.Williams.
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/async_tx.h>
21#include <linux/delay.h>
22#include <linux/dma-mapping.h>
23#include <linux/spinlock.h>
24#include <linux/interrupt.h>
25#include <linux/slab.h>
26#include <linux/uaccess.h>
27#include <linux/proc_fs.h>
28#include <linux/of.h>
29#include <linux/of_address.h>
30#include <linux/of_irq.h>
31#include <linux/of_platform.h>
32#include <asm/dcr.h>
33#include <asm/dcr-regs.h>
34#include "adma.h"
35#include "../dmaengine.h"
36
37enum ppc_adma_init_code {
38	PPC_ADMA_INIT_OK = 0,
39	PPC_ADMA_INIT_MEMRES,
40	PPC_ADMA_INIT_MEMREG,
41	PPC_ADMA_INIT_ALLOC,
42	PPC_ADMA_INIT_COHERENT,
43	PPC_ADMA_INIT_CHANNEL,
44	PPC_ADMA_INIT_IRQ1,
45	PPC_ADMA_INIT_IRQ2,
46	PPC_ADMA_INIT_REGISTER
47};
48
49static char *ppc_adma_errors[] = {
50	[PPC_ADMA_INIT_OK] = "ok",
51	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
52	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
53	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
54				"structure",
55	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
56				   "hardware descriptors",
57	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
58	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
59	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
60	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
61};
62
63static enum ppc_adma_init_code
64ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
65
66struct ppc_dma_chan_ref {
67	struct dma_chan *chan;
68	struct list_head node;
69};
70
71/* The list of channels exported by ppc440spe ADMA */
72struct list_head
73ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
74
75/* This flag is set when want to refetch the xor chain in the interrupt
76 * handler
77 */
78static u32 do_xor_refetch;
79
80/* Pointer to DMA0, DMA1 CP/CS FIFO */
81static void *ppc440spe_dma_fifo_buf;
82
83/* Pointers to last submitted to DMA0, DMA1 CDBs */
84static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
85static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
86
87/* Pointer to last linked and submitted xor CB */
88static struct ppc440spe_adma_desc_slot *xor_last_linked;
89static struct ppc440spe_adma_desc_slot *xor_last_submit;
90
91/* This array is used in data-check operations for storing a pattern */
92static char ppc440spe_qword[16];
93
94static atomic_t ppc440spe_adma_err_irq_ref;
95static dcr_host_t ppc440spe_mq_dcr_host;
96static unsigned int ppc440spe_mq_dcr_len;
97
98/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
99 * the block size in transactions, then we do not allow to activate more than
100 * only one RXOR transactions simultaneously. So use this var to store
101 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
102 * set) or not (PPC440SPE_RXOR_RUN is clear).
103 */
104static unsigned long ppc440spe_rxor_state;
105
106/* These are used in enable & check routines
107 */
108static u32 ppc440spe_r6_enabled;
109static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
110static struct completion ppc440spe_r6_test_comp;
111
112static int ppc440spe_adma_dma2rxor_prep_src(
113		struct ppc440spe_adma_desc_slot *desc,
114		struct ppc440spe_rxor *cursor, int index,
115		int src_cnt, u32 addr);
116static void ppc440spe_adma_dma2rxor_set_src(
117		struct ppc440spe_adma_desc_slot *desc,
118		int index, dma_addr_t addr);
119static void ppc440spe_adma_dma2rxor_set_mult(
120		struct ppc440spe_adma_desc_slot *desc,
121		int index, u8 mult);
122
123#ifdef ADMA_LL_DEBUG
124#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
125#else
126#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
127#endif
128
129static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
130{
131	struct dma_cdb *cdb;
132	struct xor_cb *cb;
133	int i;
134
135	switch (chan->device->id) {
136	case 0:
137	case 1:
138		cdb = block;
139
140		pr_debug("CDB at %p [%d]:\n"
141			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
142			"\t sg1u 0x%08x sg1l 0x%08x\n"
143			"\t sg2u 0x%08x sg2l 0x%08x\n"
144			"\t sg3u 0x%08x sg3l 0x%08x\n",
145			cdb, chan->device->id,
146			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
147			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
148			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
149			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
150		);
151		break;
152	case 2:
153		cb = block;
154
155		pr_debug("CB at %p [%d]:\n"
156			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
157			"\t cbtah 0x%08x cbtal 0x%08x\n"
158			"\t cblah 0x%08x cblal 0x%08x\n",
159			cb, chan->device->id,
160			cb->cbc, cb->cbbc, cb->cbs,
161			cb->cbtah, cb->cbtal,
162			cb->cblah, cb->cblal);
163		for (i = 0; i < 16; i++) {
164			if (i && !cb->ops[i].h && !cb->ops[i].l)
165				continue;
166			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
167				i, cb->ops[i].h, cb->ops[i].l);
168		}
169		break;
170	}
171}
172
173static void print_cb_list(struct ppc440spe_adma_chan *chan,
174			  struct ppc440spe_adma_desc_slot *iter)
175{
176	for (; iter; iter = iter->hw_next)
177		print_cb(chan, iter->hw_desc);
178}
179
180static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
181			     unsigned int src_cnt)
182{
183	int i;
184
185	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
186	for (i = 0; i < src_cnt; i++)
187		pr_debug("\t0x%016llx ", src[i]);
188	pr_debug("dst:\n\t0x%016llx\n", dst);
189}
190
191static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
192			    unsigned int src_cnt)
193{
194	int i;
195
196	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
197	for (i = 0; i < src_cnt; i++)
198		pr_debug("\t0x%016llx ", src[i]);
199	pr_debug("dst: ");
200	for (i = 0; i < 2; i++)
201		pr_debug("\t0x%016llx ", dst[i]);
202}
203
204static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
205				    unsigned int src_cnt,
206				    const unsigned char *scf)
207{
208	int i;
209
210	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
211	if (scf) {
212		for (i = 0; i < src_cnt; i++)
213			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
214	} else {
215		for (i = 0; i < src_cnt; i++)
216			pr_debug("\t0x%016llx(no) ", src[i]);
217	}
218
219	pr_debug("dst: ");
220	for (i = 0; i < 2; i++)
221		pr_debug("\t0x%016llx ", src[src_cnt + i]);
222}
223
224/******************************************************************************
225 * Command (Descriptor) Blocks low-level routines
226 ******************************************************************************/
227/**
228 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
229 * pseudo operation
230 */
231static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
232					  struct ppc440spe_adma_chan *chan)
233{
234	struct xor_cb *p;
235
236	switch (chan->device->id) {
237	case PPC440SPE_XOR_ID:
238		p = desc->hw_desc;
239		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
240		/* NOP with Command Block Complete Enable */
241		p->cbc = XOR_CBCR_CBCE_BIT;
242		break;
243	case PPC440SPE_DMA0_ID:
244	case PPC440SPE_DMA1_ID:
245		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
246		/* NOP with interrupt */
247		set_bit(PPC440SPE_DESC_INT, &desc->flags);
248		break;
249	default:
250		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
251				__func__);
252		break;
253	}
254}
255
256/**
257 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
258 * pseudo operation
259 */
260static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
261{
262	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
263	desc->hw_next = NULL;
264	desc->src_cnt = 0;
265	desc->dst_cnt = 1;
266}
267
268/**
269 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
270 */
271static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
272					 int src_cnt, unsigned long flags)
273{
274	struct xor_cb *hw_desc = desc->hw_desc;
275
276	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277	desc->hw_next = NULL;
278	desc->src_cnt = src_cnt;
279	desc->dst_cnt = 1;
280
281	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
282	if (flags & DMA_PREP_INTERRUPT)
283		/* Enable interrupt on completion */
284		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
285}
286
287/**
288 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
289 * operation in DMA2 controller
290 */
291static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
292		int dst_cnt, int src_cnt, unsigned long flags)
293{
294	struct xor_cb *hw_desc = desc->hw_desc;
295
296	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
297	desc->hw_next = NULL;
298	desc->src_cnt = src_cnt;
299	desc->dst_cnt = dst_cnt;
300	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
301	desc->descs_per_op = 0;
302
303	hw_desc->cbc = XOR_CBCR_TGT_BIT;
304	if (flags & DMA_PREP_INTERRUPT)
305		/* Enable interrupt on completion */
306		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
307}
308
309#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
310#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
311#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
312
313/**
314 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
315 * with DMA0/1
316 */
317static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
318				int dst_cnt, int src_cnt, unsigned long flags,
319				unsigned long op)
320{
321	struct dma_cdb *hw_desc;
322	struct ppc440spe_adma_desc_slot *iter;
323	u8 dopc;
324
325	/* Common initialization of a PQ descriptors chain */
326	set_bits(op, &desc->flags);
327	desc->src_cnt = src_cnt;
328	desc->dst_cnt = dst_cnt;
329
330	/* WXOR MULTICAST if both P and Q are being computed
331	 * MV_SG1_SG2 if Q only
332	 */
333	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
334		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
335
336	list_for_each_entry(iter, &desc->group_list, chain_node) {
337		hw_desc = iter->hw_desc;
338		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
339
340		if (likely(!list_is_last(&iter->chain_node,
341				&desc->group_list))) {
342			/* set 'next' pointer */
343			iter->hw_next = list_entry(iter->chain_node.next,
344				struct ppc440spe_adma_desc_slot, chain_node);
345			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
346		} else {
347			/* this is the last descriptor.
348			 * this slot will be pasted from ADMA level
349			 * each time it wants to configure parameters
350			 * of the transaction (src, dst, ...)
351			 */
352			iter->hw_next = NULL;
353			if (flags & DMA_PREP_INTERRUPT)
354				set_bit(PPC440SPE_DESC_INT, &iter->flags);
355			else
356				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
357		}
358	}
359
360	/* Set OPS depending on WXOR/RXOR type of operation */
361	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
362		/* This is a WXOR only chain:
363		 * - first descriptors are for zeroing destinations
364		 *   if PPC440SPE_ZERO_P/Q set;
365		 * - descriptors remained are for GF-XOR operations.
366		 */
367		iter = list_first_entry(&desc->group_list,
368					struct ppc440spe_adma_desc_slot,
369					chain_node);
370
371		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
372			hw_desc = iter->hw_desc;
373			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
374			iter = list_first_entry(&iter->chain_node,
375					struct ppc440spe_adma_desc_slot,
376					chain_node);
377		}
378
379		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
380			hw_desc = iter->hw_desc;
381			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
382			iter = list_first_entry(&iter->chain_node,
383					struct ppc440spe_adma_desc_slot,
384					chain_node);
385		}
386
387		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
388			hw_desc = iter->hw_desc;
389			hw_desc->opc = dopc;
390		}
391	} else {
392		/* This is either RXOR-only or mixed RXOR/WXOR */
393
394		/* The first 1 or 2 slots in chain are always RXOR,
395		 * if need to calculate P & Q, then there are two
396		 * RXOR slots; if only P or only Q, then there is one
397		 */
398		iter = list_first_entry(&desc->group_list,
399					struct ppc440spe_adma_desc_slot,
400					chain_node);
401		hw_desc = iter->hw_desc;
402		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
403
404		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
405			iter = list_first_entry(&iter->chain_node,
406						struct ppc440spe_adma_desc_slot,
407						chain_node);
408			hw_desc = iter->hw_desc;
409			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
410		}
411
412		/* The remaining descs (if any) are WXORs */
413		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
414			iter = list_first_entry(&iter->chain_node,
415						struct ppc440spe_adma_desc_slot,
416						chain_node);
417			list_for_each_entry_from(iter, &desc->group_list,
418						chain_node) {
419				hw_desc = iter->hw_desc;
420				hw_desc->opc = dopc;
421			}
422		}
423	}
424}
425
426/**
427 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
428 * for PQ_ZERO_SUM operation
429 */
430static void ppc440spe_desc_init_dma01pqzero_sum(
431				struct ppc440spe_adma_desc_slot *desc,
432				int dst_cnt, int src_cnt)
433{
434	struct dma_cdb *hw_desc;
435	struct ppc440spe_adma_desc_slot *iter;
436	int i = 0;
437	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
438				   DMA_CDB_OPC_MV_SG1_SG2;
439	/*
440	 * Initialize starting from 2nd or 3rd descriptor dependent
441	 * on dst_cnt. First one or two slots are for cloning P
442	 * and/or Q to chan->pdest and/or chan->qdest as we have
443	 * to preserve original P/Q.
444	 */
445	iter = list_first_entry(&desc->group_list,
446				struct ppc440spe_adma_desc_slot, chain_node);
447	iter = list_entry(iter->chain_node.next,
448			  struct ppc440spe_adma_desc_slot, chain_node);
449
450	if (dst_cnt > 1) {
451		iter = list_entry(iter->chain_node.next,
452				  struct ppc440spe_adma_desc_slot, chain_node);
453	}
454	/* initialize each source descriptor in chain */
455	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
456		hw_desc = iter->hw_desc;
457		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
458		iter->src_cnt = 0;
459		iter->dst_cnt = 0;
460
461		/* This is a ZERO_SUM operation:
462		 * - <src_cnt> descriptors starting from 2nd or 3rd
463		 *   descriptor are for GF-XOR operations;
464		 * - remaining <dst_cnt> descriptors are for checking the result
465		 */
466		if (i++ < src_cnt)
467			/* MV_SG1_SG2 if only Q is being verified
468			 * MULTICAST if both P and Q are being verified
469			 */
470			hw_desc->opc = dopc;
471		else
472			/* DMA_CDB_OPC_DCHECK128 operation */
473			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
474
475		if (likely(!list_is_last(&iter->chain_node,
476					 &desc->group_list))) {
477			/* set 'next' pointer */
478			iter->hw_next = list_entry(iter->chain_node.next,
479						struct ppc440spe_adma_desc_slot,
480						chain_node);
481		} else {
482			/* this is the last descriptor.
483			 * this slot will be pasted from ADMA level
484			 * each time it wants to configure parameters
485			 * of the transaction (src, dst, ...)
486			 */
487			iter->hw_next = NULL;
488			/* always enable interrupt generation since we get
489			 * the status of pqzero from the handler
490			 */
491			set_bit(PPC440SPE_DESC_INT, &iter->flags);
492		}
493	}
494	desc->src_cnt = src_cnt;
495	desc->dst_cnt = dst_cnt;
496}
497
498/**
499 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
500 */
501static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
502					unsigned long flags)
503{
504	struct dma_cdb *hw_desc = desc->hw_desc;
505
506	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
507	desc->hw_next = NULL;
508	desc->src_cnt = 1;
509	desc->dst_cnt = 1;
510
511	if (flags & DMA_PREP_INTERRUPT)
512		set_bit(PPC440SPE_DESC_INT, &desc->flags);
513	else
514		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
515
516	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
517}
518
519/**
520 * ppc440spe_desc_set_src_addr - set source address into the descriptor
521 */
522static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
523					struct ppc440spe_adma_chan *chan,
524					int src_idx, dma_addr_t addrh,
525					dma_addr_t addrl)
526{
527	struct dma_cdb *dma_hw_desc;
528	struct xor_cb *xor_hw_desc;
529	phys_addr_t addr64, tmplow, tmphi;
530
531	switch (chan->device->id) {
532	case PPC440SPE_DMA0_ID:
533	case PPC440SPE_DMA1_ID:
534		if (!addrh) {
535			addr64 = addrl;
536			tmphi = (addr64 >> 32);
537			tmplow = (addr64 & 0xFFFFFFFF);
538		} else {
539			tmphi = addrh;
540			tmplow = addrl;
541		}
542		dma_hw_desc = desc->hw_desc;
543		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
544		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
545		break;
546	case PPC440SPE_XOR_ID:
547		xor_hw_desc = desc->hw_desc;
548		xor_hw_desc->ops[src_idx].l = addrl;
549		xor_hw_desc->ops[src_idx].h |= addrh;
550		break;
551	}
552}
553
554/**
555 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
556 */
557static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
558			struct ppc440spe_adma_chan *chan, u32 mult_index,
559			int sg_index, unsigned char mult_value)
560{
561	struct dma_cdb *dma_hw_desc;
562	struct xor_cb *xor_hw_desc;
563	u32 *psgu;
564
565	switch (chan->device->id) {
566	case PPC440SPE_DMA0_ID:
567	case PPC440SPE_DMA1_ID:
568		dma_hw_desc = desc->hw_desc;
569
570		switch (sg_index) {
571		/* for RXOR operations set multiplier
572		 * into source cued address
573		 */
574		case DMA_CDB_SG_SRC:
575			psgu = &dma_hw_desc->sg1u;
576			break;
577		/* for WXOR operations set multiplier
578		 * into destination cued address(es)
579		 */
580		case DMA_CDB_SG_DST1:
581			psgu = &dma_hw_desc->sg2u;
582			break;
583		case DMA_CDB_SG_DST2:
584			psgu = &dma_hw_desc->sg3u;
585			break;
586		default:
587			BUG();
588		}
589
590		*psgu |= cpu_to_le32(mult_value << mult_index);
591		break;
592	case PPC440SPE_XOR_ID:
593		xor_hw_desc = desc->hw_desc;
594		break;
595	default:
596		BUG();
597	}
598}
599
600/**
601 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
602 */
603static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
604				struct ppc440spe_adma_chan *chan,
605				dma_addr_t addrh, dma_addr_t addrl,
606				u32 dst_idx)
607{
608	struct dma_cdb *dma_hw_desc;
609	struct xor_cb *xor_hw_desc;
610	phys_addr_t addr64, tmphi, tmplow;
611	u32 *psgu, *psgl;
612
613	switch (chan->device->id) {
614	case PPC440SPE_DMA0_ID:
615	case PPC440SPE_DMA1_ID:
616		if (!addrh) {
617			addr64 = addrl;
618			tmphi = (addr64 >> 32);
619			tmplow = (addr64 & 0xFFFFFFFF);
620		} else {
621			tmphi = addrh;
622			tmplow = addrl;
623		}
624		dma_hw_desc = desc->hw_desc;
625
626		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
627		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
628
629		*psgl = cpu_to_le32((u32)tmplow);
630		*psgu |= cpu_to_le32((u32)tmphi);
631		break;
632	case PPC440SPE_XOR_ID:
633		xor_hw_desc = desc->hw_desc;
634		xor_hw_desc->cbtal = addrl;
635		xor_hw_desc->cbtah |= addrh;
636		break;
637	}
638}
639
640/**
641 * ppc440spe_desc_set_byte_count - set number of data bytes involved
642 * into the operation
643 */
644static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
645				struct ppc440spe_adma_chan *chan,
646				u32 byte_count)
647{
648	struct dma_cdb *dma_hw_desc;
649	struct xor_cb *xor_hw_desc;
650
651	switch (chan->device->id) {
652	case PPC440SPE_DMA0_ID:
653	case PPC440SPE_DMA1_ID:
654		dma_hw_desc = desc->hw_desc;
655		dma_hw_desc->cnt = cpu_to_le32(byte_count);
656		break;
657	case PPC440SPE_XOR_ID:
658		xor_hw_desc = desc->hw_desc;
659		xor_hw_desc->cbbc = byte_count;
660		break;
661	}
662}
663
664/**
665 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
666 */
667static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
668{
669	/* assume that byte_count is aligned on the 512-boundary;
670	 * thus write it directly to the register (bits 23:31 are
671	 * reserved there).
672	 */
673	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
674}
675
676/**
677 * ppc440spe_desc_set_dcheck - set CHECK pattern
678 */
679static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
680				struct ppc440spe_adma_chan *chan, u8 *qword)
681{
682	struct dma_cdb *dma_hw_desc;
683
684	switch (chan->device->id) {
685	case PPC440SPE_DMA0_ID:
686	case PPC440SPE_DMA1_ID:
687		dma_hw_desc = desc->hw_desc;
688		iowrite32(qword[0], &dma_hw_desc->sg3l);
689		iowrite32(qword[4], &dma_hw_desc->sg3u);
690		iowrite32(qword[8], &dma_hw_desc->sg2l);
691		iowrite32(qword[12], &dma_hw_desc->sg2u);
692		break;
693	default:
694		BUG();
695	}
696}
697
698/**
699 * ppc440spe_xor_set_link - set link address in xor CB
700 */
701static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
702				struct ppc440spe_adma_desc_slot *next_desc)
703{
704	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
705
706	if (unlikely(!next_desc || !(next_desc->phys))) {
707		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
708			__func__, next_desc,
709			next_desc ? next_desc->phys : 0);
710		BUG();
711	}
712
713	xor_hw_desc->cbs = 0;
714	xor_hw_desc->cblal = next_desc->phys;
715	xor_hw_desc->cblah = 0;
716	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
717}
718
719/**
720 * ppc440spe_desc_set_link - set the address of descriptor following this
721 * descriptor in chain
722 */
723static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
724				struct ppc440spe_adma_desc_slot *prev_desc,
725				struct ppc440spe_adma_desc_slot *next_desc)
726{
727	unsigned long flags;
728	struct ppc440spe_adma_desc_slot *tail = next_desc;
729
730	if (unlikely(!prev_desc || !next_desc ||
731		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
732		/* If previous next is overwritten something is wrong.
733		 * though we may refetch from append to initiate list
734		 * processing; in this case - it's ok.
735		 */
736		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
737			"prev->hw_next=0x%p\n", __func__, prev_desc,
738			next_desc, prev_desc ? prev_desc->hw_next : 0);
739		BUG();
740	}
741
742	local_irq_save(flags);
743
744	/* do s/w chaining both for DMA and XOR descriptors */
745	prev_desc->hw_next = next_desc;
746
747	switch (chan->device->id) {
748	case PPC440SPE_DMA0_ID:
749	case PPC440SPE_DMA1_ID:
750		break;
751	case PPC440SPE_XOR_ID:
752		/* bind descriptor to the chain */
753		while (tail->hw_next)
754			tail = tail->hw_next;
755		xor_last_linked = tail;
756
757		if (prev_desc == xor_last_submit)
758			/* do not link to the last submitted CB */
759			break;
760		ppc440spe_xor_set_link(prev_desc, next_desc);
761		break;
762	}
763
764	local_irq_restore(flags);
765}
766
767/**
768 * ppc440spe_desc_get_link - get the address of the descriptor that
769 * follows this one
770 */
771static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
772					struct ppc440spe_adma_chan *chan)
773{
774	if (!desc->hw_next)
775		return 0;
776
777	return desc->hw_next->phys;
778}
779
780/**
781 * ppc440spe_desc_is_aligned - check alignment
782 */
783static inline int ppc440spe_desc_is_aligned(
784	struct ppc440spe_adma_desc_slot *desc, int num_slots)
785{
786	return (desc->idx & (num_slots - 1)) ? 0 : 1;
787}
788
789/**
790 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
791 * XOR operation
792 */
793static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
794			int *slots_per_op)
795{
796	int slot_cnt;
797
798	/* each XOR descriptor provides up to 16 source operands */
799	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
800
801	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
802		return slot_cnt;
803
804	printk(KERN_ERR "%s: len %d > max %d !!\n",
805		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
806	BUG();
807	return slot_cnt;
808}
809
810/**
811 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
812 * DMA2 PQ operation
813 */
814static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
815		int src_cnt, size_t len)
816{
817	signed long long order = 0;
818	int state = 0;
819	int addr_count = 0;
820	int i;
821	for (i = 1; i < src_cnt; i++) {
822		dma_addr_t cur_addr = srcs[i];
823		dma_addr_t old_addr = srcs[i-1];
824		switch (state) {
825		case 0:
826			if (cur_addr == old_addr + len) {
827				/* direct RXOR */
828				order = 1;
829				state = 1;
830				if (i == src_cnt-1)
831					addr_count++;
832			} else if (old_addr == cur_addr + len) {
833				/* reverse RXOR */
834				order = -1;
835				state = 1;
836				if (i == src_cnt-1)
837					addr_count++;
838			} else {
839				state = 3;
840			}
841			break;
842		case 1:
843			if (i == src_cnt-2 || (order == -1
844				&& cur_addr != old_addr - len)) {
845				order = 0;
846				state = 0;
847				addr_count++;
848			} else if (cur_addr == old_addr + len*order) {
849				state = 2;
850				if (i == src_cnt-1)
851					addr_count++;
852			} else if (cur_addr == old_addr + 2*len) {
853				state = 2;
854				if (i == src_cnt-1)
855					addr_count++;
856			} else if (cur_addr == old_addr + 3*len) {
857				state = 2;
858				if (i == src_cnt-1)
859					addr_count++;
860			} else {
861				order = 0;
862				state = 0;
863				addr_count++;
864			}
865			break;
866		case 2:
867			order = 0;
868			state = 0;
869			addr_count++;
870				break;
871		}
872		if (state == 3)
873			break;
874	}
875	if (src_cnt <= 1 || (state != 1 && state != 2)) {
876		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
877			__func__, src_cnt, state, addr_count, order);
878		for (i = 0; i < src_cnt; i++)
879			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
880		BUG();
881	}
882
883	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
884}
885
886
887/******************************************************************************
888 * ADMA channel low-level routines
889 ******************************************************************************/
890
891static u32
892ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
893static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
894
895/**
896 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
897 */
898static void ppc440spe_adma_device_clear_eot_status(
899					struct ppc440spe_adma_chan *chan)
900{
901	struct dma_regs *dma_reg;
902	struct xor_regs *xor_reg;
903	u8 *p = chan->device->dma_desc_pool_virt;
904	struct dma_cdb *cdb;
905	u32 rv, i;
906
907	switch (chan->device->id) {
908	case PPC440SPE_DMA0_ID:
909	case PPC440SPE_DMA1_ID:
910		/* read FIFO to ack */
911		dma_reg = chan->device->dma_reg;
912		while ((rv = ioread32(&dma_reg->csfpl))) {
913			i = rv & DMA_CDB_ADDR_MSK;
914			cdb = (struct dma_cdb *)&p[i -
915			    (u32)chan->device->dma_desc_pool];
916
917			/* Clear opcode to ack. This is necessary for
918			 * ZeroSum operations only
919			 */
920			cdb->opc = 0;
921
922			if (test_bit(PPC440SPE_RXOR_RUN,
923			    &ppc440spe_rxor_state)) {
924				/* probably this is a completed RXOR op,
925				 * get pointer to CDB using the fact that
926				 * physical and virtual addresses of CDB
927				 * in pools have the same offsets
928				 */
929				if (le32_to_cpu(cdb->sg1u) &
930				    DMA_CUED_XOR_BASE) {
931					/* this is a RXOR */
932					clear_bit(PPC440SPE_RXOR_RUN,
933						  &ppc440spe_rxor_state);
934				}
935			}
936
937			if (rv & DMA_CDB_STATUS_MSK) {
938				/* ZeroSum check failed
939				 */
940				struct ppc440spe_adma_desc_slot *iter;
941				dma_addr_t phys = rv & ~DMA_CDB_MSK;
942
943				/*
944				 * Update the status of corresponding
945				 * descriptor.
946				 */
947				list_for_each_entry(iter, &chan->chain,
948				    chain_node) {
949					if (iter->phys == phys)
950						break;
951				}
952				/*
953				 * if cannot find the corresponding
954				 * slot it's a bug
955				 */
956				BUG_ON(&iter->chain_node == &chan->chain);
957
958				if (iter->xor_check_result) {
959					if (test_bit(PPC440SPE_DESC_PCHECK,
960						     &iter->flags)) {
961						*iter->xor_check_result |=
962							SUM_CHECK_P_RESULT;
963					} else
964					if (test_bit(PPC440SPE_DESC_QCHECK,
965						     &iter->flags)) {
966						*iter->xor_check_result |=
967							SUM_CHECK_Q_RESULT;
968					} else
969						BUG();
970				}
971			}
972		}
973
974		rv = ioread32(&dma_reg->dsts);
975		if (rv) {
976			pr_err("DMA%d err status: 0x%x\n",
977			       chan->device->id, rv);
978			/* write back to clear */
979			iowrite32(rv, &dma_reg->dsts);
980		}
981		break;
982	case PPC440SPE_XOR_ID:
983		/* reset status bits to ack */
984		xor_reg = chan->device->xor_reg;
985		rv = ioread32be(&xor_reg->sr);
986		iowrite32be(rv, &xor_reg->sr);
987
988		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
989			if (rv & XOR_IE_RPTIE_BIT) {
990				/* Read PLB Timeout Error.
991				 * Try to resubmit the CB
992				 */
993				u32 val = ioread32be(&xor_reg->ccbalr);
994
995				iowrite32be(val, &xor_reg->cblalr);
996
997				val = ioread32be(&xor_reg->crsr);
998				iowrite32be(val | XOR_CRSR_XAE_BIT,
999					    &xor_reg->crsr);
1000			} else
1001				pr_err("XOR ERR 0x%x status\n", rv);
1002			break;
1003		}
1004
1005		/*  if the XORcore is idle, but there are unprocessed CBs
1006		 * then refetch the s/w chain here
1007		 */
1008		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1009		    do_xor_refetch)
1010			ppc440spe_chan_append(chan);
1011		break;
1012	}
1013}
1014
1015/**
1016 * ppc440spe_chan_is_busy - get the channel status
1017 */
1018static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1019{
1020	struct dma_regs *dma_reg;
1021	struct xor_regs *xor_reg;
1022	int busy = 0;
1023
1024	switch (chan->device->id) {
1025	case PPC440SPE_DMA0_ID:
1026	case PPC440SPE_DMA1_ID:
1027		dma_reg = chan->device->dma_reg;
1028		/*  if command FIFO's head and tail pointers are equal and
1029		 * status tail is the same as command, then channel is free
1030		 */
1031		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1032		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1033			busy = 1;
1034		break;
1035	case PPC440SPE_XOR_ID:
1036		/* use the special status bit for the XORcore
1037		 */
1038		xor_reg = chan->device->xor_reg;
1039		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1040		break;
1041	}
1042
1043	return busy;
1044}
1045
1046/**
1047 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1048 */
1049static void ppc440spe_chan_set_first_xor_descriptor(
1050				struct ppc440spe_adma_chan *chan,
1051				struct ppc440spe_adma_desc_slot *next_desc)
1052{
1053	struct xor_regs *xor_reg = chan->device->xor_reg;
1054
1055	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1056		printk(KERN_INFO "%s: Warn: XORcore is running "
1057			"when try to set the first CDB!\n",
1058			__func__);
1059
1060	xor_last_submit = xor_last_linked = next_desc;
1061
1062	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1063
1064	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1065	iowrite32be(0, &xor_reg->cblahr);
1066	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1067		    &xor_reg->cbcr);
1068
1069	chan->hw_chain_inited = 1;
1070}
1071
1072/**
1073 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1074 * called with irqs disabled
1075 */
1076static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1077		struct ppc440spe_adma_desc_slot *desc)
1078{
1079	u32 pcdb;
1080	struct dma_regs *dma_reg = chan->device->dma_reg;
1081
1082	pcdb = desc->phys;
1083	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1084		pcdb |= DMA_CDB_NO_INT;
1085
1086	chan_last_sub[chan->device->id] = desc;
1087
1088	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1089
1090	iowrite32(pcdb, &dma_reg->cpfpl);
1091}
1092
1093/**
1094 * ppc440spe_chan_append - update the h/w chain in the channel
1095 */
1096static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1097{
1098	struct xor_regs *xor_reg;
1099	struct ppc440spe_adma_desc_slot *iter;
1100	struct xor_cb *xcb;
1101	u32 cur_desc;
1102	unsigned long flags;
1103
1104	local_irq_save(flags);
1105
1106	switch (chan->device->id) {
1107	case PPC440SPE_DMA0_ID:
1108	case PPC440SPE_DMA1_ID:
1109		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1110
1111		if (likely(cur_desc)) {
1112			iter = chan_last_sub[chan->device->id];
1113			BUG_ON(!iter);
1114		} else {
1115			/* first peer */
1116			iter = chan_first_cdb[chan->device->id];
1117			BUG_ON(!iter);
1118			ppc440spe_dma_put_desc(chan, iter);
1119			chan->hw_chain_inited = 1;
1120		}
1121
1122		/* is there something new to append */
1123		if (!iter->hw_next)
1124			break;
1125
1126		/* flush descriptors from the s/w queue to fifo */
1127		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1128			ppc440spe_dma_put_desc(chan, iter);
1129			if (!iter->hw_next)
1130				break;
1131		}
1132		break;
1133	case PPC440SPE_XOR_ID:
1134		/* update h/w links and refetch */
1135		if (!xor_last_submit->hw_next)
1136			break;
1137
1138		xor_reg = chan->device->xor_reg;
1139		/* the last linked CDB has to generate an interrupt
1140		 * that we'd be able to append the next lists to h/w
1141		 * regardless of the XOR engine state at the moment of
1142		 * appending of these next lists
1143		 */
1144		xcb = xor_last_linked->hw_desc;
1145		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1146
1147		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1148			/* XORcore is idle. Refetch now */
1149			do_xor_refetch = 0;
1150			ppc440spe_xor_set_link(xor_last_submit,
1151				xor_last_submit->hw_next);
1152
1153			ADMA_LL_DBG(print_cb_list(chan,
1154				xor_last_submit->hw_next));
1155
1156			xor_last_submit = xor_last_linked;
1157			iowrite32be(ioread32be(&xor_reg->crsr) |
1158				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1159				    &xor_reg->crsr);
1160		} else {
1161			/* XORcore is running. Refetch later in the handler */
1162			do_xor_refetch = 1;
1163		}
1164
1165		break;
1166	}
1167
1168	local_irq_restore(flags);
1169}
1170
1171/**
1172 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1173 */
1174static u32
1175ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1176{
1177	struct dma_regs *dma_reg;
1178	struct xor_regs *xor_reg;
1179
1180	if (unlikely(!chan->hw_chain_inited))
1181		/* h/w descriptor chain is not initialized yet */
1182		return 0;
1183
1184	switch (chan->device->id) {
1185	case PPC440SPE_DMA0_ID:
1186	case PPC440SPE_DMA1_ID:
1187		dma_reg = chan->device->dma_reg;
1188		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1189	case PPC440SPE_XOR_ID:
1190		xor_reg = chan->device->xor_reg;
1191		return ioread32be(&xor_reg->ccbalr);
1192	}
1193	return 0;
1194}
1195
1196/**
1197 * ppc440spe_chan_run - enable the channel
1198 */
1199static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1200{
1201	struct xor_regs *xor_reg;
1202
1203	switch (chan->device->id) {
1204	case PPC440SPE_DMA0_ID:
1205	case PPC440SPE_DMA1_ID:
1206		/* DMAs are always enabled, do nothing */
1207		break;
1208	case PPC440SPE_XOR_ID:
1209		/* drain write buffer */
1210		xor_reg = chan->device->xor_reg;
1211
1212		/* fetch descriptor pointed to in <link> */
1213		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1214			    &xor_reg->crsr);
1215		break;
1216	}
1217}
1218
1219/******************************************************************************
1220 * ADMA device level
1221 ******************************************************************************/
1222
1223static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1224static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1225
1226static dma_cookie_t
1227ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1228
1229static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1230				    dma_addr_t addr, int index);
1231static void
1232ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1233				  dma_addr_t addr, int index);
1234
1235static void
1236ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1237			   dma_addr_t *paddr, unsigned long flags);
1238static void
1239ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1240			  dma_addr_t addr, int index);
1241static void
1242ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1243			       unsigned char mult, int index, int dst_pos);
1244static void
1245ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1246				   dma_addr_t paddr, dma_addr_t qaddr);
1247
1248static struct page *ppc440spe_rxor_srcs[32];
1249
1250/**
1251 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1252 */
1253static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1254{
1255	int i, order = 0, state = 0;
1256	int idx = 0;
1257
1258	if (unlikely(!(src_cnt > 1)))
1259		return 0;
1260
1261	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1262
1263	/* Skip holes in the source list before checking */
1264	for (i = 0; i < src_cnt; i++) {
1265		if (!srcs[i])
1266			continue;
1267		ppc440spe_rxor_srcs[idx++] = srcs[i];
1268	}
1269	src_cnt = idx;
1270
1271	for (i = 1; i < src_cnt; i++) {
1272		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1273		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1274
1275		switch (state) {
1276		case 0:
1277			if (cur_addr == old_addr + len) {
1278				/* direct RXOR */
1279				order = 1;
1280				state = 1;
1281			} else if (old_addr == cur_addr + len) {
1282				/* reverse RXOR */
1283				order = -1;
1284				state = 1;
1285			} else
1286				goto out;
1287			break;
1288		case 1:
1289			if ((i == src_cnt - 2) ||
1290			    (order == -1 && cur_addr != old_addr - len)) {
1291				order = 0;
1292				state = 0;
1293			} else if ((cur_addr == old_addr + len * order) ||
1294				   (cur_addr == old_addr + 2 * len) ||
1295				   (cur_addr == old_addr + 3 * len)) {
1296				state = 2;
1297			} else {
1298				order = 0;
1299				state = 0;
1300			}
1301			break;
1302		case 2:
1303			order = 0;
1304			state = 0;
1305			break;
1306		}
1307	}
1308
1309out:
1310	if (state == 1 || state == 2)
1311		return 1;
1312
1313	return 0;
1314}
1315
1316/**
1317 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1318 *	the operation given on this channel. It's assumed that 'chan' is
1319 *	capable to process 'cap' type of operation.
1320 * @chan: channel to use
1321 * @cap: type of transaction
1322 * @dst_lst: array of destination pointers
1323 * @dst_cnt: number of destination operands
1324 * @src_lst: array of source pointers
1325 * @src_cnt: number of source operands
1326 * @src_sz: size of each source operand
1327 */
1328static int ppc440spe_adma_estimate(struct dma_chan *chan,
1329	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1330	struct page **src_lst, int src_cnt, size_t src_sz)
1331{
1332	int ef = 1;
1333
1334	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1335		/* If RAID-6 capabilities were not activated don't try
1336		 * to use them
1337		 */
1338		if (unlikely(!ppc440spe_r6_enabled))
1339			return -1;
1340	}
1341	/*  In the current implementation of ppc440spe ADMA driver it
1342	 * makes sense to pick out only pq case, because it may be
1343	 * processed:
1344	 * (1) either using Biskup method on DMA2;
1345	 * (2) or on DMA0/1.
1346	 *  Thus we give a favour to (1) if the sources are suitable;
1347	 * else let it be processed on one of the DMA0/1 engines.
1348	 *  In the sum_product case where destination is also the
1349	 * source process it on DMA0/1 only.
1350	 */
1351	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1352
1353		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1354			ef = 0; /* sum_product case, process on DMA0/1 */
1355		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1356			ef = 3; /* override (DMA0/1 + idle) */
1357		else
1358			ef = 0; /* can't process on DMA2 if !rxor */
1359	}
1360
1361	/* channel idleness increases the priority */
1362	if (likely(ef) &&
1363	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1364		ef++;
1365
1366	return ef;
1367}
1368
1369struct dma_chan *
1370ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1371	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1372	int src_cnt, size_t src_sz)
1373{
1374	struct dma_chan *best_chan = NULL;
1375	struct ppc_dma_chan_ref *ref;
1376	int best_rank = -1;
1377
1378	if (unlikely(!src_sz))
1379		return NULL;
1380	if (src_sz > PAGE_SIZE) {
1381		/*
1382		 * should a user of the api ever pass > PAGE_SIZE requests
1383		 * we sort out cases where temporary page-sized buffers
1384		 * are used.
1385		 */
1386		switch (cap) {
1387		case DMA_PQ:
1388			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1389				return NULL;
1390			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1391				return NULL;
1392			break;
1393		case DMA_PQ_VAL:
1394		case DMA_XOR_VAL:
1395			return NULL;
1396		default:
1397			break;
1398		}
1399	}
1400
1401	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1402		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1403			int rank;
1404
1405			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1406					dst_cnt, src_lst, src_cnt, src_sz);
1407			if (rank > best_rank) {
1408				best_rank = rank;
1409				best_chan = ref->chan;
1410			}
1411		}
1412	}
1413
1414	return best_chan;
1415}
1416EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1417
1418/**
1419 * ppc440spe_get_group_entry - get group entry with index idx
1420 * @tdesc: is the last allocated slot in the group.
1421 */
1422static struct ppc440spe_adma_desc_slot *
1423ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1424{
1425	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1426	int i = 0;
1427
1428	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1429		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1430			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1431		BUG();
1432	}
1433
1434	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1435		if (i++ == entry_idx)
1436			break;
1437	}
1438	return iter;
1439}
1440
1441/**
1442 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1443 * @slot: Slot to free
1444 * Caller must hold &ppc440spe_chan->lock while calling this function
1445 */
1446static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1447				      struct ppc440spe_adma_chan *chan)
1448{
1449	int stride = slot->slots_per_op;
1450
1451	while (stride--) {
1452		slot->slots_per_op = 0;
1453		slot = list_entry(slot->slot_node.next,
1454				struct ppc440spe_adma_desc_slot,
1455				slot_node);
1456	}
1457}
1458
1459/**
1460 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1461 * upon completion
1462 */
1463static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1464		struct ppc440spe_adma_desc_slot *desc,
1465		struct ppc440spe_adma_chan *chan,
1466		dma_cookie_t cookie)
1467{
1468	BUG_ON(desc->async_tx.cookie < 0);
1469	if (desc->async_tx.cookie > 0) {
1470		cookie = desc->async_tx.cookie;
1471		desc->async_tx.cookie = 0;
1472
1473		dma_descriptor_unmap(&desc->async_tx);
1474		/* call the callback (must not sleep or submit new
1475		 * operations to this channel)
1476		 */
1477		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
1478	}
1479
1480	/* run dependent operations */
1481	dma_run_dependencies(&desc->async_tx);
1482
1483	return cookie;
1484}
1485
1486/**
1487 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1488 */
1489static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1490		struct ppc440spe_adma_chan *chan)
1491{
1492	/* the client is allowed to attach dependent operations
1493	 * until 'ack' is set
1494	 */
1495	if (!async_tx_test_ack(&desc->async_tx))
1496		return 0;
1497
1498	/* leave the last descriptor in the chain
1499	 * so we can append to it
1500	 */
1501	if (list_is_last(&desc->chain_node, &chan->chain) ||
1502	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1503		return 1;
1504
1505	if (chan->device->id != PPC440SPE_XOR_ID) {
1506		/* our DMA interrupt handler clears opc field of
1507		 * each processed descriptor. For all types of
1508		 * operations except for ZeroSum we do not actually
1509		 * need ack from the interrupt handler. ZeroSum is a
1510		 * special case since the result of this operation
1511		 * is available from the handler only, so if we see
1512		 * such type of descriptor (which is unprocessed yet)
1513		 * then leave it in chain.
1514		 */
1515		struct dma_cdb *cdb = desc->hw_desc;
1516		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1517			return 1;
1518	}
1519
1520	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1521		desc->phys, desc->idx, desc->slots_per_op);
1522
1523	list_del(&desc->chain_node);
1524	ppc440spe_adma_free_slots(desc, chan);
1525	return 0;
1526}
1527
1528/**
1529 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1530 *	which runs through the channel CDBs list until reach the descriptor
1531 *	currently processed. When routine determines that all CDBs of group
1532 *	are completed then corresponding callbacks (if any) are called and slots
1533 *	are freed.
1534 */
1535static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1536{
1537	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1538	dma_cookie_t cookie = 0;
1539	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1540	int busy = ppc440spe_chan_is_busy(chan);
1541	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1542
1543	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1544		chan->device->id, __func__);
1545
1546	if (!current_desc) {
1547		/*  There were no transactions yet, so
1548		 * nothing to clean
1549		 */
1550		return;
1551	}
1552
1553	/* free completed slots from the chain starting with
1554	 * the oldest descriptor
1555	 */
1556	list_for_each_entry_safe(iter, _iter, &chan->chain,
1557					chain_node) {
1558		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1559		    "busy: %d this_desc: %#llx next_desc: %#x "
1560		    "cur: %#x ack: %d\n",
1561		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1562		    ppc440spe_desc_get_link(iter, chan), current_desc,
1563		    async_tx_test_ack(&iter->async_tx));
1564		prefetch(_iter);
1565		prefetch(&_iter->async_tx);
1566
1567		/* do not advance past the current descriptor loaded into the
1568		 * hardware channel,subsequent descriptors are either in process
1569		 * or have not been submitted
1570		 */
1571		if (seen_current)
1572			break;
1573
1574		/* stop the search if we reach the current descriptor and the
1575		 * channel is busy, or if it appears that the current descriptor
1576		 * needs to be re-read (i.e. has been appended to)
1577		 */
1578		if (iter->phys == current_desc) {
1579			BUG_ON(seen_current++);
1580			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1581				/* not all descriptors of the group have
1582				 * been completed; exit.
1583				 */
1584				break;
1585			}
1586		}
1587
1588		/* detect the start of a group transaction */
1589		if (!slot_cnt && !slots_per_op) {
1590			slot_cnt = iter->slot_cnt;
1591			slots_per_op = iter->slots_per_op;
1592			if (slot_cnt <= slots_per_op) {
1593				slot_cnt = 0;
1594				slots_per_op = 0;
1595			}
1596		}
1597
1598		if (slot_cnt) {
1599			if (!group_start)
1600				group_start = iter;
1601			slot_cnt -= slots_per_op;
1602		}
1603
1604		/* all the members of a group are complete */
1605		if (slots_per_op != 0 && slot_cnt == 0) {
1606			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1607			int end_of_chain = 0;
1608
1609			/* clean up the group */
1610			slot_cnt = group_start->slot_cnt;
1611			grp_iter = group_start;
1612			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1613				&chan->chain, chain_node) {
1614
1615				cookie = ppc440spe_adma_run_tx_complete_actions(
1616					grp_iter, chan, cookie);
1617
1618				slot_cnt -= slots_per_op;
1619				end_of_chain = ppc440spe_adma_clean_slot(
1620				    grp_iter, chan);
1621				if (end_of_chain && slot_cnt) {
1622					/* Should wait for ZeroSum completion */
1623					if (cookie > 0)
1624						chan->common.completed_cookie = cookie;
1625					return;
1626				}
1627
1628				if (slot_cnt == 0 || end_of_chain)
1629					break;
1630			}
1631
1632			/* the group should be complete at this point */
1633			BUG_ON(slot_cnt);
1634
1635			slots_per_op = 0;
1636			group_start = NULL;
1637			if (end_of_chain)
1638				break;
1639			else
1640				continue;
1641		} else if (slots_per_op) /* wait for group completion */
1642			continue;
1643
1644		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1645		    cookie);
1646
1647		if (ppc440spe_adma_clean_slot(iter, chan))
1648			break;
1649	}
1650
1651	BUG_ON(!seen_current);
1652
1653	if (cookie > 0) {
1654		chan->common.completed_cookie = cookie;
1655		pr_debug("\tcompleted cookie %d\n", cookie);
1656	}
1657
1658}
1659
1660/**
1661 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1662 */
1663static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
1664{
1665	struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
1666
1667	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1668	__ppc440spe_adma_slot_cleanup(chan);
1669	spin_unlock(&chan->lock);
1670}
1671
1672/**
1673 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1674 */
1675static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1676{
1677	spin_lock_bh(&chan->lock);
1678	__ppc440spe_adma_slot_cleanup(chan);
1679	spin_unlock_bh(&chan->lock);
1680}
1681
1682/**
1683 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1684 */
1685static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1686		struct ppc440spe_adma_chan *chan, int num_slots,
1687		int slots_per_op)
1688{
1689	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1690	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1691	struct list_head chain = LIST_HEAD_INIT(chain);
1692	int slots_found, retry = 0;
1693
1694
1695	BUG_ON(!num_slots || !slots_per_op);
1696	/* start search from the last allocated descrtiptor
1697	 * if a contiguous allocation can not be found start searching
1698	 * from the beginning of the list
1699	 */
1700retry:
1701	slots_found = 0;
1702	if (retry == 0)
1703		iter = chan->last_used;
1704	else
1705		iter = list_entry(&chan->all_slots,
1706				  struct ppc440spe_adma_desc_slot,
1707				  slot_node);
1708	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1709	    slot_node) {
1710		prefetch(_iter);
1711		prefetch(&_iter->async_tx);
1712		if (iter->slots_per_op) {
1713			slots_found = 0;
1714			continue;
1715		}
1716
1717		/* start the allocation if the slot is correctly aligned */
1718		if (!slots_found++)
1719			alloc_start = iter;
1720
1721		if (slots_found == num_slots) {
1722			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1723			struct ppc440spe_adma_desc_slot *last_used = NULL;
1724
1725			iter = alloc_start;
1726			while (num_slots) {
1727				int i;
1728				/* pre-ack all but the last descriptor */
1729				if (num_slots != slots_per_op)
1730					async_tx_ack(&iter->async_tx);
1731
1732				list_add_tail(&iter->chain_node, &chain);
1733				alloc_tail = iter;
1734				iter->async_tx.cookie = 0;
1735				iter->hw_next = NULL;
1736				iter->flags = 0;
1737				iter->slot_cnt = num_slots;
1738				iter->xor_check_result = NULL;
1739				for (i = 0; i < slots_per_op; i++) {
1740					iter->slots_per_op = slots_per_op - i;
1741					last_used = iter;
1742					iter = list_entry(iter->slot_node.next,
1743						struct ppc440spe_adma_desc_slot,
1744						slot_node);
1745				}
1746				num_slots -= slots_per_op;
1747			}
1748			alloc_tail->group_head = alloc_start;
1749			alloc_tail->async_tx.cookie = -EBUSY;
1750			list_splice(&chain, &alloc_tail->group_list);
1751			chan->last_used = last_used;
1752			return alloc_tail;
1753		}
1754	}
1755	if (!retry++)
1756		goto retry;
1757
1758	/* try to free some slots if the allocation fails */
1759	tasklet_schedule(&chan->irq_tasklet);
1760	return NULL;
1761}
1762
1763/**
1764 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1765 */
1766static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1767{
1768	struct ppc440spe_adma_chan *ppc440spe_chan;
1769	struct ppc440spe_adma_desc_slot *slot = NULL;
1770	char *hw_desc;
1771	int i, db_sz;
1772	int init;
1773
1774	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1775	init = ppc440spe_chan->slots_allocated ? 0 : 1;
1776	chan->chan_id = ppc440spe_chan->device->id;
1777
1778	/* Allocate descriptor slots */
1779	i = ppc440spe_chan->slots_allocated;
1780	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1781		db_sz = sizeof(struct dma_cdb);
1782	else
1783		db_sz = sizeof(struct xor_cb);
1784
1785	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1786		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1787			       GFP_KERNEL);
1788		if (!slot) {
1789			printk(KERN_INFO "SPE ADMA Channel only initialized"
1790				" %d descriptor slots", i--);
1791			break;
1792		}
1793
1794		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1795		slot->hw_desc = (void *) &hw_desc[i * db_sz];
1796		dma_async_tx_descriptor_init(&slot->async_tx, chan);
1797		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1798		INIT_LIST_HEAD(&slot->chain_node);
1799		INIT_LIST_HEAD(&slot->slot_node);
1800		INIT_LIST_HEAD(&slot->group_list);
1801		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1802		slot->idx = i;
1803
1804		spin_lock_bh(&ppc440spe_chan->lock);
1805		ppc440spe_chan->slots_allocated++;
1806		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1807		spin_unlock_bh(&ppc440spe_chan->lock);
1808	}
1809
1810	if (i && !ppc440spe_chan->last_used) {
1811		ppc440spe_chan->last_used =
1812			list_entry(ppc440spe_chan->all_slots.next,
1813				struct ppc440spe_adma_desc_slot,
1814				slot_node);
1815	}
1816
1817	dev_dbg(ppc440spe_chan->device->common.dev,
1818		"ppc440spe adma%d: allocated %d descriptor slots\n",
1819		ppc440spe_chan->device->id, i);
1820
1821	/* initialize the channel and the chain with a null operation */
1822	if (init) {
1823		switch (ppc440spe_chan->device->id) {
1824		case PPC440SPE_DMA0_ID:
1825		case PPC440SPE_DMA1_ID:
1826			ppc440spe_chan->hw_chain_inited = 0;
1827			/* Use WXOR for self-testing */
1828			if (!ppc440spe_r6_tchan)
1829				ppc440spe_r6_tchan = ppc440spe_chan;
1830			break;
1831		case PPC440SPE_XOR_ID:
1832			ppc440spe_chan_start_null_xor(ppc440spe_chan);
1833			break;
1834		default:
1835			BUG();
1836		}
1837		ppc440spe_chan->needs_unmap = 1;
1838	}
1839
1840	return (i > 0) ? i : -ENOMEM;
1841}
1842
1843/**
1844 * ppc440spe_rxor_set_region_data -
1845 */
1846static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1847	u8 xor_arg_no, u32 mask)
1848{
1849	struct xor_cb *xcb = desc->hw_desc;
1850
1851	xcb->ops[xor_arg_no].h |= mask;
1852}
1853
1854/**
1855 * ppc440spe_rxor_set_src -
1856 */
1857static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1858	u8 xor_arg_no, dma_addr_t addr)
1859{
1860	struct xor_cb *xcb = desc->hw_desc;
1861
1862	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1863	xcb->ops[xor_arg_no].l = addr;
1864}
1865
1866/**
1867 * ppc440spe_rxor_set_mult -
1868 */
1869static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1870	u8 xor_arg_no, u8 idx, u8 mult)
1871{
1872	struct xor_cb *xcb = desc->hw_desc;
1873
1874	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1875}
1876
1877/**
1878 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1879 *	has been achieved
1880 */
1881static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1882{
1883	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1884		chan->device->id, chan->pending);
1885
1886	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1887		chan->pending = 0;
1888		ppc440spe_chan_append(chan);
1889	}
1890}
1891
1892/**
1893 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1894 *	(it's not necessary that descriptors will be submitted to the h/w
1895 *	chains too right now)
1896 */
1897static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1898{
1899	struct ppc440spe_adma_desc_slot *sw_desc;
1900	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1901	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1902	int slot_cnt;
1903	int slots_per_op;
1904	dma_cookie_t cookie;
1905
1906	sw_desc = tx_to_ppc440spe_adma_slot(tx);
1907
1908	group_start = sw_desc->group_head;
1909	slot_cnt = group_start->slot_cnt;
1910	slots_per_op = group_start->slots_per_op;
1911
1912	spin_lock_bh(&chan->lock);
1913	cookie = dma_cookie_assign(tx);
1914
1915	if (unlikely(list_empty(&chan->chain))) {
1916		/* first peer */
1917		list_splice_init(&sw_desc->group_list, &chan->chain);
1918		chan_first_cdb[chan->device->id] = group_start;
1919	} else {
1920		/* isn't first peer, bind CDBs to chain */
1921		old_chain_tail = list_entry(chan->chain.prev,
1922					struct ppc440spe_adma_desc_slot,
1923					chain_node);
1924		list_splice_init(&sw_desc->group_list,
1925		    &old_chain_tail->chain_node);
1926		/* fix up the hardware chain */
1927		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1928	}
1929
1930	/* increment the pending count by the number of operations */
1931	chan->pending += slot_cnt / slots_per_op;
1932	ppc440spe_adma_check_threshold(chan);
1933	spin_unlock_bh(&chan->lock);
1934
1935	dev_dbg(chan->device->common.dev,
1936		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1937		chan->device->id, __func__,
1938		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1939
1940	return cookie;
1941}
1942
1943/**
1944 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1945 */
1946static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1947		struct dma_chan *chan, unsigned long flags)
1948{
1949	struct ppc440spe_adma_chan *ppc440spe_chan;
1950	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1951	int slot_cnt, slots_per_op;
1952
1953	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1954
1955	dev_dbg(ppc440spe_chan->device->common.dev,
1956		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1957		__func__);
1958
1959	spin_lock_bh(&ppc440spe_chan->lock);
1960	slot_cnt = slots_per_op = 1;
1961	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1962			slots_per_op);
1963	if (sw_desc) {
1964		group_start = sw_desc->group_head;
1965		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1966		group_start->unmap_len = 0;
1967		sw_desc->async_tx.flags = flags;
1968	}
1969	spin_unlock_bh(&ppc440spe_chan->lock);
1970
1971	return sw_desc ? &sw_desc->async_tx : NULL;
1972}
1973
1974/**
1975 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1976 */
1977static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1978		struct dma_chan *chan, dma_addr_t dma_dest,
1979		dma_addr_t dma_src, size_t len, unsigned long flags)
1980{
1981	struct ppc440spe_adma_chan *ppc440spe_chan;
1982	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1983	int slot_cnt, slots_per_op;
1984
1985	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1986
1987	if (unlikely(!len))
1988		return NULL;
1989
1990	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
1991
1992	spin_lock_bh(&ppc440spe_chan->lock);
1993
1994	dev_dbg(ppc440spe_chan->device->common.dev,
1995		"ppc440spe adma%d: %s len: %u int_en %d\n",
1996		ppc440spe_chan->device->id, __func__, len,
1997		flags & DMA_PREP_INTERRUPT ? 1 : 0);
1998	slot_cnt = slots_per_op = 1;
1999	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2000		slots_per_op);
2001	if (sw_desc) {
2002		group_start = sw_desc->group_head;
2003		ppc440spe_desc_init_memcpy(group_start, flags);
2004		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2005		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2006		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2007		sw_desc->unmap_len = len;
2008		sw_desc->async_tx.flags = flags;
2009	}
2010	spin_unlock_bh(&ppc440spe_chan->lock);
2011
2012	return sw_desc ? &sw_desc->async_tx : NULL;
2013}
2014
2015/**
2016 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2017 */
2018static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2019		struct dma_chan *chan, dma_addr_t dma_dest,
2020		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2021		unsigned long flags)
2022{
2023	struct ppc440spe_adma_chan *ppc440spe_chan;
2024	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2025	int slot_cnt, slots_per_op;
2026
2027	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2028
2029	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2030				     dma_dest, dma_src, src_cnt));
2031	if (unlikely(!len))
2032		return NULL;
2033	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2034
2035	dev_dbg(ppc440spe_chan->device->common.dev,
2036		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2037		ppc440spe_chan->device->id, __func__, src_cnt, len,
2038		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2039
2040	spin_lock_bh(&ppc440spe_chan->lock);
2041	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2042	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2043			slots_per_op);
2044	if (sw_desc) {
2045		group_start = sw_desc->group_head;
2046		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2047		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2048		while (src_cnt--)
2049			ppc440spe_adma_memcpy_xor_set_src(group_start,
2050				dma_src[src_cnt], src_cnt);
2051		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2052		sw_desc->unmap_len = len;
2053		sw_desc->async_tx.flags = flags;
2054	}
2055	spin_unlock_bh(&ppc440spe_chan->lock);
2056
2057	return sw_desc ? &sw_desc->async_tx : NULL;
2058}
2059
2060static inline void
2061ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2062				int src_cnt);
2063static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2064
2065/**
2066 * ppc440spe_adma_init_dma2rxor_slot -
2067 */
2068static void ppc440spe_adma_init_dma2rxor_slot(
2069		struct ppc440spe_adma_desc_slot *desc,
2070		dma_addr_t *src, int src_cnt)
2071{
2072	int i;
2073
2074	/* initialize CDB */
2075	for (i = 0; i < src_cnt; i++) {
2076		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2077						 desc->src_cnt, (u32)src[i]);
2078	}
2079}
2080
2081/**
2082 * ppc440spe_dma01_prep_mult -
2083 * for Q operation where destination is also the source
2084 */
2085static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2086		struct ppc440spe_adma_chan *ppc440spe_chan,
2087		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2088		const unsigned char *scf, size_t len, unsigned long flags)
2089{
2090	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2091	unsigned long op = 0;
2092	int slot_cnt;
2093
2094	set_bit(PPC440SPE_DESC_WXOR, &op);
2095	slot_cnt = 2;
2096
2097	spin_lock_bh(&ppc440spe_chan->lock);
2098
2099	/* use WXOR, each descriptor occupies one slot */
2100	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2101	if (sw_desc) {
2102		struct ppc440spe_adma_chan *chan;
2103		struct ppc440spe_adma_desc_slot *iter;
2104		struct dma_cdb *hw_desc;
2105
2106		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2107		set_bits(op, &sw_desc->flags);
2108		sw_desc->src_cnt = src_cnt;
2109		sw_desc->dst_cnt = dst_cnt;
2110		/* First descriptor, zero data in the destination and copy it
2111		 * to q page using MULTICAST transfer.
2112		 */
2113		iter = list_first_entry(&sw_desc->group_list,
2114					struct ppc440spe_adma_desc_slot,
2115					chain_node);
2116		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2117		/* set 'next' pointer */
2118		iter->hw_next = list_entry(iter->chain_node.next,
2119					   struct ppc440spe_adma_desc_slot,
2120					   chain_node);
2121		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2122		hw_desc = iter->hw_desc;
2123		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2124
2125		ppc440spe_desc_set_dest_addr(iter, chan,
2126					     DMA_CUED_XOR_BASE, dst[0], 0);
2127		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2128		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2129					    src[0]);
2130		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2131		iter->unmap_len = len;
2132
2133		/*
2134		 * Second descriptor, multiply data from the q page
2135		 * and store the result in real destination.
2136		 */
2137		iter = list_first_entry(&iter->chain_node,
2138					struct ppc440spe_adma_desc_slot,
2139					chain_node);
2140		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2141		iter->hw_next = NULL;
2142		if (flags & DMA_PREP_INTERRUPT)
2143			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2144		else
2145			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2146
2147		hw_desc = iter->hw_desc;
2148		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2149		ppc440spe_desc_set_src_addr(iter, chan, 0,
2150					    DMA_CUED_XOR_HB, dst[1]);
2151		ppc440spe_desc_set_dest_addr(iter, chan,
2152					     DMA_CUED_XOR_BASE, dst[0], 0);
2153
2154		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2155					    DMA_CDB_SG_DST1, scf[0]);
2156		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2157		iter->unmap_len = len;
2158		sw_desc->async_tx.flags = flags;
2159	}
2160
2161	spin_unlock_bh(&ppc440spe_chan->lock);
2162
2163	return sw_desc;
2164}
2165
2166/**
2167 * ppc440spe_dma01_prep_sum_product -
2168 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2169 * the source.
2170 */
2171static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2172		struct ppc440spe_adma_chan *ppc440spe_chan,
2173		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2174		const unsigned char *scf, size_t len, unsigned long flags)
2175{
2176	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2177	unsigned long op = 0;
2178	int slot_cnt;
2179
2180	set_bit(PPC440SPE_DESC_WXOR, &op);
2181	slot_cnt = 3;
2182
2183	spin_lock_bh(&ppc440spe_chan->lock);
2184
2185	/* WXOR, each descriptor occupies one slot */
2186	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2187	if (sw_desc) {
2188		struct ppc440spe_adma_chan *chan;
2189		struct ppc440spe_adma_desc_slot *iter;
2190		struct dma_cdb *hw_desc;
2191
2192		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2193		set_bits(op, &sw_desc->flags);
2194		sw_desc->src_cnt = src_cnt;
2195		sw_desc->dst_cnt = 1;
2196		/* 1st descriptor, src[1] data to q page and zero destination */
2197		iter = list_first_entry(&sw_desc->group_list,
2198					struct ppc440spe_adma_desc_slot,
2199					chain_node);
2200		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2201		iter->hw_next = list_entry(iter->chain_node.next,
2202					   struct ppc440spe_adma_desc_slot,
2203					   chain_node);
2204		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2205		hw_desc = iter->hw_desc;
2206		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2207
2208		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2209					     *dst, 0);
2210		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2211					     ppc440spe_chan->qdest, 1);
2212		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2213					    src[1]);
2214		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2215		iter->unmap_len = len;
2216
2217		/* 2nd descriptor, multiply src[1] data and store the
2218		 * result in destination */
2219		iter = list_first_entry(&iter->chain_node,
2220					struct ppc440spe_adma_desc_slot,
2221					chain_node);
2222		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2223		/* set 'next' pointer */
2224		iter->hw_next = list_entry(iter->chain_node.next,
2225					   struct ppc440spe_adma_desc_slot,
2226					   chain_node);
2227		if (flags & DMA_PREP_INTERRUPT)
2228			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2229		else
2230			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2231
2232		hw_desc = iter->hw_desc;
2233		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2234		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2235					    ppc440spe_chan->qdest);
2236		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2237					     *dst, 0);
2238		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2239					    DMA_CDB_SG_DST1, scf[1]);
2240		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2241		iter->unmap_len = len;
2242
2243		/*
2244		 * 3rd descriptor, multiply src[0] data and xor it
2245		 * with destination
2246		 */
2247		iter = list_first_entry(&iter->chain_node,
2248					struct ppc440spe_adma_desc_slot,
2249					chain_node);
2250		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2251		iter->hw_next = NULL;
2252		if (flags & DMA_PREP_INTERRUPT)
2253			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2254		else
2255			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2256
2257		hw_desc = iter->hw_desc;
2258		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2259		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2260					    src[0]);
2261		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2262					     *dst, 0);
2263		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2264					    DMA_CDB_SG_DST1, scf[0]);
2265		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2266		iter->unmap_len = len;
2267		sw_desc->async_tx.flags = flags;
2268	}
2269
2270	spin_unlock_bh(&ppc440spe_chan->lock);
2271
2272	return sw_desc;
2273}
2274
2275static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2276		struct ppc440spe_adma_chan *ppc440spe_chan,
2277		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2278		const unsigned char *scf, size_t len, unsigned long flags)
2279{
2280	int slot_cnt;
2281	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2282	unsigned long op = 0;
2283	unsigned char mult = 1;
2284
2285	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2286		 __func__, dst_cnt, src_cnt, len);
2287	/*  select operations WXOR/RXOR depending on the
2288	 * source addresses of operators and the number
2289	 * of destinations (RXOR support only Q-parity calculations)
2290	 */
2291	set_bit(PPC440SPE_DESC_WXOR, &op);
2292	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2293		/* no active RXOR;
2294		 * do RXOR if:
2295		 * - there are more than 1 source,
2296		 * - len is aligned on 512-byte boundary,
2297		 * - source addresses fit to one of 4 possible regions.
2298		 */
2299		if (src_cnt > 1 &&
2300		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2301		    (src[0] + len) == src[1]) {
2302			/* may do RXOR R1 R2 */
2303			set_bit(PPC440SPE_DESC_RXOR, &op);
2304			if (src_cnt != 2) {
2305				/* may try to enhance region of RXOR */
2306				if ((src[1] + len) == src[2]) {
2307					/* do RXOR R1 R2 R3 */
2308					set_bit(PPC440SPE_DESC_RXOR123,
2309						&op);
2310				} else if ((src[1] + len * 2) == src[2]) {
2311					/* do RXOR R1 R2 R4 */
2312					set_bit(PPC440SPE_DESC_RXOR124, &op);
2313				} else if ((src[1] + len * 3) == src[2]) {
2314					/* do RXOR R1 R2 R5 */
2315					set_bit(PPC440SPE_DESC_RXOR125,
2316						&op);
2317				} else {
2318					/* do RXOR R1 R2 */
2319					set_bit(PPC440SPE_DESC_RXOR12,
2320						&op);
2321				}
2322			} else {
2323				/* do RXOR R1 R2 */
2324				set_bit(PPC440SPE_DESC_RXOR12, &op);
2325			}
2326		}
2327
2328		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2329			/* can not do this operation with RXOR */
2330			clear_bit(PPC440SPE_RXOR_RUN,
2331				&ppc440spe_rxor_state);
2332		} else {
2333			/* can do; set block size right now */
2334			ppc440spe_desc_set_rxor_block_size(len);
2335		}
2336	}
2337
2338	/* Number of necessary slots depends on operation type selected */
2339	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2340		/*  This is a WXOR only chain. Need descriptors for each
2341		 * source to GF-XOR them with WXOR, and need descriptors
2342		 * for each destination to zero them with WXOR
2343		 */
2344		slot_cnt = src_cnt;
2345
2346		if (flags & DMA_PREP_ZERO_P) {
2347			slot_cnt++;
2348			set_bit(PPC440SPE_ZERO_P, &op);
2349		}
2350		if (flags & DMA_PREP_ZERO_Q) {
2351			slot_cnt++;
2352			set_bit(PPC440SPE_ZERO_Q, &op);
2353		}
2354	} else {
2355		/*  Need 1/2 descriptor for RXOR operation, and
2356		 * need (src_cnt - (2 or 3)) for WXOR of sources
2357		 * remained (if any)
2358		 */
2359		slot_cnt = dst_cnt;
2360
2361		if (flags & DMA_PREP_ZERO_P)
2362			set_bit(PPC440SPE_ZERO_P, &op);
2363		if (flags & DMA_PREP_ZERO_Q)
2364			set_bit(PPC440SPE_ZERO_Q, &op);
2365
2366		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2367			slot_cnt += src_cnt - 2;
2368		else
2369			slot_cnt += src_cnt - 3;
2370
2371		/*  Thus we have either RXOR only chain or
2372		 * mixed RXOR/WXOR
2373		 */
2374		if (slot_cnt == dst_cnt)
2375			/* RXOR only chain */
2376			clear_bit(PPC440SPE_DESC_WXOR, &op);
2377	}
2378
2379	spin_lock_bh(&ppc440spe_chan->lock);
2380	/* for both RXOR/WXOR each descriptor occupies one slot */
2381	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2382	if (sw_desc) {
2383		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2384				flags, op);
2385
2386		/* setup dst/src/mult */
2387		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2388			 __func__, dst[0], dst[1]);
2389		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2390		while (src_cnt--) {
2391			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2392						  src_cnt);
2393
2394			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2395			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2396			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2397			 * leads to zeroing source data after RXOR.
2398			 * So, for P case set-up mult=1 explicitly.
2399			 */
2400			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2401				mult = scf[src_cnt];
2402			ppc440spe_adma_pq_set_src_mult(sw_desc,
2403				mult, src_cnt,  dst_cnt - 1);
2404		}
2405
2406		/* Setup byte count foreach slot just allocated */
2407		sw_desc->async_tx.flags = flags;
2408		list_for_each_entry(iter, &sw_desc->group_list,
2409				chain_node) {
2410			ppc440spe_desc_set_byte_count(iter,
2411				ppc440spe_chan, len);
2412			iter->unmap_len = len;
2413		}
2414	}
2415	spin_unlock_bh(&ppc440spe_chan->lock);
2416
2417	return sw_desc;
2418}
2419
2420static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2421		struct ppc440spe_adma_chan *ppc440spe_chan,
2422		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2423		const unsigned char *scf, size_t len, unsigned long flags)
2424{
2425	int slot_cnt, descs_per_op;
2426	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2427	unsigned long op = 0;
2428	unsigned char mult = 1;
2429
2430	BUG_ON(!dst_cnt);
2431	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2432		 __func__, dst_cnt, src_cnt, len);*/
2433
2434	spin_lock_bh(&ppc440spe_chan->lock);
2435	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2436	if (descs_per_op < 0) {
2437		spin_unlock_bh(&ppc440spe_chan->lock);
2438		return NULL;
2439	}
2440
2441	/* depending on number of sources we have 1 or 2 RXOR chains */
2442	slot_cnt = descs_per_op * dst_cnt;
2443
2444	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2445	if (sw_desc) {
2446		op = slot_cnt;
2447		sw_desc->async_tx.flags = flags;
2448		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2449			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2450				--op ? 0 : flags);
2451			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2452				len);
2453			iter->unmap_len = len;
2454
2455			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2456			iter->rxor_cursor.len = len;
2457			iter->descs_per_op = descs_per_op;
2458		}
2459		op = 0;
2460		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2461			op++;
2462			if (op % descs_per_op == 0)
2463				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2464								  src_cnt);
2465			if (likely(!list_is_last(&iter->chain_node,
2466						 &sw_desc->group_list))) {
2467				/* set 'next' pointer */
2468				iter->hw_next =
2469					list_entry(iter->chain_node.next,
2470						struct ppc440spe_adma_desc_slot,
2471						chain_node);
2472				ppc440spe_xor_set_link(iter, iter->hw_next);
2473			} else {
2474				/* this is the last descriptor. */
2475				iter->hw_next = NULL;
2476			}
2477		}
2478
2479		/* fixup head descriptor */
2480		sw_desc->dst_cnt = dst_cnt;
2481		if (flags & DMA_PREP_ZERO_P)
2482			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2483		if (flags & DMA_PREP_ZERO_Q)
2484			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2485
2486		/* setup dst/src/mult */
2487		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2488
2489		while (src_cnt--) {
2490			/* handle descriptors (if dst_cnt == 2) inside
2491			 * the ppc440spe_adma_pq_set_srcxxx() functions
2492			 */
2493			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2494						  src_cnt);
2495			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2496				mult = scf[src_cnt];
2497			ppc440spe_adma_pq_set_src_mult(sw_desc,
2498					mult, src_cnt, dst_cnt - 1);
2499		}
2500	}
2501	spin_unlock_bh(&ppc440spe_chan->lock);
2502	ppc440spe_desc_set_rxor_block_size(len);
2503	return sw_desc;
2504}
2505
2506/**
2507 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2508 */
2509static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2510		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2511		unsigned int src_cnt, const unsigned char *scf,
2512		size_t len, unsigned long flags)
2513{
2514	struct ppc440spe_adma_chan *ppc440spe_chan;
2515	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2516	int dst_cnt = 0;
2517
2518	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2519
2520	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2521				    dst, src, src_cnt));
2522	BUG_ON(!len);
2523	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2524	BUG_ON(!src_cnt);
2525
2526	if (src_cnt == 1 && dst[1] == src[0]) {
2527		dma_addr_t dest[2];
2528
2529		/* dst[1] is real destination (Q) */
2530		dest[0] = dst[1];
2531		/* this is the page to multicast source data to */
2532		dest[1] = ppc440spe_chan->qdest;
2533		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2534				dest, 2, src, src_cnt, scf, len, flags);
2535		return sw_desc ? &sw_desc->async_tx : NULL;
2536	}
2537
2538	if (src_cnt == 2 && dst[1] == src[1]) {
2539		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2540					&dst[1], src, 2, scf, len, flags);
2541		return sw_desc ? &sw_desc->async_tx : NULL;
2542	}
2543
2544	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2545		BUG_ON(!dst[0]);
2546		dst_cnt++;
2547		flags |= DMA_PREP_ZERO_P;
2548	}
2549
2550	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2551		BUG_ON(!dst[1]);
2552		dst_cnt++;
2553		flags |= DMA_PREP_ZERO_Q;
2554	}
2555
2556	BUG_ON(!dst_cnt);
2557
2558	dev_dbg(ppc440spe_chan->device->common.dev,
2559		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2560		ppc440spe_chan->device->id, __func__, src_cnt, len,
2561		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2562
2563	switch (ppc440spe_chan->device->id) {
2564	case PPC440SPE_DMA0_ID:
2565	case PPC440SPE_DMA1_ID:
2566		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2567				dst, dst_cnt, src, src_cnt, scf,
2568				len, flags);
2569		break;
2570
2571	case PPC440SPE_XOR_ID:
2572		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2573				dst, dst_cnt, src, src_cnt, scf,
2574				len, flags);
2575		break;
2576	}
2577
2578	return sw_desc ? &sw_desc->async_tx : NULL;
2579}
2580
2581/**
2582 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2583 * a PQ_ZERO_SUM operation
2584 */
2585static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2586		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2587		unsigned int src_cnt, const unsigned char *scf, size_t len,
2588		enum sum_check_flags *pqres, unsigned long flags)
2589{
2590	struct ppc440spe_adma_chan *ppc440spe_chan;
2591	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2592	dma_addr_t pdest, qdest;
2593	int slot_cnt, slots_per_op, idst, dst_cnt;
2594
2595	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2596
2597	if (flags & DMA_PREP_PQ_DISABLE_P)
2598		pdest = 0;
2599	else
2600		pdest = pq[0];
2601
2602	if (flags & DMA_PREP_PQ_DISABLE_Q)
2603		qdest = 0;
2604	else
2605		qdest = pq[1];
2606
2607	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2608					    src, src_cnt, scf));
2609
2610	/* Always use WXOR for P/Q calculations (two destinations).
2611	 * Need 1 or 2 extra slots to verify results are zero.
2612	 */
2613	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2614
2615	/* One additional slot per destination to clone P/Q
2616	 * before calculation (we have to preserve destinations).
2617	 */
2618	slot_cnt = src_cnt + dst_cnt * 2;
2619	slots_per_op = 1;
2620
2621	spin_lock_bh(&ppc440spe_chan->lock);
2622	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2623					     slots_per_op);
2624	if (sw_desc) {
2625		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2626
2627		/* Setup byte count for each slot just allocated */
2628		sw_desc->async_tx.flags = flags;
2629		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2630			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2631						      len);
2632			iter->unmap_len = len;
2633		}
2634
2635		if (pdest) {
2636			struct dma_cdb *hw_desc;
2637			struct ppc440spe_adma_chan *chan;
2638
2639			iter = sw_desc->group_head;
2640			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2641			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2642			iter->hw_next = list_entry(iter->chain_node.next,
2643						struct ppc440spe_adma_desc_slot,
2644						chain_node);
2645			hw_desc = iter->hw_desc;
2646			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2647			iter->src_cnt = 0;
2648			iter->dst_cnt = 0;
2649			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2650						     ppc440spe_chan->pdest, 0);
2651			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2652			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2653						      len);
2654			iter->unmap_len = 0;
2655			/* override pdest to preserve original P */
2656			pdest = ppc440spe_chan->pdest;
2657		}
2658		if (qdest) {
2659			struct dma_cdb *hw_desc;
2660			struct ppc440spe_adma_chan *chan;
2661
2662			iter = list_first_entry(&sw_desc->group_list,
2663						struct ppc440spe_adma_desc_slot,
2664						chain_node);
2665			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2666
2667			if (pdest) {
2668				iter = list_entry(iter->chain_node.next,
2669						struct ppc440spe_adma_desc_slot,
2670						chain_node);
2671			}
2672
2673			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2674			iter->hw_next = list_entry(iter->chain_node.next,
2675						struct ppc440spe_adma_desc_slot,
2676						chain_node);
2677			hw_desc = iter->hw_desc;
2678			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2679			iter->src_cnt = 0;
2680			iter->dst_cnt = 0;
2681			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2682						     ppc440spe_chan->qdest, 0);
2683			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2684			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2685						      len);
2686			iter->unmap_len = 0;
2687			/* override qdest to preserve original Q */
2688			qdest = ppc440spe_chan->qdest;
2689		}
2690
2691		/* Setup destinations for P/Q ops */
2692		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2693
2694		/* Setup zero QWORDs into DCHECK CDBs */
2695		idst = dst_cnt;
2696		list_for_each_entry_reverse(iter, &sw_desc->group_list,
2697					    chain_node) {
2698			/*
2699			 * The last CDB corresponds to Q-parity check,
2700			 * the one before last CDB corresponds
2701			 * P-parity check
2702			 */
2703			if (idst == DMA_DEST_MAX_NUM) {
2704				if (idst == dst_cnt) {
2705					set_bit(PPC440SPE_DESC_QCHECK,
2706						&iter->flags);
2707				} else {
2708					set_bit(PPC440SPE_DESC_PCHECK,
2709						&iter->flags);
2710				}
2711			} else {
2712				if (qdest) {
2713					set_bit(PPC440SPE_DESC_QCHECK,
2714						&iter->flags);
2715				} else {
2716					set_bit(PPC440SPE_DESC_PCHECK,
2717						&iter->flags);
2718				}
2719			}
2720			iter->xor_check_result = pqres;
2721
2722			/*
2723			 * set it to zero, if check fail then result will
2724			 * be updated
2725			 */
2726			*iter->xor_check_result = 0;
2727			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2728				ppc440spe_qword);
2729
2730			if (!(--dst_cnt))
2731				break;
2732		}
2733
2734		/* Setup sources and mults for P/Q ops */
2735		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2736						     chain_node) {
2737			struct ppc440spe_adma_chan *chan;
2738			u32 mult_dst;
2739
2740			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2741			ppc440spe_desc_set_src_addr(iter, chan, 0,
2742						    DMA_CUED_XOR_HB,
2743						    src[src_cnt - 1]);
2744			if (qdest) {
2745				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2746							   DMA_CDB_SG_DST1;
2747				ppc440spe_desc_set_src_mult(iter, chan,
2748							    DMA_CUED_MULT1_OFF,
2749							    mult_dst,
2750							    scf[src_cnt - 1]);
2751			}
2752			if (!(--src_cnt))
2753				break;
2754		}
2755	}
2756	spin_unlock_bh(&ppc440spe_chan->lock);
2757	return sw_desc ? &sw_desc->async_tx : NULL;
2758}
2759
2760/**
2761 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2762 * XOR ZERO_SUM operation
2763 */
2764static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2765		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2766		size_t len, enum sum_check_flags *result, unsigned long flags)
2767{
2768	struct dma_async_tx_descriptor *tx;
2769	dma_addr_t pq[2];
2770
2771	/* validate P, disable Q */
2772	pq[0] = src[0];
2773	pq[1] = 0;
2774	flags |= DMA_PREP_PQ_DISABLE_Q;
2775
2776	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2777						src_cnt - 1, 0, len,
2778						result, flags);
2779	return tx;
2780}
2781
2782/**
2783 * ppc440spe_adma_set_dest - set destination address into descriptor
2784 */
2785static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2786		dma_addr_t addr, int index)
2787{
2788	struct ppc440spe_adma_chan *chan;
2789
2790	BUG_ON(index >= sw_desc->dst_cnt);
2791
2792	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2793
2794	switch (chan->device->id) {
2795	case PPC440SPE_DMA0_ID:
2796	case PPC440SPE_DMA1_ID:
2797		/* to do: support transfers lengths >
2798		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2799		 */
2800		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2801			chan, 0, addr, index);
2802		break;
2803	case PPC440SPE_XOR_ID:
2804		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2805		ppc440spe_desc_set_dest_addr(sw_desc,
2806			chan, 0, addr, index);
2807		break;
2808	}
2809}
2810
2811static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2812		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2813{
2814	/*  To clear destinations update the descriptor
2815	 * (P or Q depending on index) as follows:
2816	 * addr is destination (0 corresponds to SG2):
2817	 */
2818	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2819
2820	/* ... and the addr is source: */
2821	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2822
2823	/* addr is always SG2 then the mult is always DST1 */
2824	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2825				    DMA_CDB_SG_DST1, 1);
2826}
2827
2828/**
2829 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2830 * for the PQXOR operation
2831 */
2832static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2833		dma_addr_t *addrs, unsigned long flags)
2834{
2835	struct ppc440spe_adma_desc_slot *iter;
2836	struct ppc440spe_adma_chan *chan;
2837	dma_addr_t paddr, qaddr;
2838	dma_addr_t addr = 0, ppath, qpath;
2839	int index = 0, i;
2840
2841	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2842
2843	if (flags & DMA_PREP_PQ_DISABLE_P)
2844		paddr = 0;
2845	else
2846		paddr = addrs[0];
2847
2848	if (flags & DMA_PREP_PQ_DISABLE_Q)
2849		qaddr = 0;
2850	else
2851		qaddr = addrs[1];
2852
2853	if (!paddr || !qaddr)
2854		addr = paddr ? paddr : qaddr;
2855
2856	switch (chan->device->id) {
2857	case PPC440SPE_DMA0_ID:
2858	case PPC440SPE_DMA1_ID:
2859		/* walk through the WXOR source list and set P/Q-destinations
2860		 * for each slot:
2861		 */
2862		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2863			/* This is WXOR-only chain; may have 1/2 zero descs */
2864			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2865				index++;
2866			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2867				index++;
2868
2869			iter = ppc440spe_get_group_entry(sw_desc, index);
2870			if (addr) {
2871				/* one destination */
2872				list_for_each_entry_from(iter,
2873					&sw_desc->group_list, chain_node)
2874					ppc440spe_desc_set_dest_addr(iter, chan,
2875						DMA_CUED_XOR_BASE, addr, 0);
2876			} else {
2877				/* two destinations */
2878				list_for_each_entry_from(iter,
2879					&sw_desc->group_list, chain_node) {
2880					ppc440spe_desc_set_dest_addr(iter, chan,
2881						DMA_CUED_XOR_BASE, paddr, 0);
2882					ppc440spe_desc_set_dest_addr(iter, chan,
2883						DMA_CUED_XOR_BASE, qaddr, 1);
2884				}
2885			}
2886
2887			if (index) {
2888				/*  To clear destinations update the descriptor
2889				 * (1st,2nd, or both depending on flags)
2890				 */
2891				index = 0;
2892				if (test_bit(PPC440SPE_ZERO_P,
2893						&sw_desc->flags)) {
2894					iter = ppc440spe_get_group_entry(
2895							sw_desc, index++);
2896					ppc440spe_adma_pq_zero_op(iter, chan,
2897							paddr);
2898				}
2899
2900				if (test_bit(PPC440SPE_ZERO_Q,
2901						&sw_desc->flags)) {
2902					iter = ppc440spe_get_group_entry(
2903							sw_desc, index++);
2904					ppc440spe_adma_pq_zero_op(iter, chan,
2905							qaddr);
2906				}
2907
2908				return;
2909			}
2910		} else {
2911			/* This is RXOR-only or RXOR/WXOR mixed chain */
2912
2913			/* If we want to include destination into calculations,
2914			 * then make dest addresses cued with mult=1 (XOR).
2915			 */
2916			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2917					DMA_CUED_XOR_HB :
2918					DMA_CUED_XOR_BASE |
2919						(1 << DMA_CUED_MULT1_OFF);
2920			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2921					DMA_CUED_XOR_HB :
2922					DMA_CUED_XOR_BASE |
2923						(1 << DMA_CUED_MULT1_OFF);
2924
2925			/* Setup destination(s) in RXOR slot(s) */
2926			iter = ppc440spe_get_group_entry(sw_desc, index++);
2927			ppc440spe_desc_set_dest_addr(iter, chan,
2928						paddr ? ppath : qpath,
2929						paddr ? paddr : qaddr, 0);
2930			if (!addr) {
2931				/* two destinations */
2932				iter = ppc440spe_get_group_entry(sw_desc,
2933								 index++);
2934				ppc440spe_desc_set_dest_addr(iter, chan,
2935						qpath, qaddr, 0);
2936			}
2937
2938			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2939				/* Setup destination(s) in remaining WXOR
2940				 * slots
2941				 */
2942				iter = ppc440spe_get_group_entry(sw_desc,
2943								 index);
2944				if (addr) {
2945					/* one destination */
2946					list_for_each_entry_from(iter,
2947					    &sw_desc->group_list,
2948					    chain_node)
2949						ppc440spe_desc_set_dest_addr(
2950							iter, chan,
2951							DMA_CUED_XOR_BASE,
2952							addr, 0);
2953
2954				} else {
2955					/* two destinations */
2956					list_for_each_entry_from(iter,
2957					    &sw_desc->group_list,
2958					    chain_node) {
2959						ppc440spe_desc_set_dest_addr(
2960							iter, chan,
2961							DMA_CUED_XOR_BASE,
2962							paddr, 0);
2963						ppc440spe_desc_set_dest_addr(
2964							iter, chan,
2965							DMA_CUED_XOR_BASE,
2966							qaddr, 1);
2967					}
2968				}
2969			}
2970
2971		}
2972		break;
2973
2974	case PPC440SPE_XOR_ID:
2975		/* DMA2 descriptors have only 1 destination, so there are
2976		 * two chains - one for each dest.
2977		 * If we want to include destination into calculations,
2978		 * then make dest addresses cued with mult=1 (XOR).
2979		 */
2980		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2981				DMA_CUED_XOR_HB :
2982				DMA_CUED_XOR_BASE |
2983					(1 << DMA_CUED_MULT1_OFF);
2984
2985		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2986				DMA_CUED_XOR_HB :
2987				DMA_CUED_XOR_BASE |
2988					(1 << DMA_CUED_MULT1_OFF);
2989
2990		iter = ppc440spe_get_group_entry(sw_desc, 0);
2991		for (i = 0; i < sw_desc->descs_per_op; i++) {
2992			ppc440spe_desc_set_dest_addr(iter, chan,
2993				paddr ? ppath : qpath,
2994				paddr ? paddr : qaddr, 0);
2995			iter = list_entry(iter->chain_node.next,
2996					  struct ppc440spe_adma_desc_slot,
2997					  chain_node);
2998		}
2999
3000		if (!addr) {
3001			/* Two destinations; setup Q here */
3002			iter = ppc440spe_get_group_entry(sw_desc,
3003				sw_desc->descs_per_op);
3004			for (i = 0; i < sw_desc->descs_per_op; i++) {
3005				ppc440spe_desc_set_dest_addr(iter,
3006					chan, qpath, qaddr, 0);
3007				iter = list_entry(iter->chain_node.next,
3008						struct ppc440spe_adma_desc_slot,
3009						chain_node);
3010			}
3011		}
3012
3013		break;
3014	}
3015}
3016
3017/**
3018 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3019 * for the PQ_ZERO_SUM operation
3020 */
3021static void ppc440spe_adma_pqzero_sum_set_dest(
3022		struct ppc440spe_adma_desc_slot *sw_desc,
3023		dma_addr_t paddr, dma_addr_t qaddr)
3024{
3025	struct ppc440spe_adma_desc_slot *iter, *end;
3026	struct ppc440spe_adma_chan *chan;
3027	dma_addr_t addr = 0;
3028	int idx;
3029
3030	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3031
3032	/* walk through the WXOR source list and set P/Q-destinations
3033	 * for each slot
3034	 */
3035	idx = (paddr && qaddr) ? 2 : 1;
3036	/* set end */
3037	list_for_each_entry_reverse(end, &sw_desc->group_list,
3038				    chain_node) {
3039		if (!(--idx))
3040			break;
3041	}
3042	/* set start */
3043	idx = (paddr && qaddr) ? 2 : 1;
3044	iter = ppc440spe_get_group_entry(sw_desc, idx);
3045
3046	if (paddr && qaddr) {
3047		/* two destinations */
3048		list_for_each_entry_from(iter, &sw_desc->group_list,
3049					 chain_node) {
3050			if (unlikely(iter == end))
3051				break;
3052			ppc440spe_desc_set_dest_addr(iter, chan,
3053						DMA_CUED_XOR_BASE, paddr, 0);
3054			ppc440spe_desc_set_dest_addr(iter, chan,
3055						DMA_CUED_XOR_BASE, qaddr, 1);
3056		}
3057	} else {
3058		/* one destination */
3059		addr = paddr ? paddr : qaddr;
3060		list_for_each_entry_from(iter, &sw_desc->group_list,
3061					 chain_node) {
3062			if (unlikely(iter == end))
3063				break;
3064			ppc440spe_desc_set_dest_addr(iter, chan,
3065						DMA_CUED_XOR_BASE, addr, 0);
3066		}
3067	}
3068
3069	/*  The remaining descriptors are DATACHECK. These have no need in
3070	 * destination. Actually, these destinations are used there
3071	 * as sources for check operation. So, set addr as source.
3072	 */
3073	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3074
3075	if (!addr) {
3076		end = list_entry(end->chain_node.next,
3077				 struct ppc440spe_adma_desc_slot, chain_node);
3078		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3079	}
3080}
3081
3082/**
3083 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3084 */
3085static inline void ppc440spe_desc_set_xor_src_cnt(
3086			struct ppc440spe_adma_desc_slot *desc,
3087			int src_cnt)
3088{
3089	struct xor_cb *hw_desc = desc->hw_desc;
3090
3091	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3092	hw_desc->cbc |= src_cnt;
3093}
3094
3095/**
3096 * ppc440spe_adma_pq_set_src - set source address into descriptor
3097 */
3098static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3099		dma_addr_t addr, int index)
3100{
3101	struct ppc440spe_adma_chan *chan;
3102	dma_addr_t haddr = 0;
3103	struct ppc440spe_adma_desc_slot *iter = NULL;
3104
3105	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3106
3107	switch (chan->device->id) {
3108	case PPC440SPE_DMA0_ID:
3109	case PPC440SPE_DMA1_ID:
3110		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3111		 */
3112		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3113			/* RXOR-only or RXOR/WXOR operation */
3114			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3115				&sw_desc->flags) ?  2 : 3;
3116
3117			if (index == 0) {
3118				/* 1st slot (RXOR) */
3119				/* setup sources region (R1-2-3, R1-2-4,
3120				 * or R1-2-5)
3121				 */
3122				if (test_bit(PPC440SPE_DESC_RXOR12,
3123						&sw_desc->flags))
3124					haddr = DMA_RXOR12 <<
3125						DMA_CUED_REGION_OFF;
3126				else if (test_bit(PPC440SPE_DESC_RXOR123,
3127				    &sw_desc->flags))
3128					haddr = DMA_RXOR123 <<
3129						DMA_CUED_REGION_OFF;
3130				else if (test_bit(PPC440SPE_DESC_RXOR124,
3131				    &sw_desc->flags))
3132					haddr = DMA_RXOR124 <<
3133						DMA_CUED_REGION_OFF;
3134				else if (test_bit(PPC440SPE_DESC_RXOR125,
3135				    &sw_desc->flags))
3136					haddr = DMA_RXOR125 <<
3137						DMA_CUED_REGION_OFF;
3138				else
3139					BUG();
3140				haddr |= DMA_CUED_XOR_BASE;
3141				iter = ppc440spe_get_group_entry(sw_desc, 0);
3142			} else if (index < iskip) {
3143				/* 1st slot (RXOR)
3144				 * shall actually set source address only once
3145				 * instead of first <iskip>
3146				 */
3147				iter = NULL;
3148			} else {
3149				/* 2nd/3d and next slots (WXOR);
3150				 * skip first slot with RXOR
3151				 */
3152				haddr = DMA_CUED_XOR_HB;
3153				iter = ppc440spe_get_group_entry(sw_desc,
3154				    index - iskip + sw_desc->dst_cnt);
3155			}
3156		} else {
3157			int znum = 0;
3158
3159			/* WXOR-only operation; skip first slots with
3160			 * zeroing destinations
3161			 */
3162			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3163				znum++;
3164			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3165				znum++;
3166
3167			haddr = DMA_CUED_XOR_HB;
3168			iter = ppc440spe_get_group_entry(sw_desc,
3169					index + znum);
3170		}
3171
3172		if (likely(iter)) {
3173			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3174
3175			if (!index &&
3176			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3177			    sw_desc->dst_cnt == 2) {
3178				/* if we have two destinations for RXOR, then
3179				 * setup source in the second descr too
3180				 */
3181				iter = ppc440spe_get_group_entry(sw_desc, 1);
3182				ppc440spe_desc_set_src_addr(iter, chan, 0,
3183					haddr, addr);
3184			}
3185		}
3186		break;
3187
3188	case PPC440SPE_XOR_ID:
3189		/* DMA2 may do Biskup */
3190		iter = sw_desc->group_head;
3191		if (iter->dst_cnt == 2) {
3192			/* both P & Q calculations required; set P src here */
3193			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3194
3195			/* this is for Q */
3196			iter = ppc440spe_get_group_entry(sw_desc,
3197				sw_desc->descs_per_op);
3198		}
3199		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3200		break;
3201	}
3202}
3203
3204/**
3205 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3206 */
3207static void ppc440spe_adma_memcpy_xor_set_src(
3208		struct ppc440spe_adma_desc_slot *sw_desc,
3209		dma_addr_t addr, int index)
3210{
3211	struct ppc440spe_adma_chan *chan;
3212
3213	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3214	sw_desc = sw_desc->group_head;
3215
3216	if (likely(sw_desc))
3217		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3218}
3219
3220/**
3221 * ppc440spe_adma_dma2rxor_inc_addr  -
3222 */
3223static void ppc440spe_adma_dma2rxor_inc_addr(
3224		struct ppc440spe_adma_desc_slot *desc,
3225		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3226{
3227	cursor->addr_count++;
3228	if (index == src_cnt - 1) {
3229		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3230	} else if (cursor->addr_count == XOR_MAX_OPS) {
3231		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3232		cursor->addr_count = 0;
3233		cursor->desc_count++;
3234	}
3235}
3236
3237/**
3238 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3239 */
3240static int ppc440spe_adma_dma2rxor_prep_src(
3241		struct ppc440spe_adma_desc_slot *hdesc,
3242		struct ppc440spe_rxor *cursor, int index,
3243		int src_cnt, u32 addr)
3244{
3245	int rval = 0;
3246	u32 sign;
3247	struct ppc440spe_adma_desc_slot *desc = hdesc;
3248	int i;
3249
3250	for (i = 0; i < cursor->desc_count; i++) {
3251		desc = list_entry(hdesc->chain_node.next,
3252				  struct ppc440spe_adma_desc_slot,
3253				  chain_node);
3254	}
3255
3256	switch (cursor->state) {
3257	case 0:
3258		if (addr == cursor->addrl + cursor->len) {
3259			/* direct RXOR */
3260			cursor->state = 1;
3261			cursor->xor_count++;
3262			if (index == src_cnt-1) {
3263				ppc440spe_rxor_set_region(desc,
3264					cursor->addr_count,
3265					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3266				ppc440spe_adma_dma2rxor_inc_addr(
3267					desc, cursor, index, src_cnt);
3268			}
3269		} else if (cursor->addrl == addr + cursor->len) {
3270			/* reverse RXOR */
3271			cursor->state = 1;
3272			cursor->xor_count++;
3273			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3274			if (index == src_cnt-1) {
3275				ppc440spe_rxor_set_region(desc,
3276					cursor->addr_count,
3277					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3278				ppc440spe_adma_dma2rxor_inc_addr(
3279					desc, cursor, index, src_cnt);
3280			}
3281		} else {
3282			printk(KERN_ERR "Cannot build "
3283				"DMA2 RXOR command block.\n");
3284			BUG();
3285		}
3286		break;
3287	case 1:
3288		sign = test_bit(cursor->addr_count,
3289				desc->reverse_flags)
3290			? -1 : 1;
3291		if (index == src_cnt-2 || (sign == -1
3292			&& addr != cursor->addrl - 2*cursor->len)) {
3293			cursor->state = 0;
3294			cursor->xor_count = 1;
3295			cursor->addrl = addr;
3296			ppc440spe_rxor_set_region(desc,
3297				cursor->addr_count,
3298				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3299			ppc440spe_adma_dma2rxor_inc_addr(
3300				desc, cursor, index, src_cnt);
3301		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3302			cursor->state = 2;
3303			cursor->xor_count = 0;
3304			ppc440spe_rxor_set_region(desc,
3305				cursor->addr_count,
3306				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3307			if (index == src_cnt-1) {
3308				ppc440spe_adma_dma2rxor_inc_addr(
3309					desc, cursor, index, src_cnt);
3310			}
3311		} else if (addr == cursor->addrl + 3*cursor->len) {
3312			cursor->state = 2;
3313			cursor->xor_count = 0;
3314			ppc440spe_rxor_set_region(desc,
3315				cursor->addr_count,
3316				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3317			if (index == src_cnt-1) {
3318				ppc440spe_adma_dma2rxor_inc_addr(
3319					desc, cursor, index, src_cnt);
3320			}
3321		} else if (addr == cursor->addrl + 4*cursor->len) {
3322			cursor->state = 2;
3323			cursor->xor_count = 0;
3324			ppc440spe_rxor_set_region(desc,
3325				cursor->addr_count,
3326				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3327			if (index == src_cnt-1) {
3328				ppc440spe_adma_dma2rxor_inc_addr(
3329					desc, cursor, index, src_cnt);
3330			}
3331		} else {
3332			cursor->state = 0;
3333			cursor->xor_count = 1;
3334			cursor->addrl = addr;
3335			ppc440spe_rxor_set_region(desc,
3336				cursor->addr_count,
3337				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3338			ppc440spe_adma_dma2rxor_inc_addr(
3339				desc, cursor, index, src_cnt);
3340		}
3341		break;
3342	case 2:
3343		cursor->state = 0;
3344		cursor->addrl = addr;
3345		cursor->xor_count++;
3346		if (index) {
3347			ppc440spe_adma_dma2rxor_inc_addr(
3348				desc, cursor, index, src_cnt);
3349		}
3350		break;
3351	}
3352
3353	return rval;
3354}
3355
3356/**
3357 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3358 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3359 */
3360static void ppc440spe_adma_dma2rxor_set_src(
3361		struct ppc440spe_adma_desc_slot *desc,
3362		int index, dma_addr_t addr)
3363{
3364	struct xor_cb *xcb = desc->hw_desc;
3365	int k = 0, op = 0, lop = 0;
3366
3367	/* get the RXOR operand which corresponds to index addr */
3368	while (op <= index) {
3369		lop = op;
3370		if (k == XOR_MAX_OPS) {
3371			k = 0;
3372			desc = list_entry(desc->chain_node.next,
3373				struct ppc440spe_adma_desc_slot, chain_node);
3374			xcb = desc->hw_desc;
3375
3376		}
3377		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3378		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3379			op += 2;
3380		else
3381			op += 3;
3382	}
3383
3384	BUG_ON(k < 1);
3385
3386	if (test_bit(k-1, desc->reverse_flags)) {
3387		/* reverse operand order; put last op in RXOR group */
3388		if (index == op - 1)
3389			ppc440spe_rxor_set_src(desc, k - 1, addr);
3390	} else {
3391		/* direct operand order; put first op in RXOR group */
3392		if (index == lop)
3393			ppc440spe_rxor_set_src(desc, k - 1, addr);
3394	}
3395}
3396
3397/**
3398 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3399 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3400 */
3401static void ppc440spe_adma_dma2rxor_set_mult(
3402		struct ppc440spe_adma_desc_slot *desc,
3403		int index, u8 mult)
3404{
3405	struct xor_cb *xcb = desc->hw_desc;
3406	int k = 0, op = 0, lop = 0;
3407
3408	/* get the RXOR operand which corresponds to index mult */
3409	while (op <= index) {
3410		lop = op;
3411		if (k == XOR_MAX_OPS) {
3412			k = 0;
3413			desc = list_entry(desc->chain_node.next,
3414					  struct ppc440spe_adma_desc_slot,
3415					  chain_node);
3416			xcb = desc->hw_desc;
3417
3418		}
3419		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3420		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3421			op += 2;
3422		else
3423			op += 3;
3424	}
3425
3426	BUG_ON(k < 1);
3427	if (test_bit(k-1, desc->reverse_flags)) {
3428		/* reverse order */
3429		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3430	} else {
3431		/* direct order */
3432		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3433	}
3434}
3435
3436/**
3437 * ppc440spe_init_rxor_cursor -
3438 */
3439static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3440{
3441	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3442	cursor->state = 2;
3443}
3444
3445/**
3446 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3447 * descriptor for the PQXOR operation
3448 */
3449static void ppc440spe_adma_pq_set_src_mult(
3450		struct ppc440spe_adma_desc_slot *sw_desc,
3451		unsigned char mult, int index, int dst_pos)
3452{
3453	struct ppc440spe_adma_chan *chan;
3454	u32 mult_idx, mult_dst;
3455	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3456
3457	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3458
3459	switch (chan->device->id) {
3460	case PPC440SPE_DMA0_ID:
3461	case PPC440SPE_DMA1_ID:
3462		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3463			int region = test_bit(PPC440SPE_DESC_RXOR12,
3464					&sw_desc->flags) ? 2 : 3;
3465
3466			if (index < region) {
3467				/* RXOR multipliers */
3468				iter = ppc440spe_get_group_entry(sw_desc,
3469					sw_desc->dst_cnt - 1);
3470				if (sw_desc->dst_cnt == 2)
3471					iter1 = ppc440spe_get_group_entry(
3472							sw_desc, 0);
3473
3474				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3475				mult_dst = DMA_CDB_SG_SRC;
3476			} else {
3477				/* WXOR multiplier */
3478				iter = ppc440spe_get_group_entry(sw_desc,
3479							index - region +
3480							sw_desc->dst_cnt);
3481				mult_idx = DMA_CUED_MULT1_OFF;
3482				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3483						     DMA_CDB_SG_DST1;
3484			}
3485		} else {
3486			int znum = 0;
3487
3488			/* WXOR-only;
3489			 * skip first slots with destinations (if ZERO_DST has
3490			 * place)
3491			 */
3492			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3493				znum++;
3494			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3495				znum++;
3496
3497			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3498			mult_idx = DMA_CUED_MULT1_OFF;
3499			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3500		}
3501
3502		if (likely(iter)) {
3503			ppc440spe_desc_set_src_mult(iter, chan,
3504				mult_idx, mult_dst, mult);
3505
3506			if (unlikely(iter1)) {
3507				/* if we have two destinations for RXOR, then
3508				 * we've just set Q mult. Set-up P now.
3509				 */
3510				ppc440spe_desc_set_src_mult(iter1, chan,
3511					mult_idx, mult_dst, 1);
3512			}
3513
3514		}
3515		break;
3516
3517	case PPC440SPE_XOR_ID:
3518		iter = sw_desc->group_head;
3519		if (sw_desc->dst_cnt == 2) {
3520			/* both P & Q calculations required; set P mult here */
3521			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3522
3523			/* and then set Q mult */
3524			iter = ppc440spe_get_group_entry(sw_desc,
3525			       sw_desc->descs_per_op);
3526		}
3527		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3528		break;
3529	}
3530}
3531
3532/**
3533 * ppc440spe_adma_free_chan_resources - free the resources allocated
3534 */
3535static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3536{
3537	struct ppc440spe_adma_chan *ppc440spe_chan;
3538	struct ppc440spe_adma_desc_slot *iter, *_iter;
3539	int in_use_descs = 0;
3540
3541	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3542	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3543
3544	spin_lock_bh(&ppc440spe_chan->lock);
3545	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3546					chain_node) {
3547		in_use_descs++;
3548		list_del(&iter->chain_node);
3549	}
3550	list_for_each_entry_safe_reverse(iter, _iter,
3551			&ppc440spe_chan->all_slots, slot_node) {
3552		list_del(&iter->slot_node);
3553		kfree(iter);
3554		ppc440spe_chan->slots_allocated--;
3555	}
3556	ppc440spe_chan->last_used = NULL;
3557
3558	dev_dbg(ppc440spe_chan->device->common.dev,
3559		"ppc440spe adma%d %s slots_allocated %d\n",
3560		ppc440spe_chan->device->id,
3561		__func__, ppc440spe_chan->slots_allocated);
3562	spin_unlock_bh(&ppc440spe_chan->lock);
3563
3564	/* one is ok since we left it on there on purpose */
3565	if (in_use_descs > 1)
3566		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3567			in_use_descs - 1);
3568}
3569
3570/**
3571 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3572 * @chan: ADMA channel handle
3573 * @cookie: ADMA transaction identifier
3574 * @txstate: a holder for the current state of the channel
3575 */
3576static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3577			dma_cookie_t cookie, struct dma_tx_state *txstate)
3578{
3579	struct ppc440spe_adma_chan *ppc440spe_chan;
3580	enum dma_status ret;
3581
3582	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3583	ret = dma_cookie_status(chan, cookie, txstate);
3584	if (ret == DMA_COMPLETE)
3585		return ret;
3586
3587	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3588
3589	return dma_cookie_status(chan, cookie, txstate);
3590}
3591
3592/**
3593 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3594 */
3595static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3596{
3597	struct ppc440spe_adma_chan *chan = data;
3598
3599	dev_dbg(chan->device->common.dev,
3600		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3601
3602	tasklet_schedule(&chan->irq_tasklet);
3603	ppc440spe_adma_device_clear_eot_status(chan);
3604
3605	return IRQ_HANDLED;
3606}
3607
3608/**
3609 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3610 *	do the same things as a eot handler
3611 */
3612static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3613{
3614	struct ppc440spe_adma_chan *chan = data;
3615
3616	dev_dbg(chan->device->common.dev,
3617		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3618
3619	tasklet_schedule(&chan->irq_tasklet);
3620	ppc440spe_adma_device_clear_eot_status(chan);
3621
3622	return IRQ_HANDLED;
3623}
3624
3625/**
3626 * ppc440spe_test_callback - called when test operation has been done
3627 */
3628static void ppc440spe_test_callback(void *unused)
3629{
3630	complete(&ppc440spe_r6_test_comp);
3631}
3632
3633/**
3634 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3635 */
3636static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3637{
3638	struct ppc440spe_adma_chan *ppc440spe_chan;
3639
3640	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3641	dev_dbg(ppc440spe_chan->device->common.dev,
3642		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3643		__func__, ppc440spe_chan->pending);
3644
3645	if (ppc440spe_chan->pending) {
3646		ppc440spe_chan->pending = 0;
3647		ppc440spe_chan_append(ppc440spe_chan);
3648	}
3649}
3650
3651/**
3652 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3653 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
3654 *	specific operation)
3655 */
3656static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3657{
3658	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3659	dma_cookie_t cookie;
3660	int slot_cnt, slots_per_op;
3661
3662	dev_dbg(chan->device->common.dev,
3663		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3664
3665	spin_lock_bh(&chan->lock);
3666	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3667	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3668	if (sw_desc) {
3669		group_start = sw_desc->group_head;
3670		list_splice_init(&sw_desc->group_list, &chan->chain);
3671		async_tx_ack(&sw_desc->async_tx);
3672		ppc440spe_desc_init_null_xor(group_start);
3673
3674		cookie = dma_cookie_assign(&sw_desc->async_tx);
3675
3676		/* initialize the completed cookie to be less than
3677		 * the most recently used cookie
3678		 */
3679		chan->common.completed_cookie = cookie - 1;
3680
3681		/* channel should not be busy */
3682		BUG_ON(ppc440spe_chan_is_busy(chan));
3683
3684		/* set the descriptor address */
3685		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3686
3687		/* run the descriptor */
3688		ppc440spe_chan_run(chan);
3689	} else
3690		printk(KERN_ERR "ppc440spe adma%d"
3691			" failed to allocate null descriptor\n",
3692			chan->device->id);
3693	spin_unlock_bh(&chan->lock);
3694}
3695
3696/**
3697 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3698 *	For this we just perform one WXOR operation with the same source
3699 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
3700 *	capabilities are enabled then we'll get src/dst filled with zero.
3701 */
3702static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3703{
3704	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3705	struct page *pg;
3706	char *a;
3707	dma_addr_t dma_addr, addrs[2];
3708	unsigned long op = 0;
3709	int rval = 0;
3710
3711	set_bit(PPC440SPE_DESC_WXOR, &op);
3712
3713	pg = alloc_page(GFP_KERNEL);
3714	if (!pg)
3715		return -ENOMEM;
3716
3717	spin_lock_bh(&chan->lock);
3718	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3719	if (sw_desc) {
3720		/* 1 src, 1 dsr, int_ena, WXOR */
3721		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3722		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3723			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3724			iter->unmap_len = PAGE_SIZE;
3725		}
3726	} else {
3727		rval = -EFAULT;
3728		spin_unlock_bh(&chan->lock);
3729		goto exit;
3730	}
3731	spin_unlock_bh(&chan->lock);
3732
3733	/* Fill the test page with ones */
3734	memset(page_address(pg), 0xFF, PAGE_SIZE);
3735	dma_addr = dma_map_page(chan->device->dev, pg, 0,
3736				PAGE_SIZE, DMA_BIDIRECTIONAL);
3737
3738	/* Setup addresses */
3739	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3740	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3741	addrs[0] = dma_addr;
3742	addrs[1] = 0;
3743	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3744
3745	async_tx_ack(&sw_desc->async_tx);
3746	sw_desc->async_tx.callback = ppc440spe_test_callback;
3747	sw_desc->async_tx.callback_param = NULL;
3748
3749	init_completion(&ppc440spe_r6_test_comp);
3750
3751	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3752	ppc440spe_adma_issue_pending(&chan->common);
3753
3754	wait_for_completion(&ppc440spe_r6_test_comp);
3755
3756	/* Now check if the test page is zeroed */
3757	a = page_address(pg);
3758	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3759		/* page is zero - RAID-6 enabled */
3760		rval = 0;
3761	} else {
3762		/* RAID-6 was not enabled */
3763		rval = -EINVAL;
3764	}
3765exit:
3766	__free_page(pg);
3767	return rval;
3768}
3769
3770static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3771{
3772	switch (adev->id) {
3773	case PPC440SPE_DMA0_ID:
3774	case PPC440SPE_DMA1_ID:
3775		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3776		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3777		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3778		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3779		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3780		break;
3781	case PPC440SPE_XOR_ID:
3782		dma_cap_set(DMA_XOR, adev->common.cap_mask);
3783		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3784		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3785		adev->common.cap_mask = adev->common.cap_mask;
3786		break;
3787	}
3788
3789	/* Set base routines */
3790	adev->common.device_alloc_chan_resources =
3791				ppc440spe_adma_alloc_chan_resources;
3792	adev->common.device_free_chan_resources =
3793				ppc440spe_adma_free_chan_resources;
3794	adev->common.device_tx_status = ppc440spe_adma_tx_status;
3795	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3796
3797	/* Set prep routines based on capability */
3798	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3799		adev->common.device_prep_dma_memcpy =
3800			ppc440spe_adma_prep_dma_memcpy;
3801	}
3802	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3803		adev->common.max_xor = XOR_MAX_OPS;
3804		adev->common.device_prep_dma_xor =
3805			ppc440spe_adma_prep_dma_xor;
3806	}
3807	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3808		switch (adev->id) {
3809		case PPC440SPE_DMA0_ID:
3810			dma_set_maxpq(&adev->common,
3811				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3812			break;
3813		case PPC440SPE_DMA1_ID:
3814			dma_set_maxpq(&adev->common,
3815				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3816			break;
3817		case PPC440SPE_XOR_ID:
3818			adev->common.max_pq = XOR_MAX_OPS * 3;
3819			break;
3820		}
3821		adev->common.device_prep_dma_pq =
3822			ppc440spe_adma_prep_dma_pq;
3823	}
3824	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3825		switch (adev->id) {
3826		case PPC440SPE_DMA0_ID:
3827			adev->common.max_pq = DMA0_FIFO_SIZE /
3828						sizeof(struct dma_cdb);
3829			break;
3830		case PPC440SPE_DMA1_ID:
3831			adev->common.max_pq = DMA1_FIFO_SIZE /
3832						sizeof(struct dma_cdb);
3833			break;
3834		}
3835		adev->common.device_prep_dma_pq_val =
3836			ppc440spe_adma_prep_dma_pqzero_sum;
3837	}
3838	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3839		switch (adev->id) {
3840		case PPC440SPE_DMA0_ID:
3841			adev->common.max_xor = DMA0_FIFO_SIZE /
3842						sizeof(struct dma_cdb);
3843			break;
3844		case PPC440SPE_DMA1_ID:
3845			adev->common.max_xor = DMA1_FIFO_SIZE /
3846						sizeof(struct dma_cdb);
3847			break;
3848		}
3849		adev->common.device_prep_dma_xor_val =
3850			ppc440spe_adma_prep_dma_xor_zero_sum;
3851	}
3852	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3853		adev->common.device_prep_dma_interrupt =
3854			ppc440spe_adma_prep_dma_interrupt;
3855	}
3856	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3857	  "( %s%s%s%s%s%s)\n",
3858	  dev_name(adev->dev),
3859	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3860	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3861	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3862	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3863	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3864	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3865}
3866
3867static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3868				     struct ppc440spe_adma_chan *chan,
3869				     int *initcode)
3870{
3871	struct platform_device *ofdev;
3872	struct device_node *np;
3873	int ret;
3874
3875	ofdev = container_of(adev->dev, struct platform_device, dev);
3876	np = ofdev->dev.of_node;
3877	if (adev->id != PPC440SPE_XOR_ID) {
3878		adev->err_irq = irq_of_parse_and_map(np, 1);
3879		if (!adev->err_irq) {
3880			dev_warn(adev->dev, "no err irq resource?\n");
3881			*initcode = PPC_ADMA_INIT_IRQ2;
3882			adev->err_irq = -ENXIO;
3883		} else
3884			atomic_inc(&ppc440spe_adma_err_irq_ref);
3885	} else {
3886		adev->err_irq = -ENXIO;
3887	}
3888
3889	adev->irq = irq_of_parse_and_map(np, 0);
3890	if (!adev->irq) {
3891		dev_err(adev->dev, "no irq resource\n");
3892		*initcode = PPC_ADMA_INIT_IRQ1;
3893		ret = -ENXIO;
3894		goto err_irq_map;
3895	}
3896	dev_dbg(adev->dev, "irq %d, err irq %d\n",
3897		adev->irq, adev->err_irq);
3898
3899	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3900			  0, dev_driver_string(adev->dev), chan);
3901	if (ret) {
3902		dev_err(adev->dev, "can't request irq %d\n",
3903			adev->irq);
3904		*initcode = PPC_ADMA_INIT_IRQ1;
3905		ret = -EIO;
3906		goto err_req1;
3907	}
3908
3909	/* only DMA engines have a separate error IRQ
3910	 * so it's Ok if err_irq < 0 in XOR engine case.
3911	 */
3912	if (adev->err_irq > 0) {
3913		/* both DMA engines share common error IRQ */
3914		ret = request_irq(adev->err_irq,
3915				  ppc440spe_adma_err_handler,
3916				  IRQF_SHARED,
3917				  dev_driver_string(adev->dev),
3918				  chan);
3919		if (ret) {
3920			dev_err(adev->dev, "can't request irq %d\n",
3921				adev->err_irq);
3922			*initcode = PPC_ADMA_INIT_IRQ2;
3923			ret = -EIO;
3924			goto err_req2;
3925		}
3926	}
3927
3928	if (adev->id == PPC440SPE_XOR_ID) {
3929		/* enable XOR engine interrupts */
3930		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3931			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3932			    &adev->xor_reg->ier);
3933	} else {
3934		u32 mask, enable;
3935
3936		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3937		if (!np) {
3938			pr_err("%s: can't find I2O device tree node\n",
3939				__func__);
3940			ret = -ENODEV;
3941			goto err_req2;
3942		}
3943		adev->i2o_reg = of_iomap(np, 0);
3944		if (!adev->i2o_reg) {
3945			pr_err("%s: failed to map I2O registers\n", __func__);
3946			of_node_put(np);
3947			ret = -EINVAL;
3948			goto err_req2;
3949		}
3950		of_node_put(np);
3951		/* Unmask 'CS FIFO Attention' interrupts and
3952		 * enable generating interrupts on errors
3953		 */
3954		enable = (adev->id == PPC440SPE_DMA0_ID) ?
3955			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3956			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3957		mask = ioread32(&adev->i2o_reg->iopim) & enable;
3958		iowrite32(mask, &adev->i2o_reg->iopim);
3959	}
3960	return 0;
3961
3962err_req2:
3963	free_irq(adev->irq, chan);
3964err_req1:
3965	irq_dispose_mapping(adev->irq);
3966err_irq_map:
3967	if (adev->err_irq > 0) {
3968		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3969			irq_dispose_mapping(adev->err_irq);
3970	}
3971	return ret;
3972}
3973
3974static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3975					struct ppc440spe_adma_chan *chan)
3976{
3977	u32 mask, disable;
3978
3979	if (adev->id == PPC440SPE_XOR_ID) {
3980		/* disable XOR engine interrupts */
3981		mask = ioread32be(&adev->xor_reg->ier);
3982		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3983			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3984		iowrite32be(mask, &adev->xor_reg->ier);
3985	} else {
3986		/* disable DMAx engine interrupts */
3987		disable = (adev->id == PPC440SPE_DMA0_ID) ?
3988			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3989			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3990		mask = ioread32(&adev->i2o_reg->iopim) | disable;
3991		iowrite32(mask, &adev->i2o_reg->iopim);
3992	}
3993	free_irq(adev->irq, chan);
3994	irq_dispose_mapping(adev->irq);
3995	if (adev->err_irq > 0) {
3996		free_irq(adev->err_irq, chan);
3997		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
3998			irq_dispose_mapping(adev->err_irq);
3999			iounmap(adev->i2o_reg);
4000		}
4001	}
4002}
4003
4004/**
4005 * ppc440spe_adma_probe - probe the asynch device
4006 */
4007static int ppc440spe_adma_probe(struct platform_device *ofdev)
4008{
4009	struct device_node *np = ofdev->dev.of_node;
4010	struct resource res;
4011	struct ppc440spe_adma_device *adev;
4012	struct ppc440spe_adma_chan *chan;
4013	struct ppc_dma_chan_ref *ref, *_ref;
4014	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4015	const u32 *idx;
4016	int len;
4017	void *regs;
4018	u32 id, pool_size;
4019
4020	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4021		id = PPC440SPE_XOR_ID;
4022		/* As far as the XOR engine is concerned, it does not
4023		 * use FIFOs but uses linked list. So there is no dependency
4024		 * between pool size to allocate and the engine configuration.
4025		 */
4026		pool_size = PAGE_SIZE << 1;
4027	} else {
4028		/* it is DMA0 or DMA1 */
4029		idx = of_get_property(np, "cell-index", &len);
4030		if (!idx || (len != sizeof(u32))) {
4031			dev_err(&ofdev->dev, "Device node %pOF has missing "
4032				"or invalid cell-index property\n",
4033				np);
4034			return -EINVAL;
4035		}
4036		id = *idx;
4037		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4038		 * should allocate the pool accordingly to size of this
4039		 * FIFO. Thus, the pool size depends on the FIFO depth:
4040		 * how much CDBs pointers the FIFO may contain then so
4041		 * much CDBs we should provide in the pool.
4042		 * That is
4043		 *   CDB size = 32B;
4044		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4045		 *   Pool size = CDBs number * CDB size =
4046		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4047		 */
4048		pool_size = (id == PPC440SPE_DMA0_ID) ?
4049			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4050		pool_size <<= 2;
4051	}
4052
4053	if (of_address_to_resource(np, 0, &res)) {
4054		dev_err(&ofdev->dev, "failed to get memory resource\n");
4055		initcode = PPC_ADMA_INIT_MEMRES;
4056		ret = -ENODEV;
4057		goto out;
4058	}
4059
4060	if (!request_mem_region(res.start, resource_size(&res),
4061				dev_driver_string(&ofdev->dev))) {
4062		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4063			&res);
4064		initcode = PPC_ADMA_INIT_MEMREG;
4065		ret = -EBUSY;
4066		goto out;
4067	}
4068
4069	/* create a device */
4070	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4071	if (!adev) {
4072		initcode = PPC_ADMA_INIT_ALLOC;
4073		ret = -ENOMEM;
4074		goto err_adev_alloc;
4075	}
4076
4077	adev->id = id;
4078	adev->pool_size = pool_size;
4079	/* allocate coherent memory for hardware descriptors */
4080	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4081					adev->pool_size, &adev->dma_desc_pool,
4082					GFP_KERNEL);
4083	if (adev->dma_desc_pool_virt == NULL) {
4084		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4085			"memory for hardware descriptors\n",
4086			adev->pool_size);
4087		initcode = PPC_ADMA_INIT_COHERENT;
4088		ret = -ENOMEM;
4089		goto err_dma_alloc;
4090	}
4091	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4092		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4093
4094	regs = ioremap(res.start, resource_size(&res));
4095	if (!regs) {
4096		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4097		ret = -ENOMEM;
4098		goto err_regs_alloc;
4099	}
4100
4101	if (adev->id == PPC440SPE_XOR_ID) {
4102		adev->xor_reg = regs;
4103		/* Reset XOR */
4104		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4105		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4106	} else {
4107		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4108				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4109		adev->dma_reg = regs;
4110		/* DMAx_FIFO_SIZE is defined in bytes,
4111		 * <fsiz> - is defined in number of CDB pointers (8byte).
4112		 * DMA FIFO Length = CSlength + CPlength, where
4113		 * CSlength = CPlength = (fsiz + 1) * 8.
4114		 */
4115		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4116			  &adev->dma_reg->fsiz);
4117		/* Configure DMA engine */
4118		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4119			  &adev->dma_reg->cfg);
4120		/* Clear Status */
4121		iowrite32(~0, &adev->dma_reg->dsts);
4122	}
4123
4124	adev->dev = &ofdev->dev;
4125	adev->common.dev = &ofdev->dev;
4126	INIT_LIST_HEAD(&adev->common.channels);
4127	platform_set_drvdata(ofdev, adev);
4128
4129	/* create a channel */
4130	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4131	if (!chan) {
4132		initcode = PPC_ADMA_INIT_CHANNEL;
4133		ret = -ENOMEM;
4134		goto err_chan_alloc;
4135	}
4136
4137	spin_lock_init(&chan->lock);
4138	INIT_LIST_HEAD(&chan->chain);
4139	INIT_LIST_HEAD(&chan->all_slots);
4140	chan->device = adev;
4141	chan->common.device = &adev->common;
4142	dma_cookie_init(&chan->common);
4143	list_add_tail(&chan->common.device_node, &adev->common.channels);
4144	tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
4145
4146	/* allocate and map helper pages for async validation or
4147	 * async_mult/async_sum_product operations on DMA0/1.
4148	 */
4149	if (adev->id != PPC440SPE_XOR_ID) {
4150		chan->pdest_page = alloc_page(GFP_KERNEL);
4151		chan->qdest_page = alloc_page(GFP_KERNEL);
4152		if (!chan->pdest_page ||
4153		    !chan->qdest_page) {
4154			if (chan->pdest_page)
4155				__free_page(chan->pdest_page);
4156			if (chan->qdest_page)
4157				__free_page(chan->qdest_page);
4158			ret = -ENOMEM;
4159			goto err_page_alloc;
4160		}
4161		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4162					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4163		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4164					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4165	}
4166
4167	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4168	if (ref) {
4169		ref->chan = &chan->common;
4170		INIT_LIST_HEAD(&ref->node);
4171		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4172	} else {
4173		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4174		ret = -ENOMEM;
4175		goto err_ref_alloc;
4176	}
4177
4178	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4179	if (ret)
4180		goto err_irq;
4181
4182	ppc440spe_adma_init_capabilities(adev);
4183
4184	ret = dma_async_device_register(&adev->common);
4185	if (ret) {
4186		initcode = PPC_ADMA_INIT_REGISTER;
4187		dev_err(&ofdev->dev, "failed to register dma device\n");
4188		goto err_dev_reg;
4189	}
4190
4191	goto out;
4192
4193err_dev_reg:
4194	ppc440spe_adma_release_irqs(adev, chan);
4195err_irq:
4196	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4197		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4198			list_del(&ref->node);
4199			kfree(ref);
4200		}
4201	}
4202err_ref_alloc:
4203	if (adev->id != PPC440SPE_XOR_ID) {
4204		dma_unmap_page(&ofdev->dev, chan->pdest,
4205			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4206		dma_unmap_page(&ofdev->dev, chan->qdest,
4207			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4208		__free_page(chan->pdest_page);
4209		__free_page(chan->qdest_page);
4210	}
4211err_page_alloc:
4212	kfree(chan);
4213err_chan_alloc:
4214	if (adev->id == PPC440SPE_XOR_ID)
4215		iounmap(adev->xor_reg);
4216	else
4217		iounmap(adev->dma_reg);
4218err_regs_alloc:
4219	dma_free_coherent(adev->dev, adev->pool_size,
4220			  adev->dma_desc_pool_virt,
4221			  adev->dma_desc_pool);
4222err_dma_alloc:
4223	kfree(adev);
4224err_adev_alloc:
4225	release_mem_region(res.start, resource_size(&res));
4226out:
4227	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4228		ppc440spe_adma_devices[id] = initcode;
4229
4230	return ret;
4231}
4232
4233/**
4234 * ppc440spe_adma_remove - remove the asynch device
4235 */
4236static int ppc440spe_adma_remove(struct platform_device *ofdev)
4237{
4238	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4239	struct device_node *np = ofdev->dev.of_node;
4240	struct resource res;
4241	struct dma_chan *chan, *_chan;
4242	struct ppc_dma_chan_ref *ref, *_ref;
4243	struct ppc440spe_adma_chan *ppc440spe_chan;
4244
4245	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4246		ppc440spe_adma_devices[adev->id] = -1;
4247
4248	dma_async_device_unregister(&adev->common);
4249
4250	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4251				 device_node) {
4252		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4253		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4254		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4255		if (adev->id != PPC440SPE_XOR_ID) {
4256			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4257					PAGE_SIZE, DMA_BIDIRECTIONAL);
4258			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4259					PAGE_SIZE, DMA_BIDIRECTIONAL);
4260			__free_page(ppc440spe_chan->pdest_page);
4261			__free_page(ppc440spe_chan->qdest_page);
4262		}
4263		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4264					 node) {
4265			if (ppc440spe_chan ==
4266			    to_ppc440spe_adma_chan(ref->chan)) {
4267				list_del(&ref->node);
4268				kfree(ref);
4269			}
4270		}
4271		list_del(&chan->device_node);
4272		kfree(ppc440spe_chan);
4273	}
4274
4275	dma_free_coherent(adev->dev, adev->pool_size,
4276			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4277	if (adev->id == PPC440SPE_XOR_ID)
4278		iounmap(adev->xor_reg);
4279	else
4280		iounmap(adev->dma_reg);
4281	of_address_to_resource(np, 0, &res);
4282	release_mem_region(res.start, resource_size(&res));
4283	kfree(adev);
4284	return 0;
4285}
4286
4287/*
4288 * /sys driver interface to enable h/w RAID-6 capabilities
4289 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4290 * directory are "devices", "enable" and "poly".
4291 * "devices" shows available engines.
4292 * "enable" is used to enable RAID-6 capabilities or to check
4293 * whether these has been activated.
4294 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4295 */
4296
4297static ssize_t devices_show(struct device_driver *dev, char *buf)
4298{
4299	ssize_t size = 0;
4300	int i;
4301
4302	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4303		if (ppc440spe_adma_devices[i] == -1)
4304			continue;
4305		size += scnprintf(buf + size, PAGE_SIZE - size,
4306				 "PPC440SP(E)-ADMA.%d: %s\n", i,
4307				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4308	}
4309	return size;
4310}
4311static DRIVER_ATTR_RO(devices);
4312
4313static ssize_t enable_show(struct device_driver *dev, char *buf)
4314{
4315	return snprintf(buf, PAGE_SIZE,
4316			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4317			ppc440spe_r6_enabled ? "EN" : "DIS");
4318}
4319
4320static ssize_t enable_store(struct device_driver *dev, const char *buf,
4321			    size_t count)
4322{
4323	unsigned long val;
4324
4325	if (!count || count > 11)
4326		return -EINVAL;
4327
4328	if (!ppc440spe_r6_tchan)
4329		return -EFAULT;
4330
4331	/* Write a key */
4332	sscanf(buf, "%lx", &val);
4333	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4334	isync();
4335
4336	/* Verify whether it really works now */
4337	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4338		pr_info("PPC440SP(e) RAID-6 has been activated "
4339			"successfully\n");
4340		ppc440spe_r6_enabled = 1;
4341	} else {
4342		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4343			" Error key ?\n");
4344		ppc440spe_r6_enabled = 0;
4345	}
4346	return count;
4347}
4348static DRIVER_ATTR_RW(enable);
4349
4350static ssize_t poly_show(struct device_driver *dev, char *buf)
4351{
4352	ssize_t size = 0;
4353	u32 reg;
4354
4355#ifdef CONFIG_440SP
4356	/* 440SP has fixed polynomial */
4357	reg = 0x4d;
4358#else
4359	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4360	reg >>= MQ0_CFBHL_POLY;
4361	reg &= 0xFF;
4362#endif
4363
4364	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4365			"uses 0x1%02x polynomial.\n", reg);
4366	return size;
4367}
4368
4369static ssize_t poly_store(struct device_driver *dev, const char *buf,
4370			  size_t count)
4371{
4372	unsigned long reg, val;
4373
4374#ifdef CONFIG_440SP
4375	/* 440SP uses default 0x14D polynomial only */
4376	return -EINVAL;
4377#endif
4378
4379	if (!count || count > 6)
4380		return -EINVAL;
4381
4382	/* e.g., 0x14D or 0x11D */
4383	sscanf(buf, "%lx", &val);
4384
4385	if (val & ~0x1FF)
4386		return -EINVAL;
4387
4388	val &= 0xFF;
4389	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4390	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4391	reg |= val << MQ0_CFBHL_POLY;
4392	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4393
4394	return count;
4395}
4396static DRIVER_ATTR_RW(poly);
4397
4398/*
4399 * Common initialisation for RAID engines; allocate memory for
4400 * DMAx FIFOs, perform configuration common for all DMA engines.
4401 * Further DMA engine specific configuration is done at probe time.
4402 */
4403static int ppc440spe_configure_raid_devices(void)
4404{
4405	struct device_node *np;
4406	struct resource i2o_res;
4407	struct i2o_regs __iomem *i2o_reg;
4408	dcr_host_t i2o_dcr_host;
4409	unsigned int dcr_base, dcr_len;
4410	int i, ret;
4411
4412	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4413	if (!np) {
4414		pr_err("%s: can't find I2O device tree node\n",
4415			__func__);
4416		return -ENODEV;
4417	}
4418
4419	if (of_address_to_resource(np, 0, &i2o_res)) {
4420		of_node_put(np);
4421		return -EINVAL;
4422	}
4423
4424	i2o_reg = of_iomap(np, 0);
4425	if (!i2o_reg) {
4426		pr_err("%s: failed to map I2O registers\n", __func__);
4427		of_node_put(np);
4428		return -EINVAL;
4429	}
4430
4431	/* Get I2O DCRs base */
4432	dcr_base = dcr_resource_start(np, 0);
4433	dcr_len = dcr_resource_len(np, 0);
4434	if (!dcr_base && !dcr_len) {
4435		pr_err("%pOF: can't get DCR registers base/len!\n", np);
4436		of_node_put(np);
4437		iounmap(i2o_reg);
4438		return -ENODEV;
4439	}
4440
4441	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4442	if (!DCR_MAP_OK(i2o_dcr_host)) {
4443		pr_err("%pOF: failed to map DCRs!\n", np);
4444		of_node_put(np);
4445		iounmap(i2o_reg);
4446		return -ENODEV;
4447	}
4448	of_node_put(np);
4449
4450	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4451	 * the base address of FIFO memory space.
4452	 * Actually we need twice more physical memory than programmed in the
4453	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4454	 */
4455	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4456					 GFP_KERNEL);
4457	if (!ppc440spe_dma_fifo_buf) {
4458		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4459		iounmap(i2o_reg);
4460		dcr_unmap(i2o_dcr_host, dcr_len);
4461		return -ENOMEM;
4462	}
4463
4464	/*
4465	 * Configure h/w
4466	 */
4467	/* Reset I2O/DMA */
4468	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4469	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4470
4471	/* Setup the base address of mmaped registers */
4472	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4473	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4474						I2O_REG_ENABLE);
4475	dcr_unmap(i2o_dcr_host, dcr_len);
4476
4477	/* Setup FIFO memory space base address */
4478	iowrite32(0, &i2o_reg->ifbah);
4479	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4480
4481	/* set zero FIFO size for I2O, so the whole
4482	 * ppc440spe_dma_fifo_buf is used by DMAs.
4483	 * DMAx_FIFOs will be configured while probe.
4484	 */
4485	iowrite32(0, &i2o_reg->ifsiz);
4486	iounmap(i2o_reg);
4487
4488	/* To prepare WXOR/RXOR functionality we need access to
4489	 * Memory Queue Module DCRs (finally it will be enabled
4490	 * via /sys interface of the ppc440spe ADMA driver).
4491	 */
4492	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4493	if (!np) {
4494		pr_err("%s: can't find MQ device tree node\n",
4495			__func__);
4496		ret = -ENODEV;
4497		goto out_free;
4498	}
4499
4500	/* Get MQ DCRs base */
4501	dcr_base = dcr_resource_start(np, 0);
4502	dcr_len = dcr_resource_len(np, 0);
4503	if (!dcr_base && !dcr_len) {
4504		pr_err("%pOF: can't get DCR registers base/len!\n", np);
4505		ret = -ENODEV;
4506		goto out_mq;
4507	}
4508
4509	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4510	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4511		pr_err("%pOF: failed to map DCRs!\n", np);
4512		ret = -ENODEV;
4513		goto out_mq;
4514	}
4515	of_node_put(np);
4516	ppc440spe_mq_dcr_len = dcr_len;
4517
4518	/* Set HB alias */
4519	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4520
4521	/* Set:
4522	 * - LL transaction passing limit to 1;
4523	 * - Memory controller cycle limit to 1;
4524	 * - Galois Polynomial to 0x14d (default)
4525	 */
4526	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4527		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4528		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4529
4530	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4531	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4532		ppc440spe_adma_devices[i] = -1;
4533
4534	return 0;
4535
4536out_mq:
4537	of_node_put(np);
4538out_free:
4539	kfree(ppc440spe_dma_fifo_buf);
4540	return ret;
4541}
4542
4543static const struct of_device_id ppc440spe_adma_of_match[] = {
4544	{ .compatible	= "ibm,dma-440spe", },
4545	{ .compatible	= "amcc,xor-accelerator", },
4546	{},
4547};
4548MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4549
4550static struct platform_driver ppc440spe_adma_driver = {
4551	.probe = ppc440spe_adma_probe,
4552	.remove = ppc440spe_adma_remove,
4553	.driver = {
4554		.name = "PPC440SP(E)-ADMA",
4555		.of_match_table = ppc440spe_adma_of_match,
4556	},
4557};
4558
4559static __init int ppc440spe_adma_init(void)
4560{
4561	int ret;
4562
4563	ret = ppc440spe_configure_raid_devices();
4564	if (ret)
4565		return ret;
4566
4567	ret = platform_driver_register(&ppc440spe_adma_driver);
4568	if (ret) {
4569		pr_err("%s: failed to register platform driver\n",
4570			__func__);
4571		goto out_reg;
4572	}
4573
4574	/* Initialization status */
4575	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4576				 &driver_attr_devices);
4577	if (ret)
4578		goto out_dev;
4579
4580	/* RAID-6 h/w enable entry */
4581	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4582				 &driver_attr_enable);
4583	if (ret)
4584		goto out_en;
4585
4586	/* GF polynomial to use */
4587	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4588				 &driver_attr_poly);
4589	if (!ret)
4590		return ret;
4591
4592	driver_remove_file(&ppc440spe_adma_driver.driver,
4593			   &driver_attr_enable);
4594out_en:
4595	driver_remove_file(&ppc440spe_adma_driver.driver,
4596			   &driver_attr_devices);
4597out_dev:
4598	/* User will not be able to enable h/w RAID-6 */
4599	pr_err("%s: failed to create RAID-6 driver interface\n",
4600		__func__);
4601	platform_driver_unregister(&ppc440spe_adma_driver);
4602out_reg:
4603	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4604	kfree(ppc440spe_dma_fifo_buf);
4605	return ret;
4606}
4607
4608static void __exit ppc440spe_adma_exit(void)
4609{
4610	driver_remove_file(&ppc440spe_adma_driver.driver,
4611			   &driver_attr_poly);
4612	driver_remove_file(&ppc440spe_adma_driver.driver,
4613			   &driver_attr_enable);
4614	driver_remove_file(&ppc440spe_adma_driver.driver,
4615			   &driver_attr_devices);
4616	platform_driver_unregister(&ppc440spe_adma_driver);
4617	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4618	kfree(ppc440spe_dma_fifo_buf);
4619}
4620
4621arch_initcall(ppc440spe_adma_init);
4622module_exit(ppc440spe_adma_exit);
4623
4624MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4625MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4626MODULE_LICENSE("GPL");
4627